1
|
Villaseca S, Leal JI, Tovar LM, Ruiz MJ, Guajardo J, Morales-Navarrete H, Mayor R, Torrejón M. Interaction of Gαi2 with EB1 controls microtubule dynamics and Rac1 activity in Xenopus neural crest cell migration. Development 2025; 152:dev204235. [PMID: 40136014 DOI: 10.1242/dev.204235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Cell migration is crucial in embryonic development, tissue repair and cancer metastasis, driven by the actin and tubulin cytoskeletons that control cell shape, polarity, adhesion and movement in response to various cues. Although heterotrimeric G proteins are known to be involved in cell migration, the specific mechanisms, especially during development, remain elusive. This study examines the role of Gαi2, a heterotrimeric G-protein subunit, in cranial neural crest (NC) cell migration during Xenopus embryonic development. Our research reveals that Gαi2 interacts directly with the microtubule-associated protein EB1, regulating microtubule dynamics. We show that Gαi2 knockdown stabilizes microtubules, disrupts cell polarity and morphology, increases Rac1-GTP at the leading edge and cell-cell contacts, and impairs actin localization and focal adhesion disassembly. Additionally, RhoA-GTP is reduced at cell-cell contacts and concentrated at the leading edge in Gαi2 knockdown cells, providing evidence of a role for Gαi2 in polarity. Treatment with nocodazole, a microtubule-depolymerizing agent, reduces Rac1 activity, restoring cranial NC cell morphology, actin distribution and overall migration. Our findings highlight a crucial role for Gαi2 in cranial NC cell migration by modulating microtubule dynamics through EB1 and Rac1 activity.
Collapse
Affiliation(s)
- Soraya Villaseca
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Lina Mariana Tovar
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - María José Ruiz
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Jossef Guajardo
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | | | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
2
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. Human Papillomavirus Type 16 Stimulates WAVE1- and WAVE2-Dependent Actin Protrusions for Endocytic Entry. Viruses 2025; 17:542. [PMID: 40284985 PMCID: PMC12031361 DOI: 10.3390/v17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Human papillomavirus type 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of actin protrusions that occur at the cellular surface upon HPV addition to cells, and that this stimulation is a key step prior to endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both internalize HPV16 at a significantly reduced rate. Microscopic analysis of fluorescently labeled cells revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface within a timeframe that precedes endocytosis. Within that same timeframe, we also found that HPV16-treated cells express cellular dorsal surface filopodia, which does not occur in cells lacking WAVE1 and WAVE2. Taken together, this study provides evidence that WAVE1 and WAVE2 mediate a key step prior to HPV entry into cells that involves actin reorganization in the form of cellular dorsal surface protrusions.
Collapse
Affiliation(s)
- Daniel J. Fernandez
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie Cheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Chantachotikul P, Liu S, Furukawa K, Deguchi S. AP2A1 modulates cell states between senescence and rejuvenation. Cell Signal 2025; 127:111616. [PMID: 39848456 DOI: 10.1016/j.cellsig.2025.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood. Here we focus on the reorganization of actin stress fibers induced upon replicative senescence in human fibroblasts, widely used as a senescent cell model. We identified, together with our previous proteomic study, that AP2A1 (alpha 1 adaptin subunit of the adaptor protein 2) is upregulated in senescent cells along the length of enlarged stress fibers. Knockdown of AP2A1 reversed senescence-associated phenotypes, exhibiting features of cellular rejuvenation, while its overexpression in young cells advanced senescence phenotypes. Similar functions of AP2A1 were identified in UV- or drug-induced senescence and were observed in epithelial cells as well. Furthermore, we found that AP2A1 is colocalized with integrin β1, and both proteins move linearly along stress fibers. With the observations that focal adhesions are enlarged in senescent cells and that this coincides with strengthened cell adhesion to the substrate, these results suggest that senescent cells maintain their large size by reinforcing their effective anchorage through integrin β1 translocation along stress fibers. This mechanism may work efficiently in senescent cells, compared with a case relying on random diffusion of integrin β1, given the enlarged cell size and resulting increase in travel time and distance for endocytosed vesicle transportation.
Collapse
Affiliation(s)
- Pirawan Chantachotikul
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Kana Furukawa
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Japan.
| |
Collapse
|
4
|
Simoes-da-Silva MM, Barisic M. How does the tubulin code facilitate directed cell migration? Biochem Soc Trans 2025; 53:BST20240841. [PMID: 39998313 DOI: 10.1042/bst20240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Besides being a component of the cytoskeleton that provides structural integrity to the cell, microtubules also serve as tracks for intracellular transport. As the building units of the mitotic spindle, microtubules distribute chromosomes during cell division. By distributing organelles, vesicles, and proteins, they play a pivotal role in diverse cellular processes, including cell migration, during which they reorganize to facilitate cell polarization. Structurally, microtubules are built up of α/β-tubulin dimers, which consist of various tubulin isotypes that undergo multiple post-translational modifications (PTMs). These PTMs allow microtubules to differentiate into functional subsets, influencing the associated processes. This text explores the current understanding of the roles of tubulin PTMs in cell migration, particularly detyrosination and acetylation, and their implications in human diseases.
Collapse
Affiliation(s)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Sun X, Li Y, He Y, Cheng L, Wang L, Wei J, Chen J, Du L, Shen Z, Xie Y, Midgley AC, Jiang W, Yoshida S. Aberrant expression of GTPase-activating protein ARAP1 triggers circular dorsal ruffles associated with malignancy in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2025; 23:75. [PMID: 39934854 PMCID: PMC11816549 DOI: 10.1186/s12964-025-02084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Circular dorsal ruffles (CDRs) are large and rounded membrane ruffles that function as precursors of macropinocytosis. We recently reported that CDRs form in Hep3B hepatocellular carcinoma (HCC) cells, but not in Huh7 and HepG2 HCC cells or LO2 cells, suggesting that an unknown molecular mechanism implicates CDRs in Hep3B malignancy through macropinocytosis uptake of excessive extracellular nutrients. In this study, we investigated the cellular role and the mechanism of CDRs in Hep3B cells by focusing on the GTPase-activating protein ARAP1. METHODS ARAP1 knock-out (KO) cells were generated. Confocal microscopy and high-resolution scanning electron microscopy (SEM) were used for identification of the target proteins and structure analysis, respectively. Proteasome inhibitor MG132, mitochondrial function inhibitor CCCP, ARF1 inhibitor Golgicide A, and macropinocytosis inhibitor EIPA were used to investigate the molecular mechanism. Cell proliferation and Transwell migration/invasion assays were used to investigate the role of ARAP1 in cellular malignancy. RESULTS ARAP1 was localized to CDRs, which had reduced size following ARAP1 KO. CDRs comprised small vertical lamellipodia, the expression pattern of which was disrupted in ARAP1 KO cells. Extracellular solute uptake, rate of cell growth, and malignant potential were attenuated in KO cells. ARAP1 was also localized to mitochondria in Hep3B cells but not in the control cell lines. Mitochondrial fission protein was increased in KO cells. CCCP treatment blocked CDRs in Hep3B cells but not in controls. Surprisingly, ARAP1 expression level in Hep3B cells was lower than in Huh7, HepG2, and LO2 cells. MG132 treatment increased the ARAP1 levels in Hep3B cells, but not in Huh7 cells, revealing that ARAP1 is actively degraded in Hep3B cells. CONCLUSIONS These results strongly suggest that the aberrant expression of ARAP1 in Hep3B cells modulates CDRs via mitochondrial function, thereby resulting in excess uptake of nutrients as an initial event in cancer development. Based on these findings, we propose that the molecular mechanisms underlying the formation of CDRs, focusing on ARAP1, may serve as an effective therapeutic target in some types of HCC and cancers.
