1
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
2
|
Daniels MA, Luera D, Teixeiro E. NFκB signaling in T cell memory. Front Immunol 2023; 14:1129191. [PMID: 36911729 PMCID: PMC9998984 DOI: 10.3389/fimmu.2023.1129191] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Memory T cells play an essential role in protecting against infectious diseases and cancer and contribute to autoimmunity and transplant rejection. Understanding how they are generated and maintained in the context of infection or vaccination holds promise to improve current immune-based therapies. At the beginning of any immune response, naïve T cells are activated and differentiate into cells with effector function capabilities. In the context of infection, most of these cells die once the pathogenic antigen has been cleared. Only a few of them persist and differentiate into memory T cells. These memory T cells are essential to host immunity because they are long-lived and can perform effector functions immediately upon re-infection. How a cell becomes a memory T cell and continues being one for months and even years past the initial infection is still not fully understood. Recent reviews have thoroughly discussed the transcriptional, epigenomic, and metabolic mechanisms that govern T cell memory differentiation. Yet much less is known of how signaling pathways that are common circuitries of multiple environmental signals regulate T cell outcome and, precisely, T cell memory. The function of the NFκB signaling system is perhaps best understood in innate cells. Recent findings suggest that NFκB signaling plays an essential and unique role in generating and maintaining CD8 T cell memory. This review aims to summarize these findings and discuss the remaining questions in the field.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Kaminski S, Adjali O, Jacquet C, Garaude J, Keriel A, Lassaux A, Hipskind R, Sitbon M, Taylor N, Villalba M. The protooncogene Vav1 regulates murine leukemia virus-induced T-cell leukemogenesis. Oncoimmunology 2021; 1:600-608. [PMID: 22934252 PMCID: PMC3429564 DOI: 10.4161/onci.20225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vav1 is expressed exclusively in hematopoietic cells and is required for T cell development and activation. Vav1-deficient mice show thymic hypocellularity due to a partial block during thymocyte development at the DN3 stage and between the double positive (DP) and single positive (SP) transition. Vav1 has been shown to play a significant role in several non-hematopoietic tumors but its role in leukemogenesis is unknown. To address this question, we investigated the role of Vav1 in retrovirus-induced T cell leukemogenesis. Infection of Vav1-deficient mice with the Moloney strain of murine leukemia virus (M-MuLV) significantly affected tumor phenotype without modulating tumor incidence or latency. M-MuLV-infected Vav1-deficient mice showed reduced splenomegaly, higher hematocrit levels and hypertrophic thymi. Notably, Vav1-deficient mice with M-MuLV leukemias presented with markedly lower TCRβ/CD3 levels, indicating that transformation occurred at an earlier stage of T cell development than in WT mice. Thus, impaired T cell development modulates the outcome of retrovirus-induced T cell leukemias, demonstrating a link between T cell development and T cell leukemogenesis.
Collapse
Affiliation(s)
- Sandra Kaminski
- Institut de Génétique Moléculaire de Montpellier; UMR 5535; CNRS; Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chhuon C, Zhang SY, Jung V, Lewandowski D, Lipecka J, Pawlak A, Sahali D, Ollero M, Guerrera IC. A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. J Lipid Res 2020; 61:1512-1523. [PMID: 32769147 PMCID: PMC7604723 DOI: 10.1194/jlr.d120000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Shao-Yu Zhang
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- Université Paris-Sud, Paris, France
| | - Joanna Lipecka
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - André Pawlak
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Dil Sahali
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Mario Ollero
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| |
Collapse
|
6
|
Thuille N, Siegmund K, Klepsch V, Schörgenhuber J, Danklmaier S, Leitges M, Baier G. Loss-of-function phenotype of a PKCθ T219A knockin mouse strain. Cell Commun Signal 2019; 17:141. [PMID: 31694643 PMCID: PMC6836476 DOI: 10.1186/s12964-019-0466-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein kinase C θ has been established as an important signaling intermediate in T-effector-cell activation and survival pathways by controlling activity of the key transcription factors NF-κB and NFAT. Previous studies identified an activation-induced auto-phosphorylation site at Thr-219, located between the tandem C1 domains of the regulatory fragment in PKCθ, as a structural requirement for its correct membrane translocation and the subsequent transactivation of downstream signals leading to IL-2 production in a human T cell line. METHODS The present work aimed to define the role of this phosphorylation switch on PKCθ in a physiological context through a homozygous T219A knockin mouse strain. T cell activation was analyzed by H3-thymidine uptake (proliferative response), qRT-PCR and luminex measurements (cytokine production). NFAT and NF-κB transactivation responses were estimated by Gel mobility shift and Alpha Screen assays. Frequencies of T cell subsets were analyzed by flow cytometry. RESULTS Despite a normal T cell development, in vitro activated effector T cells clearly revealed a requirement of Thr-219 phosphorylation site on PKCθ for a transactivation of NF-κB and NFAT transcription factors and, subsequently, robust IL-2 and IFN-γ expression. CONCLUSION This phenotype is reminiscent of the PKCθ knockout T cells, physiologically validating that this (p) Thr-219 auto-phosphorylation site indeed critically regulates PKCθ function in primary mouse T cells.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria.
| | - Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Victoria Klepsch
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Sarah Danklmaier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1107-1120. [PMID: 29737402 DOI: 10.1007/s00438-018-1443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.
Collapse
|
8
|
Hage-Sleiman R, Hamze AB, El-Hed AF, Attieh R, Kozhaya L, Kabbani S, Dbaibo G. Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells. Immunol Res 2017; 64:869-86. [PMID: 26798039 DOI: 10.1007/s12026-016-8787-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein kinase C theta (PKCθ) is a novel, calcium-independent member of the PKC family of kinases that was identified as a central player in T cell signaling and proliferation. Upon T cell activation by antigen-presenting cells, PKCθ gets phosphorylated and activated prior to its translocation to the immunological synapse where it couples with downstream effectors. PKCθ may be regulated by ceramide, a crucial sphingolipid that is known to promote differentiation, growth arrest, and apoptosis. To further investigate the mechanism, we stimulated human Jurkat T cells with either PMA or anti-CD3/anti-CD28 antibodies following induction of ceramide accumulation by adding exogenous ceramide, bacterial sphingomyelinase, or Fas ligation. Our results suggest that ceramide regulates the PKCθ pathway through preventing its critical threonine 538 (Thr538) phosphorylation and subsequent activation, thereby inhibiting the kinase's translocation to lipid rafts. Moreover, this inhibition is not likely to be a generic effect of ceramide on membrane reorganization. Other lipids, namely dihydroceramide, palmitate, and sphingosine, did not produce similar effects on PKCθ. Addition of the phosphatase inhibitors okadaic acid and calyculin A reversed the inhibition exerted by ceramide, and this suggests involvement of a ceramide-activated protein phosphatase. Such previously undescribed mechanism of regulation of PKCθ raises the possibility that ceramide, or one of its derivatives, and may prove valuable in novel therapeutic approaches for disorders involving autoimmunity or excessive inflammation-where PKCθ plays a critical role.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Asmaa B Hamze
- Department of Biomedical Science, Faculty of Health Sciences, Global University, Batrakiyye, Beirut, Lebanon
| | - Aimée F El-Hed
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Randa Attieh
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Lina Kozhaya
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Sarah Kabbani
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon.
| |
Collapse
|
9
|
Predominant contribution of DGKζ over DGKα in the control of PKC/PDK‐1‐regulated functions in T cells. Immunol Cell Biol 2017; 95:549-563. [DOI: 10.1038/icb.2017.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
|
10
|
Britton GJ, Ambler R, Clark DJ, Hill EV, Tunbridge HM, McNally KE, Burton BR, Butterweck P, Sabatos-Peyton C, Hampton-O’Neil LA, Verkade P, Wülfing C, Wraith DC. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton. eLife 2017; 6:e20003. [PMID: 28112644 PMCID: PMC5310840 DOI: 10.7554/elife.20003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.
