1
|
Fan X, Xie Y, Cao S, Zhu L, Wang X. VPS35-Retromer: Multifunctional Roles in Various Biological Processes - A Focus on Neurodegenerative Diseases and Cancer. J Inflamm Res 2025; 18:4665-4680. [PMID: 40195959 PMCID: PMC11975009 DOI: 10.2147/jir.s510768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/23/2025] [Indexed: 04/09/2025] Open
Abstract
The Vacuolar Protein Sorting 35 (VPS35)-Retromer complex plays a pivotal role in intracellular protein trafficking and recycling. As an integral component of the Retromer complex, VPS35 selectively recognizes and retrogradely transports membrane protein receptors to the trans-Golgi network, thereby preventing the degradation of transmembrane proteins by lysosomes after they have fulfilled their physiological functions, and facilitating their continued activity. VPS35 regulates autophagy, mitophagy, mitochondrial homeostasis, and various other biological processes, including epidermal regeneration, neuronal iron homeostasis, and synaptic function. Studies have shown that mutations or dysfunctions in VPS35 disrupt the normal operation of Retromer, impair neuronal health and survival, and contribute to the onset of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Additionally, VPS35 modulates tumor growth and metastasis in cancers such as liver and breast cancer through the regulation of multiple signaling pathways. Targeting VPS35 might be a potential therapy in clinic treatment of neurodegenerative diseases and cancers.
Collapse
Affiliation(s)
- Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Sitong Cao
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
2
|
Takeo Y, Crite M, Mehmood K, DiMaio D. γ-secretase facilitates retromer-mediated retrograde transport. J Cell Sci 2025; 138:JCS263538. [PMID: 39865938 PMCID: PMC11883284 DOI: 10.1242/jcs.263538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Retromer mediates retrograde transport of protein cargoes from endosomes to the trans-Golgi network (TGN). γ-secretase is a protease that cleaves the transmembrane domain of its target proteins. Although retromer can form a stable complex with γ-secretase, the functional consequences of this interaction are not known. Here, we report that retromer-mediated retrograde protein trafficking in cultured human epithelial cells is impaired by the γ-secretase inhibitor XXI or by knockout of PS1 (also known as PSEN1), the catalytic subunit of γ-secretase. These treatments inhibited endosome-to-TGN trafficking of retromer-dependent retrograde cellular cargoes, divalent metal transporter 1 isoform II, cation-independent mannose-6-phosphate receptor and shiga toxin, whereas trafficking of retromer-independent cargoes, cholera toxin and a mutant CIMPR unable to bind retromer was not affected. Moreover, we found that γ-secretase associates with retromer cargoes even in the absence of retromer. XXI treatment and PS1 knockout did not inhibit the ability of retromer or γ-secretase to associate with cargo and did not affect the expression of retromer subunits or Rab7-GTP, which regulates retromer-cargo interaction. These results imply that the γ-secretase-retromer interaction facilitates retromer-mediated retrograde trafficking of cellular transmembrane proteins.
Collapse
Affiliation(s)
- Yuka Takeo
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mac Crite
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kashif Mehmood
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Bhardwaj K, Jha A, Roy A, Kumar H. The crucial role of VPS35 and SHH in Parkinson's disease: Understanding the mechanisms behind the neurodegenerative disorder. Brain Res 2024; 1845:149204. [PMID: 39197569 DOI: 10.1016/j.brainres.2024.149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches. At the molecular level, the complexity is more due to the involvement of vacuolar protein sorting 35 (VPS35) and sonic hedgehog (SHH) signaling in PD (directly or indirectly), leading to one of the most prominent hallmarks of the disease, which is an accumulation of α-synuclein. This elevated pathogenesis may result from impaired autophagy due to mutation in the case of VPS35 and impairment in SHH signaling at the molecular level. The traditional understanding of PD is marked by the disruption of dopaminergic neurons and dopaminergic signaling, which exacerbates symptoms of motor function deficits. However, the changes at the molecular level that are being disregarded also impact the overall health of the dopaminergic system. Gaining insight into these two unique mechanisms is essential to determine whether they give neuroprotection or have no effect on the health of neurons. Hence, here we tried to simplify the understanding of the role of VPS35 and SHH signaling to comprehend it in one direction.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akanksha Jha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
4
|
Deng XH, Liu XY, Wei YH, Wang K, Zhu JR, Zhong JJ, Zheng JY, Guo R, Zhu YF, Ye QH, Wang MD, Chen YJ, He JQ, Chen ZX, Huang SQ, Lv CS, Zheng GQ, Liu SF, Wen L. ErbB4 deficiency exacerbates olfactory dysfunction in an early-stage Alzheimer's disease mouse model. Acta Pharmacol Sin 2024; 45:2497-2512. [PMID: 38982150 PMCID: PMC11579518 DOI: 10.1038/s41401-024-01332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024]
Abstract
Olfactory dysfunction is increasingly recognized as an early indicator of Alzheimer's disease (AD). Aberrations in GABAergic function and the excitatory/inhibitory (E/I) balance within the olfactory bulb (OB) have been implicated in olfactory impairment during the initial stages of AD. While the neuregulin 1 (NRG1)/ErbB4 signaling pathway is known to regulate GABAergic transmission in the brain and is associated with various neuropsychiatric disorders, its specific role in early AD-related olfactory impairment remains incompletely understood. This study demonstrated that olfactory dysfunction preceded cognitive decline in young adult APP/PS1 mice and was characterized by reduced levels of NRG1 and ErbB4 in the OB. Further investigation revealed that deletion of ErbB4 in parvalbumin interneurons reduced GABAergic transmission and increased hyperexcitability in mitral and tufted cells (M/Ts) in the OB, thereby accelerating olfactory dysfunction in young adult APP/PS1 mice. Additionally, ErbB4 deficiency was associated with increased accumulation of Aβ and BACE1-mediated cleavage of APP, along with enhanced CDK5 signaling in the OB. NRG1 infusion into the OB was found to enhance GABAergic transmission in M/Ts and alleviate olfactory dysfunction in young adult APP/PS1 mice. These findings underscore the critical role of NRG1/ErbB4 signaling in regulating GABAergic transmission and E/I balance within the OB, contributing to olfactory impairment in young adult APP/PS1 mice, and provide novel insights for early intervention strategies in AD. This work has shown that ErbB4 deficiency increased the burden of Aβ, impaired GABAergic transmission, and disrupted the E/I balance of mitral and tufted cells (M/Ts) in the OB, ultimately resulting in olfactory dysfunction in young adult APP/PS1 mice. NRG1 could enhance GABAergic transmission, rescue E/I imbalance in M/Ts, and alleviate olfactory dysfunction in young adult APP/PS1 mice. OB: olfactory bulb, E/I: excitation/inhibition, Pr: probability of release, PV: parvalbumin interneurons, Aβ: β-amyloid, GABA: gamma-aminobutyric acid.
Collapse
Affiliation(s)
- Xian-Hua Deng
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Xing-Yang Liu
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Yi-Hua Wei
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Ke Wang
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Jun-Rong Zhu
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jia-Jun Zhong
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jing-Yuan Zheng
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Rui Guo
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yi-Fan Zhu
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Qiu-Hong Ye
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Meng-Dan Wang
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Ying-Jie Chen
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jian-Quan He
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Ze-Xu Chen
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Shu-Qiong Huang
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chong-Shan Lv
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Guo-Qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, China.