Collapse
Affiliation(s)
- Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Longjiao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jianan Chen
- Organ Transplant Department, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Linxuan Du
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Yan Xie
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300384, China.
- Liver Transplantation Department, Tianjin First Center Hospital, Tianjin, China.
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Wentao Jiang
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300384, China.
- Liver Transplantation Department, Tianjin First Center Hospital, Tianjin, China.
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China.
- Nankai International Advanced Research Institute, Shenzhen, China.
- Nankai University College of Life Sciences, Tianjin, 300071, China.
| |
Collapse
|
6
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. WAVE1 and WAVE2 facilitate human papillomavirus-driven actin polymerization during cellular entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620484. [PMID: 39553927 PMCID: PMC11565777 DOI: 10.1101/2024.10.28.620484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human PapillomavirusType 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of the actin polymerization that facilitates HPV endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both, internalize HPV16 at a significantly reduced rate. Analysis of fluorescently labeled cells exposed to HPV16 and acquired by confocal fluorescence microscopy revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface. We also found that HPV16 stimulates WAVE1 and WAVE2-mediated cellular dorsal surface filopodia formation during the viral endocytic process. Taken together, this study provides evidence that the HPV endocytic process needed for infection is controlled by actin reorganization into filopodial protrusions and that this process is mediated by WAVE1 and WAVE2.
Collapse
Affiliation(s)
- D J Fernandez
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Stephanie Cheng
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Ruben Prins
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Derby SJ, Dutton L, Strathdee KE, Stevenson K, Koessinger A, Jackson M, Tian Y, Yu W, Mclay K, Misquitta J, Alsharif S, Clarke CJ, Gilmour L, Thomason P, McGhee E, McGarrity-Cottrell CL, Vanderlinden A, Collis SJ, Rominyi O, Lemgruber L, Solecki G, Olson M, Winkler F, Carlin LM, Heiland DH, Inman GJ, Chalmers AJ, Norman JC, Carruthers R, Birch JL. Inhibition of ATR opposes glioblastoma invasion through disruption of cytoskeletal networks and integrin internalization via macropinocytosis. Neuro Oncol 2024; 26:625-639. [PMID: 37936324 PMCID: PMC10995506 DOI: 10.1093/neuonc/noad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Glioblastomas have highly infiltrative growth patterns that contribute to recurrence and poor survival. Despite infiltration being a critical therapeutic target, no clinically useful therapies exist that counter glioblastoma invasion. Here, we report that inhibition of ataxia telangiectasia and Rad 3 related kinase (ATR) reduces invasion of glioblastoma cells through dysregulation of cytoskeletal networks and subsequent integrin trafficking. METHODS Glioblastoma motility and invasion were assessed in vitro and in vivo in response to ATR inhibition (ATRi) and ATR overexpression using time-lapse microscopy, two orthotopic glioblastoma models, and intravital imaging. Disruption to cytoskeleton networks and endocytic processing were investigated via high-throughput, super-resolution and intravital imaging. RESULTS High ATR expression was associated with significantly poorer survival in clinical datasets while histological, protein expression, and spatial transcriptomics using glioblastoma tumor specimens revealed higher ATR expression at infiltrative margins. Pharmacological inhibition with two different compounds and RNAi targeting of ATR opposed the invasion of glioblastoma, whereas overexpression of ATR drove migration. Subsequent investigation revealed that cytoskeletal dysregulation reduced macropinocytotic internalization of integrins at growth-cone-like structures, resulting in a tumor microtube retraction defect. The biological relevance and translational potential of these findings were confirmed using two orthotopic in vivo models of glioblastoma and intravital imaging. CONCLUSIONS We demonstrate a novel role for ATR in determining invasion in glioblastoma cells and propose that pharmacological targeting of ATR could have far-reaching clinical benefits beyond radiosensitization.
Collapse
Affiliation(s)
- Sarah J Derby
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Louise Dutton
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen E Strathdee
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Katrina Stevenson
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Koessinger
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Scotland Institute, Glasgow, UK
| | - Mark Jackson
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Yuling Tian
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wenxi Yu
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kathy Mclay
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Josette Misquitta
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sama Alsharif
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Lesley Gilmour
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | - Aurelie Vanderlinden
- Department of Oncology and Metabolism, The University of Sheffield Medical School, Sheffield, UK
| | - Spencer J Collis
- Department of Oncology and Metabolism, The University of Sheffield Medical School, Sheffield, UK
| | - Ola Rominyi
- Department of Oncology and Metabolism, The University of Sheffield Medical School, Sheffield, UK
| | - Leandro Lemgruber
- Cellular Analysis Facility, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Gergely Solecki
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Olson
- Department of Chemistry and Biology, Ryeson University, Toronto, Ontario, Canada
| | - Frank Winkler
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leo M Carlin
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Scotland Institute, Glasgow, UK
| | | | - Gareth J Inman
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Scotland Institute, Glasgow, UK
| | - Anthony J Chalmers
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim C Norman
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- CRUK Scotland Institute, Glasgow, UK
| | - Ross Carruthers
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Joanna L Birch
- Wolfson Wohl Translational Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Sun X, Li Y, He Y, Cheng L, Wei J, Du L, Shen Z, Yoshida S. GTPase-activating protein ARAP1 regulates circular dorsal ruffles as a nutrient uptake mechanism in the Hep3B hepatocellular carcinoma cell line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573800. [PMID: 38260345 PMCID: PMC10802275 DOI: 10.1101/2023.12.31.573800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Circular dorsal ruffles (CDRs), large-scale rounded membrane ruffles, function as precursors of macropinocytosis. We recently reported that CDRs are exposed in the Hep3B hepatocellular carcinoma cell line, while not in other hepatocellular carcinoma cell lines, indicating that the CDRs in Hep3B are associated with malignant potential. In this study, we investigated the cellular function of CDRs in Hep3B cells by focusing on the molecular mechanisms of the GTPase-activating protein ARAP1. ARAP1 was localized to the CDRs, the sizes of which were reduced by deletion of this protein. High-resolution scanning electron micrographs revealed that CDRs comprise small vertical lamellipodia, the expression pattern of which was disrupted in ARAP1 KO cells. Extracellular solute uptake, rate of cell growth, and malignant potential were attenuated in the KO cells. ARAP1 is also localized in Hep3B cell mitochondria, although not in those of the Huh7 hepatocellular carcinoma cell line. On the basis of these findings, we propose that the aberrant expression of ARAP1 in Hep3B cells modulates CDRs, thereby resulting in an excess uptake of nutrients as an initial event in cancer development. SUMMARY STATEMENT ARAP1 regulates circular dorsal ruffles (CDRs) in the Hep3B HCC cell line and deletion of this protein attenuates malignant potential, thereby indicating the involvement of CDRs in cancer development.
