1
|
Fontes MRM, Cardoso FF, Kobe B. Transport of DNA repair proteins to the cell nucleus by the classical nuclear importin pathway - a structural overview. DNA Repair (Amst) 2025; 149:103828. [PMID: 40154194 DOI: 10.1016/j.dnarep.2025.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
DNA repair is a crucial biological process necessary to address damage caused by both endogenous and exogenous agents, with at least five major pathways recognized as central to this process. In several cancer types and other diseases, including neurodegenerative disorders, DNA repair mechanisms are often disrupted or dysregulated. Despite the diversity of these proteins and their roles, they all share the common requirement of being imported into the cell nucleus to perform their functions. Therefore, understanding the nuclear import of these proteins is essential for comprehending their roles in cellular processes. The first and best-characterized nuclear targeting signal is the classical nuclear localization sequence (NLS), recognized by importin-α (Impα). Several structural and affinity studies have been conducted on complexes formed between Impα and NLSs from DNA repair proteins, although these represent only a fraction of all known DNA repair proteins. These studies have significantly advanced our understanding of the nuclear import process of DNA repair proteins, often revealing unexpected results that challenge existing literature and computational predictions. Despite advances in computational, biochemical, and cellular assays, structural methods - particularly crystallography and in-solution biophysical approaches - continue to play a critical role in providing insights into molecular events operating in biological pathways. In this review, we aim to summarize experimental structural and affinity studies involving Impα and NLSs from DNA repair proteins, with the goal of furthering our understanding of the function of these essential proteins.
Collapse
Affiliation(s)
- Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| | - Fábio F Cardoso
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
3
|
Zhang P, Zhang Z, Wang Y, Du W, Song X, Lai W, Wang H, Zhu B, Xiong J. A CRISPR-Cas9 screen reveals genetic determinants of the cellular response to decitabine. EMBO Rep 2025; 26:1528-1565. [PMID: 39930152 PMCID: PMC11933316 DOI: 10.1038/s44319-025-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/26/2025] Open
Abstract
Decitabine (DAC), a well-recognized DNA hypomethylating agent, has been applied to treat acute myeloid leukemia. However, clinic investigations revealed that DNA methylation reduction does not correlate with a clinical response, and relapse is prevalent. To gain a better understanding of its anti-tumor mechanism, we perform a temporally resolved CRISPR-Cas9 screen to identify factors governing the DAC response. We show that DNA damage generated by DNMT-DNA adducts and 5-aza-dUTP misincorporation through the dCMP deaminase DCTD act as drivers of DAC-induced acute cytotoxicity. The DNA damage that arises during the next S phase is dependent on DNA replication, unveiling a trans-cell cycle effect of DAC on genome stability. By exploring candidates for synthetic lethality, we unexpectedly uncover that KDM1A promotes survival after DAC treatment through interactions with ZMYM3 and CoREST, independent of its demethylase activity or regulation of viral mimicry. These findings emphasize the importance of DNA repair pathways in DAC response and provide potential biomarkers.
Collapse
Affiliation(s)
- Pinqi Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqiang Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiyi Wang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Du
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingrui Song
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bing Zhu
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Xiong
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Machour FE, Barisaac AS, Ayoub N. Why are RNA processing factors recruited to DNA double-strand breaks? Trends Genet 2025; 41:194-200. [PMID: 39567312 DOI: 10.1016/j.tig.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
DNA double-strand break (DSB) induction leads to local transcriptional silencing at damage sites, raising the question: Why are RNA processing factors (RPFs), including splicing factors, rapidly recruited to these sites? Recent findings show that DSBs cluster in a chromatin compartment termed the 'D compartment', where DNA damage response (DDR) genes relocate and undergo transcriptional activation. Here, we propose two non-mutually exclusive models to elucidate the rationale behind the recruitment of RPFs to DSB sites. First, RPFs circulate through the D compartment to process transcripts of the relocated DDR genes. Second, the D compartment serves as a 'post-translational modifications (PTMs) hub', altering RPF activity and leading to the production of unique DNA damage-induced transcripts, which are essential for orchestrating the DDR.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alma Sophia Barisaac
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
5
|
Lee HT, Kim YA, Lee S, Jung YE, Kim H, Kim TW, Kwak S, Kim J, Lee CH, Cha SS, Choi J, Cho EJ, Youn HD. Phosphorylation-mediated disassembly of C-terminal binding protein 2 tetramer impedes epigenetic silencing of pluripotency in mouse embryonic stem cells. Nucleic Acids Res 2024; 52:13706-13722. [PMID: 39588763 DOI: 10.1093/nar/gkae1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 11/23/2024] [Indexed: 11/27/2024] Open
Abstract
Cells need to overcome both intrinsic and extrinsic threats. Although pluripotency is associated with damage responses, how stem cells respond to DNA damage remains controversial. Here, we elucidate that DNA damage activates Chk2, leading to the phosphorylation of serine 164 on C-terminal binding protein 2 (Ctbp2). The phosphorylation of Ctbp2 induces the disruption of Ctbp2 tetramer, weakening interactions with zinc finger proteins, leading to the dissociation of phosphorylated Ctbp2 from chromatin. This transition to a monomeric state results in the separation of histone deacetylase 1 from Ctbp2, consequently slowing the rate of H3K27 deacetylation. In contrast to the nucleosome remodeling and deacetylase complex, phosphorylated Ctbp2 increased binding affinity to polycomb repressive complex (PRC)2, interacting through the N-terminal domain of Suz12. Through this domain, Ctbp2 competes with Jarid2, inhibiting the function of PRC2. Thus, the phosphorylation of Ctbp2 under stress conditions represents a precise mechanism aimed at preserving stemness traits by inhibiting permanent transcriptional shutdown.
Collapse
Affiliation(s)
- Han-Teo Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Young Ah Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangho Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ye-Eun Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanbyeol Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Pharmacology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Wan Kim
- Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jaehyeon Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chul-Hwan Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Department of Pharmacology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- R&D Division, TODD PHARM CO. LTD., Seoul 03760, Republic of Korea
| | - Jinmi Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong-Duk Youn
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
6
|
Yang Q, Wei S, Qiu C, Han C, Du Z, Wu N. KDM1A epigenetically enhances RAD51 expression to suppress the STING-associated anti-tumor immunity in esophageal squamous cell carcinoma. Cell Death Dis 2024; 15:882. [PMID: 39638799 PMCID: PMC11621790 DOI: 10.1038/s41419-024-07275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Histone lysine demethylase LSD1, also known as KDM1A, has been found to regulate multiple cancer hallmarks since it was first identified in 2004. Recently, it has emerged as a promising target for stimulating anti-tumor immunity, specifically boosting T cell activity. However, it remains unclear whether and how it remodels the tumor microenvironment to drive oncogenic processes in esophageal squamous cell carcinoma (ESCC). In this study, protein levels in ESCC tissues were evaluated by immunostaining of tissue microarrays. Cell growth was assessed by colony formation assays in vitro and subcutaneous xenograft models in vivo. High-throughput transcriptomics and spatial immune proteomics were performed using bulk RNA sequencing and digital spatial profiling techniques, respectively. Epigenetic regulation of RAD51 by methylated histone proteins was analyzed using chromatin immunoprecipitated quantitative PCR assays. Finally, our clinical data indicate that KDM1A precisely predicts the overall survival of patients with early-stage ESCC. Inhibition of KDM1A blocked the growth of ESCC cells in vitro and in vivo. Mechanistically, our transcriptomics and spatial immune proteomics data, together with rescue assays, demonstrated that KDM1A specifically removes methyl residues from the histone protein H3K9me2, a transcription repressive marker, thus reducing its enrichment at the promoter of RAD51 to epigenetically reactivate its transcription. Additionally, it significantly inhibits the expression of NF-κB signaling-dependent proinflammatory genes IL-6 and IL-1B through RAD51, thus blocking the STING-associated anti-tumor immunity in stromal tumor-infiltrating lymphocytes (sTIL). Overall, our findings not only indicate that KDM1A is a promising target for ESCC patients at early stages but also provide novel mechanistic insights into its spatial regulation of STING-associated anti-tumor immunity in sTILs to drive the oncogenic processes in ESCC. The translation of these findings will ultimately guide more appropriate combinations of spatial immunotherapies with KDM1A inhibitors to improve the overall survival of specific subgroups in ESCC.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi, China
| | - Cen Qiu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjie Han
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Hua Shan Hospital of Fudan University, Shanghai, China
| | - Ning Wu
- Department of Cardiothoracic Surgery, Hua Shan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Haase S, Carney S, Varela ML, Mukherji D, Zhu Z, Li Y, Nuñez FJ, Lowenstein PR, Castro MG. Epigenetic reprogramming in pediatric gliomas: from molecular mechanisms to therapeutic implications. Trends Cancer 2024; 10:1147-1160. [PMID: 39394009 PMCID: PMC11631670 DOI: 10.1016/j.trecan.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devarshi Mukherji
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Felipe J Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Bao K, Ma Y, Li Y, Shen X, Zhao J, Tian S, Zhang C, Liang C, Zhao Z, Yang Y, Zhang K, Yang N, Meng FL, Hao J, Yang J, Liu T, Yao Z, Ai D, Shi L. A di-acetyl-decorated chromatin signature couples liquid condensation to suppress DNA end synapsis. Mol Cell 2024; 84:1206-1223.e15. [PMID: 38423014 DOI: 10.1016/j.molcel.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.
