1
|
Luo W, Zhang F, Zhao F, Fang Y, Zhao L, Su Y. Dual role of PpV in Drosophila crystal cell proliferation and survival. J Mol Cell Biol 2025; 16:mjae028. [PMID: 39085037 PMCID: PMC11927399 DOI: 10.1093/jmcb/mjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Drosophila melanogaster crystal cells are a specialized type of blood cells for the innate immune process upon injury. Under normal conditions, crystal cells rarely proliferate and constitute a small proportion of fly blood cells. Notch signaling has been known to guide the cell fate determination of crystal cells and maintain their survival. Here, we reported that protein phosphatase V (PpV), the unique catalytic subunit of protein phosphatase 6 in Drosophila, is a novel regulator of crystal cell proliferation and integrity. We found that PpV proteins highly accumulated in crystal cells in the larval hematopoietic organ termed the lymph gland. Silencing PpV using RNA interference led to increased crystal cell proliferation in a Notch-independent manner and induced crystal cell rupture dependent on Notch signaling. Moreover, additive PpV prevented the rupture of crystal cells in lymph glands upon a needle injury, suggesting the involvement of PpV in wound healing. Altogether, our results indicated that PpV plays a dual role in lymph glands, preventing crystal cell proliferation to limit the cell number, as well as inhibiting crystal cell rupture to maintain their survival.
Collapse
Affiliation(s)
- Wang Luo
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fangzhen Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yang Fang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Cheng Y, Wang X, Ding Y, Zhang H, Jia Z, Raikhel AS. The AaFoxA factor regulates female reproduction through chromatin remodeling in the mosquito vector Aedes aegypti. Proc Natl Acad Sci U S A 2025; 122:e2411758122. [PMID: 39993202 PMCID: PMC11892592 DOI: 10.1073/pnas.2411758122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Female mosquitoes are vectors of many devastating human diseases because they require blood feeding to initiate reproduction. Thus, elucidation of molecular mechanisms managing female mosquito reproduction is essential. Although the regulation of gene expression during the mosquito gonadotrophic cycle has been studied in detail, how this process is controlled at the chromatin level remains unclear. Chromatin must be accessible for transcription factors (TFs) governing gene expression. A specialized class of TFs, called pioneer factors (PFs), binds and remodels closed chromatin, permitting other TFs to bind DNA and activate the gene expression. Here, we identified a homolog of the vertebrate PF FoxA in the mosquito Aedes aegypti and used the CRISPR-Cas9 system to generate mosquitoes deficient in AaFoxA. We found that ovary development was severely retarded in mutant females. Multiomics and molecular biology analyses have shown that AaFoxA increased histone acetylation and decreased methylation of H3K27 by controlling the chromatin accessibility of histone modification enzymes and chromatin remodelers. AaFoxA is bound to the loci of chromatin remodelers, changing their chromatin accessibility and modulating their temporal expression patterns. AaFoxA increased the accessibility of the ecdysone receptor (EcR) and E74 loci, indicating the important role of AaFoxA in the hormonal regulation of mosquito reproductive events. Further, the CUT&RUN and ATAC-seq analyses revealed that AaFoxA temporarily bound closed chromatin, making it differentially accessible during the mosquito gonadotrophic cycle. Hence, this study demonstrates that AaFoxA modulates chromatin dynamics throughout female mosquito reproduction.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA92521
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou225009, China
| | - Xuesong Wang
- Interdepartmental Graduate Program of Genetics, Genomics and Bioinformatics, University of California, Riverside, CA92521
- Department of Botany and Plant Sciences, University of California, Riverside, CA92521
| | - Yike Ding
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA92521
| | - Houhong Zhang
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA92521
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA92521
| | - Alexander S. Raikhel
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA92521
| |
Collapse
|
3
|
Damodaran AP, Gavard O, Gagné JP, Rogalska ME, Behera AK, Mancini E, Bertolin G, Courtheoux T, Kumari B, Cailloce J, Mereau A, Poirier GG, Valcárcel J, Gonatopoulos-Pournatzis T, Watrin E, Prigent C. Proteomic study identifies Aurora-A-mediated regulation of alternative splicing through multiple splicing factors. J Biol Chem 2025; 301:108000. [PMID: 39551136 PMCID: PMC11732490 DOI: 10.1016/j.jbc.2024.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
The cell cycle regulator Aurora-A kinase presents an attractive target for cancer therapies, though its inhibition is also associated with toxic side effects. To gain a more nuanced understanding of Aurora-A function, we applied shotgun proteomics to identify 407 specific protein partners, including several splicing factors. Supporting a role in alternative splicing, we found that Aurora-A localizes to nuclear speckles, the storehouse of splicing proteins. Aurora-A interacts with and phosphorylates splicing factors both in vitro and in vivo, suggesting that it regulates alternative splicing by modulating the activity of these splicing factors. Consistently, Aurora-A inhibition significantly impacts the alternative splicing of 505 genes, with RNA motif analysis revealing an enrichment for Aurora-A interacting splicing factors. Additionally, we observed a significant positive correlation between the splicing events regulated by Aurora-A and those modulated by its interacting splicing factors. An interesting example is represented by CLK1 exon 4, which appears to be regulated by Aurora-A through SRSF3. Collectively, our findings highlight a broad role of Aurora-A in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Arun Prasath Damodaran
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Olivia Gavard
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amit K Behera
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Giulia Bertolin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Thibault Courtheoux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Justine Cailloce
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Agnès Mereau
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institut Catalá de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Erwan Watrin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France.
| | - Claude Prigent
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Holder J, Miles JA, Batchelor M, Popple H, Walko M, Yeung W, Kannan N, Wilson AJ, Bayliss R, Gergely F. CEP192 localises mitotic Aurora-A activity by priming its interaction with TPX2. EMBO J 2024; 43:5381-5420. [PMID: 39327527 PMCID: PMC11574021 DOI: 10.1038/s44318-024-00240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Aurora-A is an essential cell-cycle kinase with critical roles in mitotic entry and spindle dynamics. These functions require binding partners such as CEP192 and TPX2, which modulate both kinase activity and localisation of Aurora-A. Here we investigate the structure and role of the centrosomal Aurora-A:CEP192 complex in the wider molecular network. We find that CEP192 wraps around Aurora-A, occupies the binding sites for mitotic spindle-associated partners, and thus competes with them. Comparison of two different Aurora-A conformations reveals how CEP192 modifies kinase activity through the site used for TPX2-mediated activation. Deleting the Aurora-A-binding interface in CEP192 prevents centrosomal accumulation of Aurora-A, curtails its activation-loop phosphorylation, and reduces spindle-bound TPX2:Aurora-A complexes, resulting in error-prone mitosis. Thus, by supplying the pool of phosphorylated Aurora-A necessary for TPX2 binding, CEP192:Aurora-A complexes regulate spindle function. We propose an evolutionarily conserved spatial hierarchy, which protects genome integrity through fine-tuning and correctly localising Aurora-A activity.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jennifer A Miles
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Harrison Popple
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Wayland Yeung
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Andrew J Wilson
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - Fanni Gergely
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
6
|
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 Overexpression to Chromosomal Imbalances and Cancer. Cells 2024; 13:1397. [PMID: 39195284 PMCID: PMC11353082 DOI: 10.3390/cells13161397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.
Collapse
Affiliation(s)
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.P.); (A.M.)
| |
Collapse
|
7
|
Grisetti L, Garcia CJC, Saponaro AA, Tiribelli C, Pascut D. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Prolif 2024; 57:e13641. [PMID: 38590119 PMCID: PMC11294426 DOI: 10.1111/cpr.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.
Collapse
Affiliation(s)
- Luca Grisetti
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Clarissa J. C. Garcia
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Anna A. Saponaro
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| | | | - Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| |
Collapse
|
8
|
Zhang H, Read A, Cataisson C, Yang HH, Lee WC, Turk BE, Yuspa SH, Luo J. Protein phosphatase 6 activates NF-κB to confer sensitivity to MAPK pathway inhibitors in KRAS- and BRAF-mutant cancer cells. Sci Signal 2024; 17:eadd5073. [PMID: 38743809 PMCID: PMC11238902 DOI: 10.1126/scisignal.add5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.