Collapse
|
9
|
Lo HC, Hua WJ, Yeh H, Lin ZH, Huang LC, Ciou YR, Ruan R, Lin KF, Tseng AJ, Wu ATH, Hsu WH, Chao CH, Lin TY. GMI, a Ganoderma microsporum protein, abolishes focal adhesion network to reduce cell migration and metastasis of lung cancer. Life Sci 2023; 335:122255. [PMID: 37967792 DOI: 10.1016/j.lfs.2023.122255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Cancer metastasis is a major cause of cancer-related deaths, emphasizing the urgent need for effective therapies. Although it has been shown that GMI, a fungal protein from Ganoderma microsporum, could suppress primary tumor growth in a wide spectrum of cancer types, it is still unclear whether GMI exhibits anti-metastasis properties, particularly in lung cancers. Further investigation is needed. AIMS AND OBJECTIVES The objective of this study is to investigate the potential inhibitory effects of GMI on lung cancer metastasis in vivo. Utilizing systematic and comprehensive approaches, our research aims to elucidate the underlying molecular mechanisms responsible for the anti-metastatic effects. MATERIALS AND METHODS In vitro migration and cell adhesion assays addressed the epithelial-to-mesenchymal transition (EMT)-related phenotype. Proteomic and bioinformatic analyses identified the GMI-regulated proteins and cellular responses. GMI-treated LLC1-bearing mice were analyzed using IVIS Spectrum to assess the anti-metastatic effect. KEY FINDINGS GMI inhibits EMT as well as cell migration. GMI disrupts cell adhesion and downregulates integrin, resulting in inhibition of phosphorylated FAK. GMI induces macropinocytosis and lysosome-mediated degradation of integrin αv, α5, α6 and β1. GMI downregulates Slug via inhibition of FAK activity, which in turn enhances expressions of epithelial-related markers and decreases cell mobility. Mechanistically, GMI-induced FAK inhibition engenders MDM2 expression and enhances MDM2/p21/Slug complex formation, leading to Slug degradation. GMI treatment reduces the metastatic pulmonary lesion and prolongs the survival of LLC1-bearing mice. SIGNIFICANCE Our findings highlight GMI as a promising therapeutic candidate for metastatic lung cancers, offering potential avenues for further research and drug development.
Collapse
Affiliation(s)
- Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Chen Huang
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ciou
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Runcheng Ruan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Fan Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science & Technology, Taipei Medical University, Taipei Taiwan
| | - Wei-Hung Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; LO-Sheng Hospital Ministry of Health and Welfare, Taipei, Taiwan; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
10
|
Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, Norman JC, Zacharchenko T, Caswell PT. Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J Cell Sci 2023; 136:jcs260468. [PMID: 37232246 PMCID: PMC10323252 DOI: 10.1242/jcs.260468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.
Collapse
Affiliation(s)
- Beverley Wilson
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Chloe Flett
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jakub Gemperle
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Hartshorn
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Eleanor Hinde
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Tess Harrison
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Megan Chastney
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Taylor
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jennifer Allen
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Thomas Zacharchenko
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
11
|
Matthews M, Cook E, Naguib N, Wiesner U, Lewis K. Intravital imaging of osteocyte integrin dynamic with locally injectable fluorescent nanoparticles. Bone 2023:116830. [PMID: 37327917 DOI: 10.1016/j.bone.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Osteocytes are the resident mechanosensory cells in bone. They are responsible for skeletal homeostasis and adaptation to mechanical cues. Integrin proteins play a prominent role in osteocyte mechanotransduction, but the details are not well stratified. Intravital imaging with multiphoton microscopy presents an opportunity to study molecular level mechanobiological events in vivo and presents an opportunity to study integrin dynamics in osteocytes. However, fluorescent imaging limitations with respect to excessive optical scattering and low signal to noise ratio caused by mineralized bone matrix make such investigations non-trivial. Here, we demonstrate that ultra-small and bright fluorescent core-shell silica nanoparticles (<7 nm diameter), known as Cornell Prime Dots (C'Dots), are well-suited for the in vivo bone microenvironment and can improve intravital imaging capabilities. We report validation studies for C'Dots as a novel, locally injectable in vivo osteocyte imaging tool for both non-specific cellular uptake and for targeting integrins. The pharmacokinetics of C'Dots reveal distinct sex differences in nanoparticle intracellular dynamics and clearance in osteocytes, which represents a novel topic of study in bone biology. Integrin-targeted C'Dots were used to study osteocyte integrin dynamics. To the best of our knowledge, we report here the first evidence of osteocyte integrin endocytosis and recycling in vivo. Our results provide novel insights in osteocyte biology and will open up new lines of investigation that were previously unavailable in vivo.
Collapse
Affiliation(s)
- Melia Matthews
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA
| | - Emily Cook
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA
| | - Nada Naguib
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA
| | - Uli Wiesner
- Department of Materials Science and Engineering, Cornell University, Bard Hall 210, Ithaca 14850, NY, USA
| | - Karl Lewis
- Department of Biomedical Engineering, Cornell University, 237 Tower Rd, Ithaca 14850, NY, USA.
| |
Collapse
|
12
|
Zehrbach NM, Dubois F, Turner CE. Paxillin regulates Rab5-mediated vesicle motility through modulating microtubule acetylation. Mol Biol Cell 2023; 34:ar65. [PMID: 37043310 PMCID: PMC10295489 DOI: 10.1091/mbc.e22-10-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Rab GTPase-mediated vesicle trafficking of cell surface proteins, including integrins, through endocytic and recycling pathways is important in controlling cell-extracellular matrix interactions during cell migration. The focal adhesion adaptor protein, paxillin, plays a central role in regulating adhesion dynamics and was previously shown to promote anterograde vesicle trafficking through modulation of microtubule acetylation via its inhibition of the deacetylase HDAC6. The role of paxillin in retrograde trafficking is unknown. Herein, we identified a role for paxillin in the modulation of the Rab5 GTPase, which is necessary for regulating early endosome dynamics and focal adhesion turnover. Using MDA-MB-231 breast cancer cells and paxillin (-/-) fibroblasts, paxillin was shown to impact Rab5-associated vesicle size and distribution, as well as Rab5 GTPase activity, through its modulation of HDAC6. Using a combination of real-time imaging and particle tracking analysis, paxillin was shown to promote Rab5-associated vesicle motility through inhibition of HDAC6-mediated micro-tubule deacetylation, along with the localization of active integrin to focal adhesions.
Collapse
Affiliation(s)
- Nicholas M. Zehrbach
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
13
|
Machesky LM. CYRI proteins: controllers of actin dynamics in the cellular 'eat vs walk' decision. Biochem Soc Trans 2023; 51:579-585. [PMID: 36892409 PMCID: PMC10212538 DOI: 10.1042/bst20221354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Cells use actin-based protrusions not only to migrate, but also to sample their environment and take up liquids and particles, including nutrients, antigens and pathogens. Lamellipodia are sheet-like actin-based protrusions involved in sensing the substratum and directing cell migration. Related structures, macropinocytic cups, arise from lamellipodia ruffles and can take in large gulps of the surrounding medium. How cells regulate the balance between using lamellipodia for migration and macropinocytosis is not yet well understood. We recently identified CYRI proteins as RAC1-binding regulators of the dynamics of lamellipodia and macropinocytic events. This review discusses recent advances in our understanding of how cells regulate the balance between eating and walking by repurposing their actin cytoskeletons in response to environmental cues.