Collapse
Affiliation(s)
- Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Danielle J Clark
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kerrie E McNally
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philomena Butterweck
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Lea A Hampton-O’Neil
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - David Cameron Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Kang JA, Choi H, Yang T, Cho SK, Park ZY, Park SG. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability. Mol Cells 2017; 40:37-44. [PMID: 28152304 PMCID: PMC5303887 DOI: 10.14348/molcells.2017.2236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 11/27/2022] Open
Abstract
PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation.
Collapse
Affiliation(s)
- Jung-Ah Kang
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Hyunwoo Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Taewoo Yang
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Steve K. Cho
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Zee-Yong Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Sung-Gyoo Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| |
Collapse
|
12
|
Yang Y, Kong W, Xia Z, Xiao L, Wang S. Regulation mechanism of PDK1 on macrophage metabolism and function. Cell Biochem Funct 2016; 34:546-553. [DOI: 10.1002/cbf.3235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Yueqin Yang
- Exercise Intervention and Health Promotion Hubei Province Synergy Innovation Center; Wuhan Sports University; Wuhan Hubei China
| | - Weiwei Kong
- Graduate School; Wuhan Sports University; Wuhan Hubei China
| | - Zhi Xia
- Exercise Physiology and Biochemical Laboratory, College of Physical Education; Jinggangshan University; Ji'an Jiangxi China
| | - Lin Xiao
- School of Physical Education and Health Science; Zhaoqing University; Zhaoqing Guangdong China
| | - Song Wang
- Exercise Intervention and Health Promotion Hubei Province Synergy Innovation Center; Wuhan Sports University; Wuhan Hubei China
| |
Collapse
|
13
|
Porciello N, Kunkl M, Viola A, Tuosto L. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation. Front Immunol 2016; 7:186. [PMID: 27242793 PMCID: PMC4865508 DOI: 10.3389/fimmu.2016.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.
Collapse
Affiliation(s)
- Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| | - Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| |
Collapse
|
14
|
Rajasekaran K, Riese MJ, Rao S, Wang L, Thakar MS, Sentman CL, Malarkannan S. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Front Immunol 2016; 7:176. [PMID: 27242783 PMCID: PMC4863891 DOI: 10.3389/fimmu.2016.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute , Milwaukee, WI , USA
| | - Matthew J Riese
- Laboratory of Lymphocyte Biology, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity at the Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Porciello N, Tuosto L. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling. Cytokine Growth Factor Rev 2016; 28:11-9. [PMID: 26970725 DOI: 10.1016/j.cytogfr.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.
Collapse
Affiliation(s)
- Nicla Porciello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Loretta Tuosto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
16
|
Abstract
The protein kinases C (PKCs) are a family of serine/threonine kinases involved in regulating multiple essential cellular processes such as survival, proliferation, and differentiation. Of particular interest is the novel, calcium-independent PKCθ which plays a central role in immune responses. PKCθ shares structural similarities with other PKC family members, mainly consisting of an N-terminal regulatory domain and a C-terminal catalytic domain tethered by a hinge region. This isozyme, however, is unique in that it translocates to the immunological synapse between a T cell and an antigen-presenting cell (APC) upon T cell receptor-peptide MHC recognition. Thereafter, PKCθ interacts physically and functionally with downstream effectors to mediate T cell activation and differentiation, subsequently leading to inflammation. PKCθ-specific perturbations have been identified in several diseases, most notably autoimmune disorders, and hence the modulation of its activity presents an attractive therapeutic intervention. To that end, many inhibitors of PKCs and PKCθ have been developed and tested in preclinical and clinical studies. And although selectivity remains a challenge, results are promising for the future development of effective PKCθ inhibitors that would greatly advance the treatment of several T-cell mediated diseases.
Collapse
|
17
|
Comet NR, Aguiló JI, Rathoré MG, Catalán E, Garaude J, Uzé G, Naval J, Pardo J, Villalba M, Anel A. IFNα signaling through PKC-θ is essential for antitumor NK cell function. Oncoimmunology 2014; 3:e948705. [PMID: 25960930 DOI: 10.4161/21624011.2014.948705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that the development of a major histocompatibility complex class I (MHC-I)-deficient tumor was favored in protein kinase C-θ knockout (PKC-θ-/-) mice compared to that occurring in wild-type mice. This phenomenon was associated with scarce recruitment of natural killer (NK) cells to the tumor site, as well as impaired NK cell activation and reduced cytotoxicity ex vivo. Poly-inosinic:cytidylic acid (poly I:C) treatment activated PKC-θ in NK cells depending on the presence of a soluble factor produced by a different splenocyte subset. In the present work, we sought to analyze whether interleukin-15 (IL-15) and/or interferon-α (IFNα) mediate PKC-θ-dependent antitumor NK cell function. We found that IL-15 improves NK cell viability, granzyme B expression, degranulation capacity and interferon-γ (IFNγ) secretion independently of PKC-θ. In contrast, we found that IFNα improves the degranulation capability of NK cells against target cancer cells in a PKC-θ-dependent fashion both ex vivo and in vivo. Furthermore, IFNα induces PKC-θ auto-phosphorylation in NK cells, in a signal transduction pathway involving both phosphatidylinositol-3-kinase (PI3K) and phospholipase-C (PLC) activation. PKC-θ dependence was further implicated in IFNα-induced transcriptional upregulation of chemokine (C-X-C motif) ligand 10 (CXCL10), a signal transducer and activator of transcription-1 (STAT-1)-dependent target of IFNα. The absence of PKC-θ did not affect IFNα-induced STAT-1 Tyr701 phosphorylation but affected the increase in STAT-1 phosphorylation on Ser727, attenuating CXCL10 secretion. This connection between IFNα and PKC-θ in NK cells may be exploited in NK cell-based tumor immunotherapy.