| | - Sui-Feng Liu
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Lei Wen
- Center for Brain Sciences, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
5
|
Bagyinszky E, An SSA. Haploinsufficiency and Alzheimer's Disease: The Possible Pathogenic and Protective Genetic Factors. Int J Mol Sci 2024; 25:11959. [PMID: 39596030 PMCID: PMC11594089 DOI: 10.3390/ijms252211959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (APP), Presenilin-1 (PSEN1), Presenilin-2 (PSEN2), and apolipoprotein E (APOE), several other genes such as Sortilin-related receptor 1 (SORL1), Phospholipid-transporting ATPase ABCA7 (ABCA7), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), Phosphatidylinositol-binding clathrin assembly protein (PICALM), and clusterin (CLU) were implicated. These genes contribute to neurodegeneration through both gain-of-function and loss-of-function mechanisms. While it was traditionally thought that heterozygosity in autosomal recessive mutations does not lead to disease, haploinsufficiency was linked to several conditions, including cancer, autism, and intellectual disabilities, indicating that a single functional gene copy may be insufficient for normal cellular functions. In AD, the haploinsufficiency of genes such as ABCA7 and SORL1 may play significant yet under-explored roles. Paradoxically, heterozygous knockouts of PSEN1 or PSEN2 can impair synaptic plasticity and alter the expression of genes involved in oxidative phosphorylation and cell adhesion. Animal studies examining haploinsufficient AD risk genes, such as vacuolar protein sorting-associated protein 35 (VPS35), sirtuin-3 (SIRT3), and PICALM, have shown that their knockout can exacerbate neurodegenerative processes by promoting amyloid production, accumulation, and inflammation. Conversely, haploinsufficiency in APOE, beta-secretase 1 (BACE1), and transmembrane protein 59 (TMEM59) was reported to confer neuroprotection by potentially slowing amyloid deposition and reducing microglial activation. Given its implications for other neurodegenerative diseases, the role of haploinsufficiency in AD requires further exploration. Modeling the mechanisms of gene knockout and monitoring their expression patterns is a promising approach to uncover AD-related pathways. However, challenges such as identifying susceptible genes, gene-environment interactions, phenotypic variability, and biomarker analysis must be addressed. Enhancing model systems through humanized animal or cell models, utilizing advanced research technologies, and integrating multi-omics data will be crucial for understanding disease pathways and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z. Lysosomal dysfunction in α-synuclein pathology: molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 2024; 81:382. [PMID: 39223418 PMCID: PMC11368888 DOI: 10.1007/s00018-024-05419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Miao Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
7
|
Qiu Z, Deng X, Fu Y, Jiang M, Cui X. Exploring the triad: VPS35, neurogenesis, and neurodegenerative diseases. J Neurochem 2024; 168:2363-2378. [PMID: 39022884 DOI: 10.1111/jnc.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Vacuolar protein sorting 35 (VPS35), a critical component of the retromer complex, plays a pivotal role in the pathogenesis of neurodegenerative diseases (NDs). It is involved in protein transmembrane sorting, facilitating the transport from endosomes to the trans-Golgi network (TGN) and plasma membrane. Recent investigations have compellingly associated mutations in the VPS35 gene with neurodegenerative disorders such as Parkinson's and Alzheimer's disease. These genetic alterations are implicated in protein misfolding, disrupted autophagic processes, mitochondrial dysregulation, and synaptic impairment. Furthermore, VPS35 exerts a notable impact on neurogenesis by influencing neuronal functionality, protein conveyance, and synaptic performance. Dysregulation or mutation of VPS35 may escalate the progression of neurodegenerative conditions, underscoring its pivotal role in safeguarding neuronal integrity. This review comprehensively discusses the role of VPS35 and its functional impairments in NDs. Furthermore, we provide an overview of the impact of VPS35 on neurogenesis and further explore the intricate relationship between neurogenesis and NDs. These research advancements offer novel perspectives and valuable insights for identifying potential therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
- School of Medicine, Kashi University, Xinjiang, China
| |
Collapse
|
8
|
Wu A, Lee D, Xiong WC. VPS35 or retromer as a potential target for neurodegenerative disorders: barriers to progress. Expert Opin Ther Targets 2024; 28:701-712. [PMID: 39175128 PMCID: PMC11583022 DOI: 10.1080/14728222.2024.2392700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Vacuolar Protein Sorting 35 (VPS35) is pivotal in the retromer complex, governing transmembrane protein trafficking within cells, and its dysfunction is implicated in neurodegenerative diseases. A missense mutation, Asp620Asn (D620N), specifically ties to familial late-onset Parkinson's, while reduced VPS35 levels are observed in Alzheimer's, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and tauopathies. VPS35's absence in certain neurons during development can initiate neurodegeneration, highlighting its necessity for neural health. Present therapeutic research mainly targets the clearance of harmful protein aggregates and symptom management. Innovative treatments focusing on VPS35 are under investigation, although fully understanding the mechanisms and optimal targeting strategies remain a challenge. AREAS COVERED This review offers a detailed account of VPS35's discovery, its role in neurodegenerative mechanisms - especially in Parkinson's and Alzheimer's - and its link to other disorders. It shines alight on recent insights into VPS35's function in development, disease, and as a therapeutic target. EXPERT OPINION VPS35 is integral to cellular function and disease association, making it a significant candidate for developing therapies. Progress in modulating VPS35's activity may lead to breakthrough treatments that not only slow disease progression but may also act as biomarkers for neurodegeneration risk, marking a step forward in managing these complex conditions.
Collapse
Affiliation(s)
- Anika Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
9
|
Wang K, Liu XY, Liu SF, Wang XX, Wei YH, Zhu JR, Liu J, Xu XQ, Wen L. Rbm24/Notch1 signaling regulates adult neurogenesis in the subventricular zone and mediates Parkinson-associated olfactory dysfunction. Theranostics 2024; 14:4499-4518. [PMID: 39113792 PMCID: PMC11303084 DOI: 10.7150/thno.96045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Adult neurogenesis in the subventricular zone (SVZ) is essential for maintaining neural homeostasis, and its dysregulation contributes to anosmia and delayed tissue healing in neurological disorders, such as Parkinson's disease (PD). Despite intricate regulatory networks identified in SVZ neurogenesis, the molecular mechanisms dynamically maintaining neural stem/progenitor cells (NSPCs) in response to physiological and pathological stimuli remain incompletely elucidated. Methods: We generated an RNA binding motif protein 24 (Rbm24) knockout model to investigate its impact on adult neurogenesis in the SVZ, employing immunofluorescence, immunoblot, electrophysiology, RNA-sequencing, and in vitro experiments. Further investigations utilized a PD mouse model, along with genetic and pharmacological manipulations, to elucidate Rbm24 involvement in PD pathology. Results: Rbm24, a multifaceted post-transcriptional regulator of cellular homeostasis, exhibited broad expression in the SVZ from development to aging. Deletion of Rbm24 significantly impaired NSPC proliferation in the adult SVZ, ultimately resulting in collapsed neurogenesis in the olfactory bulb. Notably, Rbm24 played a specific role in maintaining Notch1 mRNA stability in adult NSPCs. The Rbm24/Notch1 signaling axis was significantly downregulated in the SVZ of PD mice. Remarkably, overexpression of Rbm24 rescued disruption of adult neurogenesis and olfactory dysfunction in PD mice, and these effects were hindered by DAPT, a potent inhibitor of Notch1. Conclusions: Our findings highlight the critical role of the Rbm24/Notch1 signaling axis in regulating adult SVZ neurogenesis under physiological and pathological circumstances. This provides valuable insights into the dynamic regulation of NSPC homeostasis and offers a potential targeted intervention for PD and related neurological disorders.
Collapse
Affiliation(s)
- Ke Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xing-Yang Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Xia Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Yi-Hua Wei
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jun-Rong Zhu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Lei Wen
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
10
|
Takeo Y, Crite M, DiMaio D. γ-secretase facilitates retromer-mediated retrograde transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597932. [PMID: 38895404 PMCID: PMC11185792 DOI: 10.1101/2024.06.07.597932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The retromer complex mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a multisubunit protease that cleaves the transmembrane domain of its target proteins. Mutations in genes encoding subunits of retromer or γ-secretase can cause familial Alzheimer disease (AD) and other degenerative neurological diseases. It has been reported that retromer interacts with γ-secretase, but the consequences of this interaction are not known. Here, we report that retromer-mediated retrograde protein trafficking in cultured human epithelial cells is impaired by inhibition of γ-secretase activity or by genetic elimination of γ-secretase. γ-secretase inhibitor XXI and knockout of PS1, the catalytic subunit of γ-secretase, inhibit endosome to TGN trafficking of retromer-dependent retrograde cargos, divalent metal transporter 1 isoform II (DMT1-II), cation-independent mannose-6-phosphate receptor (CIMPR), and shiga toxin. Trafficking of retromer-independent cargos, such as cholera toxin and a CIMPR mutant that does not bind to retromer was not affected by γ-secretase inhibition. XXI treatment and PS1 KO inhibit interaction of γ-secretase with retromer but do not inhibit the association of cargo with retromer or with γ-secretase in intact cells. Similarly, these treatments do not affect the level of Rab7-GTP, which regulates retromer-cargo interaction. These results suggest that the γ-secretase-retromer interaction facilitates retromer-mediated retrograde trafficking.