Collapse
Affiliation(s)
- Laura M. Machesky
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, U.K
- CRUK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
14
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
15
|
Hua R, Wei J, Torres M, He Y, Li Y, Sun X, Wang L, Inoki K, Yoshida S. Identification of circular dorsal ruffles as signal platforms for the AKT pathway in glomerular podocytes. J Cell Physiol 2023; 238:1063-1079. [PMID: 36924084 DOI: 10.1002/jcp.30996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced by growth factors to function as precursors of the large-scale endocytosis called macropinocytosis. In addition to their role in cellular uptake, recent research using cell line systems has shown that CDRs/macropinocytosis regulate the canonical AKT-mTORC1 growth factor signaling pathway. However, as CDRs have not been observed in tissues, their physiological relevance has remained unclear. Here, utilizing ultrahigh-resolution scanning electron microscopy, we first report that CDRs are expressed in glomerular podocytes ex vivo and in vivo, and we visually captured the transformation process to macropinocytosis. Moreover, through biochemical and imaging analyses, we show that AKT phosphorylation localized to CDRs upstream of mTORC1 activation in podocyte cell lines and isolated glomeruli. These results demonstrate the physiological role of CDRs as signal platforms for the AKT-mTORC1 pathway in glomerular podocytes at the tissue level. As mTORC1 plays critical roles in podocyte metabolism, and aberrant activation of mTORC1 triggers podocytopathies, our results strongly suggest that targeting CDR formation could represent a potential therapeutic approach for these diseases.
Collapse
Affiliation(s)
- Rui Hua
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Ken Inoki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Internal medicine and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
16
|
Kabir I, Zhang X, Dave JM, Chakraborty R, Qu R, Chandran RR, Ntokou A, Gallardo-Vara E, Aryal B, Rotllan N, Garcia-Milian R, Hwa J, Kluger Y, Martin KA, Fernández-Hernando C, Greif DM. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. NATURE AGING 2023; 3:64-81. [PMID: 36743663 PMCID: PMC9894379 DOI: 10.1038/s43587-022-00342-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin β3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin β3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| | - Xinbo Zhang
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Rihao Qu
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Rachana R. Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Binod Aryal
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Noemi Rotllan
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Rolando Garcia-Milian
- Department of Bioinformatics Support Program, Yale University, New Haven, CT 06511, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| |
Collapse
|
17
|
Integrin receptor trafficking in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:271-302. [PMID: 36813362 DOI: 10.1016/bs.pmbts.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Integrins are a family of 24 different heterodimers that are indispensable for multicellular life. Cell polarity, adhesion and migration are controlled by integrins delivered to the cell surface which in turn is regulated by the exo- and endocytic trafficking of integrins. The deep integration between trafficking and cell signaling determines the spatial and temporal output from any biochemical cue. Integrin trafficking plays a key role in development and many pathological conditions, especially cancer. Several novel regulators of integrin traffic have been discovered in recent times, including a novel class of integrin carrying vesicles, the intracellular nanovesicles (INVs). The tight regulation of trafficking pathways by cell signaling, where kinases phosphorylate key small GTPases in the trafficking pathway enable coordination of cell response to the extracellular milieu. Integrin heterodimer expression and trafficking differ in different tissues and contexts. In this Chapter, we discuss recent studies on integrin trafficking and its contribution to normal physiological and pathophysiological states.
Collapse
|
18
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|
19
|
Nakagawa K, Nagano T, Katasho R, Iwasaki T, Kamada S. Integrin β1 transduces the signal for LY6D-induced macropinocytosis and mediates senescence-inducing stress-evoked vacuole formation via FAK. FEBS Lett 2022; 596:2768-2780. [PMID: 35999651 DOI: 10.1002/1873-3468.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/07/2022]
Abstract
Cellular senescence is a highly stable cell cycle arrest induced by DNA damage and various cellular stresses. Recently, we have revealed that lymphocyte antigen 6 complex, locus D (LY6D) is responsible for senescence-inducing stress-evoked vacuole formation through induction of Src family kinase (SFK)-mediated macropinocytosis. However, the signaling molecule(s) transducing the macropinocytosis signal from extracellular LY6D to the cytoplasmic SFK are unknown. In this study, we identified integrin β1, a transmembrane signaling protein, as an interactor of LY6D by proteomic analysis and co-immunoprecipitation assays. Inhibition of integrin β1 impaired LY6D-induced macropinocytosis, and integrin β1 activated SFK through focal adhesion kinase to mediate macropinocytosis. These results indicate that integrin β1 is a crucial mediator of the LY6D-induced vacuole formation in senescent cells.
Collapse
Affiliation(s)
- Keitaro Nakagawa
- Department of Biology, Graduate School of Science, Kobe University, Japan
| | - Taiki Nagano
- Biosignal Research Center, Kobe University, Japan
| | - Ryoko Katasho
- Department of Biology, Graduate School of Science, Kobe University, Japan
| | - Tetsushi Iwasaki
- Department of Biology, Graduate School of Science, Kobe University, Japan
- Biosignal Research Center, Kobe University, Japan
| | - Shinji Kamada
- Department of Biology, Graduate School of Science, Kobe University, Japan
- Biosignal Research Center, Kobe University, Japan
| |
Collapse
|
20
|
Bae E, Huang P, Müller-Greven G, Hambardzumyan D, Sloan AE, Nowacki AS, Marko N, Carlin CR, Gladson CL. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis. Nat Commun 2022; 13:4268. [PMID: 35879332 PMCID: PMC9314429 DOI: 10.1038/s41467-022-31981-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Therapeutic targeting of angiogenesis in glioblastoma has yielded mixed outcomes. Investigation of tumor-associated angiogenesis has focused on the factors that stimulate the sprouting, migration, and hyperproliferation of the endothelial cells. However, little is known regarding the processes underlying the formation of the tumor-associated vessels. To address this issue, we investigated vessel formation in CD31+ cells isolated from human glioblastoma tumors. The results indicate that overexpression of integrin α3β1 plays a central role in the promotion of tube formation in the tumor-associated endothelial cells in glioblastoma. Blocking α3β1 function reduced sprout and tube formation in the tumor-associated endothelial cells and vessel density in organotypic cultures of glioblastoma. The data further suggest a mechanistic model in which integrin α3β1-promoted calcium influx stimulates macropinocytosis and directed maturation of the macropinosomes in a manner that promotes lysosomal exocytosis during nascent lumen formation. Altogether, our data indicate that integrin α3β1 may be a therapeutic target on the glioblastoma vasculature.
Collapse
Affiliation(s)
- Eunnyung Bae
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA
| | | | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Andrew Edward Sloan
- Department of Neurosurgery, Seidman Cancer Center, Cleveland, OH, USA
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Nicholas Marko
- Department of Neurosurgery, LewisGale Medical Center, Salem, VA, USA
| | - Cathleen R Carlin
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Candece L Gladson
- Department of Cancer Biology, Cleveland, Clinic, Cleveland, OH, USA.
- University Hospital-Cleveland Medical Center and the Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
- The Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
21
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
22
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
23
|
Molnár M, Sőth Á, Simon-Vecsei Z. Pathways of integrins in the endo-lysosomal system. Biol Futur 2022; 73:171-185. [DOI: 10.1007/s42977-022-00120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
AbstractIn this review, we present recent scientific advances about integrin trafficking in the endo-lysosomal system. In the last few years, plenty of new information has emerged about the endo-lysosomal system, integrins, and the mechanism, how exactly the intracellular trafficking of integrins is regulated. We review the internalization and recycling pathways of integrins, and we provide information about the possible ways of lysosomal degradation through the endosomal and autophagic system. The regulation of integrin internalization and recycling proved to be a complex process worth studying. Trafficking of integrins, together with the regulation of their gene expression, defines cellular adhesion and cellular migration through bidirectional signalization and ligand binding. Thus, any malfunction in this system can potentially (but not necessarily) lead to tumorigenesis or metastasis. Hence, extensive examinations of integrins in the endo-lysosomal system raise the possibility to identify potential new medical targets. Furthermore, this knowledge can also serve as a basis for further determination of integrin signaling- and adhesion-related processes.