Collapse
Affiliation(s)
- Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Current affiliation: Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei-Chun Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Kondo A, Tanaka H, Rai S, Shima H, Matsumura I, Watanabe T. Depletion of Ppp6c in hematopoietic and vascular endothelial cells causes embryonic lethality and decreased hematopoietic potential. Exp Hematol 2024; 133:104205. [PMID: 38490577 DOI: 10.1016/j.exphem.2024.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Protein phosphatase 6 (PP6) is a serine/threonine (Ser/Thr) protein phosphatase, and its catalytic subunit is Ppp6c. PP6 forms the PP2A subfamily with PP2A and PP4. The diverse phenotypes observed following small interfering RNA (siRNA)-based knockdown of Ppp6c in cultured mammalian cells suggest that PP6 plays roles in cell growth and DNA repair. There is also evidence that PP6 regulates nuclear factor kappa B (NF-κB) signaling and mitogen-activated protein kinases and inactivates transforming growth factor-β-activated kinase 1 (TAK1). Loss of Ppp6c causes several abnormalities, including those of T cell and regulatory T cell function, neurogenesis, oogenesis, and spermatogenesis. PP2A has been reported to play an important role in erythropoiesis. However, the roles of PP6 in other hematopoietic cells have not been investigated. We generated Ppp6cfl/fl;Tie2-Cre (Ppp6cTKO) mice, in which Ppp6c was specifically deleted in hematopoietic and vascular endothelial cells. Ppp6cTKO mice displayed embryonic lethality. Ppp6c deficiency increased the number of dead cells and decreased the percentages of erythroid and monocytic cells during fetal hematopoiesis. By contrast, the number of Lin-Sca-1+c-Kit+ cells, which give rise to all hematopoietic cells, was slightly increased, but their colony-forming cell activity was markedly decreased. Ppp6c deficiency also increased phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun amino (N)-terminal kinase in fetal liver hematopoietic cells.
Collapse
Affiliation(s)
- Ayumi Kondo
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan.
| |
Collapse
|
10
|
Pfisterer M, Robert R, Saul VV, Pritz A, Seibert M, Feederle R, Schmitz ML. The Aurora B-controlled PP1/RepoMan complex determines the spatial and temporal distribution of mitotic H2B S6 phosphorylation. Open Biol 2024; 14:230460. [PMID: 38806145 PMCID: PMC11293436 DOI: 10.1098/rsob.230460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 05/30/2024] Open
Abstract
The precise spatial and temporal control of histone phosphorylations is important for the ordered progression through the different phases of mitosis. The phosphorylation of H2B at S6 (H2B S6ph), which is crucial for chromosome segregation, reaches its maximum level during metaphase and is limited to the inner centromere. We discovered that the temporal and spatial regulation of this modification, as well as its intensity, are governed by the scaffold protein RepoMan and its associated catalytically active phosphatases, PP1α and PP1γ. Phosphatase activity is inhibited at the area of maximal H2B S6 phosphorylation at the inner centromere by site-specific Aurora B-mediated inactivation of the PP1/RepoMan complex. The motor protein Mklp2 contributes to the relocalization of Aurora B from chromatin to the mitotic spindle during anaphase, thus alleviating Aurora B-dependent repression of the PP1/RepoMan complex and enabling dephosphorylation of H2B S6. Accordingly, dysregulation of Mklp2 levels, as commonly observed in tumour cells, leads to the lack of H2B S6 dephosphorylation during early anaphase, which might contribute to chromosomal instability.
Collapse
Affiliation(s)
| | - Roman Robert
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Vera V. Saul
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Amelie Pritz
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus Seibert
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
11
|
Ito M, Tanuma N, Kotani Y, Murai K, Kondo A, Sumiyoshi M, Shima H, Matsuda S, Watanabe T. Oncogenic K-Ras G12V cannot overcome proliferation failure caused by loss of Ppp6c in mouse embryonic fibroblasts. FEBS Open Bio 2024; 14:545-554. [PMID: 38318686 PMCID: PMC10988750 DOI: 10.1002/2211-5463.13775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Protein phosphatase 6 is a Ser/Thr protein phosphatase and its catalytic subunit is Ppp6c. Ppp6c is thought to be indispensable for proper growth of normal cells. On the other hand, loss of Ppp6c accelerates growth of oncogenic Ras-expressing cells. Although it has been studied in multiple contexts, the role(s) of Ppp6c in cell proliferation remains controversial. It is unclear how oncogenic K-Ras overcomes cell proliferation failure induced by Ppp6c deficiency; therefore, in this study, we attempted to shed light on how oncogenic K-Ras modulates tumor cell growth. Contrary to our expectations, loss of Ppp6c decreased proliferation, anchorage-independent growth in soft agar, and tumor formation of oncogenic Ras-expressing mouse embryonic fibroblasts (MEFs). These findings show that oncogenic K-RasG12V cannot overcome proliferation failure caused by loss of Ppp6c in MEFs.
Collapse
Affiliation(s)
- Mai Ito
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Nobuhiro Tanuma
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Yui Kotani
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Kokoro Murai
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Ayumi Kondo
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Mami Sumiyoshi
- Department of Cell Signaling, Institute of Biomedical ScienceKansai Medical UniversityHirakataJapan
| | - Hiroshi Shima
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical ScienceKansai Medical UniversityHirakataJapan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| |
Collapse
|
12
|
Naso FD, Polverino F, Cilluffo D, Latini L, Stagni V, Asteriti IA, Rosa A, Soddu S, Guarguaglini G. AurkA/TPX2 co-overexpression in nontransformed cells promotes genome instability through induction of chromosome mis-segregation and attenuation of the p53 signalling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167116. [PMID: 38447882 DOI: 10.1016/j.bbadis.2024.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Danilo Cilluffo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Linda Latini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Signal Transduction Unit, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena, 291, 00161 Rome, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
13
|
Matsuoka M, Sakai D, Shima H, Watanabe T. Neuron-specific loss of Ppp6c induces neonatal death and decreases the number of cortical neurons and interneurons. Biochem Biophys Res Commun 2024; 693:149353. [PMID: 38101002 DOI: 10.1016/j.bbrc.2023.149353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Protein phosphatase 6 (PP6) is a Ser/Thr protein phosphatase with the catalytic subunit Ppp6c. Recent cell-level studies have revealed that Ppp6c knockdown suppresses neurite outgrowth, suggesting that Ppp6c is involved in the development of the nervous system. We found that the function of PP6 in neurons is essential for mouse survival after birth, as all neural-stem-cell-specific KO (Ppp6cNKO) and neuron-specific KO mice died within 2 days of birth. By contrast, approximately 40 % of oligodendrocyte-specific KO mice died within 2 days of birth, whereas others survived until weaning or later, suggesting that the lethality of PP6 loss differs between neurons and oligodendrocytes. Furthermore, the fetal brain of Ppp6cNKO mice exhibited decreased numbers of neurons in layers V-VI and interneurons in layer I of the neocortex. These results suggest for the first time that Ppp6c is essential for neonatal survival and proper development of neurons and interneurons in the neocortex.
Collapse
Affiliation(s)
- Miki Matsuoka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, 981-1293, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, 630-8506, Japan.
| |
Collapse
|
14
|
KITAMURA N, OHAMA T, SATO K. Protein phosphatase 6 promotes transforming growth factor-β signaling in mouse embryonic fibroblasts. J Vet Med Sci 2023; 85:1319-1323. [PMID: 37880139 PMCID: PMC10788163 DOI: 10.1292/jvms.23-0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that controls various cellular processes. Protein phosphatase 6 (PP6) is an evolutionarily conserved serine/threonine protein phosphatase with diverse functions in cell signaling. However, it has not been linked to TGF-β signaling. We found that TGF-β treatment increased PP6 protein levels via transcriptional and post-translational regulation. Loss of the Ppp6c gene suppressed TGF-β-induced canonical Smad3 phosphorylation and its transcriptional activity. PP6 knockout also inhibited non-canonical p38 mitogen-activated protein kinase (MAPK) pathway. Moreover, PP6 depletion suppressed cell migration induced by TGF-β. These findings uncovered the role of PP6 as a positive regulator for TGF-β signaling.