Collapse
Key Words
- CDK8, cyclin-dependent kinase 8
- CXCL10
- CXCL10, (C-X-C motif) ligand 10/CXCL10
- FCS, fetal calf serum
- IFN-α, IL-15
- IFNA1
- IFNα, interferon-α
- IFNγ, interferon-γ, IFNG
- IL-15, interleukin-15/IL15
- MACS, magnetic cell separation
- MEF, murine embryonic fibroblast
- MHC-I, major histocompability complex class I/MHC-I
- NK cells
- NK, natural killer
- PI3K, phosphatidylinositol-3-kinase
- PKC-θ
- PKC-θ, protein kinase C-θ, PRKCQ
- PLC, phospholipase-C
- Poly I:C, poly-inosinic:cytidilic acid
- RT-PCR, real-time polymerase chain reaction
- STAT-1, signal transducer and activator of transcription-1/STAT1.
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Natalia R Comet
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Juan Ignacio Aguiló
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Moeez G Rathoré
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Elena Catalán
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Johan Garaude
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Gilles Uzé
- CNRS UMR 5235; Université de Montpellier II; Place Eugene Bataillon ; Montpellier, France
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Julián Pardo
- Immune Effector Cells Group; IIS Aragón; Biomedical Research Center of Aragón (CIBA); Nanoscience Institute of Aragon (INA); Zaragoza, Spain ; Aragón I+D Foundation (ARAID) ; Zaragoza, Spain
| | - Martín Villalba
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France ; Institut de Recherche en Biothérapie (IRB); CHU Montpellier ; Montpellier, France
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| |
Collapse
|
18
|
Langers I, Renoux V, Reschner A, Touzé A, Coursaget P, Boniver J, Koch J, Delvenne P, Jacobs N. Natural killer and dendritic cells collaborate in the immune response induced by the vaccine against uterine cervical cancer. Eur J Immunol 2014; 44:3585-95. [PMID: 25229656 DOI: 10.1002/eji.201444594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/14/2014] [Accepted: 09/11/2014] [Indexed: 11/09/2022]
Abstract
Virus-like particles (VLPs) of human papillomavirus (HPV) are used as a vaccine against HPV-induced cancer, and recently we have shown that these VLPs are able to activate natural killer (NK) cells. Since NK cells collaborate with dendritic cells (DCs) to induce an immune response against viral infections and tumors, we studied the impact of this crosstalk in the context of HPV vaccination. NK cells in the presence of HPV-VLPs enhanced DC-maturation as shown by an upregulation of CD86 and HLA-DR and an increased production of IL-12p70, but not of the immunosuppressive cytokine IL-10. This activation was bidirectional. Indeed, in the presence of HPV-VLPs, DCs further activated NK cells by inducing the upregulation of cell surface activation markers (CD69 and HLA-DR). The function of NK cells was also improved as shown by an increase in IFN-γ secretion and cytotoxic activity against an HPV(+) cell line. This crosstalk between NK cells and DCs needed CD40 interaction and IL-12p70 secretion, whereas NKG2D was not implicated. Our results provide insight into how VLPs interact with innate immune cells and how NK cells and DCs play a role in the immune response induced by this vaccine agent.
Collapse
Affiliation(s)
- Inge Langers
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park SH, Cho G, Park SG. NF-κB Activation in T Helper 17 Cell Differentiation. Immune Netw 2014; 14:14-20. [PMID: 24605076 PMCID: PMC3942503 DOI: 10.4110/in.2014.14.1.14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/21/2022] Open
Abstract
CD28/T cell receptor ligation activates the NF-κB signaling cascade during CD4 T cell activation. NF-κB activation is required for cytokine gene expression and activated T cell survival and proliferation. Recently, many reports showed that NF-κB activation is also involved in T helper (Th) cell differentiation including Th17 cell differentiation. In this review, we discuss the current literature on NF-κB activation pathway and its effect on Th17 cell differentiation.
Collapse
Affiliation(s)
- Sang-Heon Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | - Gabi Cho
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| |
Collapse
|
20
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
21
|
Na BR, Kim HR, Kwon MS, Lee HS, Piragyte I, Choi EJ, Choi HK, Han WC, Lee SH, Jun CD. Aplotaxene blocks T cell activation by modulation of protein kinase C-θ-dependent pathway. Food Chem Toxicol 2013; 62:23-31. [PMID: 23941771 DOI: 10.1016/j.fct.2013.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 07/15/2013] [Accepted: 08/07/2013] [Indexed: 12/12/2022]
Abstract
Aplotaxene, (8Z, 11Z, 14Z)-heptadeca-1, 8, 11, 14-tetraene, is one of the major components of essential oil obtained from Inula helenium root, which is used in Oriental medicine. However, the effects of aplotaxene on immunity have not been investigated. Here, we show that aplotaxene inhibits T cell activation in terms of IL-2 and CD69 expression. Aplotaxene, at a concentration that optimally inhibits IL-2 production, has little effect on apoptotic or necrotic cell death, suggesting that apoptosis is not a mechanism for aplotaxene-mediated inhibition of T cell activation. Aplotaxene affects neither superantigeninduced conjugate formation between Jurkat T cells and Raji B cells nor clustering of CD3 and LFA-1 at the immunological synapse. Aplotaxene significantly inhibits PKC-θ phosphorylation and translocation to the immunological synapse, and blocks PMA-induced T-cell receptor internalization. Furthermore, aplotaxene leads to inhibition of mitogen-activated protein kinases (JNK, ERK and p38) phosphorylation and NF-κB, NF-AT, and AP-1 promoter activities in Jurkat T cells. Taken together, our findings provide evidence for the immunosuppressive effect of aplotaxene on activated T cells through the modulation of the PKC-θ and MAPK pathways, suggesting that aplotaxene may be a novel immunotherapeutic agent for immunological diseases related to the overactivation of T cells.
Collapse
Affiliation(s)
- Bo-Ra Na
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yan Zhang E, Kong KF, Altman A. The yin and yang of protein kinase C-theta (PKCθ): a novel drug target for selective immunosuppression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:267-312. [PMID: 23433459 PMCID: PMC3903317 DOI: 10.1016/b978-0-12-404717-4.00006-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
Collapse
Affiliation(s)
| | | | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
23
|
Michalczyk I, Sikorski AF, Kotula L, Junghans RP, Dubielecka PM. The emerging role of protein kinase Cθ in cytoskeletal signaling. J Leukoc Biol 2012. [PMID: 23192428 DOI: 10.1189/jlb.0812371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytoskeletal rearrangements often occur as the result of transduction of signals from the extracellular environment. Efficient awakening of this powerful machinery requires multiple activation and deactivation steps, which usually involve phosphorylation or dephosphorylation of different signaling units by kinases and phosphatases, respectively. In this review, we discuss the signaling characteristics of one of the nPKC isoforms, PKCθ, focusing on PKCθ-mediated signal transduction to cytoskeletal elements, which results in cellular rearrangements critical for cell type-specific responses to stimuli. PKCθ is the major PKC isoform present in hematopoietic and skeletal muscle cells. PKCθ plays roles in T cell signaling through the IS, survival responses in adult T cells, and T cell FasL-mediated apoptosis, all of which involve cytoskeletal rearrangements and relocation of this enzyme. PKCθ has been linked to the regulation of cell migration, lymphoid cell motility, and insulin signaling and resistance in skeletal muscle cells. Additional roles were suggested for PKCθ in mitosis and cell-cycle regulation. Comprehensive understanding of cytoskeletal regulation and the cellular "modus operandi" of PKCθ holds promise for improving current therapeutic applications aimed at autoimmune diseases.