Collapse
Affiliation(s)
- Yuka Takeo
- Department of Genetics, Yale School of Medicine
| | - Mac Crite
- Department of Genetics, Yale School of Medicine
- Current affiliation: American University
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine
- Department of Molecular Biophysics and Biochemistry, Yale University
- Department of Therapeutic Radiology, Yale School of Medicine
- Yale Cancer Center, Yale School of Medicine
| |
Collapse
|
11
|
Almeida MC, Eger SJ, He C, Audouard M, Nikitina A, Glasauer SMK, Han D, Mejía-Cupajita B, Acosta-Uribe J, Villalba-Moreno ND, Littau JL, Elcheikhali M, Rivera EK, Carrettiero DC, Villegas-Lanau CA, Sepulveda-Falla D, Lopera F, Kosik KS. Single-nucleus RNA sequencing demonstrates an autosomal dominant Alzheimer's disease profile and possible mechanisms of disease protection. Neuron 2024; 112:1778-1794.e7. [PMID: 38417436 PMCID: PMC11156559 DOI: 10.1016/j.neuron.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | - Sarah J Eger
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Caroline He
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Morgane Audouard
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Arina Nikitina
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dasol Han
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Barbara Mejía-Cupajita
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Nelson David Villalba-Moreno
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Megan Elcheikhali
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erica Keane Rivera
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Daniel Carneiro Carrettiero
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | | | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
12
|
Wang X, Xie Y, Fan X, Wu X, Wang D, Zhu L. Intermittent hypoxia training enhances Aβ endocytosis by plaque associated microglia via VPS35-dependent TREM2 recycling in murine Alzheimer's disease. Alzheimers Res Ther 2024; 16:121. [PMID: 38831312 PMCID: PMC11145795 DOI: 10.1186/s13195-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Beta-amyloid (Aβ) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aβ deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aβ (oAβ) clearance. Considering that oAβ internalization is the initial stage of oAβ clearance, this study focused on the IHT mechanism involved in upregulating Aβ uptake by DAM. METHODS IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aβ plaque deposition, and Aβ load in the brain. A model of Aβ-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aβ internalization were measured using a fluorescence tracing technique. RESULTS Our results showed that IHT ameliorated cognitive function and Aβ pathology. In particular, IHT enhanced Aβ endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aβ clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aβ pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION IHT enhances Aβ endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAβ clearance and mitigation of Aβ pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| |
Collapse
|
13
|
Kou L, Wang Y, Li J, Zou W, Jin Z, Yin S, Chi X, Sun Y, Wu J, Wang T, Xia Y. Mitochondria-lysosome-extracellular vesicles axis and nanotheranostics in neurodegenerative diseases. Exp Neurol 2024; 376:114757. [PMID: 38508481 DOI: 10.1016/j.expneurol.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The intricate functional interactions between mitochondria and lysosomes play a pivotal role in maintaining cellular homeostasis and proper cellular functions. This dynamic interplay involves the exchange of molecules and signaling, impacting cellular metabolism, mitophagy, organellar dynamics, and cellular responses to stress. Dysregulation of these processes has been implicated in various neurodegenerative diseases. Additionally, mitochondrial-lysosomal crosstalk regulates the exosome release in neurons and glial cells. Under stress conditions, neurons and glial cells exhibit mitochondrial dysfunction and a fragmented network, which further leads to lysosomal dysfunction, thereby inhibiting autophagic flux and enhancing exosome release. This comprehensive review synthesizes current knowledge on mitochondrial regulation of cell death, organelle dynamics, and vesicle trafficking, emphasizing their significant contributions to neurodegenerative diseases. Furthermore, we explore the emerging field of nanomedicine in the management of neurodegenerative diseases. The review provides readers with an insightful overview of nano strategies that are currently advancing the mitochondrial-lysosome-extracellular vesicle axis as a therapeutic approach for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Rowlands J, Moore DJ. VPS35 and retromer dysfunction in Parkinson's disease. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220384. [PMID: 38368930 PMCID: PMC10874700 DOI: 10.1098/rstb.2022.0384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
The vacuolar protein sorting 35 ortholog (VPS35) gene encodes a core component of the retromer complex essential for the endosomal sorting and recycling of transmembrane cargo. Endo-lysosomal pathway deficits are suggested to play a role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Mutations in VPS35 cause a late-onset, autosomal dominant form of PD, with a single missense mutation (D620N) shown to segregate with disease in PD families. Understanding how the PD-linked D620N mutation causes retromer dysfunction will provide valuable insight into the pathophysiology of PD and may advance the identification of therapeutics. D620N VPS35 can induce LRRK2 hyperactivation and impair endosomal recruitment of the WASH complex but is also linked to mitochondrial and autophagy-lysosomal pathway dysfunction and altered neurotransmitter receptor transport. The clinical similarities between VPS35-linked PD and sporadic PD suggest that defects observed in cellular and animal models with the D620N VPS35 mutation may provide valuable insights into sporadic disease. In this review, we highlight the current knowledge surrounding VPS35 and its role in retromer dysfunction in PD. We provide a critical discussion of the mechanisms implicated in VPS35-mediated neurodegeneration in PD, as well as the interplay between VPS35 and other PD-linked gene products. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Jordan Rowlands
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J. Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
15
|
Guise AJ, Misal SA, Carson R, Chu JH, Boekweg H, Van Der Watt D, Welsh NC, Truong T, Liang Y, Xu S, Benedetto G, Gagnon J, Payne SH, Plowey ED, Kelly RT. TDP-43-stratified single-cell proteomics of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis. Cell Rep 2024; 43:113636. [PMID: 38183652 PMCID: PMC10926001 DOI: 10.1016/j.celrep.2023.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these data provide insights into proteome-level changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein dynamics in human neurologic diseases.
Collapse
Affiliation(s)
| | - Santosh A Misal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | - Hannah Boekweg
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | | | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | - Samuel H Payne
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
16
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
17
|
Abdul-Rahman T, Ghosh S, Kalmanovich JB, Awuah AW, Zivcevska M, Khalifa S, Bassey EE, Ali NA, Ferreira MMDS, Umar TP, Garg N, Nweze VN, Inturu VSS, Abdelwahab MM, Kurian S, Alexiou A, Alfaleh M, Alqurashi TMA, Ashraf GM. The role of membrane trafficking and retromer complex in Parkinson's and Alzheimer's disease. J Neurosci Res 2024; 102:e25261. [PMID: 38284858 DOI: 10.1002/jnr.25261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.
Collapse
Affiliation(s)
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, USA
| | - Samar Khalifa
- Clinical Psychology Department, Faculty of Arts, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | | | | | | | - Tungki Pratama Umar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Stratford, New Jersey, USA
| | | | | | | | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Mohammed Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M A Alqurashi
- Department of Pharmacology, Medical College, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Liang J, LaFleur B, Hussainy S, Perry G. Gene Co-Expression Analysis of Multiple Brain Tissues Reveals Correlation of FAM222A Expression with Multiple Alzheimer's Disease-Related Genes. J Alzheimers Dis 2024; 99:S249-S263. [PMID: 37092222 PMCID: PMC11091573 DOI: 10.3233/jad-221241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/25/2023]
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia in the elderly marked by central nervous system (CNS) neuronal loss and amyloid plaques. FAM222A, encoding an amyloid plaque core protein, is an AD brain atrophy susceptibility gene that mediates amyloid-β aggregation. However, the expression interplay between FAM222A and other AD-related pathway genes is unclear. Objective Our goal was to study FAM222A's whole-genome co-expression profile in multiple tissues and investigate its interplay with other AD-related genes. Methods We analyzed gene expression correlations in Genotype-Tissue Expression (GTEx) tissues to identify FAM222A co-expressed genes and performed functional enrichment analysis on identified genes in CNS system. Results Genome-wide gene expression profiling identified 673 genes significantly correlated with FAM222A (p < 2.5×10-6) in 48 human tissues, including 298 from 13 CNS tissues. Functional enrichment analysis revealed that FAM222A co-expressed CNS genes were enriched in multiple AD-related pathways. Gene co-expression network analysis for identified genes in each brain region predicted other disease associated genes with similar biological function. Furthermore, co-expression of 25 out of 31 AD-related pathways genes with FAM222A was replicated in brain samples from 107 aged subjects from the Aging, Dementia and TBI Study. Conclusion This gene co-expression study identified multiple AD-related genes that are associated with FAM222A, indicating that FAM222A and AD-associated genes can be active simultaneously in similar biological processes, providing evidence that supports the association of FAM222A with AD.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Bonnie LaFleur
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Sadiya Hussainy
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Bu M, Follett J, Deng I, Tatarnikov I, Wall S, Guenther D, Maczis M, Wimsatt G, Milnerwood A, Moehle MS, Khoshbouei H, Farrer MJ. Inhibition of LRRK2 kinase activity rescues deficits in striatal dopamine physiology in VPS35 p.D620N knock-in mice. NPJ Parkinsons Dis 2023; 9:167. [PMID: 38110354 PMCID: PMC10728137 DOI: 10.1038/s41531-023-00609-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Dysregulation of dopamine neurotransmission profoundly affects motor, motivation and learning behaviors, and can be observed during the prodromal phase of Parkinson's disease (PD). However, the mechanism underlying these pathophysiological changes remains to be elucidated. Mutations in vacuolar protein sorting 35 (VPS35) and leucine-rich repeat kinase 2 (LRRK2) both lead to autosomal dominant PD, and VPS35 and LRRK2 may physically interact to govern the trafficking of synaptic cargos within the endo-lysosomal network in a kinase-dependent manner. To better understand the functional role of VPS35 and LRRK2 on dopamine physiology, we examined Vps35 haploinsufficient (Haplo) and Vps35 p.D620N knock-in (VKI) mice and how their behavior, dopamine kinetics and biochemistry are influenced by LRRK2 kinase inhibitors. We found Vps35 p.D620N significantly elevates LRRK2-mediated phosphorylation of Rab10, Rab12 and Rab29. In contrast, Vps35 haploinsufficiency reduces phosphorylation of Rab12. While striatal dopamine transporter (DAT) expression and function is similarly impaired in both VKI and Haplo mice, that physiology is normalized in VKI by treatment with the LRRK2 kinase inhibitor, MLi-2. As a corollary, VKI animals show a significant increase in amphetamine induced hyperlocomotion, compared to Haplo mice, that is also abolished by MLi-2. Taken together, these data show Vps35 p.D620N confers a gain-of-function with respect to LRRK2 kinase activity, and that VPS35 and LRRK2 functionally interact to regulate DAT function and striatal dopamine transmission.