Collapse
Affiliation(s)
- Kaiwen Bao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanhui Ma
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xilin Shen
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiao Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chunyong Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Can Liang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ziyan Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Kai Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jihui Hao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhi Yao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ding Ai
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
9
|
Lee M, Ahmad SF, Xu J. Regulation and function of transposable elements in cancer genomes. Cell Mol Life Sci 2024; 81:157. [PMID: 38556602 PMCID: PMC10982106 DOI: 10.1007/s00018-024-05195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over half of human genomic DNA is composed of repetitive sequences generated throughout evolution by prolific mobile genetic parasites called transposable elements (TEs). Long disregarded as "junk" or "selfish" DNA, TEs are increasingly recognized as formative elements in genome evolution, wired intimately into the structure and function of the human genome. Advances in sequencing technologies and computational methods have ushered in an era of unprecedented insight into how TE activity impacts human biology in health and disease. Here we discuss the current views on how TEs have shaped the regulatory landscape of the human genome, how TE activity is implicated in human cancers, and how recent findings motivate novel strategies to leverage TE activity for improved cancer therapy. Given the crucial role of methodological advances in TE biology, we pair our conceptual discussions with an in-depth review of the inherent technical challenges in studying repeats, specifically related to structural variation, expression analyses, and chromatin regulation. Lastly, we provide a catalog of existing and emerging assays and bioinformatic software that altogether are enabling the most sophisticated and comprehensive investigations yet into the regulation and function of interspersed repeats in cancer genomes.
Collapse
Affiliation(s)
- Michael Lee
- Department of Pediatrics, Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Syed Farhan Ahmad
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA
| | - Jian Xu
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA.
| |
Collapse
|
10
|
Huang Y, Tang M, Hu Z, Cai B, Chen G, Jiang L, Xia Y, Guan P, Li X, Mao Z, Wan X, Lu W. SMYD3 promotes endometrial cancer through epigenetic regulation of LIG4/XRCC4/XLF complex in non-homologous end joining repair. Oncogenesis 2024; 13:3. [PMID: 38191478 PMCID: PMC10774296 DOI: 10.1038/s41389-023-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Endometrial cancer (EC) stands as one of the most prevalent malignancies affecting the female genital tract, witnessing a rapid surge in incidence globally. Despite the well-established association of histone methyltransferase SMYD3 with the development and progression of various cancers, its specific oncogenic role in endometrial cancer remains unexplored. In the present study, we report that the expression level of SMYD3 is significantly upregulated in EC samples and associated with EC progression. Through meticulous in vivo and in vitro experiments, we reveal that depletion of SMYD3 curtails cell proliferation, migration, and invasion capabilities, leading to compromised non-homologous end joining repair (NHEJ) and heightened sensitivity of EC cells to radiation. Furthermore, our pathway enrichment analysis underscores the pivotal involvement of the DNA damage repair pathway in regulating EC progression. Mechanistically, in response to DNA damage, SMYD3 is recruited to these sites in a PARP1-dependent manner, specifically methylating LIG4. This methylation sets off a sequential assembly of the LIG4/XRCC4/XLF complex, actively participating in the NHEJ pathway and thereby fostering EC progression. Notably, our findings highlight the promise of SMYD3 as a crucial player in NHEJ repair and its direct correlation with EC progression. Intriguingly, pharmacological intervention targeting SMYD3 with its specific inhibitor, BCI-121, emerges as a potent strategy, markedly suppressing the tumorigenicity of EC cells and significantly enhancing the efficacy of radiotherapy. Collectively, our comprehensive data position SMYD3 as a central factor in NHEJ repair and underscore its potential as a promising pharmacological target for endometrial cancer therapy, validated through both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bailian Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Xia
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pujun Guan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Wen Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Cao Y, Wu C, Ma L. Lysine demethylase 5B (KDM5B): A key regulator of cancer drug resistance. J Biochem Mol Toxicol 2024; 38:e23587. [PMID: 38014925 DOI: 10.1002/jbt.23587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Chemoresistance, a roadblock in the chemotherapy process, has been impeding its effective treatment. KDM5B, a member of the histone demethylase family, has been crucial in the emergence and growth of malignancies. More significantly, KDM5B has recently been linked closely to cancer's resistance to chemotherapy. In this review, we explain the biological properties of KDM5B, its function in the emergence and evolution of cancer treatment resistance, and our hopes for future drug resistance-busting combinations involving KDM5B and related targets or medications.
Collapse
Affiliation(s)
- Yaquan Cao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, China
| |
Collapse
|
12
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
13
|
Dong B, Song X, Wang X, Dai T, Wang J, Zhiyong Y, Deng J, Evers BM, Wu Y. FBXO24 Suppresses Breast Cancer Tumorigenesis by Targeting LSD1 for Ubiquitination. Mol Cancer Res 2023; 21:1303-1316. [PMID: 37540490 PMCID: PMC10840093 DOI: 10.1158/1541-7786.mcr-23-0169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Lysine-specific demethylase 1 (LSD1), a critical chromatin modulator, functions as an oncogene by demethylation of H3K4me1/2. The stability of LSD1 is governed by a complex and intricate process involving ubiquitination and deubiquitination. Several deubiquitinases preserve LSD1 protein levels. However, the precise mechanism underlying the degradation of LSD1, which could mitigate its oncogenic function, remains unknown. To gain a better understanding of LSD1 degradation, we conducted an unbiased siRNA screening targeting all the human SCF family E3 ligases. Our screening identified FBXO24 as a genuine E3 ligase that ubiquitinates and degrades LSD1. As a result, FBXO24 inhibits LSD1-induced tumorigenesis and functions as a tumor suppressor in breast cancer cells. Moreover, FBXO24 exhibits an inverse correlation with LSD1 and is associated with a favorable prognosis in breast cancer patient samples. Taken together, our study uncovers the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation. IMPLICATIONS Our study provides comprehensive characterization of the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Xiang Song
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Xinzhao Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Tao Dai
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Yu Zhiyong
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jiong Deng
- Medical Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - B. Mark Evers
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
14
|
Vcelkova T, Reiter W, Zylka M, Hollenstein D, Schuckert S, Hartl M, Seiser C. GSE1 links the HDAC1/CoREST co-repressor complex to DNA damage. Nucleic Acids Res 2023; 51:11748-11769. [PMID: 37878419 PMCID: PMC10681733 DOI: 10.1093/nar/gkad911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Post-translational modifications of histones are important regulators of the DNA damage response (DDR). By using affinity purification mass spectrometry (AP-MS) we discovered that genetic suppressor element 1 (GSE1) forms a complex with the HDAC1/CoREST deacetylase/demethylase co-repressor complex. In-depth phosphorylome analysis revealed that loss of GSE1 results in impaired DDR, ATR signalling and γH2AX formation upon DNA damage induction. Altered profiles of ATR target serine-glutamine motifs (SQ) on DDR-related hallmark proteins point to a defect in DNA damage sensing. In addition, GSE1 knock-out cells show hampered DNA damage-induced phosphorylation on SQ motifs of regulators of histone post-translational modifications, suggesting altered histone modification. While loss of GSE1 does not affect the histone deacetylation activity of CoREST, GSE1 appears to be essential for binding of the deubiquitinase USP22 to CoREST and for the deubiquitination of H2B K120 in response to DNA damage. The combination of deacetylase, demethylase, and deubiquitinase activity makes the USP22-GSE1-CoREST subcomplex a multi-enzymatic eraser that seems to play an important role during DDR. Since GSE1 has been previously associated with cancer progression and survival our findings are potentially of high medical relevance.