Collapse
Affiliation(s)
- Izabela Michalczyk
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
24
|
Stahelin RV, Kong KF, Raha S, Tian W, Melowic HR, Ward KE, Murray D, Altman A, Cho W. Protein kinase Cθ C2 domain is a phosphotyrosine binding module that plays a key role in its activation. J Biol Chem 2012; 287:30518-28. [PMID: 22787157 DOI: 10.1074/jbc.m112.391557] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois, Chicago, IL 60607, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang X, Chuang HC, Li JP, Tan TH. Regulation of PKC-θ function by phosphorylation in T cell receptor signaling. Front Immunol 2012; 3:197. [PMID: 22798961 PMCID: PMC3393885 DOI: 10.3389/fimmu.2012.00197] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/11/2012] [Indexed: 01/03/2023] Open
Abstract
Protein kinase C (PKC)-θ is a serine/threonine kinase belonging to the calcium-independent novel PKC subfamily; its expression is restricted to certain tissues and cell types, including T cells. The signals delivered from T cell receptor (TCR) and CD28 costimulatory molecules trigger PKC-θ catalytic activation and membrane translocation to the immunological synapse, leading to activation of NF-κB, AP-1, and NF-AT. These transcription factors are important for T cell survival, activation, and differentiation. Phosphorylation of PKC-θ at multiple Ser/Thr/Tyr residues is induced in T cells during TCR signaling. Some phosphorylation sites play critical roles in the regulation of PKC-θ function and downstream signaling. The regulation mechanisms for PKC-θ phosphorylation sites are now being revealed. In this review, we discuss the current understanding of the regulation of PKC-θ function by phosphorylation during TCR signaling.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
26
|
Anel A, Aguiló JI, Catalán E, Garaude J, Rathore MG, Pardo J, Villalba M. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity. Front Immunol 2012; 3:187. [PMID: 22783260 PMCID: PMC3389606 DOI: 10.3389/fimmu.2012.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/15/2012] [Indexed: 12/24/2022] Open
Abstract
The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized.
Collapse
Affiliation(s)
- Alberto Anel
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
So T, Croft M. Regulation of the PKCθ-NF-κB Axis in T Lymphocytes by the Tumor Necrosis Factor Receptor Family Member OX40. Front Immunol 2012; 3:133. [PMID: 22654884 PMCID: PMC3361009 DOI: 10.3389/fimmu.2012.00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/08/2012] [Indexed: 11/23/2022] Open
Abstract
Antigen primed T lymphocytes need to expand and persist to promote adaptive immunity. The growth and survival signals that control this are in large part provided by the NF-κB pathway in activated or effector/memory T cells. Although several membrane receptors impact NF-κB activation, signaling from OX40 (CD134, TNFRSF4), a member of the tumor necrosis factor receptor (TNFR) superfamily, has proven to be important for T cell immunity and a strong contributor to NF-κB activity. PKCθ directs the T cell receptor (TCR) and CD28-dependent assembly of a CBM complex (CARMA1, BCL10, and MALT1) for efficient activation of NF-κB, raising the question of whether other membrane bound receptors that activate NF-κB also require this PKCθ-CBM axis to control TCR-independent T cell activity. We discuss here our recent data demonstrating that after ligation by OX40L (CD252, TNFSF4) expressed on antigen-presenting cells, OX40 translocates into detergent-insoluble membrane lipid microdomains (DIM or lipid rafts) in T cells irrespective of TCR signals, and assembles into a signaling complex containing PKCθ, together with TRAF2, RIP1, the CBM complex, and the IKKα/β/Γ complex. PKCθ is required for optimal NF-κB activation mediated by OX40 and thus works as an essential component of this OX40 signalosome. We also discuss the likelihood that other TNFR superfamily molecules might complex with PKCθ in T cells, and whether PKC isoforms may be critical to the function of TNFR molecules in general.
Collapse
Affiliation(s)
- Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine Sendai, Japan
| | | |
Collapse
|
28
|
Kwon MJ, Ma J, Ding Y, Wang R, Sun Z. Protein kinase C-θ promotes Th17 differentiation via upregulation of Stat3. THE JOURNAL OF IMMUNOLOGY 2012; 188:5887-97. [PMID: 22586032 DOI: 10.4049/jimmunol.1102941] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although protein kinase C-θ (PKC-θ)-deficient mice are resistant to the induction of Th17-dependent experimental autoimmune encephalomyelitis, the function of PKC-θ in Th17 differentiation remains unknown. In this article, we show that purified, naive CD4 PKC-θ(-/-) T cells were defective in Th17 differentiation, whereas Th1 and Th2 differentiation appeared normal. Activation of PKC-θ with PMA promoted Th17 differentiation in wild type (WT) but not PKC-θ(-/-) T cells. Furthermore, PKC-θ(-/-) T cells had notably lower levels of Stat3, a transcription factor required for Th17 differentiation, and PMA markedly stimulated the expression of Stat3 in WT but not PKC-θ(-/-) T cells. In contrast, activation of Stat4 and Stat6, which are critical for Th1 and Th2 differentiation, was normal in PKC-θ(-/-) T cells. Forced expression of Stat3 significantly increased Th17 differentiation in PKC-θ(-/-) T cells, suggesting that reduced Stat3 levels were responsible for impaired Th17 differentiation, and that Stat3 lies downstream of PKC-θ. Constitutively active PKC-θ, or WT PKC-θ activated by either PMA or TCR cross-linking, stimulated expression of a luciferase reporter gene driven by the Stat3 promoter. PKC-θ-mediated activation of the Stat3 promoter was inhibited by dominant-negative AP-1 and IκB kinase-β, but stimulated by WT AP-1 and IκB kinase-β, suggesting that PKC-θ stimulates Stat3 transcription via the AP-1 and NF-κB pathways. Lastly, conditions favoring Th17 differentiation induced the highest activation level of PKC-θ. Altogether, the data indicate that PKC-θ integrates the signals from TCR signaling and Th17 priming cytokines to upregulate Stat3 via NF-κB and AP-1, resulting in the stimulation of Th17 differentiation.