Collapse
Affiliation(s)
- Mengfei Bu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Isaac Deng
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Igor Tatarnikov
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shannon Wall
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dylan Guenther
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Melissa Maczis
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Genevieve Wimsatt
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Austen Milnerwood
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Wang MD, Zhang S, Liu XY, Wang PP, Zhu YF, Zhu JR, Lv CS, Li SY, Liu SF, Wen L. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer's disease mouse model through downregulating BACE1 and Aβ generation. Acta Pharmacol Sin 2023; 44:2151-2168. [PMID: 37420104 PMCID: PMC10618533 DOI: 10.1038/s41401-023-01125-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 μM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aβ generation by inhibiting the β-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aβ plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aβ generation in early AD, which is a potential therapeutic intervention for early AD treatment.
Collapse
Affiliation(s)
- Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pan-Pan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shi-Ying Li
- Eye Institute of Xiamen University, Department of Ophthalmology, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
21
|
Eleuteri S, Fang TSZ, Cutillo G, Persico M, Simon DK. Retromer stabilization using a pharmacological chaperone protects in an α-synuclein based mouse model of Parkinson's. RESEARCH SQUARE 2023:rs.3.rs-3417076. [PMID: 37886523 PMCID: PMC10602148 DOI: 10.21203/rs.3.rs-3417076/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background In the present study we assessed the protective effects of a pharmacological approach to stabilize the retromer complex in a PD mouse model. Missense mutations in the VPS35 gene are a rare cause of familial PD. The VPS35 protein is a subunit of the retromer cargo recognition complex and has a variety of functions within neurons, many of which are potentially relevant for the pathophysiology of PD. Prior studies have revealed a role for the retromer complex in controlling accumulation and clearance of α-synuclein aggregates. We previously identified an aminoguanidine hydrazone, 1,3 phenyl bis guanylhydrazone (compound 2a), as a pharmacological stabilizer of the retromer complex that increases retromer subunit protein levels and function. Methods Here, we validate the efficacy of 2a in protecting against αSynuclein pathology and dopaminergic neuronal degeneration in a PD mouse model generated by unilateral injection of AAV-A53T-αSynuclein in the substantia nigra. Results Daily intraperitoneal administration of 2a at 10 mg/Kg for 100 days led to robust protection against behavioral deficits, dopaminergic neuronal loss and loss of striatal dopaminergic fibers and striatal monoamines. Treatment with 2a activated αSynuclein degradation pathways in the SN and led to significant reductions in aggregates and pathological αSynuclein. Conclusion These data suggest retromer stabilization as a promising therapeutic strategy for Parkinson's disease leading to neuroprotection of dopaminergic neurons and rescue in the accumulation of pathological and aggregates αSynuclein. We identified 2a compound as potential clinical drug candidate for future testing in Parkinson's disease patients.
Collapse
|
22
|
Polvat T, Prasertporn T, Na Nakorn P, Pannengpetch S, Suwanjang W, Panmanee J, Ngampramuan S, Cornish JL, Chetsawang B. Proteomic Analysis Reveals the Neurotoxic Effects of Chronic Methamphetamine Self-Administration-Induced Cognitive Impairments and the Role of Melatonin-Enhanced Restorative Process during Methamphetamine Withdrawal. J Proteome Res 2023; 22:3348-3359. [PMID: 37676068 PMCID: PMC10563163 DOI: 10.1021/acs.jproteome.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Cognitive flexibility is a crucial ability in humans that can be affected by chronic methamphetamine (METH) addiction. The present study aimed to elucidate the mechanisms underlying cognitive impairment in mice chronically administered METH via an oral self-administration method. Further, the effect of melatonin treatment on recovery of METH-induced cognitive impairment was also investigated. Cognitive performance of the mice was assessed using an attentional set shift task (ASST), and possible underlying neurotoxic mechanisms were investigated by proteomic and western blot analysis of the prefrontal cortex (PFC). The results showed that mice-administered METH for 21 consecutive days exhibited poor cognitive performance compared to controls. Cognitive deficit in mice partly recovered after METH withdrawal. In addition, mice treated with melatonin during METH withdrawal showed a higher cognitive recovery than vehicle-treated METH withdrawal mice. Proteomic and western blot analysis revealed that METH self-administration increased neurotoxic markers, including disruption to the regulation of mitochondrial function, mitophagy, and decreased synaptic plasticity. Treatment with melatonin during withdrawal restored METH-induced mitochondria and synaptic impairments. These findings suggest that METH-induced neurotoxicity partly depends on mitochondrial dysfunction leading to autophagy-dependent cell death and that the recovery of neurological impairments may be enhanced by melatonin treatment during the withdrawal period.