Collapse
Affiliation(s)
- Terezia Vcelkova
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Martha Zylka
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - David M Hollenstein
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Schuckert
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Tao L, Zhou Y, Pan X, Luo Y, Qiu J, Zhou X, Chen Z, Li Y, Xu L, Zhou Y, Zuo Z, Liu C, Wang L, Liu X, Tian X, Su N, Yang Z, Zhang Y, Gou K, Sang N, Liu H, Zou J, Xiao Y, Zhong X, Xu J, Yang X, Xiao K, Liu Y, Yang S, Peng Y, Han J, Cen X, Zhao Y. Repression of LSD1 potentiates homologous recombination-proficient ovarian cancer to PARP inhibitors through down-regulation of BRCA1/2 and RAD51. Nat Commun 2023; 14:7430. [PMID: 37973845 PMCID: PMC10654398 DOI: 10.1038/s41467-023-42850-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) are selectively active in ovarian cancer (OC) with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1/2 and other DNA repair pathway members. We sought molecular targeted therapy that induce HRD in HR-proficient cells to induce synthetic lethality with PARPi and extend the utility of PARPi. Here, we demonstrate that lysine-specific demethylase 1 (LSD1) is an important regulator for OC. Importantly, genetic depletion or pharmacological inhibition of LSD1 induces HRD and sensitizes HR-proficient OC cells to PARPi in vitro and in multiple in vivo models. Mechanistically, LSD1 inhibition directly impairs transcription of BRCA1/2 and RAD51, three genes essential for HR, dependently of its canonical demethylase function. Collectively, our work indicates combination with LSD1 inhibitor could greatly expand the utility of PARPi to patients with HR-proficient tumor, warranting assessment in human clinical trials.
Collapse
Affiliation(s)
- Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiangyu Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yuan Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xia Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiqian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Yan Li
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, China
| | - Lian Xu
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Yang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zeping Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaocong Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Na Su
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
- Department of Pharmacy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhengnan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yu Zhang
- School of Medicine, Tibet University, 850000, Lhasa, China
| | - Kun Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Na Sang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huan Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Jiao Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yuzhou Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xi Zhong
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xinyu Yang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Kai Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yanyang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yong Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
16
|
Du L, Yang H, Ren Y, Ding Y, Xu Y, Zi X, Liu H, He P. Inhibition of LSD1 induces ferroptosis through the ATF4-xCT pathway and shows enhanced anti-tumor effects with ferroptosis inducers in NSCLC. Cell Death Dis 2023; 14:716. [PMID: 37923740 PMCID: PMC10624898 DOI: 10.1038/s41419-023-06238-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) has been identified as an important epigenetic target, and recent advances in lung cancer therapy have highlighted the importance of targeting ferroptosis. However, the precise mechanisms by which LSD1 regulates ferroptosis remain elusive. In this study, we report that the inhibition of LSD1 induces ferroptosis by enhancing lipid peroxidation and reactive oxygen species (ROS) accumulation. Mechanistically, LSD1 inhibition downregulates the expression of activating transcription factor 4 (ATF4) through epigenetic modification of histone H3 lysine 9 dimethyl (H3K9me2), which sequentially inhibits the expression of the cystine-glutamate antiporter (xCT) and decreases glutathione (GSH) production. Furthermore, LSD1 inhibition transcriptionally upregulates the expression of transferrin receptor (TFRC) and acyl-CoA synthetase long chain family member 4 (ACSL4) by enhancing the binding of histone H3 lysine 4 dimethyl (H3K4me2) to their promoter sequences. Importantly, the combination of an LSD1 inhibitor and a ferroptosis inducer demonstrates an enhanced anti-tumor effect in a xenograft model of non-small cell lung cancer (NSCLC), surpassing the efficacy of either agent alone. These findings reveal new insights into the mechanisms by which LSD1 inhibition induces ferroptosis, offering potential guidance for the development of new strategies in the treatment of NSCLC.
Collapse
Affiliation(s)
- Linna Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Han Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yufei Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanli Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yichao Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaolin Zi
- Departments of Urology and Pharmaceutical Sciences and Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Fang M, Deibler SK, Nana AL, Vatsavayai SC, Banday S, Zhou Y, Almeida S, Weiss A, Brown RH, Seeley WW, Gao FB, Green MR. Loss of TDP-43 function contributes to genomic instability in amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1251228. [PMID: 37849894 PMCID: PMC10577185 DOI: 10.3389/fnins.2023.1251228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the cytoplasmic mislocalization and aggregation of the DNA/RNA-binding protein TDP-43, but how loss of nuclear TDP-43 function contributes to ALS and FTD pathogenesis remains largely unknown. Here, using large-scale RNAi screening, we identify TARDBP, which encodes TDP-43, as a gene whose loss-of-function results in elevated DNA mutation rate and genomic instability. Consistent with this finding, we observe increased DNA damage in induced pluripotent stem cells (iPSCs) and iPSC-derived post-mitotic neurons generated from ALS patients harboring TARDBP mutations. We find that the increase in DNA damage in ALS iPSC-derived neurons is due to defects in two major pathways for DNA double-strand break repair: non-homologous end joining and homologous recombination. Cells with defects in DNA repair are sensitive to DNA damaging agents and, accordingly, we find that ALS iPSC-derived neurons show a marked reduction in survival following treatment with a DNA damaging agent. Importantly, we find that increased DNA damage is also observed in neurons with nuclear TDP-43 depletion from ALS/FTD patient brain tissues. Collectively, our results demonstrate that ALS neurons with loss of nuclear TDP-43 function have elevated levels of DNA damage and contribute to the idea that genomic instability is a defining pathological feature of ALS/FTD patients with TDP-43 pathology.