Collapse
Affiliation(s)
- Nao KITAMURA
- Laboratory of Veterinary Pharmacology, Yamaguchi University
Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Takashi OHAMA
- Laboratory of Veterinary Pharmacology, Yamaguchi University
Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Koichi SATO
- Laboratory of Veterinary Pharmacology, Yamaguchi University
Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| |
Collapse
|
15
|
Mariano NC, Rusin SF, Nasa I, Kettenbach AN. Inducible Protein Degradation as a Strategy to Identify Phosphoprotein Phosphatase 6 Substrates in RAS-Mutant Colorectal Cancer Cells. Mol Cell Proteomics 2023; 22:100614. [PMID: 37392812 PMCID: PMC10400926 DOI: 10.1016/j.mcpro.2023.100614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation sites and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent dephosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.
Collapse
Affiliation(s)
- Natasha C Mariano
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Scott F Rusin
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
16
|
Sobajima T, Kowalczyk KM, Skylakakis S, Hayward D, Fulcher LJ, Neary C, Batley C, Kurlekar S, Roberts E, Gruneberg U, Barr FA. PP6 regulation of Aurora A-TPX2 limits NDC80 phosphorylation and mitotic spindle size. J Cell Biol 2023; 222:e202205117. [PMID: 36897279 PMCID: PMC10041653 DOI: 10.1083/jcb.202205117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/22/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Amplification of the mitotic kinase Aurora A or loss of its regulator protein phosphatase 6 (PP6) have emerged as drivers of genome instability. Cells lacking PPP6C, the catalytic subunit of PP6, have amplified Aurora A activity, and as we show here, enlarged mitotic spindles which fail to hold chromosomes tightly together in anaphase, causing defective nuclear structure. Using functional genomics to shed light on the processes underpinning these changes, we discover synthetic lethality between PPP6C and the kinetochore protein NDC80. We find that NDC80 is phosphorylated on multiple N-terminal sites during spindle formation by Aurora A-TPX2, exclusively at checkpoint-silenced, microtubule-attached kinetochores. NDC80 phosphorylation persists until spindle disassembly in telophase, is increased in PPP6C knockout cells, and is Aurora B-independent. An Aurora-phosphorylation-deficient NDC80-9A mutant reduces spindle size and suppresses defective nuclear structure in PPP6C knockout cells. In regulating NDC80 phosphorylation by Aurora A-TPX2, PP6 plays an important role in mitotic spindle formation and size control and thus the fidelity of cell division.
Collapse
Affiliation(s)
| | | | | | - Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Colette Neary
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Caleb Batley
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samvid Kurlekar
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emile Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Park JG, Jeon H, Shin S, Song C, Lee H, Kim NK, Kim EE, Hwang KY, Lee BJ, Lee IG. Structural basis for CEP192-mediated regulation of centrosomal AURKA. SCIENCE ADVANCES 2023; 9:eadf8582. [PMID: 37083534 PMCID: PMC10121170 DOI: 10.1126/sciadv.adf8582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aurora kinase A (AURKA) performs critical functions in mitosis. Thus, the activity and subcellular localization of AURKA are tightly regulated and depend on diverse factors including interactions with the multiple binding cofactors. How these different cofactors regulate AURKA to elicit different levels of activity at distinct subcellular locations and times is poorly understood. Here, we identified a conserved region of CEP192, the major cofactor of AURKA, that mediates the interaction with AURKA. Quantitative binding studies were performed to map the interactions of a conserved helix (Helix-1) within CEP192. The crystal structure of Helix-1 bound to AURKA revealed a distinct binding site that is different from other cofactor proteins such as TPX2. Inhibiting the interaction between Helix-1 and AURKA in cells led to the mitotic defects, demonstrating the importance of the interaction. Collectively, we revealed a structural basis for the CEP192-mediated AURKA regulation at the centrosome, which is distinct from TPX2-mediated regulation on the spindle microtubule.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Sangchul Shin
- Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Chiman Song
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
| | - Hyomin Lee
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Corresponding author.
| |
Collapse
|
18
|
Mariano NC, Rusin SF, Nasa I, Kettenbach AN. Inducible protein degradation as a strategy to identify Phosphoprotein Phosphatase 6 substrates in RAS-mutant colorectal cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534211. [PMID: 36993243 PMCID: PMC10055397 DOI: 10.1101/2023.03.25.534211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation SITES and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent phosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.
Collapse
|
19
|
Lee IG, Lee BJ. Aurora Kinase A Regulation by Cysteine Oxidative Modification. Antioxidants (Basel) 2023; 12:antiox12020531. [PMID: 36830089 PMCID: PMC9952272 DOI: 10.3390/antiox12020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Aurora kinase A (AURKA), which is a member of serine/threonine kinase family, plays a critical role in regulating mitosis. AURKA has drawn much attention as its dysregulation is critically associated with various cancers, leading to the development of AURKA inhibitors, a new class of anticancer drugs. As the spatiotemporal activity of AURKA critically depends on diverse intra- and inter-molecular factors, including its interaction with various protein cofactors and post-translational modifications, each of these pathways should be exploited for the development of a novel class of AURKA inhibitors other than ATP-competitive inhibitors. Several lines of evidence have recently shown that redox-active molecules can modify the cysteine residues located on the kinase domain of AURKA, thereby regulating its activity. In this review, we present the current understanding of how oxidative modifications of cysteine residues of AURKA, induced by redox-active molecules, structurally and functionally regulate AURKA and discuss their implications in the discovery of novel AURKA inhibitors.
Collapse
Affiliation(s)
- In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
20
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
21
|
Wu G, Li D, Liang W, Sun W, Xie X, Tong Y, Shan B, Zhang M, Lu X, Yuan J, Li Y. PP6 negatively modulates LUBAC-mediated M1-ubiquitination of RIPK1 and c-FLIP L to promote TNFα-mediated cell death. Cell Death Dis 2022; 13:773. [PMID: 36071040 PMCID: PMC9452587 DOI: 10.1038/s41419-022-05206-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Activation of TNFR1 by TNFα induces the formation of a membrane-associated, intracellular complex termed complex I. Complex I orchestrates a complex pattern of modifications on key regulators of TNF signaling that collectively determines the cell fate by activating pro-survival or executing cell death programs. However, the regulatory mechanism of complex I in cell-fate decision is not fully understood. Here we identify protein phosphatase-6 (PP6) as a previously unidentified component of complex I. Loss of PP6 protects cells from TNFα-mediated cell death. The role of PP6 in regulating cell death requires its phosphatase activity and regulatory subunits. Further mechanistic studies show that PP6 modulates LUBAC-mediated M1-ubiquitination of RIPK1 and c-FLIPL to promote RIPK1 activation and c-FLIPL degradation. We also show that melanoma-associated PP6 inactivating mutants offer resistance to cell death due to the loss of sensitivity to TNFα. Thus, our study provides a potential mechanism by which melanoma-related PP6 inactivating mutations promote cancer progression.
Collapse
Affiliation(s)
- Guowei Wu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Dekang Li
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Liang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weimin Sun
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xingxing Xie
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yilun Tong
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bing Shan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Mengmeng Zhang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Xiaojuan Lu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Junying Yuan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Ying Li
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| |
Collapse
|
22
|
Tomlinson L, Batchelor M, Sarsby J, Byrne DP, Brownridge PJ, Bayliss R, Eyers PA, Eyers CE. Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:420-435. [PMID: 35099954 PMCID: PMC9007459 DOI: 10.1021/jasms.1c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.