Collapse
|
24
|
Abstract
Macropinocytosis is an evolutionarily conserved endocytic pathway that mediates the nonselective acquisition of extracellular material via large endocytic vesicles known as macropinosomes. In addition to other functions, this uptake pathway supports cancer cell metabolism through the uptake of nutrients. Cells harboring oncogene or tumor suppressor mutations are known to display heightened macropinocytosis, which confers to the cancer cells the ability to survive and proliferate despite the nutrient-scarce conditions of the tumor microenvironment. Thus, macropinocytosis is associated with cancer malignancy. Macropinocytic uptake can be induced in cancer cells by different stress stimuli, acting as an adaptive mechanism for the cells to resist stresses in the tumor milieu. Here, we review the cellular stresses that are known to promote macropinocytosis, as well as the underlying molecular mechanisms that drive this process.
Collapse
Affiliation(s)
- Guillem Lambies
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cosimo Commisso
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
25
|
Mishra R, Gupta Y, Ghaley G, Bhowmick NA. Functional Diversity of Macropinocytosis. Subcell Biochem 2022; 98:3-14. [PMID: 35378700 DOI: 10.1007/978-3-030-94004-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Eukaryotic cells are capable of internalizing different types of cargo by plasma membrane ruffling and forming vesicles in a process known as endocytosis. The most extensively characterized endocytic pathways are clathrin-coated pits, lipid raft/caveolae-mediated endocytosis, phagocytosis, and macropinocytosis. Macropinocytosis is unique among all the endocytic processes due to its nonselective internalization of extracellular fluid, solutes, and membrane in large endocytic vesicles known as macropinosomes with unique susceptibility toward Na+/H+ exchanger inhibitors. Range of cell types capable of macropinocytosis and known to play important role in different physiological processes, which include antigen presentation, nutrient sensing, migration, and signaling. Understanding the physiological function of macropinocytosis will be helpful in filling the gaps in our knowledge and which can be exploited to develop novel therapeutic targets. In this chapter, we discuss the different molecular mechanisms that initiate the process of macropinocytosis with special emphasis on proteins involved and their diversified role in different cell types.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh, India.
| | - Yamini Gupta
- Cancer Research Laboratory, Department of Biosciences, Manipal University, Jaipur, Rajasthan, India
| | - Garima Ghaley
- Department of Biosciences, Manipal University, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Delgado MG, Rivera CA, Lennon-Duménil AM. Macropinocytosis and Cell Migration: Don't Drink and Drive…. Subcell Biochem 2022; 98:85-102. [PMID: 35378704 DOI: 10.1007/978-3-030-94004-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.
Collapse
|
27
|
Seguin L. KRAS Addiction Promotes Cancer Cell Adaptation in Harsh Microenvironment Through Macropinocytosis. Subcell Biochem 2022; 98:189-204. [PMID: 35378709 DOI: 10.1007/978-3-030-94004-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
KRAS is the most frequently mutated oncogene in cancer and despite intensive studies, attempts to develop effective therapies targeting KRAS or its downstream signaling have failed mostly due to the complexity of KRAS activation and function in cancer initiation and progression. Over the years, KRAS has been involved in several biological processes including cell survival, proliferation, and metabolism by promoting not only a favorable tumor environment but also a cell-microenvironment dialog to allow cancer cells to adapt to tumor microenvironment scarcity. One of the mechanisms involved in this adaption is KRAS-mediated macropinocytosis. Macropinocytosis is an evolutionarily conserved, large-scale, and nonselective form of endocytosis involving actin-driven cell membrane remodeling to engulf large amounts of extracellular fluids and proteins from the local environment. While macropinocytosis process has been known for decades, recent gain interest due to its regulation of KRAS-driven tumor growth in adverse microenvironments. By promoting extracellular protein and other macromolecules internalization, macropinocytosis provides a survival mechanism under nutrient scarce conditions and the potential for unrestricted tumor growth. Thus, a better understanding of macropinocytotic process is needed to develop alternative therapeutic strategies.
Collapse
|
28
|
Abstract
Macropinocytosis is an evolutionarily conserved endocytic pathway that mediates non-selective uptake of extracellular fluid in bulk. Macropinocytosis is initiated by localized polymerization of the actin cytoskeleton, which generates plasma membrane protrusions that enclose part of the environment into large endocytic vesicles. From amoebae to mammalian cells, the actin dynamics that drive macropinosome formation are regulated by a conserved set of intracellular signaling proteins including Ras superfamily GTPases and PI3-kinases. In mammalian cells, multiple upstream signaling pathways control activity of these core regulators in response to cell-extrinsic and cell-intrinsic stimuli. Growth factor signaling pathways play a central role in macropinocytosis induction. In addition, an increasing number of functionally diverse processes has been identified as macropinocytosis regulators, including several nutrient-sensing and developmental signaling pathways. Many of these signaling pathways have proto-oncogenic properties, and their dysregulation drives the high macropinocytic activity that is commonly observed in cancer cells. These regulatory principles illustrate how macropinocytosis is controlled by complex upstream inputs to exert diverse cellular functions in physiological and pathological contexts.
Collapse
|
29
|
Chen CC, Krogsaeter E, Kuo CY, Huang MC, Chang SY, Biel M. Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomed Pharmacother 2022; 148:112751. [PMID: 35240524 DOI: 10.1016/j.biopha.2022.112751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022] Open
Abstract
Infectious diseases and cancer are among the key medical challenges that humankind is facing today. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of both groups of diseases. The development of advanced patch-clamp technologies has allowed us to directly characterize ion fluxes through endolysosomal ion channels in their native environments. Endolysosomes are essential organelles for intracellular transport, digestion and metabolism, and maintenance of homeostasis. The endolysosomal ion channels regulate the function of the endolysosomal system through four basic mechanisms: calcium release, control of membrane potential, pH change, and osmolarity regulation. In this review, we put particular emphasis on the endolysosomal cation channels, including TPC2 and TRPML2, which are particularly important in monocyte function. We discuss existing endogenous and synthetic ligands of these channels and summarize current knowledge of their impact on channel activity and function in different cell types. Moreover, we summarize recent findings on the importance of TPC2 and TRPML2 channels as potential drug targets for the prevention and treatment of the emerging infectious diseases and cancer.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
30
|
Tejeda-Muñoz N, Morselli M, Moriyama Y, Sheladiya P, Pellegrini M, De Robertis EM. Canonical Wnt signaling induces focal adhesion and Integrin beta-1 endocytosis. iScience 2022; 25:104123. [PMID: 35402867 PMCID: PMC8987407 DOI: 10.1016/j.isci.2022.104123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
During canonical Wnt signaling, the Wnt receptor complex is sequestered together with glycogen synthase kinase 3 (GSK3) and Axin inside late endosomes, known as multivesicular bodies (MVBs). Here, we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin β 1 (ITGβ1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix. Wnt-induced endocytosis caused ITGβ1 depletion from the plasma membrane and was accompanied by striking changes in the actin cytoskeleton. In situ protease protection assays in cultured cells showed that ITGβ1 was sequestered within membrane-bounded organelles that corresponded to Wnt-induced MVBs containing GSK3 and FA-associated proteins. An in vivo model using Xenopus embryos dorsalized by Wnt8 mRNA showed that ITGβ1 depletion decreased Wnt signaling. The finding of a crosstalk between two major signaling pathways, canonical Wnt and focal adhesions, should be relevant to human cancer and cell biology.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA,Corresponding author
| | - Marco Morselli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parm, Italy
| | - Yuki Moriyama
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA,JT Biohistory Research Hall, Osaka, Japan and Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Pooja Sheladiya
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA 90095-1662, USA
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA,Corresponding author
| |
Collapse
|
31
|
Lingasamy P, Põšnograjeva K, Kopanchuk S, Tobi A, Rinken A, General IJ, Asciutto EK, Teesalu T. PL1 Peptide Engages Acidic Surfaces on Tumor-Associated Fibronectin and Tenascin Isoforms to Trigger Cellular Uptake. Pharmaceutics 2021; 13:pharmaceutics13121998. [PMID: 34959279 PMCID: PMC8707168 DOI: 10.3390/pharmaceutics13121998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Tumor extracellular matrix (ECM) is a high-capacity target for the precision delivery of affinity ligand-guided drugs and imaging agents. Recently, we developed a PL1 peptide (sequence: PPRRGLIKLKTS) for systemic targeting of malignant ECM. Here, we map the dynamics of PL1 binding to its receptors Fibronectin Extra Domain B (FN-EDB) and Tenascin C C-isoform (TNC-C) by computational modeling and cell-free binding studies on mutated receptor proteins, and study cellular binding and internalization of PL1 nanoparticles in cultured cells. Molecular dynamics simulation and docking analysis suggested that the engagement of PL1 peptide with both receptors is primarily driven by electrostatic interactions. Substituting acidic amino acid residues with neutral amino acids at predicted PL1 binding sites in FN-EDB (D52N-D49N-D12N) and TNC-C (D39N-D45N) resulted in the loss of binding of PL1 nanoparticles. Remarkably, PL1-functionalized nanoparticles (NPs) were not only deposited on the target ECM but bound the cells and initiated a robust cellular uptake via a pathway resembling macropinocytosis. Our studies establish the mode of engagement of the PL1 peptide with its receptors and suggest applications for intracellular delivery of nanoscale payloads. The outcomes of this work can be used for the development of PL1-derived peptides with improved stability, affinity, and specificity for precision targeting of the tumor ECM and malignant cells.