Collapse
Affiliation(s)
- Minggang Fang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sara K. Deibler
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alissa L. Nana
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Sarat C. Vatsavayai
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - You Zhou
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - William W. Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Michael R. Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
18
|
Bhatkar D, Ananda N, Lokhande KB, Khunteta K, Jain P, Hebale A, Sarode SC, Sharma NK. Organic Acids Derived from Saliva-amalgamated Betel Quid Filtrate Are Predicted as a Ten-eleven Translocation-2 Inhibitor. J Cancer Prev 2023; 28:115-130. [PMID: 37830116 PMCID: PMC10564634 DOI: 10.15430/jcp.2023.28.3.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 10/14/2023] Open
Abstract
There is a lack of evidence regarding the use of betel quid (BQ) and its potential contribution to oral cancer. Limited attention has been directed towards investigating the involvement of BQ-derived organic acids in the modulation of metabolic-epigenomic pathways associated with oral cancer initiation and progression. We employed novel protocol for preparing saliva-amalgamated BQ filtrate (SABFI) that mimics the oral cavity environment. SABFI and saliva control were further purified by an in-house developed vertical tube gel electrophoresis tool. The purified SABFI was then subjected to liquid chromatography-high resolution mass spectrometry analysis to identify the presence of organic acids. Profiling of SABFI showed a pool of prominent organic acids such as citric acid. malic acid, fumaric acid, 2-methylcitric acid, 2-hydroxyglutarate, cis-aconitic acid, succinic acid, 2-hydroxyglutaric acid lactone, tartaric acid and β-ketoglutaric acid. SABFI showed anti-proliferative and early apoptosis effects in oral cancer cells. Molecular docking and molecular dynamics simulations predicted that SABFI-derived organic acids as potential inhibitors of the epigenetic demethylase enzyme, Ten-Eleven Translocation-2 (TET2). By binding to the active site of α-ketoglutarate, a known substrate of TET2, these organic acids are likely to act as competitive inhibitors. This study reports a novel approach to study SABFI-derived organic acids that could mimic the chemical composition of BQ in the oral cavity. These SABFI-derived organic acids projected as inhibitors of TET2 and could be explored for their role oral cancer.
Collapse
Affiliation(s)
- Devyani Bhatkar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nistha Ananda
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kratika Khunteta
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Priyadarshini Jain
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ameya Hebale
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
19
|
Bandini C, Mereu E, Paradzik T, Labrador M, Maccagno M, Cumerlato M, Oreglia F, Prever L, Manicardi V, Taiana E, Ronchetti D, D’Agostino M, Gay F, Larocca A, Besse L, Merlo GR, Hirsch E, Ciarrocchi A, Inghirami G, Neri A, Piva R. Lysin (K)-specific demethylase 1 inhibition enhances proteasome inhibitor response and overcomes drug resistance in multiple myeloma. Exp Hematol Oncol 2023; 12:71. [PMID: 37563685 PMCID: PMC10413620 DOI: 10.1186/s40164-023-00434-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable plasma cell malignancy, accounting for approximately 1% of all cancers. Despite recent advances in the treatment of MM, due to the introduction of proteasome inhibitors (PIs) such as bortezomib (BTZ) and carfilzomib (CFZ), relapses and disease progression remain common. Therefore, a major challenge is the development of novel therapeutic approaches to overcome drug resistance, improve patient outcomes, and broaden PIs applicability to other pathologies. METHODS We performed genetic and drug screens to identify new synthetic lethal partners to PIs, and validated candidates in PI-sensitive and -resistant MM cells. We also tested best synthetic lethal interactions in other B-cell malignancies, such as mantle cell, Burkitt's and diffuse large B-cell lymphomas. We evaluated the toxicity of combination treatments in normal peripheral blood mononuclear cells (PBMCs) and bone marrow stromal cells (BMSCs). We confirmed the combo treatment' synergistic effects ex vivo in primary CD138+ cells from MM patients, and in different MM xenograft models. We exploited RNA-sequencing and Reverse-Phase Protein Arrays (RPPA) to investigate the molecular mechanisms of the synergy. RESULTS We identified lysine (K)-specific demethylase 1 (LSD1) as a top candidate whose inhibition can synergize with CFZ treatment. LSD1 silencing enhanced CFZ sensitivity in both PI-resistant and -sensitive MM cells, resulting in increased tumor cell death. Several LSD1 inhibitors (SP2509, SP2577, and CC-90011) triggered synergistic cytotoxicity in combination with different PIs in MM and other B-cell neoplasms. CFZ/SP2509 treatment exhibited a favorable cytotoxicity profile toward PBMCs and BMSCs. We confirmed the clinical potential of LSD1-proteasome inhibition in primary CD138+ cells of MM patients, and in MM xenograft models, leading to the inhibition of tumor progression. DNA damage response (DDR) and proliferation machinery were the most affected pathways by CFZ/SP2509 combo treatment, responsible for the anti-tumoral effects. CONCLUSIONS The present study preclinically demonstrated that LSD1 inhibition could provide a valuable strategy to enhance PI sensitivity and overcome drug resistance in MM patients and that this combination might be exploited for the treatment of other B-cell malignancies, thus extending the therapeutic impact of the project.
Collapse
Affiliation(s)
- Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Physical Chemistry, Rudjer Boskovic Insitute, Zagreb, Croatia
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Monica Maccagno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Michela Cumerlato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico Oreglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Taiana
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Domenica Ronchetti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia D’Agostino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Francesca Gay
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Alessandra Larocca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Lenka Besse
- Experimental Oncology and Hematology, Department of Oncology and Hematology, St. Gallen Cantonal Hospital, St. Gallen, Switzerland
- Scientific Directorate, Azienda-USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Giorgio Inghirami
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Antonino Neri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| |
Collapse
|
20
|
Alejo S, Palacios B, Venkata PP, He Y, Li W, Johnson J, Chen Y, Jayamohan S, Pratap U, Clarke K, Zou Y, Lv Y, Weldon K, Viswanadhapalli S, Lai Z, Ye Z, Chen Y, Gilbert A, Suzuki T, Tekmal R, Zhao W, Zheng S, Vadlamudi R, Brenner A, Sareddy GR. Lysine-specific histone demethylase 1A (KDM1A/LSD1) inhibition attenuates DNA double-strand break repair and augments the efficacy of temozolomide in glioblastoma. Neuro Oncol 2023; 25:1249-1261. [PMID: 36652263 PMCID: PMC10326496 DOI: 10.1093/neuonc/noad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Efficient DNA repair in response to standard chemo and radiation therapies often contributes to glioblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs). METHODS Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous recombination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. Orthotopic murine models were used to study efficacy in vivo. RESULTS TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and TMZ treatment significantly enhanced the survival of tumor-bearing mice. CONCLUSIONS Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA DSB repair pathways.
Collapse
Affiliation(s)
- Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Kyra Clarke
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yingli Lv
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhenqing Ye
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yidong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
21
|
Townley BA, Buerer L, Tsao N, Bacolla A, Mansoori F, Rusanov T, Clark N, Goodarzi N, Schmidt N, Srivatsan SN, Sun H, Sample RA, Brickner JR, McDonald D, Tsai MS, Walter MJ, Wozniak DF, Holehouse AS, Pena V, Tainer JA, Fairbrother WG, Mosammaparast N. A functional link between lariat debranching enzyme and the intron-binding complex is defective in non-photosensitive trichothiodystrophy. Mol Cell 2023; 83:2258-2275.e11. [PMID: 37369199 PMCID: PMC10483886 DOI: 10.1016/j.molcel.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.
Collapse
Affiliation(s)
- Brittany A Townley
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luke Buerer
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ning Tsao
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fadhel Mansoori
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timur Rusanov
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathanial Clark
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Negar Goodarzi
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - Nicolas Schmidt
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Hua Sun
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly A Sample
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew McDonald
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miaw-Sheue Tsai
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Alex S Holehouse
- Department of Biochemistry & Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Vladimir Pena
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William G Fairbrother
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA; Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI 02912, USA.