Collapse
Affiliation(s)
- Tanthai Polvat
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Center
of Emotional Health, Department of Psychology, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia
| | - Tanya Prasertporn
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Piyada Na Nakorn
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Supitcha Pannengpetch
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Wilasinee Suwanjang
- Center
for Research Innovation and Bioinformatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jiraporn Panmanee
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Sukhonthar Ngampramuan
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jennifer L. Cornish
- Center
of Emotional Health, Department of Psychology, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia
| | - Banthit Chetsawang
- Research
Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
23
|
Chen X, Tsika E, Levine N, Moore DJ. VPS35 and α-Synuclein fail to interact to modulate neurodegeneration in rodent models of Parkinson's disease. Mol Neurodegener 2023; 18:51. [PMID: 37542299 PMCID: PMC10403858 DOI: 10.1186/s13024-023-00641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant Parkinson's disease (PD), with a single missense mutation (Asp620Asn, D620N) known to segregate with disease in families with PD. The VPS35 gene encodes a core component of the retromer complex, involved in the endosomal sorting and recycling of transmembrane cargo proteins. VPS35-linked PD is clinically indistinguishable from sporadic PD, although it is not yet known whether VPS35-PD brains exhibit α-synuclein-positive brainstem Lewy pathology that is characteristic of sporadic cases. Prior studies have suggested a functional interaction between VPS35 and the PD-linked gene product α-synuclein in lower organisms, where VPS35 deletion enhances α-synuclein-induced toxicity. In mice, VPS35 overexpression is reported to rescue hippocampal neuronal loss in human α-synuclein transgenic mice, potentially suggesting a retromer deficiency in these mice. METHODS Here, we employ multiple well-established genetic rodent models to explore a functional or pathological interaction between VPS35 and α-synuclein in vivo. RESULTS We find that endogenous α-synuclein is dispensable for nigrostriatal pathway dopaminergic neurodegeneration induced by the viral-mediated delivery of human D620N VPS35 in mice, suggesting that α-synuclein does not operate downstream of VPS35. We next evaluated retromer levels in affected brain regions from human A53T-α-synuclein transgenic mice, but find normal levels of the core subunits VPS35, VPS26 or VPS29. We further find that heterozygous VPS35 deletion fails to alter the lethal neurodegenerative phenotype of these A53T-α-synuclein transgenic mice, suggesting the absence of retromer deficiency in this PD model. Finally, we explored the neuroprotective capacity of increasing VPS35 expression in a viral-based human wild-type α-synuclein rat model of PD. However, we find that the overexpression of wild-type VPS35 is not sufficient for protection against α-synuclein-induced nigral dopaminergic neurodegeneration, α-synuclein pathology and reactive gliosis. CONCLUSION Collectively, our data suggest a limited interaction of VPS35 and α-synuclein in neurodegenerative models of PD, and do not provide support for their interaction within a common pathophysiological pathway.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Elpida Tsika
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Vaud, 1015, Switzerland
- AC Immune SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Nathan Levine
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
24
|
Rocha E, Chamoli M, Chinta SJ, Andersen JK, Wallis R, Bezard E, Goldberg M, Greenamyre T, Hirst W, Kuan WL, Kirik D, Niedernhofer L, Rappley I, Padmanabhan S, Trudeau LE, Spillantini M, Scott S, Studer L, Bellantuono I, Mortiboys H. Aging, Parkinson's Disease, and Models: What Are the Challenges? AGING BIOLOGY 2023; 1:e20230010. [PMID: 38978807 PMCID: PMC11230631 DOI: 10.59368/agingbio.20230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Collapse
Affiliation(s)
- Emily Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, College of Pharmacy, Vallejo, CA, USA
| | | | - Ruby Wallis
- The Healthy Lifespan Institute, Sheffield, United Kingdom
| | | | | | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - We-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS), Lund, Sweden
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Irit Rappley
- Recursion pharmaceuticals, Salt Lake City, UT, USA
| | | | - Louis-Eric Trudeau
- Department of pharmacology and physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maria Spillantini
- Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Heather Mortiboys
- The Healthy Lifespan Institute, Sheffield, United Kingdom
- Department of Neuroscience, Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kindgom
| |
Collapse
|
25
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Guise AJ, Misal SA, Carson R, Boekweg H, Watt DVD, Truong T, Liang Y, Chu JH, Welsh NC, Gagnon J, Payne SH, Plowey ED, Kelly RT. TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544233. [PMID: 37333094 PMCID: PMC10274884 DOI: 10.1101/2023.06.08.544233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Unbiased proteomics has been employed to interrogate central nervous system (CNS) tissues (brain, spinal cord) and fluid matrices (CSF, plasma) from amyotrophic lateral sclerosis (ALS) patients; yet, a limitation of conventional bulk tissue studies is that motor neuron (MN) proteome signals may be confounded by admixed non-MN proteins. Recent advances in trace sample proteomics have enabled quantitative protein abundance datasets from single human MNs (Cong et al., 2020b). In this study, we leveraged laser capture microdissection (LCM) and nanoPOTS (Zhu et al., 2018c) single-cell mass spectrometry (MS)-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control donor spinal cord tissues, leading to the identification of 2515 proteins across MNs samples (>900 per single MN) and quantitative comparison of 1870 proteins between disease groups. Furthermore, we studied the impact of enriching/stratifying MN proteome samples based on the presence and extent of immunoreactive, cytoplasmic TDP-43 inclusions, allowing identification of 3368 proteins across MNs samples and profiling of 2238 proteins across TDP-43 strata. We found extensive overlap in differential protein abundance profiles between MNs with or without obvious TDP-43 cytoplasmic inclusions that together point to early and sustained dysregulation of oxidative phosphorylation, mRNA splicing and translation, and retromer-mediated vesicular transport in ALS. Our data are the first unbiased quantification of single MN protein abundance changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein abundance changes in human neurologic diseases.
Collapse
Affiliation(s)
| | - Santosh A. Misal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Hannah Boekweg
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | | | | | | | - Samuel H. Payne
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | - Ryan T. Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
27
|
Liu XY, Wang K, Deng XH, Wei YH, Guo R, Liu SF, Zhu YF, Zhong JJ, Zheng JY, Wang MD, Ye QH, He JQ, Guo KH, Zhu JR, Huang SQ, Chen ZX, Lv CS, Wen L. Amelioration of olfactory dysfunction in a mouse model of Parkinson's disease via enhancing GABAergic signaling. Cell Biosci 2023; 13:101. [PMID: 37270503 DOI: 10.1186/s13578-023-01049-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/06/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Olfactory dysfunction is among the earliest non-motor symptoms of Parkinson's disease (PD). As the foremost pathological hallmark, α-synuclein initiates the pathology in the olfactory pathway at the early stage of PD, particularly in the olfactory epithelium (OE) and olfactory bulb (OB). However, the local neural microcircuit mechanisms underlying olfactory dysfunction between OE and OB in early PD remain unknown. RESULTS We observed that odor detection and discrimination were impaired in 6-month-old SNCA-A53T mice, while their motor ability remained unaffected. It was confirmed that α-synuclein increased and accumulated in OB but not in OE. Notably, the hyperactivity of mitral/tufted cells and the excitation/inhibition imbalance in OB were found in 6-month-old SNCA-A53T mice, which was attributed to the impaired GABAergic transmission and aberrant expression of GABA transporter 1 and vesicular GABA transporter in OB. We further showed that tiagabine, a potent and selective GABA reuptake inhibitor, could reverse the impaired olfactory function and GABAergic signaling in OB of SNCA-A53T mice. CONCLUSIONS Taken together, our findings demonstrate potential synaptic mechanisms of local neural microcircuit underlying olfactory dysfunction at the early stage of PD. These results highlight the critical role of aberrant GABAergic signaling of OB in early diagnosis and provide a potential therapeutic strategy for early-stage PD.
Collapse
Affiliation(s)
- Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Ke Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Xian-Hua Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Yi-Hua Wei
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Rui Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Sui-Feng Liu
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jia-Jun Zhong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jing-Yuan Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Qiu-Hong Ye
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jian-Quan He
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Kai-Hang Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Shu-Qiong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Ze-Xu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China.
| |
Collapse
|
28
|
Daly JL, Danson CM, Lewis PA, Zhao L, Riccardo S, Di Filippo L, Cacchiarelli D, Lee D, Cross SJ, Heesom KJ, Xiong WC, Ballabio A, Edgar JR, Cullen PJ. Multi-omic approach characterises the neuroprotective role of retromer in regulating lysosomal health. Nat Commun 2023; 14:3086. [PMID: 37248224 PMCID: PMC10227043 DOI: 10.1038/s41467-023-38719-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Retromer controls cellular homeostasis through regulating integral membrane protein sorting and transport and by controlling maturation of the endo-lysosomal network. Retromer dysfunction, which is linked to neurodegenerative disorders including Parkinson's and Alzheimer's diseases, manifests in complex cellular phenotypes, though the precise nature of this dysfunction, and its relation to neurodegeneration, remain unclear. Here, we perform an integrated multi-omics approach to provide precise insight into the impact of Retromer dysfunction on endo-lysosomal health and homeostasis within a human neuroglioma cell model. We quantify widespread changes to the lysosomal proteome, indicative of broad lysosomal dysfunction and inefficient autophagic lysosome reformation, coupled with a reconfigured cell surface proteome and secretome reflective of increased lysosomal exocytosis. Through this global proteomic approach and parallel transcriptomic analysis, we provide a holistic view of Retromer function in regulating lysosomal homeostasis and emphasise its role in neuroprotection.
Collapse
Affiliation(s)
- James L Daly
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, King's College London, SE1 9RT, London, UK.