Collapse
Affiliation(s)
- Myung-Ja Kwon
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
29
|
Wang K, Diao LH, Gong Y, Liu X, Li Y. NEMO differentially regulates TCR and TNF-α induced NF-κB pathways and has an inhibitory role in TCR-induced NF-κB activation. Cell Signal 2012; 24:1556-64. [PMID: 22513115 DOI: 10.1016/j.cellsig.2012.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
Abstract
NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex, is an essential adaptor both for inflammation stimuli and TCR-induced NF-κB activation. However, the exact mechanism of its function has not been fully understood. Here, we report that knockdown of NEMO by RNA interference in Jurkat E6.1 cells enhanced TCR-induced NF-κB report gene activity and IL-2 production by promotion of IκBα degradation and p65 nuclear translocation, whereas inhibited TNF-α and LPS-induced IκBα degradation without influencing the phosphorylation of MAPKs. In human primary T and Jurkat E6.1 cells, both CD3/CD28 and PMA/Ionomycin induced NF-κB activation showed a para-curve correlation with the dosage of small interfering RNA targeting NEMO (siNEMO): the NF-κB report gene activity was increased along with ascending doses of transfected siNEMO and reached the highest activity when knockdown about 70% of NEMO, then turned to decline and gradually be blocked once almost thoroughly knockdown of NEMO. Meanwhile, TNF-α induced NF-κB was always inhibited no matter how much NEMO was knockdown. Subcellular fractionation results suggested that upon CD3/CD28 costimulation, NEMO and IKKβ may not cotranslocate to cytoskeleton fraction as a conventional NEMO/IKK complex with a static stoichiometric ratio, instead the ratio of NEMO: IKKβ continuously shift from high to low. Depletion of NEMO accelerated TCR-induced cytoskeleton translocation of IKKβ. Altogether, this study suggests that NEMO may function as a rheostat exerting a negative action on TCR-induced NF-κB activation and differentially regulates TNF-α and TCR-induced NF-κB pathways.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
30
|
Abstract
Ras guanyl nucleotide releasing proteins (RasGRPs) are guanyl nucleotide exchange factors that activate Ras and related GTPases such as Rap. Like Sos proteins, RasGRPs have a catalytic region composed of a Ras exchange motif (REM) and a CDC25 domain. RasGRPs also possess a pair of atypical EF hands that may bind calcium in vivo and a C1 domain resembling the diacylglycerol (DAG)-binding domain of protein kinase C. DAG directly activates RasGRPs by a membrane recruitment mechanism as well as indirectly by PKC-mediated phosphorylation. RasGRPs are prominently expressed in blood cells. RasGRP1 acts downstream of TCR, while RasGRP1 and RasGRP3 both act downstream of BCR. Together, they regulate Ras in adaptive immune cells. RasGRP2, through Rap, plays a role in controlling platelet adhesion, while RasGRP4 controls Ras activation in mast cells. RasGRP malfunction likely contributes to autoimmunity and may contribute to blood malignancies. RasGRPs might prove to be viable drug targets. The intracellular site of RasGRP action and the relationship between RasGRPs and other Ras regulatory mechanisms are subjects of lively debate.
Collapse
Affiliation(s)
- James C Stone
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
Protein kinase C-theta in platelet activation. FEBS Lett 2011; 585:3208-15. [DOI: 10.1016/j.febslet.2011.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/20/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
|
32
|
Beyer T, Busse M, Hristov K, Gurbiel S, Smida M, Haus UU, Ballerstein K, Pfeuffer F, Weismantel R, Schraven B, Lindquist JA. Integrating signals from the T-cell receptor and the interleukin-2 receptor. PLoS Comput Biol 2011; 7:e1002121. [PMID: 21829342 PMCID: PMC3150289 DOI: 10.1371/journal.pcbi.1002121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/30/2011] [Indexed: 01/28/2023] Open
Abstract
T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R) signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.
Collapse
Affiliation(s)
- Tilo Beyer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Mandy Busse
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Kroum Hristov
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Slavyana Gurbiel
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michal Smida
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Utz-Uwe Haus
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Kathrin Ballerstein
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Pfeuffer
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Robert Weismantel
- Institute of Mathematical Optimization, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jonathan A. Lindquist
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
33
|
Cartwright NG, Kashyap AK, Schaefer BC. An active kinase domain is required for retention of PKCθ at the T cell immunological synapse. Mol Biol Cell 2011; 22:3491-7. [PMID: 21795397 PMCID: PMC3172272 DOI: 10.1091/mbc.e10-11-0916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein kinase Cθ (PKCθ) is a serine/threonine kinase that plays an essential role in antigen-regulated responses of T lymphocytes. Upon antigen stimulation, PKCθ is rapidly recruited to the immunological synapse (IS), the region of contact between the T cell and antigen-presenting cell. This behavior is unique among T cell PKC isoforms. To define domains of PKCθ required for retention at the IS, we generated deletion and point mutants of PKCθ. We used quantitative imaging analysis to assess IS retention of PKCθ mutants in antigen-stimulated T cell clones. Deletion of the kinase domain or site-directed mutation of a subset of known PKCθ phosphorylation sites abrogated or significantly reduced IS retention, respectively. IS retention did not correlate with phosphorylation of specific PKCθ residues but rather with kinase function. Thus PKCθ catalytic competence is essential for stable IS retention.
Collapse
Affiliation(s)
- Natalia G Cartwright
- Department of Microbiology and Immunology and Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
34
|
Muscolini M, Sajeva A, Caristi S, Tuosto L. A novel association between filamin A and NF-κB inducing kinase couples CD28 to inhibitor of NF-κB kinase α and NF-κB activation. Immunol Lett 2011; 136:203-12. [PMID: 21277899 DOI: 10.1016/j.imlet.2011.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 12/13/2022]
Abstract
CD28 costimulatory molecule plays a critical role in the activation of NF-κB. Indeed, while stimulation of T cells with either professional APCs or anti-TCR plus anti-CD28 antibodies efficiently activates NF-κB, TCR alone fails to do that. Moreover, CD28 stimulation by B7 in the absence of TCR may activate IκB kinase α (IKKα) and a non-canonical NF-κB2-like pathway, in human primary CD4(+) T cells. Despite its functional relevance in NF-κB activation, the molecules connecting autonomous CD28-mediated signals to IKKα and NF-κB activation remain still unknown. In searching for specific upstream activators linking CD28 to the IKKα/NF-κB cascade, we identify a novel constitutive association between filamin A (FLNa) and the NF-κB inducing kinase (NIK), in both Jurkat and human primary T cells. Following CD28 engagement by B7, in the absence of TCR, FLNa-associated NIK is activated and induces IKKα kinase activity. Both proline (P(208)YAP(211)P(212)) and tyrosine residues (Y(206)QPY(209)APP) within the C-terminal proline-rich motif of CD28 are involved in the recruitment of FLNa/NIK complexes to the membrane as well as in the activation of NIK and IKKα.