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Johnson JD, Alejo S, Jayamohan S, Sareddy GR. Lysine-specific demethylase 1 as a therapeutic cancer target: observations from preclinical study. Expert Opin Ther Targets 2023; 27:1177-1188. [PMID: 37997756 PMCID: PMC10872912 DOI: 10.1080/14728222.2023.2288277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Lysine-specific histone demethylase 1A (KDM1A/LSD1) has emerged as an important therapeutic target in various cancer types. LSD1 regulates a wide range of biological processes that influence cancer development, progression, metastasis, and therapy resistance. However, recent studies have revealed novel aspects of LSD1 biology, shedding light on its involvement in immunogenicity, antitumor immunity, and DNA damage response. These emerging findings have the potential to be leveraged in the design of effective LSD1-targeted therapies. AREAS COVERED This paper discusses the latest developments in the field of LSD1 biology, focusing on its role in regulating immunogenicity, antitumor immunity, and DNA damage response mechanisms. The newfound understanding of these mechanisms has opened possibilities for the development of novel LSD1-targeted therapies for cancer treatment. Additionally, the paper provides an overview of LSD1 inhibitor-based combination therapies for the treatment of cancer. EXPERT OPINION Exploiting LSD1 role in antitumor immunity and DNA damage response provides cues to not only understand the LSD1-resistant mechanisms but also rationally design new combination therapies that are more efficient and less toxic than monotherapy. The exploration of LSD1 biology and the development of LSD1-targeted therapies hold great promise for the future of cancer treatment.
Collapse
Affiliation(s)
- Jessica D. Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
23
|
Imamura J, Ganguly S, Muskara A, Liao RS, Nguyen JK, Weight C, Wee CE, Gupta S, Mian OY. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol (Lausanne) 2023; 14:1191311. [PMID: 37455903 PMCID: PMC10349394 DOI: 10.3389/fendo.2023.1191311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Androgen deprivation therapy is a cornerstone of treatment for advanced prostate cancer, and the development of castrate-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-related mortality. While CRPC typically develops through a gain in androgen receptor (AR) signaling, a subset of CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and hormonal changes that promote cellular plasticity, leading to AR-indifferent disease, with neuroendocrine prostate cancer (NEPC) being the quintessential example. NEPC is enriched following treatment with second-generation anti-androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and PTEN expression and MYCN and AURKA amplification appear to be key drivers for NEPC differentiation. Epigenetic modifications also play an important role in the transition to a neuroendocrine phenotype. DNA methylation of specific gene promoters can regulate lineage commitment and differentiation. Histone methylation can suppress AR expression and promote neuroendocrine-specific gene expression. Emerging data suggest that EZH2 is a key regulator of this epigenetic rewiring. Several mechanisms drive AR-dependent castration resistance, notably AR splice variant expression, expression of the adrenal-permissive 3βHSD1 allele, and glucocorticoid receptor expression. Aberrant epigenetic regulation also promotes radioresistance by altering the expression of DNA repair- and cell cycle-related genes. Novel therapies are currently being developed to target these diverse genetic, epigenetic, and hormonal mechanisms promoting lineage plasticity-driven NEPC.
Collapse
Affiliation(s)
- Jarrell Imamura
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shinjini Ganguly
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andrew Muskara
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross S. Liao
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jane K. Nguyen
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Weight
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher E. Wee
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Omar Y. Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
24
|
Antona A, Leo G, Favero F, Varalda M, Venetucci J, Faletti S, Todaro M, Mazzucco E, Soligo E, Saglietti C, Stassi G, Manfredi M, Pelicci G, Corà D, Valente G, Capello D. Targeting lysine-specific demethylase 1 (KDM1A/LSD1) impairs colorectal cancer tumorigenesis by affecting cancer cells stemness, motility, and differentiation. Cell Death Discov 2023; 9:201. [PMID: 37385999 DOI: 10.1038/s41420-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.
Collapse
Affiliation(s)
- Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
| | - Giovanni Leo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Francesco Favero
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Eleonora Mazzucco
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Enrica Soligo
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Chiara Saglietti
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, Università di Palermo, Via del Vespro 131, 90127, Palermo, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Giuliana Pelicci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Davide Corà
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
25
|
Mudambi S, Fitzgerald M, Pera P, Washington D, Chamberlain S, Fidrus E, Hegedűs C, Remenyik E, Shafirstein G, Bellnier D, Paragh G. KDM1A inhibition increases UVA toxicity and enhances photodynamic therapy efficacy. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:226-234. [PMID: 35968606 PMCID: PMC10089661 DOI: 10.1111/phpp.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Lysine-specific histone demethylase 1 (KDM1A/LSD1) regulates multiple cellular functions, including cellular proliferation, differentiation, and DNA repair. KDM1A is overexpressed in squamous cell carcinoma of the skin and inhibition of KDM1A can suppress cutaneous carcinogenesis. Despite the role of KDM1A in skin and DNA repair, the effect of KDM1A inhibition on cellular ultraviolet (UV) response has not been studied. METHODS The ability of KDM1A inhibitor bizine to modify cell death after UVA and UVB exposure was tested in normal human keratinocytes and melanocytes, HaCaT, and FaDu cell lines. KDM1A was also downregulated using shRNA and inhibited by phenelzine in HaCaT and FaDu cells to confirm the role of KDM1A in UVA response. In addition, cellular reactive oxygen species (ROS) changes were assessed by a lipid-soluble fluorescent indicator of lipid oxidation, and ROS-related gene regulation using qPCR. During photodynamic therapy (PDT) studies HaCaT and FaDu cells were treated with aminolaevulinic acid (5-ALA) or HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) sodium and irradiated with 0-8 J/cm2 red LED light. RESULTS KDM1A inhibition sensitized cells to UVA radiation-induced cell death but not to UVB. KDM1A inhibition increased ROS generation as detected by increased lipid peroxidation and the upregulation of ROS-responsive genes. The effectiveness of both ALA and HPPH PDT significantly improved in vitro in HaCaT and FaDu cells after KDM1A inhibition. CONCLUSION KDM1A is a regulator of cellular UV response and KDM1A inhibition can improve PDT efficacy.
Collapse
Affiliation(s)
- Shaila Mudambi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Megan Fitzgerald
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Paula Pera
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Deschana Washington
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Sarah Chamberlain
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Eszter Fidrus
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei korut 98, Debrecen, Hungary, H-4032
| | - Csaba Hegedűs
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei korut 98, Debrecen, Hungary, H-4032
| | - Eva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei korut 98, Debrecen, Hungary, H-4032
| | - Gal Shafirstein
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - David Bellnier
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, United States 14263
| |
Collapse
|
26
|
Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, Chew YC, Guo W, Yang X, Maybury-Lewis S, Tian X, Ross JM, Coppotelli G, Meer MV, Rogers-Hammond R, Vera DL, Lu YR, Pippin JW, Creswell ML, Dou Z, Xu C, Mitchell SJ, Das A, O'Connell BL, Thakur S, Kane AE, Su Q, Mohri Y, Nishimura EK, Schaevitz L, Garg N, Balta AM, Rego MA, Gregory-Ksander M, Jakobs TC, Zhong L, Wakimoto H, El Andari J, Grimm D, Mostoslavsky R, Wagers AJ, Tsubota K, Bonasera SJ, Palmeira CM, Seidman JG, Seidman CE, Wolf NS, Kreiling JA, Sedivy JM, Murphy GF, Green RE, Garcia BA, Berger SL, Oberdoerffer P, Shankland SJ, Gladyshev VN, Ksander BR, Pfenning AR, Rajman LA, Sinclair DA. Loss of epigenetic information as a cause of mammalian aging. Cell 2023; 186:305-326.e27. [PMID: 36638792 PMCID: PMC10166133 DOI: 10.1016/j.cell.2022.12.027] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 08/09/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.