Collapse
Affiliation(s)
- Lauren
J. Tomlinson
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Matthew Batchelor
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Joscelyn Sarsby
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
23
|
Li R, Li X, Zhao J, Meng F, Yao C, Bao E, Sun N, Chen X, Cheng W, Hua H, Li X, Wang B, Wang H, Pan X, You H, Yang J, Ikezoe T. Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation. Am J Cancer Res 2022; 12:976-998. [PMID: 34976224 PMCID: PMC8692896 DOI: 10.7150/thno.63751] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023] Open
Abstract
Rationale: We found that a subset of signal transducer and activator of transcription 3 (STAT3) translocated into mitochondria in phagocytes, including macrophages isolated from individuals with sepsis. However, the role of mitochondrial STAT3 in macrophages remains unclear. Method: To investigate the function of mitochondrial STAT3 in vivo, we generated inducible mitochondrial STAT3 knock-in mice. A cytokine array analysis, a CBA analysis, flow cytometry, immunofluorescence staining and quantification and metabolic analyses in vivo were subsequently performed in an LPS-induced sepsis model. Single-cell RNA sequencing, a microarray analysis, metabolic assays, mass spectrometry and ChIP assays were utilized to gain insight into the mechanisms of mitochondrial STAT3 in metabolic reprogramming in LPS-induced sepsis. Results: We found that mitochondrial STAT3 induced NF-κB nuclear localization and exacerbated LPS-induced sepsis in parallel with a metabolic switch from mainly using glucose to an increased reliance on fatty acid oxidation (FAO). Moreover, mitochondrial STAT3 abrogated carnitine palmitoyl transferase 1a (CPT1a) ubiquitination and degradation in LPS-treated macrophages. Meanwhile, an interaction between CPT1a and ubiquitin-specific peptidase 50 (USP50) was observed. In contrast, knocking down USP50 decreased CPT1a expression and FAO mediated by mitochondrial STAT3. The ChIP assays revealed that NF-κB bound the USP50 promoter. Curcumin alleviated LPS-mediated sepsis by suppressing the activities of mitochondrial STAT3 and NF-κB. Conclusion: Our findings reveal that mitochondrial STAT3 could trigger FAO by inducing CPT1a stabilization mediated by USP50 in macrophages, at least partially.
Collapse
|
24
|
MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia. PLoS One 2021; 16:e0256995. [PMID: 34587164 PMCID: PMC8480815 DOI: 10.1371/journal.pone.0256995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is as a highly aggressive and heterogeneous hematological malignancy. MiR-20a-5p has been reported to function as an oncogene or tumor suppressor in several tumors, but the clinical significance and regulatory mechanisms of miR-20a-5p in AML cells have not been fully understood. In this study, we found miR-20a-5p was significantly decreased in bone marrow from AML patients, compared with that in healthy controls. Moreover, decreased miR-20a-5p expression was correlated with risk status and poor survival prognosis in AML patients. Overexpression of miR-20a-5p suppressed cell proliferation, induced cell cycle G0/G1 phase arrest and apoptosis in two AML cell lines (THP-1 and U937) using CCK-8 assay and flow cytometry analysis. Moreover, miR-20a-5p overexpression attenuated tumor growth in vivo by performing tumor xenograft experiments. Luciferase reporter assay and western blot demonstrated that protein phosphatase 6 catalytic subunit (PPP6C) as a target gene of miR-20a-5p was negatively regulated by miR-20a-5p in AML cells. Furthermore, PPP6C knockdown imitated, while overexpression reversed the effects of miR-20a-5p overexpression on AML cell proliferation, cell cycle G1/S transition and apoptosis. Taken together, our findings demonstrate that miR-20a-5p/PPP6C represent a new therapeutic target for AML and a potential diagnostic marker for AML therapy.
Collapse
|
25
|
Lei WL, Li YY, Meng TG, Ning Y, Sun SM, Zhang CH, Gui Y, Wang ZB, Qian WP, Sun QY. Specific deletion of protein phosphatase 6 catalytic subunit in Sertoli cells leads to disruption of spermatogenesis. Cell Death Dis 2021; 12:883. [PMID: 34580275 PMCID: PMC8476514 DOI: 10.1038/s41419-021-04172-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Protein phosphatase 6 (PP6) is a member of the PP2A-like subfamily, which plays significant roles in numerous fundamental biological activities. We found that PPP6C plays important roles in male germ cells recently. Spermatogenesis is supported by the Sertoli cells in the seminiferous epithelium. In this study, we crossed Ppp6cF/F mice with AMH-Cre mice to gain mutant mice with specific depletion of the Ppp6c gene in the Sertoli cells. We discovered that the PPP6C cKO male mice were absolutely infertile and germ cells were largely lost during spermatogenesis. By combing phosphoproteome with bioinformatics analysis, we showed that the phosphorylation status of β-catenin at S552 (a marker of adherens junctions) was significantly upregulated in mutant mice. Abnormal β-catenin accumulation resulted in impaired testicular junction integrity, thus led to abnormal structure and functions of BTB. Taken together, our study reveals a novel function for PPP6C in male germ cell survival and differentiation by regulating the cell-cell communication through dephosphorylating β-catenin at S552.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
26
|
Yu B, Lin Q, Huang C, Zhang B, Wang Y, Jiang Q, Zhang C, Yi J. SUMO proteases SENP3 and SENP5 spatiotemporally regulate the kinase activity of Aurora A. J Cell Sci 2021; 134:jcs249771. [PMID: 34313310 DOI: 10.1242/jcs.249771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Precise chromosome segregation is mediated by a well-assembled mitotic spindle, which requires balance of the kinase activity of Aurora A (AurA, also known as AURKA). However, how this kinase activity is regulated remains largely unclear. Here, using in vivo and in vitro assays, we report that conjugation of SUMO2 with AurA at K258 in early mitosis promotes the kinase activity of AurA and facilitates the binding with its activator Bora. Knockdown of the SUMO proteases SENP3 and SENP5 disrupts the deSUMOylation of AurA, leading to increased kinase activity and abnormalities in spindle assembly and chromosome segregation, which could be rescued by suppressing the kinase activity of AurA. Collectively, these results demonstrate that SENP3 and SENP5 deSUMOylate AurA to render spatiotemporal control on its kinase activity in mitosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bin Yu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chao Huang
- Medical School, Kunming University of Science and Technology, Kunming 650091, China
| | - Boyan Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
27
|
Kishimoto K, Kanazawa K, Nomura M, Tanaka T, Shigemoto‐Kuroda T, Fukui K, Miura K, Kurosawa K, Kawai M, Kato H, Terasaki K, Sakamoto Y, Yamashita Y, Sato I, Tanuma N, Tamai K, Kitabayashi I, Matsuura K, Watanabe T, Yasuda J, Tsuji H, Shima H. Ppp6c deficiency accelerates K-ras G12D -induced tongue carcinogenesis. Cancer Med 2021; 10:4451-4464. [PMID: 34145991 PMCID: PMC8267137 DOI: 10.1002/cam4.3962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Effective treatments for cancer harboring mutant RAS are lacking. In Drosophila, it was reported that PP6 suppresses tumorigenicity of mutant RAS. However, the information how PP6 regulates oncogenic RAS in mammals is limited. METHODS We examined the effects of PP6 gene (Ppp6c) deficiency on tongue tumor development in K (K-rasG12D)- and KP (K-rasG12D + Trp53-deficient)-inducible mice. RESULTS Mice of K and KP genotypes developed squamous cell carcinoma in situ in the tongue approximately 2 weeks after the induction of Ppp6c deficiency and was euthanized due to 20% loss of body weight. Transcriptome analysis revealed significantly different gene expressions between tissues of Ppp6c-deficient tongues and those of Ppp6c wild type, while Trp53 deficiency had a relatively smaller effect. We then analyzed genes commonly altered by Ppp6c deficiency, with or without Trp53 deficiency, and identified a group concentrated in KEGG database pathways defined as 'Pathways in Cancer' and 'Cytokine-cytokine receptor interaction'. We then evaluated signals downstream of oncogenic RAS and those regulated by PP6 substrates and found that in the presence of K-rasG12D, Ppp6c deletion enhanced the activation of the ERK-ELK1-FOS, AKT-4EBP1, and AKT-FOXO-CyclinD1 axes. Ppp6c deletion combined with K-rasG12D also enhanced DNA double-strand break (DSB) accumulation and activated NFκB signaling, upregulating IL-1β, COX2, and TNF.