Collapse
Affiliation(s)
- Prakash Lingasamy
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (P.L.); (K.P.); (A.T.)
| | - Kristina Põšnograjeva
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (P.L.); (K.P.); (A.T.)
| | - Sergei Kopanchuk
- Institute of Chemistry, University of Tartu, Ravila 14, 50411 Tartu, Estonia; (S.K.); (A.R.)
| | - Allan Tobi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (P.L.); (K.P.); (A.T.)
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Ravila 14, 50411 Tartu, Estonia; (S.K.); (A.R.)
| | - Ignacio J. General
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA;
| | - Eliana K. Asciutto
- School of Science and Technology, National University of San Martin (UNSAM), ICIFI and CONICET, 25 de Mayo y Francia, San Martín 1650, Argentina;
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (P.L.); (K.P.); (A.T.)
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA;
- Correspondence: Estonia
| |
Collapse
|
32
|
Kohno T, Konno T, Kikuchi S, Kondoh M, Kojima T. Translocation of LSR from tricellular corners causes macropinocytosis at cell-cell interface as a trigger for breaking out of contact inhibition. FASEB J 2021; 35:e21742. [PMID: 34403506 DOI: 10.1096/fj.202100299r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Withdrawal from contact inhibition is necessary for epithelial cancer precursor cells to initiate cell growth and motility. Nevertheless, little is understood about the mechanism for the sudden initiation of cell growth under static conditions. We focused on cellular junctions as one region where breaking out of contact inhibition occurs. In well-differentiated endometrial cancer cells, Sawano, the ligand administration for tricellular tight junction protein LSR, which transiently decreased the robust junction property, caused an abrupt increase in cell motility and consequent excessive multilayered cell growth despite being under contact inhibition conditions. We observed that macropinocytosis essentially and temporarily occurred as an antecedent event for the above process at intercellular junctions without disruption of the junction apparatus but not at the apical plasma membrane. Collectively, we concluded that the formation of macropinocytosis, which is derived from tight junction-mediated signaling, was triggered for the initiation of cell growth in static precancerous epithelium.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
33
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
34
|
Le AH, Yelland T, Paul NR, Fort L, Nikolaou S, Ismail S, Machesky LM. CYRI-A limits invasive migration through macropinosome formation and integrin uptake regulation. J Cell Biol 2021; 220:e202012114. [PMID: 34165494 PMCID: PMC8236918 DOI: 10.1083/jcb.202012114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/16/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
The Scar/WAVE complex drives actin nucleation during cell migration. Interestingly, the same complex is important in forming membrane ruffles during macropinocytosis, a process mediating nutrient uptake and membrane receptor trafficking. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A, has not been characterized. Here, we implicate CYRI-A as a key regulator of macropinosome formation and integrin internalization. We find that CYRI-A is transiently recruited to nascent macropinosomes, dependent on PI3K and RAC1 activity. CYRI-A recruitment precedes RAB5A recruitment but follows sharply after RAC1 and actin signaling, consistent with it being a local inhibitor of actin polymerization. Depletion of both CYRI-A and -B results in enhanced surface expression of the α5β1 integrin via reduced internalization. CYRI depletion enhanced migration, invasion, and anchorage-independent growth in 3D. Thus, CYRI-A is a dynamic regulator of macropinocytosis, functioning together with CYRI-B to regulate integrin trafficking.
Collapse
Affiliation(s)
- Anh Hoang Le
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Tamas Yelland
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Nikki R. Paul
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Loic Fort
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Department of Cell and Developmental Biology, Medical Research Building III, Vanderbilt University, Nashville, TN
| | - Savvas Nikolaou
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Shehab Ismail
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Laura M. Machesky
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
35
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
36
|
Abstract
Secretory pore-forming proteins (PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs (af-PFPs) and trefoil factors (TFFs). As a toad af-PFP, BmALP1 can be reversibly regulated between active and inactive forms, with its paralog BmALP3 acting as a negative regulator. BmALP1 interacts with BmTFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence, we hereby propose a secretory endolysosome channel (SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
37
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
38
|
Liu Z, Xu E, Zhao HT, Cole T, West AB. LRRK2 and Rab10 coordinate macropinocytosis to mediate immunological responses in phagocytes. EMBO J 2020; 39:e104862. [PMID: 32853409 PMCID: PMC7560233 DOI: 10.15252/embj.2020104862] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Genetic variation in LRRK2 associates with the susceptibility to Parkinson's disease, Crohn's disease, and mycobacteria infection. High expression of LRRK2 and its substrate Rab10 occurs in phagocytic cells in the immune system. In mouse and human primary macrophages, dendritic cells, and microglia-like cells, we find that Rab10 specifically regulates a specialized form of endocytosis known as macropinocytosis, without affecting phagocytosis or clathrin-mediated endocytosis. LRRK2 phosphorylates cytoplasmic PI(3,4,5)P3-positive GTP-Rab10, before EEA1 and Rab5 recruitment to early macropinosomes occurs. Macropinosome cargo in macrophages includes CCR5, CD11b, and MHCII, and LRRK2-phosphorylation of Rab10 potently blocks EHBP1L1-mediated recycling tubules and cargo turnover. EHBP1L1 overexpression competitively inhibits LRRK2-phosphorylation of Rab10, mimicking the effects of LRRK2 kinase inhibition in promoting cargo recycling. Both Rab10 knockdown and LRRK2 kinase inhibition potently suppress the maturation of macropinosome-derived CCR5-loaded signaling endosomes that are critical for CCL5-induced immunological responses that include Akt activation and chemotaxis. These data support a novel signaling axis in the endolysosomal system whereby LRRK2-mediated Rab10 phosphorylation stalls vesicle fast recycling to promote PI3K-Akt immunological responses.