Collapse
Affiliation(s)
- Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| | - Motoshi Hayano
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Patrick T Griffin
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - João A Amorim
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Michael S Bonkowski
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - John K Apostolides
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elias L Salfati
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | | | - Mital Bhakta
- Cantata/Dovetail Genomics, Scotts Valley, CA, USA
| | | | - Wei Guo
- Zymo Research Corporation, Irvine, CA, USA
| | | | - Sun Maybury-Lewis
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jaime M Ross
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Giuseppe Coppotelli
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Margarita V Meer
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Ryan Rogers-Hammond
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Daniel L Vera
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | - Michael L Creswell
- Division of Nephrology, University of Washington, Seattle, WA, USA; Georgetown University School of Medicine, Washington, DC, USA
| | - Zhixun Dou
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Caiyue Xu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abhirup Das
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Pharmacology, UNSW, Sydney, NSW, Australia
| | | | - Sachin Thakur
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Alice E Kane
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Neha Garg
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Ana-Maria Balta
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - Meghan A Rego
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | | | - Tatjana C Jakobs
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | | | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, BioQuant, Heidelberg, Germany
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, HMS, Boston, MA, USA
| | - Amy J Wagers
- Paul F. Glenn Center for Biology of Aging Research, Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Joslin Diabetes Center, Boston, MA, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stephen J Bonasera
- Division of Geriatrics, University of Nebraska Medical Center, Durham Research Center II, Omaha, NE, USA
| | - Carlos M Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | - Norman S Wolf
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - George F Murphy
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard E Green
- Department of Biomolecular Engineering, UCSC, Santa Cruz, CA, USA
| | - Benjamin A Garcia
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, HMS, Boston, MA, USA
| | - Bruce R Ksander
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, HMS, Boston, MA, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Luis A Rajman
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.
| |
Collapse
|
27
|
Zhang XY, Hao P, Wang JW, Zhao W, Liu HM, He PX. Inhibition of lysine-specific demethylase 1 enhances the sensitivity of the chemotherapeutic drug doxorubicin in gastric cancer cell. Mol Biol Rep 2023; 50:507-516. [PMID: 36352181 DOI: 10.1007/s11033-022-07960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/17/2022] [Indexed: 11/11/2022]
Abstract
AIM Lysine-Specific Demethylase 1 (LSD1) inhibitors have been developed and reached the clinic, but its effect in combination with cytotoxic chemotherapy is unclear. Here, we investigated the anti-tumor effect of LSD1 inhibitor GSK-LSD1 and its anti-tumor effect with the DNA damage drug doxorubicin (DOX) in gastric cancer (GC) cells. METHODS Cells were treated with different concentrations of GSK-LSD1 to examine the anti-tumor effect versus cell viability by MTT and cell cycle arrest by flow cytometry. To explore whether LSD1 inhibitors can increase the anti-tumor effect of DNA damage drugs, cells were treated with DOX for 48 h after pretreatment with GSK-LSD1 for 48 h. Cell viability was detected by MTT and apoptosis-related proteins were examined by Western blot. Furthermore, anti-tumor efficacy of combination GSK-LSD1 with DOX was also measured in MGC-803 xenografts model in nude mice. RESULTS The results showed that LSD1 was highly expressed in GC cell lines. Inhibition of LSD1 has a weak effect on cell viability and cell cycle. Moreover, LSD1 inhibitors pretreatment could significantly increase the anti-tumor effect of DOX. Further study found that inhibition of LSD1 can significantly enhance DOX-induced the apoptosis, accompanied by down-regulation of antiapoptotic Bcl-2 expression and up-regulation of proapoptotic Bax expression. We also confirmed that inhibition of LSD1 can sensitize the anti-tumor effect of DOX in vivo. CONCLUSION Our findings suggest that the LSD1 inhibitor GSK-LSD1 has a weak inhibitory effect on the viability and cell cycle of GC cells, but can enhance the sensitivity of DOX.
Collapse
Affiliation(s)
- Xu-Yang Zhang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China
| | - Pan Hao
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China
| | - Jun-Wei Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China
| | - Wen Zhao
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China.
| | - Hong-Min Liu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China.
| | - Peng-Xing He
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
28
|
Costa DFD, Filiú-Braga LDDC, Silva-Carvalho AÉ, Schiavinato JL, Vasconcelos MCCD, Figueiredo-Pontes LLD, Lucena-Araujo AR, Saldanha-Araujo F. Transcriptional deregulation of LSD1 and LSD2 is associated with cytogenetic risk in chronic lymphocytic leukemia. Leuk Lymphoma 2022; 63:3227-3231. [PMID: 36016463 DOI: 10.1080/10428194.2022.2116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Daniel Freitas da Costa
- Laboratório de Hematologia e Células-Tronco, Universidade de Brasília, Brasilia, Brasil.,Laboratório de Farmacologia Molecular, Universidade de Brasília, Brasilia, Brasil
| | | | | | | | | | | | | | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Universidade de Brasília, Brasilia, Brasil.,Laboratório de Farmacologia Molecular, Universidade de Brasília, Brasilia, Brasil
| |
Collapse
|
29
|
Kim SH, Park J, Park JW, Hahm JY, Yoon S, Hwang IJ, Kim KP, Seo SB. SET7-mediated TIP60 methylation is essential for DNA double-strand break repair. BMB Rep 2022; 55:541-546. [PMID: 35880433 PMCID: PMC9712704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is crucial for maintaining genomic integrity and is involved in numerous fundamental biological processes. Post-translational modifications by proteins play an important role in regulating DNA repair. Here, we report that the methyltransferase SET7 regulates HR-mediated DSB repair by methylating TIP60, a histone acetyltransferase and tumor suppressor involved in gene expression and protein stability. We show that SET7 targets TIP60 for methylation at K137, which facilitates DSB repair by promoting HR and determines cell viability against DNA damage. Interestingly, TIP60 demethylation is catalyzed by LSD1, which affects HR efficiency. Taken together, our findings reveal the importance of TIP60 methylation status by SET7 and LSD1 in the DSB repair pathway. [BMB Reports 2022; 55(11): 541-546].
Collapse
Affiliation(s)
- Song Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Seobin Yoon
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - In Jun Hwang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea,Corresponding author. Tel: +82-2-820-5242; Fax: +82-2-822-4039; E-mail:
| |
Collapse
|
30
|
Kim SH, Park J, Park JW, Hahm JY, Yoon S, Hwang IJ, Kim KP, Seo SB. SET7-mediated TIP60 methylation is essential for DNA double-strand break repair. BMB Rep 2022; 55:541-546. [PMID: 35880433 PMCID: PMC9712704 DOI: 10.5483/bmbrep.2022.55.11.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 07/05/2022] [Indexed: 08/13/2023] Open
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is crucial for maintaining genomic integrity and is involved in numerous fundamental biological processes. Post-translational modifications by proteins play an important role in regulating DNA repair. Here, we report that the methyltransferase SET7 regulates HR-mediated DSB repair by methylating TIP60, a histone acetyltransferase and tumor suppressor involved in gene expression and protein stability. We show that SET7 targets TIP60 for methylation at K137, which facilitates DSB repair by promoting HR and determines cell viability against DNA damage. Interestingly, TIP60 demethylation is catalyzed by LSD1, which affects HR efficiency. Taken together, our findings reveal the importance of TIP60 methylation status by SET7 and LSD1 in the DSB repair pathway. [BMB Reports 2022; 55(11): 541-546].
Collapse
Affiliation(s)
- Song Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Seobin Yoon
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - In Jun Hwang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
31
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
32
|
Hypobaric hypoxia exposure alters transcriptome in mouse testis and impairs spermatogenesis in offspring. Gene X 2022; 823:146390. [PMID: 35248658 DOI: 10.1016/j.gene.2022.146390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Male fertility relies on continual and robust spermatogenesis. Environmental hypoxia adversely affects reproductive health in humans and animal studies provide compelling evidences that hypoxia impairs spermatogenesis in directly exposed individuals. However, a detail examination of hypoxia induced changes in testicular gene expression is still lacking and spermatogenesis in offspring of hypoxia exposed animals of awaits investigation. In this study, a hypobaric hypoxic chamber was used to simulate hypoxic conditions in mice and effects of hypoxia on spermatogenesis, fertility and testicular gene expression were evaluated. The results showed that hypoxia exposure reduced the number of undifferentiated spermatogonia but did not change the regenerative capacity of spermatogonial stem cells (SSCs) after transplantation. Hypoxia significantly increased the percent of abnormal sperm and these defects were recovered 2 months after returning to the normoxia. Transcriptome analysis of testicular tissues from control and hypoxia treated animals revealed that 766 genes were up-regulated and 965 genes were down-regulated. Surprisingly, expressions of genes that regulate epigenetic modifications were altered, indicating hypoxia-induced damage to spermatogenesis may be intergenerational. Indeed, animals that were sired by hypoxia exposed males exhibited impaired spermatogenesis. Together, these findings suggest that hypoxia exposure alters testicular gene expression and causes long-lasting damage to spermatogenesis.