Collapse
Affiliation(s)
- Michela Muscolini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | | | | | | |
Collapse
|
35
|
Spooren A, Mestdagh P, Rondou P, Kolmus K, Haegeman G, Gerlo S. IL-1β potently stabilizes IL-6 mRNA in human astrocytes. Biochem Pharmacol 2011; 81:1004-15. [DOI: 10.1016/j.bcp.2011.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
|
36
|
Wu CC, Wu SY, Liao CY, Teng CM, Wu YC, Kuo SC. The roles and mechanisms of PAR4 and P2Y12/phosphatidylinositol 3-kinase pathway in maintaining thrombin-induced platelet aggregation. Br J Pharmacol 2011; 161:643-58. [PMID: 20880402 DOI: 10.1111/j.1476-5381.2010.00921.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of human platelets by thrombin is mediated predominately through two proteinase-activated receptors (PARs), PAR1 and PAR4. Phosphatidylinositol 3-kinase (PI3K) inhibition leads to reversible PAR1-mediated platelet aggregation, but has no effect on the stability of platelet aggregation induced by thrombin. In the present study, the molecular mechanisms underlying this difference were investigated. EXPERIMENTAL APPROACH The functions of PI3K and PAR4 were assessed using specific inhibitors and aggregometry. The duration of platelet glycoprotein (GP) IIb/IIIa exposure was determined by flow cytometry with the antibody PAC-1. Western blotting and fluo-3 was used to evaluate the activation of Akt and protein kinase C (PKC) and intracellular Ca(2+) mobilization respectively. KEY RESULTS When PAR4 function was inhibited either by the PAR4 antagonist YD-3 [1-benzyl-3-(ethoxycarbonylphenyl)-indazole] or by receptor desensitization, the PI3K inhibitor wortmannin turned thrombin-elicited platelet aggregation from an irreversible event to a reversible event. Moreover, wortmannin plus YD-3 markedly accelerated the inactivation of GPIIb/IIIa in thrombin-stimulated platelets. The aggregation-reversing activity mainly resulted from inhibition of both PI3K-dependent PKC activation and PAR4-mediated sustained intracellular Ca(2+) rises. Blockade of ADP P2Y(12) receptor with 2-methylthioadenosine 5'-monophosphate triethylammonium salt mimicked the inhibitory effect of wortmannin on PI3K-dependent PKC activation and its ability to reverse PAR1-activating peptide-induced platelet aggregation. Co-administration of 2-methylthioadenosine 5'-monophosphate triethylammonium salt with YD-3 also decreased the stability of thrombin-induced platelet aggregation. CONCLUSIONS AND IMPLICATIONS These results suggest that PAR4 acts in parallel with the P2Y(12)/PI3K pathway to stabilize platelet aggregates, and provide new insights into the mechanisms of thrombus stabilization and potential applications for antithrombotic therapy.
Collapse
Affiliation(s)
- Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Rubio I, Grund S, Song SP, Biskup C, Bandemer S, Fricke M, Förster M, Graziani A, Wittig U, Kliche S. TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras. THE JOURNAL OF IMMUNOLOGY 2010; 185:3536-43. [PMID: 20713885 DOI: 10.4049/jimmunol.1000334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ras transmits manifold signals from the TCR at various crossroads in the life of a T cell. For example, selection programs in the thymus or the acquisition of a state of hypo-responsiveness known as anergy are just some of the T cell features known to be controlled by TCR-sparked signals that are intracellularly propagated by Ras. These findings raise the question of how Ras can transmit such a variety of signals leading to the shaping of equally many T cell traits. Because Ras proteins transit through endomembrane compartments on their way to the plasma membrane (PM), compartmentalized Ras activation at distinct subcellular sites represents a potential mechanism for signal diversification in TCR signaling. This hypothesis has been nurtured by studies in T cells engineered to overexpress Ras that reported distinct activation of Ras at the PM and Golgi. Contrary to this scenario, we report in this study that activation of endogenous Ras, imaged in live Jurkat T cells using novel affinity probes for Ras-GTP, proceeds only at the PM even upon enforced signal flux through the diacylglycerol/RasGRP1 pathway. Physiological engagement of the TCR at the immunological synapse in primary T cells caused focalized Ras-GTP accumulation also only at the PM. Analysis of palmitoylation-deficient Ras mutants, which are confined to endomembranes, confirmed that the TCR does not activate Ras in that compartment and revealed a critical function for palmitoylation in N-Ras/H-Ras activation. These findings identify the PM as the only site of TCR-driven Ras activation and document that endomembranes are not a signaling platform for Ras in T cells.
Collapse
Affiliation(s)
- Ignacio Rubio
- Institute for Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Protein kinase C θ deficiency increases resistance of C57BL/6J mice to Plasmodium berghei infection-induced cerebral malaria. Infect Immun 2010; 78:4195-205. [PMID: 20660606 DOI: 10.1128/iai.00465-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinase C θ (PKCθ) functions as a core component of the immunological synapse and serves as a key protein in the integrated T-cell antigen receptor (TCR)/CD28-induced signaling cascade leading to T-cell activation. However, the involvement of PKCθ in host-mediated immune responses to pathogens has not been thoroughly investigated. We tested the consequences of PKCθ ablation on the host response to infection by Plasmodium berghei ANKA (PbA). We found that both PKCθ(+/+) and PKCθ(-/-) C57BL/6J mice are susceptible to infection with PbA. However, despite a similar parasite burden, PKCθ(+/+) mice had an earlier onset of neurological signs, characteristics of experimental cerebral malaria (ECM), resulting in an earlier death. These mice suffered from an early and pronounced splenomegaly with a concomitant increase in the total number of CD4(+) splenic T cells. In contrast, a large proportion of PbA-infected PKCθ(-/-) mice overcame the acute phase characterized by neurological symptoms and survived longer than PKCθ(+/+) mice. The partial resistance of PKCθ(-/-) mice to ECM was associated with an impaired production of Th1-type cytokines, including gamma interferon and tumor necrosis factor alpha/lymphotoxin-α, which are known to exacerbate symptoms leading to ECM. In addition, PbA infection-induced LFA-1 expression in CD8(+) T cells was suppressed in PKCθ-deficient T cells, suggesting a diminished ability to adhere to endothelial cells and sequester in brain microvasculature, which may explain the decrease in neurological symptoms. These data implicate PKCθ in CD4(+) Th1(+) and CD8(+) T-cell-mediated immune responses during PbA infection that contribute to the development of ECM.
Collapse
|
39
|
Ishida M, Itsukaichi T, Kobayashi D, Kikuchi H. Alteration of the PKC theta-Vav1 complex and phosphorylation of Vav1 in TCDD-induced apoptosis in the lymphoblastic T cell line, L-MAT. Toxicology 2010; 275:72-8. [PMID: 20561557 DOI: 10.1016/j.tox.2010.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/05/2010] [Accepted: 06/08/2010] [Indexed: 01/22/2023]
Abstract
We have previously reported that protein kinase C (PKC) theta (theta) and protein tyrosine kinase are involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced apoptosis of L-MAT, a human lymphoblastic T cell line. In the current report, we show that Vav1, a GDP/GTP exchange factor for Rho-like small GTPases, could be detected by Western blotting in the membrane fraction of L-MAT cells after TCDD treatment and was precipitated by incubating with an antibody against PKC theta. Furthermore, the degree of phosphorylation of Vav1, which can be detected using the phosphotyrosine-specific antibody PY-20 or 4G10, is significantly increased after treatment with TCDD. In addition, pretreatment of the cells with genistein, a protein tyrosine kinase inhibitor, abolished the phosphorylation of Vav1 and inhibited the apoptosis. These results suggest that TCDD treatment may activate an unidentified protein tyrosine kinase. Accordingly we hypothesize that this kinase phosphorylates Vav1, following which phosphorylated Vav1 may translocate to the membrane with PKC theta. Finally, PKC theta may mediate the transfer of the apoptotic signal to downstream components.