Collapse
Affiliation(s)
- Kazuhiro Kishimoto
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Kosuke Kanazawa
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
- Division of SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Miyuki Nomura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Takuji Tanaka
- Research Center of Diagnostic PathologyGifu Municipal HospitalGifuJapan
| | | | - Katsuya Fukui
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
| | - Koh Miura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Koreyuki Kurosawa
- Department of Plastic and Reconstructive SurgeryTohoku University School of MedicineMiyagiJapan
| | - Masaaki Kawai
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Hiroyuki Kato
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Keiko Terasaki
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Yoshimi Sakamoto
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Yoji Yamashita
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Ikuro Sato
- Division of PathologyMiyagi Cancer CenterMiyagiJapan
| | - Nobuhiro Tanuma
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Issay Kitabayashi
- Division of Hematological MalignancyNational Cancer Center Research InstituteTokyoJapan
| | - Kazuto Matsuura
- Department of Head and Neck SurgeryNational Cancer Center Hospital EastChibaJapan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women’s UniversityNaraJapan
| | - Jun Yasuda
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Hiroyuki Tsuji
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
| | - Hiroshi Shima
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
| |
Collapse
|
28
|
Kanazawa K, Kishimoto K, Nomura M, Kurosawa K, Kato H, Inoue Y, Miura K, Fukui K, Yamashita Y, Sato I, Tsuji H, Watanabe T, Tanaka T, Yasuda J, Tanuma N, Shima H. Ppp6c haploinsufficiency accelerates UV-induced BRAF(V600E)-initiated melanomagenesis. Cancer Sci 2021; 112:2233-2244. [PMID: 33743547 PMCID: PMC8177767 DOI: 10.1111/cas.14895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
According to TCGA database, mutations in PPP6C (encoding phosphatase PP6) are found in c. 10% of tumors from melanoma patients, in which they coexist with BRAF and NRAS mutations. To assess PP6 function in melanoma carcinogenesis, we generated mice in which we could specifically induce BRAF(V600E) expression and delete Ppp6c in melanocytes. In these mice, melanoma susceptibility following UVB irradiation exhibited the following pattern: Ppp6c semi‐deficient (heterozygous) > Ppp6c wild‐type > Ppp6c‐deficient (homozygous) tumor types. Next‐generation sequencing of Ppp6c heterozygous and wild‐type melanoma tumors revealed that all harbored Trp53 mutations. However, Ppp6c heterozygous tumors showed a higher Signature 1 (mitotic/mitotic clock) mutation index compared with Ppp6c wild‐type tumors, suggesting increased cell division. Analysis of cell lines derived from either Ppp6c heterozygous or wild‐type melanoma tissues showed that both formed tumors in nude mice, but Ppp6c heterozygous tumors grew faster compared with those from the wild‐type line. Ppp6c knockdown via siRNA in the Ppp6c heterozygous line promoted the accumulation of genomic damage and enhanced apoptosis relative to siRNA controls. We conclude that in the presence of BRAF(V600E) expression and UV‐induced Trp53 mutation, Ppp6c haploinsufficiency promotes tumorigenesis.
Collapse
Affiliation(s)
- Kosuke Kanazawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Surgery, Miyagi Cancer Center, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Kazuhiro Kishimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan.,Department of Head and Neck Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Koreyuki Kurosawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Department of Plastic and Reconstructive Surgery, Tohoku University School of Medicine, Miyagi, Japan
| | - Hiroyuki Kato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yui Inoue
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Koh Miura
- Division of Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Katsuya Fukui
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Hiroyuki Tsuji
- Department of Head and Neck Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences Nara Women's University, Nara, Japan
| | - Takuji Tanaka
- Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Jun Yasuda
- Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan.,Cancer Genome Center, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
29
|
Tavernier N, Thomas Y, Vigneron S, Maisonneuve P, Orlicky S, Mader P, Regmi SG, Van Hove L, Levinson NM, Gasmi-Seabrook G, Joly N, Poteau M, Velez-Aguilera G, Gavet O, Castro A, Dasso M, Lorca T, Sicheri F, Pintard L. Bora phosphorylation substitutes in trans for T-loop phosphorylation in Aurora A to promote mitotic entry. Nat Commun 2021; 12:1899. [PMID: 33771996 PMCID: PMC7997955 DOI: 10.1038/s41467-021-21922-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is instrumental for mitotic entry and progression. Plk1 is activated by phosphorylation on a conserved residue Thr210 in its activation segment by the Aurora A kinase (AURKA), a reaction that critically requires the co-factor Bora phosphorylated by a CyclinA/B-Cdk1 kinase. Here we show that phospho-Bora is a direct activator of AURKA kinase activity. We localize the key determinants of phospho-Bora function to a 100 amino acid region encompassing two short Tpx2-like motifs and a phosphoSerine-Proline motif at Serine 112, through which Bora binds AURKA. The latter substitutes in trans for the Thr288 phospho-regulatory site of AURKA, which is essential for an active conformation of the kinase domain. We demonstrate the importance of these determinants for Bora function in mitotic entry both in Xenopus egg extracts and in human cells. Our findings unveil the activation mechanism of AURKA that is critical for mitotic entry.
Collapse
Affiliation(s)
- N Tavernier
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - Y Thomas
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - S Vigneron
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - P Maisonneuve
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S Orlicky
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - P Mader
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - S G Regmi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - L Van Hove
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - N M Levinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - G Gasmi-Seabrook
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - N Joly
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - M Poteau
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - G Velez-Aguilera
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - O Gavet
- Institut Gustave Roussy CNRS UMR9019, Villejuif, France
| | - A Castro
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - M Dasso
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - T Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237, Université de Montpellier, CNRS, Montpellier, France
| | - F Sicheri
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - L Pintard
- Programme équipe Labellisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France.
| |
Collapse
|
30
|
Roeschert I, Poon E, Henssen AG, Garcia HD, Gatti M, Giansanti C, Jamin Y, Ade CP, Gallant P, Schülein-Völk C, Beli P, Richards M, Rosenfeldt M, Altmeyer M, Anderson J, Eggert A, Dobbelstein M, Bayliss R, Chesler L, Büchel G, Eilers M. Combined inhibition of Aurora-A and ATR kinase results in regression of MYCN-amplified neuroblastoma. NATURE CANCER 2021; 2:312-326. [PMID: 33768209 PMCID: PMC7610389 DOI: 10.1038/s43018-020-00171-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
Amplification of MYCN is the driving oncogene in a subset of high-risk neuroblastoma. The MYCN protein and the Aurora-A kinase form a complex during S phase that stabilizes MYCN. Here we show that MYCN activates Aurora-A on chromatin, which phosphorylates histone H3 at serine 10 in S phase, promotes the deposition of histone H3.3 and suppresses R-loop formation. Inhibition of Aurora-A induces transcription-replication conflicts and activates the Ataxia telangiectasia and Rad3 related (ATR) kinase, which limits double-strand break accumulation upon Aurora-A inhibition. Combined inhibition of Aurora-A and ATR induces rampant tumor-specific apoptosis and tumor regression in mouse models of neuroblastoma, leading to permanent eradication in a subset of mice. The therapeutic efficacy is due to both tumor cell-intrinsic and immune cell-mediated mechanisms. We propose that targeting the ability of Aurora-A to resolve transcription-replication conflicts is an effective therapy for MYCN-driven neuroblastoma (141 words).
Collapse
Affiliation(s)
- Isabelle Roeschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Anton G. Henssen
- Experimental and Clinical Research Center, Max Delbrück Center and Charité Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Heathcliff Dorado Garcia
- Experimental and Clinical Research Center, Max Delbrück Center and Charité Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstraße 190, 8057 Zurich, Switzerland
| | - Celeste Giansanti
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Yann Jamin
- Divisions of Radiotherapy and Imaging, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Carsten P. Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Petra Beli
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Mark Richards
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mathias Rosenfeldt
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstraße 190, 8057 Zurich, Switzerland
| | - John Anderson
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Angelika Eggert
- Experimental and Clinical Research Center, Max Delbrück Center and Charité Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Richard Bayliss
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
31
|
Cho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Rep 2021; 34:108928. [PMID: 33789117 PMCID: PMC8068315 DOI: 10.1016/j.celrep.2021.108928] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Flux through the RAF-MEK-ERK protein kinase cascade is shaped by phosphatases acting on the core components of the pathway. Despite being an established drug target and a hub for crosstalk regulation, little is known about dephosphorylation of MEK, the central kinase within the cascade. Here, we identify PPP6C, a phosphatase frequently mutated or downregulated in melanoma, as a major MEK phosphatase in cells exhibiting oncogenic ERK pathway activation. Recruitment of MEK to PPP6C occurs through an interaction with its associated regulatory subunits. Loss of PPP6C causes hyperphosphorylation of MEK at activating and crosstalk phosphorylation sites, promoting signaling through the ERK pathway and decreasing sensitivity to MEK inhibitors. Recurrent melanoma-associated PPP6C mutations cause MEK hyperphosphorylation, suggesting that they promote disease at least in part by activating the core oncogenic pathway driving melanoma. Collectively, our studies identify a key negative regulator of ERK signaling that may influence susceptibility to targeted cancer therapies. Through an shRNA screen, Cho et al. identify PPP6C as a phosphatase that inactivates the kinase MEK, sensitizing tumor cells to clinical MEK inhibitors. This study suggests that cancer-associated loss-of-function PPP6C mutations prevalent in melanoma serve to activate the core oncogenic RAF-MEK-ERK pathway that drives the disease.