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Philip A Lewis
- Bristol Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Lu Zhao
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- School for Advanced Studies, University of Naples "Federico II", Naples, Italy
| | - Daehoon Lee
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen J Cross
- Wolfson Bioimaging Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kate J Heesom
- Bristol Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- School for Advanced Studies, University of Naples "Federico II", Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - James R Edgar
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
29
|
Gouveia Roque C, Chung KM, McCurdy EP, Jagannathan R, Randolph LK, Herline-Killian K, Baleriola J, Hengst U. CREB3L2-ATF4 heterodimerization defines a transcriptional hub of Alzheimer's disease gene expression linked to neuropathology. SCIENCE ADVANCES 2023; 9:eadd2671. [PMID: 36867706 PMCID: PMC9984184 DOI: 10.1126/sciadv.add2671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that β-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with β-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing β-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kyung Min Chung
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ethan P. McCurdy
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Radhika Jagannathan
- Division of Aging and Dementia, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lisa K. Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Krystal Herline-Killian
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jimena Baleriola
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Alzheimer's Disease and Impaired Bone Microarchitecture, Regeneration and Potential Genetic Links. Life (Basel) 2023; 13:life13020373. [PMID: 36836731 PMCID: PMC9963274 DOI: 10.3390/life13020373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's Disease (AD) and osteoporosis are both age-related degenerative diseases. Many studies indicate that these two diseases share common pathogenesis mechanisms. In this review, the osteoporotic phenotype of AD mouse models was discussed, and shared mechanisms such as hormonal imbalance, genetic factors, similar signaling pathways and impaired neurotransmitters were identified. Moreover, the review provides recent data associated with these two diseases. Furthermore, potential therapeutic approaches targeting both diseases were discussed. Thus, we proposed that preventing bone loss should be one of the most important treatment goals in patients with AD; treatment targeting brain disorders is also beneficial for osteoporosis.
Collapse
|
31
|
Li JG, Blass BE, Praticò D. Beneficial Effect of a Small Pharmacologic Chaperone on the Established Alzheimer's Disease Phenotype. J Alzheimers Dis 2023; 91:463-469. [PMID: 36442197 DOI: 10.3233/jad-220869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The endosomal retromer complex system is a key controller for trafficking of proteins. Downregulation of its recognition core proteins, such as VPS35, is present in Alzheimer's disease (AD) brain, whereas its normalization prevents the development of AD pathology in a transgenic model with amyloid-β deposits and tau tangles. OBJECTIVE Assess the effect of targeting VPS35 after the AD pathology and memory impairments have developed. METHODS Twelve-month-old triple transgenic mice were treated with a small pharmacological chaperone, TPT-172, or vehicle for 14 weeks. At the end of this period, the effect of the drug on their phenotype was evaluated. RESULTS While control mice had a decline of learning and memory, the group receiving the chaperone did not. Moreover, when compared with controls the treated mice had significantly less amyloid-β peptides and phosphorylated tau, elevation of post-synaptic protein, and reduction in astrocytes activation. CONCLUSION Taken together, our findings demonstrate that pharmacologic stabilization of the retromer recognition core is beneficial also after the AD-like pathologic phenotype is established.
Collapse
Affiliation(s)
- Jian-Guo Li
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Benjamin E Blass
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Philadelphia, PA, USA.,Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
32
|
Hegazy M, Koetsier JL, Huffine AL, Broussard JA, Godsel BM, Cohen-Barak E, Sprecher E, Wolfgeher DJ, Kron SJ, Godsel LM, Green KJ. Epidermal stratification requires retromer-mediated desmoglein-1 recycling. Dev Cell 2022; 57:2683-2698.e8. [PMID: 36495876 PMCID: PMC9973369 DOI: 10.1016/j.devcel.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/12/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennifer L Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amber L Huffine
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua A Broussard
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Brendan M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eran Cohen-Barak
- Department of Dermatology, Emek Medical Center, Afula, Israel; Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Lisa M Godsel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Amyloidogenesis and Neurotrophic Dysfunction in Alzheimer’s Disease: Do They have a Common Regulating Pathway? Cells 2022; 11:cells11203201. [PMID: 36291068 PMCID: PMC9600014 DOI: 10.3390/cells11203201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The amyloid cascade hypothesis has predominately been used to describe the pathogenesis of Alzheimer’s disease (AD) for decades, as Aβ oligomers are thought to be the prime cause of AD. Meanwhile, the neurotrophic factor hypothesis has also been proposed for decades. Accumulating evidence states that the amyloidogenic process and neurotrophic dysfunction are mutually influenced and may coincidently cause the onset and progress of AD. Meanwhile, there are intracellular regulators participating both in the amyloidogenic process and neurotrophic pathways, which might be the common original causes of amyloidogenesis and neurotrophic dysfunction. In this review, the current understanding regarding the role of neurotrophic dysfunction and the amyloidogenic process in AD pathology is briefly summarized. The mutual influence of these two pathogenesis pathways and their potential common causal pathway are further discussed. Therapeutic strategies targeting the common pathways to simultaneously prevent amyloidogenesis and neurotrophic dysfunction might be anticipated for the disease-modifying treatment of AD.
Collapse
|
34
|
Li XY, Zhang SP, He L. Retromer subunit, CfVps35 is required for growth development and pathogenicity of Colletotrichum fructicola. BMC Genom Data 2022; 23:68. [PMID: 36031614 PMCID: PMC9420259 DOI: 10.1186/s12863-022-01084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Tea oil is widely used as edible oil in China, which extracted from the seeds of Camellia oleifera. In China, the national oil-tea camellia planting area reached 4.533 million hectares, the output of oil-tea camellia seed oil was 627 000 tons, and the total output value reached 18.3 billion dollars. Anthracnose is the common disease of Ca. oleifera, which affected the production and brought huge economic losses. Colletotrichum fructicola is the dominant pathogen causing anthracnose in Ca. oleifera. The retromer complex participates in the intracellular retrograde transport of cargos from the endosome to the trans-Golgi network in eukaryotes. Vacuolar protein sorting 35 is a core part of the retromer complex. This study aimed to investigate the role of CfVps35 in C. fructicola. Results The CfVPS35 gene was deleted, resulting in reduced mycelial growth, conidiation, and response to cell wall stresses. Further analysis revealed that CfVps35 was required for C. fructicola virulence on tea oil leaves. In addition, the ΔCfvps35 mutant was defective in glycogen metabolism and turgor during appressorium development. Conclusion This study illustrated that the crucial functions of CfVps35 in growth, development, and pathogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01084-4.
Collapse
|
35
|
Asadzadeh J, Ruchti E, Jiao W, Limoni G, MacLachlan C, Small SA, Knott G, Santa-Maria I, McCabe BD. Retromer deficiency in Tauopathy models enhances the truncation and toxicity of Tau. Nat Commun 2022; 13:5049. [PMID: 36030267 PMCID: PMC9420134 DOI: 10.1038/s41467-022-32683-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alteration of the levels, localization or post-translational processing of the microtubule associated protein Tau is associated with many neurodegenerative disorders. Here we develop adult-onset models for human Tau (hTau) toxicity in Drosophila that enable age-dependent quantitative measurement of central nervous system synapse loss and axonal degeneration, in addition to effects upon lifespan, to facilitate evaluation of factors that may contribute to Tau-dependent neurodegeneration. Using these models, we interrogate the interaction of hTau with the retromer complex, an evolutionarily conserved cargo-sorting protein assembly, whose reduced activity has been associated with both Parkinson’s and late onset Alzheimer’s disease. We reveal that reduction of retromer activity induces a potent enhancement of hTau toxicity upon synapse loss, axon retraction and lifespan through a specific increase in the production of a C-terminal truncated isoform of hTau. Our data establish a molecular and subcellular mechanism necessary and sufficient for the depletion of retromer activity to exacerbate Tau-dependent neurodegeneration. Tau and the Retromer complex are both linked to Parkinson’s and Alzheimer’s disease. Using Drosophila neurodegeneration models, this study finds that low retromer activity induces a specific increase of a highly toxic truncated form of human Tau.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Catherine MacLachlan
- BioEM Facility, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Scott A Small
- Department of Neurology, Columbia University, New York, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
| | - Graham Knott