Collapse
Affiliation(s)
- Masato Ishida
- Division of Cell Technology, Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan. onigiri
| | | | | | | |
Collapse
|
40
|
Natarajan M, August A, Henderson AJ. Combinatorial signals from CD28 differentially regulate human immunodeficiency virus transcription in T cells. J Biol Chem 2010; 285:17338-47. [PMID: 20368329 DOI: 10.1074/jbc.m109.085324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Activation through the T-cell receptor and the costimulatory receptor CD28 supports efficient HIV transcription as well as reactivation of latent provirus. To characterize critical signals associated with CD28 that regulate HIV-1 transcription, we generated a library of chimeric CD28 receptors that harbored different combinations of key tyrosine residues in the cytoplasmic tail, Tyr-173, Tyr-188, Tyr-191, and Tyr-200. We found that Tyr-191 and Tyr-200 induce HIV-1 transcription via the activation of NF-kappaB and its recruitment to the HIV-long terminal repeat. Tyr-188 modifies positive and negative signals associated with CD28. Importantly, signaling through Tyr-188, Tyr-191, and Tyr-200 is required to overcome the inhibition posed by Tyr-173. CD28 also regulates P-TEFb activity, which is necessary for HIV-1 transcription processivity, by limiting the release of P-TEFb from the HEXIM1-7SK inhibitory complex in response to T-cell receptor signaling. Our studies reveal that CD28 regulates HIV-1 provirus transcription through a complex interplay of positive and negative signals that may be manipulated to control HIV-1 transcription and replication.
Collapse
Affiliation(s)
- Malini Natarajan
- Intercollege Graduate Degree Program in Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
41
|
Abstract
During antigen recognition by T cells, membrane receptors and cytoskeletal molecules form a specialized structure at the T cell-antigen-presenting cell junction called the immune synapse (IS). We report a role for the scaffolding protein A-kinase anchoring protein-450 (AKAP450), a member of the A-kinase anchoring protein family, in IS formation and T-cell signaling in antigen- and superantigen-dependent T-cell activation. Suppression of AKAP450 by overexpression of a dominant-negative form or siRNA knockdown disrupted the positioning and conformational activation of lymphocyte function-associated antigen 1 at the IS and impaired associated signaling events, including phosphorylation of phospholipase C-gamma1 and protein kinase C-. AKAP450 was also required for correct activation and phosphorylation of CD3, LAT, and Vav1, key T-cell receptor-activated intracellular signaling molecules. Consistently, antigen-triggered reorientation of the microtubule-organizing center at the IS and interleukin-2 secretion were diminished in AKAP450-disrupted T cells. These results indicate key roles for AKAP450 in the organization and activation of receptor molecules at the IS during T-cell signaling events.
Collapse
|
42
|
Lee SH, Yun S, Lee J, Kim MJ, Piao ZH, Jeong M, Chung JW, Kim TD, Yoon SR, Greenberg PD, Choi I. RasGRP1 is required for human NK cell function. THE JOURNAL OF IMMUNOLOGY 2010; 183:7931-8. [PMID: 19933860 DOI: 10.4049/jimmunol.0902012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cross-linking of NK activating receptors activates phospholipase-gamma and subsequently induces diacylglycerol and Ca(2+) as second messengers of signal transduction. Previous studies reported that Ras guanyl nucleotide-releasing protein (RasGRP) 1, which is activated by diacylglycerol and Ca(2+), is crucial for TCR-mediated Ras-ERK activation. We now report that RasGRP1, which can also be detected in human NK cells, plays an essential role in NK cell effector functions. To examine the role of RasGRP1 in NK cell functions, the expression of RasGRP1 was suppressed using RNA interference. Knockdown of RasGRP1 significantly blocked ITAM-dependent cytokine production as well as NK cytotoxicity. Biochemically, RasGRP1-knockdown NK cells showed markedly decreased ability to activate Ras, ERK, and JNK. Activation of the Ras-MAPK pathway was independently shown to be indispensable for NK cell effector functions via the use of specific pharmacological inhibitors. Our results reveal that RasGRP1 is required for the activation of the Ras-MAPK pathway leading to NK cell effector functions. Moreover, our data suggest that RasGRP1 might act as an important bridge between phospholipase-gamma activation and NK cell effector functions via the Ras-MAPK pathway.
Collapse
Affiliation(s)
- Suk Hyung Lee
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vav1 couples the T cell receptor to cAMP response element activation via a PKC-dependent pathway. Cell Signal 2010; 22:944-54. [PMID: 20138987 DOI: 10.1016/j.cellsig.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 12/21/2022]
Abstract
The transcription factor cAMP-responsive element binding protein (CREB) is a regulator of the expression of several genes important for lymphocyte activation and proliferation. However, the proximal signaling events leading to activation of CREB in T cells upon antigen receptor stimulation remain unknown. Here we identify a role for Vav1 in the activation of the cAMP response element (CRE), the binding site for CREB. T cell receptor (TCR)/CD28 - induced costimulation of Jurkat T cells expressing Vav1 but not a GEF-deficient mutant showed increased CRE activation (7.2+/-2.4 fold over control), whereas Vav1 downregulation by siRNA reduced activation of CRE by 2.6+/-1.3 fold. Inhibition of PKC and MEK but not p38 could reduce Vav1-mediated CRE activation, suggesting that Vav1 transmits TCR and CD28 signals to activation of CRE via PKC and ERK signaling pathways. As a consequence, downregulation of Vav1 impaired the expression of several CRE-containing genes like cyclin D1, INFgamma and IL-2, whereas overexpression of Vav1 enhanced CRE-dependent gene expression. Furthermore, cAMP-induced CRE-dependent transcription and gene expression was also modulated by Vav1, but did not require activation of PKC and the GEF function of Vav1. Our data provide insights into the signal transduction events regulating CRE-mediated gene expression in T cells, which affects T cell development, proliferation and activation. We identify Vav1 as an essential component of TCR-induced CRE activation and gene expression, which underlines the central role for Vav1 as key player for TCR signal transduction and gene expression.
Collapse
|
44
|
Pores-Fernando AT, Zweifach A. Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Immunol Rev 2009; 231:160-73. [PMID: 19754896 DOI: 10.1111/j.1600-065x.2009.00809.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) kill targets by releasing cytotoxic agents from lytic granules. Killing is a multi-step process. The CTL adheres to a target, allowing its T-cell receptors to recognize antigen. This triggers a signal transduction cascade that leads to the polarization of the microtubule cytoskeleton and granules towards the target, followed by exocytosis that occurs specifically at the site of contact. As with cytokine production by helper T cells (Th cells), target cell killing is absolutely dependent on Ca2+ influx, which is involved in regulating both reorientation and release. Current evidence suggests that Ca2+ influx in CTLs, as in Th cells, occurs via depletion-activated channels. The molecules that couple increases in Ca2+ to reorientation are unknown. The Ca2+/calmodulin-dependent phosphatase calcineurin, which plays a critical role in cytokine production by Th cells, is also involved in lytic granule exocytosis, although the relevant substrates remain to be identified and calcineurin activation is only one Ca2+-dependent step involved. There are thus striking similarities and important differences between Ca2+ signals in Th cells and CTLs, illustrating how cells can use similar signal transduction pathways to generate different functional outcomes.