Collapse
|
33
|
Bayley R, Borel V, Moss RJ, Sweatman E, Ruis P, Ormrod A, Goula A, Mottram RMA, Stanage T, Hewitt G, Saponaro M, Stewart GS, Boulton SJ, Higgs MR. H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ. Mol Cell 2022; 82:1924-1939.e10. [PMID: 35439434 PMCID: PMC9616806 DOI: 10.1016/j.molcel.2022.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.
Collapse
Affiliation(s)
- Rachel Bayley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Valerie Borel
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Rhiannon J Moss
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ellie Sweatman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Philip Ruis
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Alice Ormrod
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Amalia Goula
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel M A Mottram
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tyler Stanage
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK.
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
34
|
Sanchez A, Buck-Koehntop BA, Miller KM. Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). Bioessays 2022; 44:e2200015. [PMID: 35532219 DOI: 10.1002/bies.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
35
|
Huang JL, Chen SY, Lin CS. Targeting Cancer Stem Cells through Epigenetic Modulation of Interferon Response. J Pers Med 2022; 12:jpm12040556. [PMID: 35455671 PMCID: PMC9027081 DOI: 10.3390/jpm12040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells and are thought to play a critical role in the initiation and maintenance of tumor mass. CSCs exhibit similar hallmarks to normal stem cells, such as self-renewal, differentiation, and homeostasis. In addition, CSCs are equipped with several features so as to evade anticancer mechanisms. Therefore, it is hard to eliminate CSCs by conventional anticancer therapeutics that are effective at clearing bulk cancer cells. Interferons are innate cytokines and are the key players in immune surveillance to respond to invaded pathogens. Interferons are also crucial for adaptive immunity for the killing of specific aliens including cancer cells. However, CSCs usually evolve to escape from interferon-mediated immune surveillance and to shape the niche as a “cold” tumor microenvironment (TME). These CSC characteristics are related to their unique epigenetic regulations that are different from those of normal and bulk cancer cells. In this review, we introduce the roles of epigenetic modifiers, focusing on LSD1, BMI1, G9a, and SETDB1, in contributing to CSC characteristics and discussing the interplay between CSCs and interferon response. We also discuss the emerging strategy for eradicating CSCs by targeting these epigenetic modifiers, which can elevate cytosolic nuclei acids, trigger interferon response, and reshape a “hot” TME for improving cancer immunotherapy. The key epigenetic and immune genes involved in this crosstalk can be used as biomarkers for precision oncology.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan;
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence:
| |
Collapse
|
36
|
Zhang J, Lu X, MoghaddamKohi S, Shi L, Xu X, Zhu WG. Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair (Amst) 2021; 107:103206. [PMID: 34411909 DOI: 10.1016/j.dnarep.2021.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Cells protect the integrity of the genome against DNA double-strand breaks through several well-characterized mechanisms including nonhomologous end-joining repair, homologous recombination repair, microhomology-mediated end-joining and single-strand annealing. However, aberrant DNA damage responses (DDRs) lead to genome instability and tumorigenesis. Clarification of the mechanisms underlying the DDR following lethal damage will facilitate the identification of therapeutic targets for cancer. Histones are small proteins that play a major role in condensing DNA into chromatin and regulating gene function. Histone modifications commonly occur in several residues including lysine, arginine, serine, threonine and tyrosine, which can be acetylated, methylated, ubiquitinated and phosphorylated. Of these, lysine modifications have been extensively explored during DDRs. Here, we focus on discussing the roles of lysine modifying enzymes involved in acetylation, methylation, and ubiquitination during the DDR. We provide a comprehensive understanding of the basis of potential epigenetic therapies driven by histone lysine modifications.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sara MoghaddamKohi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingzhi Xu
- Department of Cell Biology and Medical Genetics, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
37
|
Wang T, Zhang F, Sun F. ORY-1001, a KDM1A inhibitor, inhibits proliferation, and promotes apoptosis of triple negative breast cancer cells by inactivating androgen receptor. Drug Dev Res 2021; 83:208-216. [PMID: 34347904 DOI: 10.1002/ddr.21860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer (BC), which is widely considered as the most common cancer in women around the world, evokes ~1.7 million new BC cases and 522,000 BC-related deaths each year. Triple negative breast cancer (TNBC) is clinically confirmed as one of the most aggressive subtypes of BC. ORY-1001, a clinically used lysine specific demethylase 1 (LSD1/KDM1A) inhibitor, was investigated herein to confirm its role in the progression of TNBC and reveal the potential mechanism. After treatment with ORY-1001 in MDA-MB-231 and BT549 cells, the cell proliferation and apoptosis were respectively measured by CCK-8 and TUNEL assays. The expression of proliferation- and apoptosis-associated proteins was tested by means of western blot analysis. Then, R1881, an androgen receptor (AR) agonist, was used to evaluate whether the effects of ORY-1001 on proliferation and apoptosis of TNBC cells was mediated by regulating AR. Results indicated that ORY-1001 treatment restrained the proliferation while enhanced the apoptosis of BC cells, accompanied by the change of proliferation- and apoptosis-related proteins expression. Furthermore, ORY-1001 reduced the level of AR in BC cells. After the activation of AR by R1881, the decreased proliferation and enhanced apoptosis of BC cells triggered by ORY-1001 intervention were partially abolished. In conclusion, this paper has presented the first evidence to suggest that ORY-1001 inhibits proliferation and promotes apoptosis of TNBC cells by suppressing AR expression, which may constitute the theoretical basis for the clinical use of ORY-1001 in the treatment of this disease.
Collapse
Affiliation(s)
- Tian Wang
- Department of Oncology and Hematology, Yan'an People's Hospital, Yan'an City, Shaanxi Province, China
| | - Fulin Zhang
- Department of Oncology and Hematology, Yan'an People's Hospital, Yan'an City, Shaanxi Province, China
| | - Fulan Sun
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Nantong, Nantong City, Jiangsu Province, China
| |
Collapse
|
38
|
Gong Z, Li A, Ding J, Li Q, Zhang L, Li Y, Meng Z, Chen F, Huang J, Zhou D, Hu R, Ye J, Liu W, You H. OTUD7B Deubiquitinates LSD1 to Govern Its Binding Partner Specificity, Homeostasis, and Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004504. [PMID: 34050636 PMCID: PMC8336515 DOI: 10.1002/advs.202004504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/03/2021] [Indexed: 05/26/2023]
Abstract
Genomic amplification of OTUD7B is frequently found across human cancers. But its role in tumorigenesis is poorly understood. Lysine-specific demethylase 1 (LSD1) is known to execute epigenetic regulation by forming corepressor complex with CoREST/histone deacetylases (HDACs). However, the molecular mechanisms by which cells maintain LSD1/CoREST complex integrity are unknown. Here, it is reported that LSD1 protein undergoes K63-linked polyubiquitination. OTUD7B is responsible for LSD1 deubiquitination at K226/277 residues, resulting in dynamic control of LSD1 binding partner specificity and cellular homeostasis. OTUD7B deficiency increases K63-linked ubiquitination of LSD1, which disrupts LSD1/CoREST complex formation and targets LSD1 for p62-mediated proteolysis. Consequently, OTUD7B deficiency impairs genome-wide LSD1 occupancy and enhances the methylation of H3K4/H3K9, therefore profoundly impacting global gene expression and abrogating breast cancer metastasis. Moreover, physiological fluctuation of OTUD7B modulates cell cycle-dependent LSD1 oscillation, ensuring the G1/S transition. Both OTUD7B and LSD1 proteins are overpresented in high-grade or metastatic human breast cancer, while dysregulation of either protein is associated with poor survival and metastasis. Thus, OTUD7B plays a unique partner-switching role in maintaining the integrity of LSD1/CoREST corepressor complex, LSD1 turnover, and breast cancer metastasis.