Collapse
Affiliation(s)
- Eunice Cho
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
32
|
Specificity determinants of phosphoprotein phosphatases controlling kinetochore functions. Essays Biochem 2021; 64:325-336. [PMID: 32501472 DOI: 10.1042/ebc20190065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP-SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.
Collapse
|
33
|
Liu M, Liu A, Wang J, Zhang Y, Li Y, Su Y, Zhu AJ. Competition between two phosphatases fine-tunes Hedgehog signaling. J Cell Biol 2020; 220:211641. [PMID: 33373452 PMCID: PMC7774589 DOI: 10.1083/jcb.202010078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
Hedgehog (Hh) signaling is essential for embryonic development and adult homeostasis. How its signaling activity is fine-tuned in response to fluctuated Hh gradient is less known. Here, we identify protein phosphatase V (PpV), the catalytic subunit of protein phosphatase 6, as a homeostatic regulator of Hh signaling. PpV is genetically upstream of widerborst (wdb), which encodes a regulatory subunit of PP2A that modulates high-level Hh signaling. We show that PpV negatively regulates Wdb stability independent of phosphatase activity of PpV, by competing with the catalytic subunit of PP2A for Wdb association, leading to Wdb ubiquitination and subsequent proteasomal degradation. Thus, regulated Wdb stability, maintained through competition between two closely related phosphatases, ensures graded Hh signaling. Interestingly, PpV expression is regulated by Hh signaling. Therefore, PpV functions as a Hh activity sensor that regulates Wdb-mediated PP2A activity through feedback mechanisms to maintain Hh signaling homeostasis.
Collapse
Affiliation(s)
- Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Aiguo Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jie Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yajuan Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China,Correspondence to Ying Su:
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China,Alan Jian Zhu:
| |
Collapse
|
34
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
35
|
Rivard RS, Morris JM, Youngman MJ. The PP2A/4/6 subfamily of phosphoprotein phosphatases regulates DAF-16 and confers resistance to environmental stress in postreproductive adult C. elegans. PLoS One 2020; 15:e0229812. [PMID: 33315870 PMCID: PMC7735605 DOI: 10.1371/journal.pone.0229812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022] Open
Abstract
Insulin and insulin-like growth factors are longevity determinants that negatively regulate Forkhead box class O (FoxO) transcription factors. In C. elegans mutations that constitutively activate DAF-16, the ortholog of mammalian FoxO3a, extend lifespan by two-fold. While environmental insults induce DAF-16 activity in younger animals, it also becomes activated in an age-dependent manner in the absence of stress, modulating gene expression well into late adulthood. The mechanism by which DAF-16 activity is regulated during aging has not been defined. Since phosphorylation of DAF-16 generally leads to its inhibition, we asked whether phosphatases might be necessary for its increased transcriptional activity in adult C. elegans. We focused on the PP2A/4/6 subfamily of phosphoprotein phosphatases, members of which had been implicated to regulate DAF-16 under low insulin signaling conditions but had not been investigated during aging in wildtype animals. Using reverse genetics, we functionally characterized all C. elegans orthologs of human catalytic, regulatory, and scaffolding subunits of PP2A/4/6 holoenzymes in postreproductive adults. We found that PP2A complex constituents PAA-1 and PPTR-1 regulate DAF-16 transcriptional activity during aging and that they cooperate with the catalytic subunit LET-92 to protect adult animals from ultraviolet radiation. PP4 complex members PPH-4.1/4.2, and SMK-1 also appear to regulate DAF-16 in an age-dependent manner, and together with PPFR-2 they contribute to innate immunity. Interestingly, SUR-6 but no other subunit of the PP2A complex was necessary for the survival of pathogen-infected animals. Finally, we found that PP6 complex constituents PPH-6 and SAPS-1 contribute to host defense during aging, apparently without affecting DAF-16 transcriptional activity. Our studies indicate that a set of PP2A/4/6 complexes protect adult C. elegans from environmental stress, thus preserving healthspan. Therefore, along with their functions in cell division and development, the PP2A/4/6 phosphatases also appear to play critical roles later in life.
Collapse
Affiliation(s)
- Rebecca S. Rivard
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Julia M. Morris
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Matthew J. Youngman
- Department of Biology, Villanova University, Villanova, PA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Polverino F, Naso FD, Asteriti IA, Palmerini V, Singh D, Valente D, Bird AW, Rosa A, Mapelli M, Guarguaglini G. The Aurora-A/TPX2 Axis Directs Spindle Orientation in Adherent Human Cells by Regulating NuMA and Microtubule Stability. Curr Biol 2020; 31:658-667.e5. [PMID: 33275894 DOI: 10.1016/j.cub.2020.10.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Mitotic spindle orientation is a crucial process that defines the axis of cell division, contributing to daughter cell positioning and fate, and hence to tissue morphogenesis and homeostasis.1,2 The trimeric NuMA/LGN/Gαi complex, the major determinant of spindle orientation, exerts pulling forces on the spindle poles by anchoring astral microtubules (MTs) and dynein motors to the cell cortex.3,4 Mitotic kinases contribute to correct spindle orientation by regulating nuclear mitotic apparatus protein (NuMA) localization,5-7 among which the Aurora-A centrosomal kinase regulates NuMA targeting to the cell cortex in metaphase.8,9 Aurora-A and its activator targeting protein for Xklp2 (TPX2) are frequently overexpressed in cancer,10-12 raising the question as to whether spindle orientation is among the processes downstream the Aurora-A/TPX2 signaling axis altered under pathological conditions. Here, we investigated the role of TPX2 in the Aurora-A- and NuMA-dependent spindle orientation. We show that, in cultured adherent human cells, the interaction with TPX2 is required for Aurora-A to exert this function. We also show that Aurora-A, TPX2, and NuMA are part of a complex at spindle MTs, where TPX2 acts as a platform for Aurora-A regulation of NuMA. Interestingly, excess TPX2 does not influence NuMA localization but induces a "super-alignment" of the spindle axis with respect to the substrate, although an excess of Aurora-A induces spindle misorientation. These opposite effects are both linked to altered MT stability. Overall, our results highlight the importance of TPX2 for spindle orientation and suggest that spindle orientation is differentially sensitive to unbalanced levels of Aurora-A, TPX2, or the Aurora-A/TPX2 complex.
Collapse
Affiliation(s)
- Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Francesco D Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Italia A Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Valentina Palmerini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Davide Valente
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy.
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
37
|
Schutt KL, Moseley JB. The phosphatase inhibitor Sds23 promotes symmetric spindle positioning in fission yeast. Cytoskeleton (Hoboken) 2020; 77:544-557. [PMID: 33280247 PMCID: PMC8195570 DOI: 10.1002/cm.21648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
A hallmark of cell division in eukaryotic cells is the formation and elongation of a microtubule (MT)-based mitotic spindle. Proper positioning of the spindle is critical to ensure equal segregation of the genetic material to the resulting daughter cells. Both the timing of spindle elongation and constriction of the actomyosin contractile ring must be precisely coordinated to prevent missegregation or damage to the genetic material during cellular division. Here, we show that Sds23, an inhibitor of protein phosphatases, contributes to proper positioning of elongating spindles in fission yeast cells. We found that sds23∆ mutant cells exhibit asymmetric spindles that initially elongate asymmetrically toward one end of the dividing cell. Spindle asymmetry in sds23∆ cells results from a defect that is distinct from previously identified mechanisms, including MT protrusions and enlarged vacuoles. Combined with our previous work, this study demonstrates that Sds23, an inhibitor of PP2A-family protein phosphatases, promotes proper positioning of both the bipolar spindle and cytokinetic ring during fission yeast cell division. These two steps ensure the overall symmetry and fidelity of the cell division process.