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.,BioEM Facility, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA.,Department of Pathology & Cell Biology, Columbia University, New York, USA.,Facultad Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Shortill SP, Frier MS, Wongsangaroonsri P, Davey M, Conibear E. The VINE complex is an endosomal VPS9-domain GEF and SNX-BAR coat. eLife 2022; 11:77035. [PMID: 35938928 PMCID: PMC9507130 DOI: 10.7554/elife.77035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Membrane trafficking pathways perform important roles in establishing and maintaining the endosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX-BAR-containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9-domain GEF, to direct an endosomal recycling pathway. The function of the yeast VARP homolog Vrl1 has been overlooked due to an inactivating mutation found in commonly studied strains. Here, we demonstrate that Vrl1 has features of a SNX-BAR coat protein and forms an obligate complex with Vin1, the paralog of the retromer SNX-BAR protein Vps5. Unique features in the Vin1 N-terminus allow Vrl1 to distinguish it from Vps5, thereby forming a complex that we have named VINE. The VINE complex occupies endosomal tubules and redistributes a conserved mannose 6-phosphate receptor-like protein from endosomes. We also find that membrane recruitment by Vin1 is essential for Vrl1 GEF activity, suggesting that VINE is a multifunctional coat complex that regulates trafficking and signaling events at the endosome. All healthy cells have a highly organized interior: different compartments with specialized roles are in different places, and in order to do their jobs properly, proteins need to be in the right place. Endosomes are membrane-bound compartments that act as transport hubs where proteins are sorted into small vesicles and delivered to other parts of the cell. Two groups of proteins regulate this transport: the first group, known as VPS9 GEFs, switches on the enzymes that recruit the second group of proteins, called the sorting nexins. This second group is responsible for forming the transport vesicles via which proteins are distributed all over the cell. Defects in protein sorting can lead to various diseases, including neurodegenerative conditions such as Parkinson’s disease and juvenile amyotrophic lateral sclerosis. Scientists often use budding yeast cells to study protein sorting, because these cells are similar to human cells, but easier to grow in large numbers and examine in the laboratory. Previous work showed that a yeast protein called Vrl1 is equivalent to a VPS9 GEF from humans called VARP. However, Vrl1 only exists in wild forms of budding yeast, and not in laboratory strains of the organism. Therefore, researchers had not studied Vrl1 in detail, and its roles remained unclear. To learn more about Vrl1, Shortill et al. started by re-introducing the protein into laboratory strains of budding yeast and observing what happened to protein sorting in these cells. Like VARP, Vrl1 was found in the endosomes of budding yeast. However, biochemical experiments revealed that, while human VARP binds to a protein called retromer, Vrl1 does not bind to the equivalent protein in yeast. Instead, Vrl1 itself has features of both the VPS9 GEFs and the sorting nexins. Shortill et al. also found that Vrl1 interacted with a different protein in the sorting nexin family called Vin1. In the absence of Vrl1, Vin1 was found floating around the cell, but once Vrl1 was re-introduced into the budding yeast, Vin1 relocated to the endosomes. Vrl1 uses its VPS9 GEF part to move itself to the endosome membrane, and Vin1 controls this movement, highlighting the interdependence between the two proteins. Once they are at the endosome together, Vrl1 and Vin1 help redistribute proteins to other parts of the cell. This study suggests that, like VARP, Vrl1 cooperates with sorting nexins to transport proteins. Since many previous experiments about protein sorting were carried out in yeast cells lacking Vrl1, it is possible that this process was overlooked despite its potential importance. These new findings could also help other researchers investigating how endosomes and protein sorting work, or do not work, in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shawn P Shortill
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Mia S Frier
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Curtis ME, Smith T, Blass BE, Praticò D. Dysfunction of the retromer complex system contributes to amyloid and tau pathology in a stem cell model of Down syndrome. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12334. [PMID: 35910668 PMCID: PMC9322819 DOI: 10.1002/trc2.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Introduction Retromer complex proteins are decreased in Down syndrome (DS) brains and correlate inversely with brain amyloidosis. However, whether retromer dysfunction contributes to the amyloid beta (Aβ) and tau neuropathology of DS remains unknown. Methods Human trisomic induced Pluripotent Stem Cells (iPSCs) and isogenic controls were differentiated into forebrain neurons, and changes in retromer proteins, tau phosphorylated epitopes, and Aβ levels were assessed in euploid and trisomic neurons using western blot and enzyme-linked immunosorbent assay (ELISA). Genetic overexpression and pharmacological retromer stabilization were used to determine the functional role of the retromer complex system in modulating amyloid and tau pathology. Results Trisomic neurons developed age-dependent retromer core protein deficiency associated with accumulation of Aβ peptides and phosphorylated tau isoforms. Enhancing retromer function through overexpression or pharmacological retromer stabilization reduced amyloid and tau pathology in trisomic neurons. However, the effect was greater using a pharmacological approach, suggesting that targeting the complex stability may be more effective in addressing this neuropathology in DS. Discussion Our results demonstrate that the retromer complex is directly involved in the development of the neuropathologic phenotype in DS, and that pharmacological stabilization of the complex should be considered as a novel therapeutic tool in people with DS.
Collapse
Affiliation(s)
- Mary Elizabeth Curtis
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Tiffany Smith
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Domenico Praticò
- Alzheimer's Center at TempleLewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
38
|
Understanding the contributions of VPS35 and the retromer in neurodegenerative disease. Neurobiol Dis 2022; 170:105768. [PMID: 35588987 DOI: 10.1016/j.nbd.2022.105768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Perturbations of the endolysosomal pathway have been suggested to play an important role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Specifically, VPS35 and the retromer complex play an important role in the endolysosomal system and are implicated in the pathophysiology of these diseases. A single missense mutation in VPS35, Asp620Asn (D620N), is known to cause late-onset, autosomal dominant familial PD. In this review, we focus on the emerging role of the PD-linked D620N mutation in causing retromer dysfunction and dissect its implications in neurodegeneration. Additionally, we will discuss how VPS35 and the retromer are linked to AD, amyotrophic lateral sclerosis, and primary tauopathies. Interestingly, reduced levels of VPS35 and other retromer components have been observed in post-mortem brain tissue, suggesting a role for the retromer in the pathophysiology of these diseases. This review will provide a comprehensive dive into the mechanisms of VPS35 dysfunction in neurodegenerative diseases. Furthermore, we will highlight outstanding questions in the field and the retromer as a therapeutic target for neurodegenerative disease at large.
Collapse
|
39
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
40
|
Tuck BJ, Miller LVC, Katsinelos T, Smith AE, Wilson EL, Keeling S, Cheng S, Vaysburd MJ, Knox C, Tredgett L, Metzakopian E, James LC, McEwan WA. Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Rep 2022; 39:110776. [PMID: 35508140 PMCID: PMC9108550 DOI: 10.1016/j.celrep.2022.110776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/03/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior.
Collapse
Affiliation(s)
- Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| | - Lauren V C Miller
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Annabel E Smith
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Emma L Wilson
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Shi Cheng
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Marina J Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire Knox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lucy Tredgett
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, UK.
| |
Collapse
|
41
|
Chae CW, Choi GE, Jung YH, Lim JR, Cho JH, Yoon JH, Han HJ. High glucose-mediated VPS26a downregulation dysregulates neuronal amyloid precursor protein processing and tau phosphorylation. Br J Pharmacol 2022; 179:3934-3950. [PMID: 35297035 DOI: 10.1111/bph.15836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The relationship between hyperglycaemia-induced retromer dysfunction impairing intracellular trafficking and AD remains unclear, although Diabetes mellitus (DM) is considered a risk factor for Alzheimer's disease (AD). Here, we investigated the effects of high glucose on the retromer, and defined the dysregulation of mechanisms of amyloid precursor protein (APP) processing and tau phosphorylation. EXPERIMENTAL APPROACH We used human induced-pluripotent stem cell-derived neuronal differentiated cells and SH-SY5Ys exposed to high glucose to identify the underlying mechanisms. Streptozotocin-induced diabetic mice were used to elucidate whether the retromer contributes to the AD-like pathology. KEY RESULTS We found that vacuolar protein sorting-associated protein 26a (VPS26a) was decreased in the hippocampus of diabetic mice and high glucose-treated human neuronal cells. High glucose downregulated VPS26a through ROS/NF-κB/DNA methyltransferase1-mediated promoter hypermethylation. VPS26a recovery blocked retention of APP and cation-independent mannose-6-phosphate receptor in endosomes and promoted transport to the trans-Golgi, which decreased Aβ levels, and improved Cathepsin D activity, reducing p-tau levels, respectively. Retromer enhancement ameliorated synaptic deficits, astrocyte over-activation, and cognitive impairment in diabetic mice. CONCLUSION AND IMPLICATIONS In conclusion, VPS26a is a promising candidate for the inhibition of DM-associated AD pathogenesis by modulating APP processing and tau phosphorylation.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Microglial VPS35 deficiency impairs Aβ phagocytosis and Aβ-induced disease-associated microglia, and enhances Aβ associated pathology. J Neuroinflammation 2022; 19:61. [PMID: 35236374 PMCID: PMC8892702 DOI: 10.1186/s12974-022-02422-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background Vacuolar sorting protein 35 (VPS35), a key component of the retromer, plays an essential role in selectively retrieval of transmembrane proteins from endosomes to trans-Golgi networks. Dysfunctional retromer is a risk factor for neurodegenerative disorders, including Alzheimer’s disease (AD). Microglial VPS35 deficiency is found in AD patients’ brain; however, it remains unclear if and how microglial VPS35-loss contributes to AD development. Methods We used mice with VPS35 cKO (conditional knockout) in microglial cells in 5XFAD, an AD mouse model. The AD related brain pathology (Aβ and glial activation), behavior, and phagocytosis of Aβ were accessed by a combination of immunofluorescence staining analyses and neurological behavior tests. Results A decrease in learning and memory function, but increases in insoluble, fibrillar, and plaques of β-amyloids (Aβ), dystrophic neurites, and reactive astrocytes are observed in microglial VPS35 deficient 5XFAD mice. Further examining microglial phenotype demonstrates necessity of microglial VPS35 in disease-associated microglia (DAM) development and microglial uptake of Aβ, revealing a tight association of microglial Aβ uptake with DAM development. Conclusions Together, these results uncovered a mechanism by which microglial VPS35-deficiency precipitates AD pathology in 5XFAD mice likely by impairing DAM development and DAM mediated Aβ uptake and clearance, and thus accelerating the cognition decline. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02422-0.