Collapse
Affiliation(s)
- Arun T Pores-Fernando
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
45
|
Abstract
Reactive oxygen species (ROS) were seen as destructive molecules, but recently, they have been shown also to act as second messengers in varying intracellular signaling pathways. This review concentrates on hydrogen peroxide (H2O2), as it is a more stable ROS, and delineates its role as a survival molecule. In the first part, the production of H2O2 through the NADPH oxidase (Nox) family is investigated. Through careful examination of Nox proteins and their regulation, it is determined how they respond to stress and how this can be prosurvival rather than prodeath. The pathways on which H2O2 acts to enable its prosurvival function are then examined in greater detail. The main survival pathways are kinase driven, and oxidation of cysteines in the active sites of various phosphatases can thus regulate those survival pathways. Regulation of transcription factors such as p53, NF-kappaB, and AP-1 also are reviewed. Finally, prodeath proteins such as caspases could be directly inhibited through their cysteine residues. A better understanding of the prosurvival role of H2O2 in cells, from the why and how it is generated to the various molecules it can affect, will allow more precise targeting of therapeutics to this pathway.
Collapse
Affiliation(s)
- Gillian Groeger
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork , Cork, Ireland
| | | | | |
Collapse
|
46
|
Abstract
Rho family GTPases, and the proteins that regulate them, have important roles in many cellular processes, including cell division, survival, migration and adhesion. Although most of our understanding of these proteins has come from studies using cell lines, more recent gene targeting studies in mice are providing insights into the in vivo function of these proteins. Here we review recent progress revealing crucial roles for these proteins in lymphocyte development, activation, differentiation and migration. The emerging picture shows that Rho family GTPases transduce signals from receptors for antigens, chemokines and cytokines, as well as adhesion molecules and pattern recognition receptors, and that they function as focal points for crosstalk between different signalling pathways.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
47
|
Yokosuka T, Saito T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol Rev 2009; 229:27-40. [PMID: 19426213 DOI: 10.1111/j.1600-065x.2009.00779.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SUMMARY T-cell activation requires contact between T cells and antigen-presenting cells (APCs) to bring T-cell receptors (TCRs) and major histocompatibility complex peptide (MHCp) together to the same complex. These complexes rearrange to form a concentric circular structure, the immunological synapse (IS). After the discovery of the IS, dynamic imaging technologies have revealed the details of the IS and provided important insights for T-cell activation. We have redefined a minimal unit of T-cell activation, the 'TCR microcluster', which recognizes MHCp, triggers an assembly of assorted molecules downstream of the TCR, and induces effective signaling from TCRs. The relationship between TCR signaling and costimulatory signaling was analyzed in terms of the TCR microcluster. CD28, the most valuable costimulatory receptor, forms TCR-CD28 microclusters in cooperation with TCRs, associates with protein kinase C theta, and effectively induces initial T-cell activation. After mature IS formation, CD28 microclusters accumulate at a particular subregion of the IS, where they continuously assemble with the kinases and not TCRs, and generate sustained T-cell signaling. We propose here a 'TCR-CD28 microcluster' model in which TCR and costimulatory microclusters are spatiotemporally formed at the IS and exhibit fine-tuning of T-cell responses by assembling with specific players downstream of the TCR and CD28.
Collapse
Affiliation(s)
- Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy, Immunology, Yokohama, Japan
| | | |
Collapse
|
48
|
Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27:693-733. [PMID: 19302050 DOI: 10.1146/annurev.immunol.021908.132641] [Citation(s) in RCA: 2093] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian Rel/NF-kappaB family of transcription factors, including RelA, c-Rel, RelB, NF-kappaB1 (p50 and its precursor p105), and NF-kappaB2 (p52 and its precursor p100), plays a central role in the immune system by regulating several processes ranging from the development and survival of lymphocytes and lymphoid organs to the control of immune responses and malignant transformation. The five members of the NF-kappaB family are normally kept inactive in the cytoplasm by interaction with inhibitors called IkappaBs or the unprocessed forms of NF-kappaB1 and NF-kappaB2. A wide variety of signals emanating from antigen receptors, pattern-recognition receptors, receptors for the members of TNF and IL-1 cytokine families, and others induce differential activation of NF-kappaB heterodimers. Although work over the past two decades has shed significant light on the regulation of NF-kappaB transcription factors and their functions, much progress has been made in the past two years revealing new insights into the regulation and functions of NF-kappaB. This recent progress is covered in this review.
Collapse
Affiliation(s)
- Sivakumar Vallabhapurapu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Cancer Center, University of California, San Diego, California 93093, USA
| | | |
Collapse
|
49
|
Tringali C, Lupo B, Cirillo F, Papini N, Anastasia L, Lamorte G, Colombi P, Bresciani R, Monti E, Tettamanti G, Venerando B. Silencing of membrane-associated sialidase Neu3 diminishes apoptosis resistance and triggers megakaryocytic differentiation of chronic myeloid leukemic cells K562 through the increase of ganglioside GM3. Cell Death Differ 2009; 16:164-74. [PMID: 18820643 DOI: 10.1038/cdd.2008.141] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 11/09/2022] Open
Abstract
In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40-70% and 63-93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [(3)H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-beta2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.
Collapse
MESH Headings
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- G(M3) Ganglioside/metabolism
- G(M3) Ganglioside/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Megakaryocytes/enzymology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/biosynthesis
- Neuraminidase/genetics
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- C Tringali
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yokosuka T, Kobayashi W, Sakata-Sogawa K, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 2008; 29:589-601. [PMID: 18848472 PMCID: PMC2950619 DOI: 10.1016/j.immuni.2008.08.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/05/2008] [Accepted: 08/08/2008] [Indexed: 12/11/2022]
Abstract
T cell activation is mediated by microclusters (MCs) containing T cell receptors (TCRs), kinases, and adaptors. Although TCR MCs translocate to form a central supramolecular activation cluster (cSMAC) of the immunological synapse at the interface of a T cell and an antigen-presenting cell, the role of MC translocation in T cell signaling remains unclear. Here, we found that the accumulation of MCs at cSMAC was important for T cell costimulation. Costimulatory receptor CD28 was initially recruited coordinately with TCR to MCs, and its signals were mediated through the assembly with the kinase PKCtheta. The accumulation of MCs at the cSMAC was accompanied by the segregation of CD28 from the TCR, which resulted in the translocation of both CD28 and PKCtheta to a spatially unique subregion of cSMAC. Thus, costimulation is mediated by the generation of a unique costimulatory compartment in the cSMAC via the dynamic regulation of MC translocation.
Collapse
Affiliation(s)
- Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Wakana Kobayashi
- Laboratory for Cell Signaling, RIKEN Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kumiko Sakata-Sogawa
- Single-Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Michel L. Dustin
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
- WPI Immunology Frontier Research Center, Suita, Osaka 565-0081, Japan
| | - Makio Tokunaga
- Single-Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Structural Biology Center, National Institute of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- WPI Immunology Frontier Research Center, Suita, Osaka 565-0081, Japan
| |
Collapse
|