Collapse
Affiliation(s)
- Zhiyong Liu
- Duke Center for Neurodegeneration ResearchDepartment of Pharmacology and Cancer BiologyDuke UniversityDurhamNCUSA
| | - Enquan Xu
- Duke Center for Neurodegeneration ResearchDepartment of Pharmacology and Cancer BiologyDuke UniversityDurhamNCUSA
| | | | | | - Andrew B West
- Duke Center for Neurodegeneration ResearchDepartment of Pharmacology and Cancer BiologyDuke UniversityDurhamNCUSA
| |
Collapse
|
39
|
Whitelaw JA, Swaminathan K, Kage F, Machesky LM. The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration. Cells 2020; 9:E1635. [PMID: 32646006 PMCID: PMC7407199 DOI: 10.3390/cells9071635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin.
Collapse
Affiliation(s)
| | - Karthic Swaminathan
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1PD, UK
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755-3844, USA;
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Laura M. Machesky
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
40
|
Lakoduk AM, Kadlecova Z, Schmid SL. A functionally neutral single chain antibody to measure beta-1 integrin uptake and recycling. Traffic 2020; 21:590-602. [PMID: 32613646 PMCID: PMC7442622 DOI: 10.1111/tra.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Integrin‐mediated cell adhesion and signaling are critical for many physiological processes. The dynamic turnover of integrins and their associated adhesion complexes through endocytic and recycling pathways has emerged as an important mechanism for controlling cell migration and invasion in cancer. Thus, the regulation of integrin trafficking and how this may be altered by disease‐specific molecular mechanisms has generated considerable interest. However, current tools available to study integrin trafficking may cause artifacts and/or do not provide adequate kinetic information. Here, we report the generation of a functionally neutral and monovalent single chain antibody to quantitatively and qualitatively measure β1 integrin trafficking in cells. Our novel probe can be used in a variety of assays and allows for the biochemical characterization of rapid recycling of endogenous integrins. We also demonstrate its potential utility in live cell imaging, providing proof of principle to guide future integrin probe design. The dynamic turnover of integrins through endocytic trafficking pathways has emerged as a key mechanism for cell migration and invasion. Lakoduk et al. report the generation of a functionally neutral and monovalent antibody‐based probe to track and measure endogenous beta‐1 integrin uptake and fast recycling in multiple cell types. Their tool, scFvK20, serves as proof of principle inspiration for future integrin probe design.
Collapse
Affiliation(s)
- Ashley M Lakoduk
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zuzana Kadlecova
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Macropinocytosis and Clathrin-Dependent Endocytosis Play Pivotal Roles for the Infectious Entry of Puumala Virus. J Virol 2020; 94:JVI.00184-20. [PMID: 32350075 DOI: 10.1128/jvi.00184-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses from the family Hantaviridae are encountered as emerging pathogens causing two life-threatening human zoonoses: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with case fatality rates of up to 50%. Here, we comprehensively investigated entry of the Old World hantavirus Puumala virus (PUUV) into mammalian cells, showing that upon treatment with pharmacological inhibitors of macropinocytosis and clathrin-mediated endocytosis, PUUV infections are greatly reduced. We demonstrate that the inhibitors did not interfere with viral replication and that RNA interference, targeting cellular mediators of macropinocytosis, decreases PUUV infection levels significantly. Moreover, we established lipophilic tracer staining of PUUV particles and show colocalization of stained virions and markers of macropinosomes. Finally, we report a significant increase in the fluid-phase uptake of cells infected with PUUV, indicative of a virus-triggered promotion of macropinocytosis.IMPORTANCE The family Hantaviridae comprises a diverse group of virus species and is considered an emerging global public health threat. Individual hantavirus species differ considerably in terms of their pathogenicity but also in their cell biology and host-pathogen interactions. In this study, we focused on the most prevalent pathogenic hantavirus in Europe, Puumala virus (PUUV), and investigated the entry and internalization of PUUV into mammalian cells. We show that both clathrin-mediated endocytosis and macropinocytosis are cellular pathways exploited by the virus to establish productive infections and demonstrate that pharmacological inhibition of macropinocytosis or a targeted knockdown using RNA interference significantly reduced viral infections. We also found indications of an increase of macropinocytic uptake upon PUUV infection, suggesting that the virus triggers specific cellular mechanisms in order to stimulate its own internalization, thus facilitating infection.
Collapse
|
42
|
Ito S, Oishi M, Ogata S, Uemura T, Couraud PO, Masuda T, Ohtsuki S. Identification of Cell-Surface Proteins Endocytosed by Human Brain Microvascular Endothelial Cells In Vitro. Pharmaceutics 2020; 12:pharmaceutics12060579. [PMID: 32585920 PMCID: PMC7356521 DOI: 10.3390/pharmaceutics12060579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-surface proteins that can endocytose into brain microvascular endothelial cells serve as promising candidates for receptor-mediated transcytosis across the blood–brain barrier (BBB). Here, we comprehensively screened endocytic cell-surface proteins in hCMEC/D3 cells, a model of human brain microvascular endothelial cells, using surface biotinylation methodology and sequential window acquisition of all theoretical fragment-ion spectra-mass spectrometry (SWATH-MS)-based quantitative proteomics. Using this method, we identified 125 endocytic cell-surface proteins from hCMEC/D3 cells. Of these, 34 cell-surface proteins were selectively internalized into human brain microvascular endothelial cells, but not into human umbilical vein endothelial cells (HUVECs), a model of human peripheral microvascular endothelial cells. Two cell-surface proteins, intercellular adhesion molecule-1 (ICAM1) and podocalyxin (PODXL), were identified as BBB-localized endocytic cell-surface proteins in humans, using open mRNA and protein databases. Immunohistochemical evaluation confirmed PODXL expression in the plasma membrane of hCMEC/D3 cells and revealed that anti-PODXL antibody-labeled cell-surface PODXL internalized into hCMEC/D3 cells. Immunohistochemistry further revealed that PODXL is localized at the luminal side of human brain microvessels, supporting its potential suitability for translational applications. In conclusion, our findings highlight novel endocytic cell-surface proteins capable of internalizing into human brain microvascular endothelial cells. ICAM1 or PODXL targeted antibody or ligand-labeled biopharmaceuticals and nanocarriers may provide effective targeted delivery to the brain across the BBB for the treatment of central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Mariko Oishi
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Tatsuki Uemura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Pierre-Olivier Couraud
- Institut Cochin, Universite de Paris, Inserm U1016, CNRS UMR8104, 22 rue Méchain, 75014 Paris, France;
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
- Correspondence: ; Tel.: +81-96-371-4323
| |
Collapse
|
43
|
Abstract
Directed cell migration is critical for embryogenesis and organ development, wound healing and the immune response. Microtubules are dynamic polymers that control directional migration through a number of coordinated processes: microtubules are the tracks for long-distance intracellular transport, crucial for delivery of new membrane components and signalling molecules to the leading edge of a migrating cell and the recycling of adhesion receptors. Microtubules act as force generators and compressive elements to support sustained cell protrusions. The assembly and disassembly of microtubules is coupled to Rho GTPase signalling, thereby controlling actin polymerisation, myosin-driven contractility and the turnover of cellular adhesions locally. Cross-talk of actin and microtubule dynamics is mediated through a number of common binding proteins and regulators. Furthermore, cortical microtubule capture sites are physically linked to focal adhesions, facilitating the delivery of secretory vesicles and efficient cross-talk. Here we summarise the diverse functions of microtubules during cell migration, aiming to show how they contribute to the spatially and temporally coordinated sequence of events that permit efficient, directional and persistent migration.