Collapse
Affiliation(s)
- Katherine L. Schutt
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
38
|
Nasa I, Cressey LE, Kruse T, Hertz EPT, Gui J, Graves LM, Nilsson J, Kettenbach AN. Quantitative kinase and phosphatase profiling reveal that CDK1 phosphorylates PP2Ac to promote mitotic entry. Sci Signal 2020; 13:13/648/eaba7823. [PMID: 32900880 DOI: 10.1126/scisignal.aba7823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reciprocal regulation of phosphoprotein phosphatases (PPPs) by protein kinases is essential to cell cycle progression and control, particularly during mitosis for which the role of kinases has been extensively studied. PPPs perform much of the serine/threonine dephosphorylation in eukaryotic cells and achieve substrate selectivity and specificity through the interaction of distinct regulatory subunits with conserved catalytic subunits in holoenzyme complexes. Using a mass spectrometry-based chemical proteomics approach to enrich, identify, and quantify endogenous PPP holoenzyme complexes combined with kinase profiling, we investigated the phosphorylation-dependent regulation of PPP holoenzymes in mitotic cells. We found that cyclin-dependent kinase 1 (CDK1) phosphorylated a threonine residue on the catalytic subunit of the phosphatase PP2A, which disrupted its holoenzyme formation with the regulatory subunit B55. The consequent decrease in the dephosphorylation of PP2A-B55 substrates promoted mitotic entry. This direct phosphorylation by CDK1 was in addition to a previously reported indirect mechanism, thus adding a layer to the interaction between CDK1 and PP2A in regulating mitotic entry.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH 03766, USA
| | - Lauren E Cressey
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Emil P T Hertz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA. .,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH 03766, USA
| |
Collapse
|
39
|
Holder J, Mohammed S, Barr FA. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020; 9:e59885. [PMID: 32869743 PMCID: PMC7529458 DOI: 10.7554/elife.59885] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
40
|
Selmansberger M, Michna A, Braselmann H, Höfig I, Schorpp K, Weber P, Anastasov N, Zitzelsberger H, Hess J, Unger K. Transcriptome network of the papillary thyroid carcinoma radiation marker CLIP2. Radiat Oncol 2020; 15:182. [PMID: 32727620 PMCID: PMC7392692 DOI: 10.1186/s13014-020-01620-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
Background We present a functional gene association network of the CLIP2 gene, generated by de-novo reconstruction from transcriptomic microarray data. CLIP2 was previously identified as a potential marker for radiation induced papillary thyroid carcinoma (PTC) of young patients in the aftermath of the Chernobyl reactor accident. Considering the rising thyroid cancer incidence rates in western societies, potentially related to medical radiation exposure, the functional characterization of CLIP2 is of relevance and contributes to the knowledge about radiation-induced thyroid malignancies. Methods We generated a transcriptomic mRNA expression data set from a CLIP2-perturbed thyroid cancer cell line (TPC-1) with induced CLIP2 mRNA overexpression and siRNA knockdown, respectively, followed by gene-association network reconstruction using the partial correlation-based approach GeneNet. Furthermore, we investigated different approaches for prioritizing differentially expressed genes for network reconstruction and compared the resulting networks with existing functional interaction networks from the Reactome, Biogrid and STRING databases. The derived CLIP2 interaction partners were validated on transcript and protein level. Results The best reconstructed network with regard to selection parameters contained a set of 20 genes in the 1st neighborhood of CLIP2 and suggests involvement of CLIP2 in the biological processes DNA repair/maintenance, chromosomal instability, promotion of proliferation and metastasis. Peptidylprolyl Isomerase Like 3 (PPIL3), previously identified as a potential direct interaction partner of CLIP2, was confirmed in this study by co-expression at the transcript and protein level. Conclusion In our study we present an optimized preselection approach for genes subjected to gene-association network reconstruction, which was applied to CLIP2 perturbation transcriptome data of a thyroid cancer cell culture model. Our data support the potential carcinogenic role of CLIP2 overexpression in radiation-induced PTC and further suggest potential interaction partners of the gene.
Collapse
Affiliation(s)
- Martin Selmansberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Agata Michna
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Herbert Braselmann
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Ines Höfig
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Kenji Schorpp
- Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Natasa Anastasov
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany. .,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.
| |
Collapse
|
41
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
42
|
Protein kinase CK2 phosphorylation of SAPS3 subunit increases PP6 phosphatase activity with Aurora A kinase. Biochem J 2020; 477:431-444. [PMID: 31904830 DOI: 10.1042/bcj20190740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Protein Ser/Thr phosphatase-6 (PP6) regulates pathways for activation of NF-kB, YAP1 and Aurora A kinase (AURKA). PP6 is a heterotrimer comprised of a catalytic subunit, one of three different SAPS subunits and one of three different ankyrin-repeat ANKRD subunits. Here, we show FLAG-PP6C expressed in cells preferentially binds endogenous SAPS3, and the complex is active with the chemical substrate DiFMUP. SAPS3 has multiple acidic sequence motifs recognized by protein kinase CK2 (CK2) and SAPS3 is phosphorylated by purified CK2, without affecting its associated PP6 phosphatase activity. However, HA3-SAPS3-PP6 phosphatase activity using pT288 AURKA as substrate is significantly increased by phosphorylation with CK2. The substitution of Ala in nine putative phosphorylation sites in SAPS3 was required to prevent CK2 activation of the phosphatase. Different CK2 chemical inhibitors equally increased phosphorylation of endogenous AURKA in living cells, consistent with reduction in PP6 activity. CRISPR/Cas9 deletion or siRNA knockdown of SAPS3 resulted in highly activated endogenous AURKA, and a high proportion of cells with abnormal nuclei. Activation of PP6 by CK2 can form a feedback loop with bistable changes in substrates.
Collapse
|
43
|
Phosphorylation of PLK3 Is Controlled by Protein Phosphatase 6. Cells 2020; 9:cells9061506. [PMID: 32575753 PMCID: PMC7349513 DOI: 10.3390/cells9061506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases play essential roles in cell cycle control and mitosis. In contrast to other members of this kinase family, PLK3 has been reported to be activated upon cellular stress including DNA damage, hypoxia and osmotic stress. Here we knocked out PLK3 in human non-transformed RPE cells using CRISPR/Cas9-mediated gene editing. Surprisingly, we find that loss of PLK3 does not impair stabilization of HIF1α after hypoxia, phosphorylation of the c-Jun after osmotic stress and dynamics of DNA damage response after exposure to ionizing radiation. Similarly, RNAi-mediated depletion of PLK3 did not impair stress response in human transformed cell lines. Exposure of cells to various forms of stress also did not affect kinase activity of purified EGFP-PLK3. We conclude that PLK3 is largely dispensable for stress response in human cells. Using mass spectrometry, we identify protein phosphatase 6 as a new interacting partner of PLK3. Polo box domain of PLK3 mediates the interaction with the PP6 complex. Finally, we find that PLK3 is phosphorylated at Thr219 in the T-loop and that PP6 constantly dephosphorylates this residue. However, in contrast to PLK1, phosphorylation of Thr219 does not upregulate enzymatic activity of PLK3, suggesting that activation of both kinases is regulated by distinct mechanisms.