Collapse
|
43
|
Roque M, de Souza DAR, Rangel-Sosa MM, Altounian M, Hocine M, Deloulme JC, Barbier EL, Mann F, Chauvet S. VPS35 deficiency in the embryonic cortex leads to prenatal cell loss and abnormal development of axonal connectivity. Mol Cell Neurosci 2022; 120:103726. [DOI: 10.1016/j.mcn.2022.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022] Open
|
44
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
45
|
Qureshi YH, Berman DE, Marsh SE, Klein RL, Patel VM, Simoes S, Kannan S, Petsko GA, Stevens B, Small SA. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep 2022; 38:110262. [PMID: 35045281 PMCID: PMC8830374 DOI: 10.1016/j.celrep.2021.110262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/14/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023] Open
Abstract
Disruption of retromer-dependent endosomal trafficking is considered pathogenic in late-onset Alzheimer's disease (AD). Here, to investigate this disruption in the intact brain, we turn to a genetic mouse model where the retromer core protein VPS35 is depleted in hippocampal neurons, and then we replete VPS35 using an optimized viral vector protocol. The VPS35 depletion-repletion studies strengthen the causal link between the neuronal retromer and AD-associated neuronal phenotypes, including the acceleration of amyloid precursor protein cleavage and the loss of synaptic glutamate receptors. Moreover, the studies show that the neuronal retromer can regulate a distinct, dystrophic, microglia morphology, phenotypic of hippocampal microglia in AD. Finally, the neuronal and, in part, the microglia responses to VPS35 depletion were found to occur independent of tau. Showing that the neuronal retromer can regulate AD-associated pathologies in two of AD's principal cell types strengthens the link, and clarifies the mechanism, between endosomal trafficking and late-onset sporadic AD.
Collapse
Affiliation(s)
- Yasir H Qureshi
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Diego E Berman
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vivek M Patel
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Suvarnambiga Kannan
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| | - Scott A Small
- Departments of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Saitoh S. Endosomal Recycling Defects and Neurodevelopmental Disorders. Cells 2022; 11:cells11010148. [PMID: 35011709 PMCID: PMC8750115 DOI: 10.3390/cells11010148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
The quality and quantity of membrane proteins are precisely and dynamically maintained through an endosomal recycling process. This endosomal recycling is executed by two protein complexes: retromer and recently identified retriever. Defects in the function of retromer or retriever cause dysregulation of many membrane proteins and result in several human disorders, including neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Recently, neurodevelopmental disorders caused by pathogenic variants in genes associated with retriever were identified. This review focuses on the two recycling complexes and discuss their biological and developmental roles and the consequences of defects in endosomal recycling, especially in the nervous system. We also discuss future perspectives of a possible relationship of the dysfunction of retromer and retriever with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
47
|
Wen YF, Xiao XW, Zhou L, Jiang YL, Zhu Y, Guo LN, Wang X, Liu H, Zhou YF, Wang JL, Liao XX, Shen L, Jiao B. Mutations in GBA, SNCA, and VPS35 are not associated with Alzheimer's disease in a Chinese population: a case-control study. Neural Regen Res 2022; 17:682-689. [PMID: 34380910 PMCID: PMC8504399 DOI: 10.4103/1673-5374.321000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SNCA, GBA, and VPS35 are three common genes associated with Parkinson’s disease. Previous studies have shown that these three genes may be associated with Alzheimer’s disease (AD). However, it is unclear whether these genes increase the risk of AD in Chinese populations. In this study, we used a targeted gene sequencing panel to screen all the exon regions and the nearby sequences of GBA, SNCA, and VPS35 in a cohort including 721 AD patients and 365 healthy controls from China. The results revealed that neither common variants nor rare variants of these three genes were associated with AD in a Chinese population. These findings suggest that the mutations in GBA, SNCA, and VPS35 are not likely to play an important role in the genetic susceptibility to AD in Chinese populations. The study was approved by the Ethics Committee of Xiangya Hospital, Central South University, China on March 9, 2016 (approval No. 201603198).
Collapse
Affiliation(s)
- Ya-Fei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Ling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li-Na Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ya-Fang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Xin-Xin Liao
- Department of Geriatrics Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders; Engineering Research Center of Hunan Province in Cognitive Impairment Disorders; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
48
|
Chen KE, Guo Q, Hill TA, Cui Y, Kendall AK, Yang Z, Hall RJ, Healy MD, Sacharz J, Norwood SJ, Fonseka S, Xie B, Reid RC, Leneva N, Parton RG, Ghai R, Stroud DA, Fairlie DP, Suga H, Jackson LP, Teasdale RD, Passioura T, Collins BM. De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. SCIENCE ADVANCES 2021; 7:eabg4007. [PMID: 34851660 PMCID: PMC8635440 DOI: 10.1126/sciadv.abg4007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
The retromer complex (Vps35-Vps26-Vps29) is essential for endosomal membrane trafficking and signaling. Mutation of the retromer subunit Vps35 causes late-onset Parkinson’s disease, while viral and bacterial pathogens can hijack the complex during cellular infection. To modulate and probe its function, we have created a novel series of macrocyclic peptides that bind retromer with high affinity and specificity. Crystal structures show that most of the cyclic peptides bind to Vps29 via a Pro-Leu–containing sequence, structurally mimicking known interactors such as TBC1D5 and blocking their interaction with retromer in vitro and in cells. By contrast, macrocyclic peptide RT-L4 binds retromer at the Vps35-Vps26 interface and is a more effective molecular chaperone than reported small molecules, suggesting a new therapeutic avenue for targeting retromer. Last, tagged peptides can be used to probe the cellular localization of retromer and its functional interactions in cells, providing novel tools for studying retromer function.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yi Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhe Yang
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ryan J. Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joanna Sacharz
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sachini Fonseka
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| | - Rajesh Ghai
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David A. Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rohan D. Teasdale
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Sydney Analytical, School of Life and Environmental Sciences and School of Chemistry, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
49
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
50
|
VPS35 regulates tau phosphorylation and neuropathology in tauopathy. Mol Psychiatry 2021; 26:6992-7005. [PMID: 31289348 PMCID: PMC6949432 DOI: 10.1038/s41380-019-0453-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 04/11/2019] [Indexed: 01/27/2023]
Abstract
The vacuolar protein sorting 35 (VPS35) is a major component of the retromer recognition core complex which regulates intracellular protein sorting and trafficking. Deficiency in VPS35 by altering APP/Aβ metabolism has been linked to late-onset Alzheimer's disease. Here we report that VPS35 is significantly reduced in Progressive Supra-nuclear Palsy and Picks' disease, two distinct primary tauopathies. In vitro studies show that overexpression of VPS35 leads to a reduction of pathological tau in neuronal cells, whereas genetic silencing of VPS35 results in its accumulation. Mechanistically the availability of active cathepsin D mediates the effect of VPS35 on pathological tau accumulation. Moreover, in a relevant transgenic mouse model of tauopathy, down-regulation of VPS35 results in an exacerbation of motor and learning impairments as well as accumulation of pathological tau and loss of synaptic integrity. Taken together, our data identify VPS35 as a novel critical player in tau metabolism and neuropathology, and a new therapeutic target for human tauopathies.
Collapse
|