Collapse
|
44
|
Tang K, Li S, Li P, Xia Q, Yang R, Li T, Li L, Jiang Y, Qin X, Yang H, Wu C, You F, Tan Y, Liu Y. Shear stress stimulates integrin β1 trafficking and increases directional migration of cancer cells via promoting deacetylation of microtubules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118676. [DOI: 10.1016/j.bbamcr.2020.118676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
|
45
|
Abstract
Macropinocytosis is an evolutionarily conserved form of endocytosis that mediates non-selective uptake of extracellular fluid and the solutes contained therein. In mammalian cells, macropinocytosis is initiated by growth factor-mediated activation of the Ras and PI3-kinase signalling pathways. In malignant cells, oncogenic activation of growth factor signalling sustains macropinocytosis cell autonomously. Recent studies of cancer metabolism, discussed here, have begun to define a role for macropinocytosis as a nutrient uptake route. Macropinocytic cancer cells ingest macromolecules in bulk and break them down in the lysosome to support metabolism and macromolecular synthesis. Thereby, macropinocytosis allows cells to tap into the copious nutrient stores of extracellular macromolecules when canonical nutrients are scarce. These findings demonstrate that macropinocytosis promotes metabolic flexibility and resilience, which enables cancer cells to survive and grow in nutrient-poor environments. Implications for physiological roles of growth factor-stimulated macropinocytosis in cell metabolism and its relationship with other nutrient uptake pathways are considered. This article is part of the Theo Murphy meeting issue ‘Macropinocytosis’.
Collapse
Affiliation(s)
- Wilhelm Palm
- German Cancer Research Center (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg , Germany
| |
Collapse
|
46
|
Integrin β1 Promotes Peripheral Entry by Rabies Virus. J Virol 2020; 94:JVI.01819-19. [PMID: 31666383 DOI: 10.1128/jvi.01819-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/03/2023] Open
Abstract
Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin β1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies.IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin β1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.
Collapse
|
47
|
Seetharaman S, Etienne-Manneville S. Microtubules at focal adhesions – a double-edged sword. J Cell Sci 2019; 132:132/19/jcs232843. [DOI: 10.1242/jcs.232843] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Cell adhesion to the extracellular matrix is essential for cellular processes, such as migration and invasion. In response to cues from the microenvironment, integrin-mediated adhesions alter cellular behaviour through cytoskeletal rearrangements. The tight association of the actin cytoskeleton with adhesive structures has been extensively studied, whereas the microtubule network in this context has gathered far less attention. In recent years, however, microtubules have emerged as key regulators of cell adhesion and migration through their participation in adhesion turnover and cellular signalling. In this Review, we focus on the interactions between microtubules and integrin-mediated adhesions, in particular, focal adhesions and podosomes. Starting with the association of microtubules with these adhesive structures, we describe the classical role of microtubules in vesicular trafficking, which is involved in the turnover of cell adhesions, before discussing how microtubules can also influence the actin–focal adhesion interplay through RhoGTPase signalling, thereby orchestrating a very crucial crosstalk between the cytoskeletal networks and adhesions.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
- Université Paris Descartes, Center for Research and Interdisciplinarity, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| |
Collapse
|
48
|
Casalou C, Faustino A, Silva F, Ferreira IC, Vaqueirinho D, Ferreira A, Castanheira P, Barona T, Ramalho JS, Serpa J, Félix A, Barral DC. Arl13b Regulates Breast Cancer Cell Migration and Invasion by Controlling Integrin-Mediated Signaling. Cancers (Basel) 2019; 11:cancers11101461. [PMID: 31569511 PMCID: PMC6826833 DOI: 10.3390/cancers11101461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the first cause of cancer-related mortality among women worldwide, according to the most recent estimates. This mortality is mainly caused by the tumors' ability to form metastases. Cancer cell migration and invasion are essential for metastasis and rely on the interplay between actin cytoskeleton remodeling and cell adhesion. Therefore, understanding the mechanisms by which cancer cell invasion is controlled may provide new strategies to impair cancer progression. We investigated the role of the ADP-ribosylation factor (Arf)-like (Arl) protein Arl13b in breast cancer cell migration and invasion in vitro, using breast cancer cell lines and in vivo, using mouse orthotopic models. We show that Arl13b silencing inhibits breast cancer cell migration and invasion in vitro, as well as cancer progression in vivo. We also observed that Arl13b is upregulated in breast cancer cell lines and patient tissue samples. Moreover, we found that Arl13b localizes to focal adhesions (FAs) and interacts with β3-integrin. Upon Arl13b silencing, β3-integrin cell surface levels and FA size are increased and integrin-mediated signaling is inhibited. Therefore, we uncover a role for Arl13b in breast cancer cell migration and invasion and provide a new mechanism for how ARL13B can function as an oncogene, through the modulation of integrin-mediated signaling.
Collapse
Affiliation(s)
- Cristina Casalou
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Alexandra Faustino
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, 1169-056 Lisboa, Portugal.
| | - Fernanda Silva
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal.
| | - Inês C Ferreira
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Daniela Vaqueirinho
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
| | - Andreia Ferreira
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Pedro Castanheira
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, 1169-056 Lisboa, Portugal.
| | - Teresa Barona
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - José S Ramalho
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Jacinta Serpa
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal.
| | - Ana Félix
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal.
| | - Duarte C Barral
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| |
Collapse
|
49
|
Disanza A, Bisi S, Frittoli E, Malinverno C, Marchesi S, Palamidessi A, Rizvi A, Scita G. Is cell migration a selectable trait in the natural evolution of cancer development? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180224. [PMID: 31431177 DOI: 10.1098/rstb.2018.0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selective evolutionary pressure shapes the processes and genes that enable cancer survival and expansion in a tumour-suppressive environment. A distinguishing lethal feature of malignant cancer is its dissemination and seeding of metastatic foci. A key requirement for this process is the acquisition of a migratory/invasive ability. However, how the migratory phenotype is selected for during the natural evolution of cancer and what advantage, if any, it might provide to the growing malignant cells remain open issues. In this opinion piece, we discuss three possible answers to these issues. We will examine lines of evidence from mathematical modelling of cancer evolution that indicate that migration is an intrinsic selectable property of malignant cells that directly impacts on growth dynamics and cancer geometry. Second, we will argue that migratory phenotypes can emerge as an adaptive response to unfavourable growth conditions and endow cells not only with the ability to move/invade, but also with specific metastatic traits, including drug resistance, self-renewal and survival. Finally, we will discuss the possibility that migratory phenotypes are coincidental events that emerge by happenstance in the natural evolution of cancer. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Sara Bisi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Emanuela Frittoli
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Chiara Malinverno
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Stefano Marchesi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Palamidessi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Abrar Rizvi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| |
Collapse
|
50
|
Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci 2019; 132:jcs.233387. [PMID: 31076515 DOI: 10.1242/jcs.233387] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
β1-integrins mediate cell-matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jaroslav Icha
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Antti Arjonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku FIN-20520, Finland
| |
Collapse
|