Collapse
|
44
|
Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G, Lindon C. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci 2020; 133:jcs243071. [PMID: 32393600 PMCID: PMC7328152 DOI: 10.1242/jcs.243071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1KO) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction. We found that AURKA activity in FZR1KO cells dropped at mitotic exit as rapidly as in parental cells, despite absence of AURKA destruction. Unexpectedly, TPX2 was degraded normally in FZR1KO cells. Overexpression of an N-terminal TPX2 fragment sufficient for AURKA binding, but that is not degraded at mitotic exit, caused delay in AURKA inactivation. We conclude that inactivation of AURKA at mitotic exit is determined not by AURKA degradation but by degradation of TPX2 and therefore is dependent on CDC20 rather than FZR1. The biosensor revealed that FZR1 instead suppresses AURKA activity in interphase and is critically required for assembly of the interphase mitochondrial network after mitosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Marion Poteau
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Olivier Gavet
- Institut Gustave Roussy, UMR9019 - CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Roma, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
45
|
Douglas P, Ye R, Radhamani S, Cobban A, Jenkins NP, Bartlett E, Roveredo J, Kettenbach AN, Lees-Miller SP. Nocodazole-Induced Expression and Phosphorylation of Anillin and Other Mitotic Proteins Are Decreased in DNA-Dependent Protein Kinase Catalytic Subunit-Deficient Cells and Rescued by Inhibition of the Anaphase-Promoting Complex/Cyclosome with proTAME but Not Apcin. Mol Cell Biol 2020; 40:e00191-19. [PMID: 32284347 PMCID: PMC7296215 DOI: 10.1128/mcb.00191-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/15/2019] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has well-established roles in DNA double-strand break repair, and recently, nonrepair functions have also been reported. To better understand its cellular functions, we deleted DNA-PKcs from HeLa and A549 cells using CRISPR/Cas9. The resulting cells were radiation sensitive, had reduced expression of ataxia-telangiectasia mutated (ATM), and exhibited multiple mitotic defects. Mechanistically, nocodazole-induced upregulation of cyclin B1, anillin, and securin was decreased in DNA-PKcs-deficient cells, as were phosphorylation of Aurora A on threonine 288, phosphorylation of Polo-like kinase 1 (PLK1) on threonine 210, and phosphorylation of targeting protein for Xenopus Klp2 (TPX2) on serine 121. Moreover, reduced nocodazole-induced expression of anillin, securin, and cyclin B1 and phosphorylation of PLK1, Aurora A, and TPX2 were rescued by inhibition of the anaphase-promoting complex/cyclosome (APC/C) by proTAME, which prevents binding of the APC/C-activating proteins Cdc20 and Cdh1 to the APC/C. Altogether, our studies suggest that loss of DNA-PKcs prevents inactivation of the APC/C in nocodazole-treated cells.
Collapse
Affiliation(s)
- Pauline Douglas
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suraj Radhamani
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alexander Cobban
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole P Jenkins
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon Campus at Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Edward Bartlett
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan Roveredo
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arminja N Kettenbach
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon Campus at Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci 2020; 77:1031-1047. [PMID: 31562563 PMCID: PMC11104877 DOI: 10.1007/s00018-019-03310-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023]
Abstract
AURKA is a serine/threonine kinase overexpressed in several cancers. Originally identified as a protein with multifaceted roles during mitosis, improvements in quantitative microscopy uncovered several non-mitotic roles as well. In physiological conditions, AURKA regulates cilia disassembly, neurite extension, cell motility, DNA replication and senescence programs. In cancer-like contexts, AURKA actively promotes DNA repair, it acts as a transcription factor, promotes cell migration and invasion, and it localises at mitochondria to regulate mitochondrial dynamics and ATP production. Here we review the non-mitotic roles of AURKA, and its partners outside of cell division. In addition, we give an insight into how structural data and quantitative fluorescence microscopy allowed to understand AURKA activation and its interaction with new substrates, highlighting future developments in fluorescence microscopy needed to better understand AURKA functions in vivo. Last, we will recapitulate the most significant AURKA inhibitors currently in clinical trials, and we will explore how the non-mitotic roles of the kinase may provide new insights to ameliorate current pharmacological strategies against AURKA overexpression.
Collapse
Affiliation(s)
- Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| | - Marc Tramier
- Univ Rennes, CNRS, IGDR (Genetics and Development Institute of Rennes), UMR 6290, F-35000, Rennes, France.
| |
Collapse
|
47
|
Tsuchiya Y, Byrne DP, Burgess SG, Bormann J, Baković J, Huang Y, Zhyvoloup A, Yu BYK, Peak-Chew S, Tran T, Bellany F, Tabor AB, Chan AE, Guruprasad L, Garifulin O, Filonenko V, Vonderach M, Ferries S, Eyers CE, Carroll J, Skehel M, Bayliss R, Eyers PA, Gout I. Covalent Aurora A regulation by the metabolic integrator coenzyme A. Redox Biol 2020; 28:101318. [PMID: 31546169 PMCID: PMC6812009 DOI: 10.1016/j.redox.2019.101318] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/14/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.
Collapse
Affiliation(s)
- Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Selena G Burgess
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jenny Bormann
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jovana Baković
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yueyang Huang
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Trang Tran
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Fiona Bellany
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Aw Edith Chan
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | | | - Oleg Garifulin
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Matthias Vonderach
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Samantha Ferries
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK; Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - John Carroll
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine.
| |
Collapse
|
48
|
Lei WL, Han F, Hu MW, Liang QX, Meng TG, Zhou Q, Ouyang YC, Hou Y, Schatten H, Wang ZB, Sun QY. Protein phosphatase 6 is a key factor regulating spermatogenesis. Cell Death Differ 2019; 27:1952-1964. [PMID: 31819157 DOI: 10.1038/s41418-019-0472-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
Protein phosphatase 6 (PP6) is a member of the PP2A-like subfamily, which plays a critical role in many fundamental cellular processes. We recently reported that PP6 is essential for female fertility. Here, we report that PP6 is involved in meiotic recombination and that germ cell-specific deletion of PP6 by Stra8-Cre causes defective spermatogenesis. The PP6-deficient spermatocytes were arrested at the pachytene stage and defects in DSB repair and crossover formation were observed, indicating that PP6 facilitated meiotic double-stranded breaks (DSB) repair. Further investigations revealed that depletion of PP6 in the germ cells affected chromatin relaxation, which was dependent on MAPK pathway activity, consequently preventing programmed DSB repair factors from being recruited to proper positions on the chromatin. Taken together, our results demonstrate that PP6 has an important role in meiotic recombination and male fertility.
Collapse
Affiliation(s)
- Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Meng-Wen Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
49
|
Kapoor S, Kotak S. Centrosome Aurora A regulates RhoGEF ECT-2 localisation and ensures a single PAR-2 polarity axis in C. elegans embryos. Development 2019; 146:dev174565. [PMID: 31636075 PMCID: PMC7115938 DOI: 10.1242/dev.174565] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Abstract
Proper establishment of cell polarity is essential for development. In the one-cell C. elegans embryo, a centrosome-localised signal provides spatial information for polarity establishment. It is hypothesised that this signal causes local inhibition of the cortical actomyosin network, and breaks symmetry to direct partitioning of the PAR proteins. However, the molecular nature of the centrosomal signal that triggers cortical anisotropy in the actomyosin network to promote polarity establishment remains elusive. Here, we discover that depletion of Aurora A kinase (AIR-1 in C. elegans) causes pronounced cortical contractions on the embryo surface, and this creates more than one PAR-2 polarity axis. This function of AIR-1 appears to be independent of its role in microtubule nucleation. Importantly, upon AIR-1 depletion, centrosome positioning becomes dispensable in dictating the PAR-2 axis. Moreover, we uncovered that a Rho GEF, ECT-2, acts downstream of AIR-1 in regulating contractility and PAR-2 localisation, and, notably, AIR-1 depletion influences ECT-2 cortical localisation. Overall, this study provides a novel insight into how an evolutionarily conserved centrosome Aurora A kinase inhibits promiscuous PAR-2 domain formation to ensure singularity in the polarity establishment axis.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
50
|
Multiple Functions of the Essential Gene PpV in Drosophila Early Development. G3-GENES GENOMES GENETICS 2019; 9:3583-3593. [PMID: 31484673 PMCID: PMC6829155 DOI: 10.1534/g3.119.400662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase V (PpV) encodes the Drosophila homolog of the evolutionarily conserved Protein Phosphatase 6 (PP6). The physiological and developmental functions of PpV/PP6 have not been well characterized due to lack of a genetically defined mutant. Here, we identified a PpV non-sense mutation and describe multiple mutant phenotypes in oogenesis and early embryogenesis. Specifically, we found that the defects in chromosome segregation during nuclear cycles are related to AuroraA function, which is consistent with the interaction of PP6 and AuroraA in mammalian cells. Surprisingly, we also identified a PpV function specifically in blastoderm cell cycle but not in cell proliferation in the follicle epithelium or larval wing imaginal discs. Embryos from PpV germline clones frequently undergo an extra nuclear division cycle. By epistasis analysis, we found that PpV functions in parallel with tribbles, but independently of auroraA for the remodeling of the nuclear cycles. Taken together, this study reports novel developmental functions of PpV and provides a framework for further genetic analysis under physiological conditions.
Collapse
|