Collapse
Affiliation(s)
- Zhicheng Gong
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Aicun Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jiancheng Ding
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Qing Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhe Meng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Fei Chen
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Ronggui Hu
- State Key Laboratory of Molecular BiologyShanghai Science Research CenterCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Ye
- Department of PathologyXijing HospitalFourth Military Medical UniversityXi'anShanxi710032China
| | - Wen Liu
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Han You
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
39
|
Role of Histone Methylation in Maintenance of Genome Integrity. Genes (Basel) 2021; 12:genes12071000. [PMID: 34209979 PMCID: PMC8307007 DOI: 10.3390/genes12071000] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Packaging of the eukaryotic genome with histone and other proteins forms a chromatin structure that regulates the outcome of all DNA mediated processes. The cellular pathways that ensure genomic stability detect and repair DNA damage through mechanisms that are critically dependent upon chromatin structures established by histones and, particularly upon transient histone post-translational modifications. Though subjected to a range of modifications, histone methylation is especially crucial for DNA damage repair, as the methylated histones often form platforms for subsequent repair protein binding at damaged sites. In this review, we highlight and discuss how histone methylation impacts the maintenance of genome integrity through effects related to DNA repair and repair pathway choice.
Collapse
|
40
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
41
|
Gu Z, Dickerson KE, Xu J. Therapy Response and Outcome Explained by Leukemia Cell of Origin. Cancer Discov 2021; 10:1445-1447. [PMID: 33004477 DOI: 10.1158/2159-8290.cd-20-1080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cancer Discovery, Cai and colleagues delineate a new mechanism that links cell of origin, the transcription factor EVI1, apoptotic priming, and therapeutic susceptibility in mixed lineage leukemia-rearranged acute myeloid leukemia. These findings establish a cell of origin-dependent program that may be leveraged by therapeutic combinations to overcome drug resistance in chemoresistant leukemias.See related article by Cai et al., p. 1500.
Collapse
Affiliation(s)
- Zhimin Gu
- Children's Medical Center Research Institute, Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
42
|
Pinter S, Knodel F, Choudalakis M, Schnee P, Kroll C, Fuchs M, Broehm A, Weirich S, Roth M, Eisler SA, Zuber J, Jeltsch A, Rathert P. A functional LSD1 coregulator screen reveals a novel transcriptional regulatory cascade connecting R-loop homeostasis with epigenetic regulation. Nucleic Acids Res 2021; 49:4350-4370. [PMID: 33823549 PMCID: PMC8096265 DOI: 10.1093/nar/gkab180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
The lysine specific demethylase 1 (LSD1) plays a pivotal role in cellular differentiation by regulating the expression of key developmental genes in concert with different coregulatory proteins. This process is impaired in different cancer types and incompletely understood. To comprehensively identify functional coregulators of LSD1, we established a novel tractable fluorescent reporter system to monitor LSD1 activity in living cells. Combining this reporter system with a state-of-the-art multiplexed RNAi screen, we identify the DEAD-box helicase 19A (DDX19A) as a novel coregulator and demonstrate that suppression of Ddx19a results in an increase of R-loops and reduced LSD1-mediated gene silencing. We further show that DDX19A binds to tri-methylated lysine 27 of histone 3 (H3K27me3) and it regulates gene expression through the removal of transcription promoting R-loops. Our results uncover a novel transcriptional regulatory cascade where the downregulation of genes is dependent on the LSD1 mediated demethylation of histone H3 lysine 4 (H3K4). This allows the polycomb repressive complex 2 (PRC2) to methylate H3K27, which serves as a binding site for DDX19A. Finally, the binding of DDX19A leads to the efficient removal of R-loops at active promoters, which further de-represses LSD1 and PRC2, establishing a positive feedback loop leading to a robust repression of the target gene.
Collapse
Affiliation(s)
- Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Michel Choudalakis
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Schnee
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marina Fuchs
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Broehm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mareike Roth
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
43
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
44
|
Gu Z, Liu Y, Zhang Y, Cao H, Lyu J, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An W, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet 2021; 53:672-682. [PMID: 33833453 PMCID: PMC8270111 DOI: 10.1038/s41588-021-00829-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.
Collapse
Affiliation(s)
- Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junhua Lyu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Di Nisio E, Lupo G, Licursi V, Negri R. The Role of Histone Lysine Methylation in the Response of Mammalian Cells to Ionizing Radiation. Front Genet 2021; 12:639602. [PMID: 33859667 PMCID: PMC8042281 DOI: 10.3389/fgene.2021.639602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic genomes are wrapped around nucleosomes and organized into different levels of chromatin structure. Chromatin organization has a crucial role in regulating all cellular processes involving DNA-protein interactions, such as DNA transcription, replication, recombination and repair. Histone post-translational modifications (HPTMs) have a prominent role in chromatin regulation, acting as a sophisticated molecular code, which is interpreted by HPTM-specific effectors. Here, we review the role of histone lysine methylation changes in regulating the response to radiation-induced genotoxic damage in mammalian cells. We also discuss the role of histone methyltransferases (HMTs) and histone demethylases (HDMs) and the effects of the modulation of their expression and/or the pharmacological inhibition of their activity on the radio-sensitivity of different cell lines. Finally, we provide a bioinformatic analysis of published datasets showing how the mRNA levels of known HMTs and HDMs are modulated in different cell lines by exposure to different irradiation conditions.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Counsil (IBPM-CNR), Rome, Italy
| |
Collapse
|
46
|
Zhou Y, Shao C. Histone methylation can either promote or reduce cellular radiosensitivity by regulating DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108362. [PMID: 34083050 DOI: 10.1016/j.mrrev.2020.108362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Radiotherapy is one of the primary modalities for cancer treatment, and its efficiency usually relies on cellular radiosensitivity. DNA damage repair is a core content of cellular radiosensitivity, and the primary mechanism of which includes non-homologous end-joining (NHEJ) and homologous recombination (HR). By affecting DNA damage repair, histone methylation regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs) participates in the regulation of cellular radiosensitivity via three mechanisms: (a) recruiting DNA repair-related proteins, (b) regulating the expressions of DNA repair genes, and (c) mediating the dynamic change of chromatin. Interestingly, both aberrantly high and low levels of histone methylation could impede DNA repair processes. Here we reviewed the mechanisms of the dual effects of histone methylation on cell response to radiation. Since some inhibitors of HMTs and HDMs are reported to increase cellular radiosensitivity, understanding their molecular mechanisms may be helpful in developing new drugs for the therapy of radioresistant tumors.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China.
| |
Collapse
|
47
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
48
|
Wang S, Meyer DH, Schumacher B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat Struct Mol Biol 2020; 27:1165-1177. [DOI: 10.1038/s41594-020-00513-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
|
49
|
Genome-wide identification and transcriptional modulation of histone variants and modification related genes in the low pH-exposed marine rotifer Brachionus koreanus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100748. [PMID: 33032078 DOI: 10.1016/j.cbd.2020.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Histone modification is considered to be a major epigenetic control mechanism. These modifications (e.g. acetylation, phosphorylation, and methylation) may affect the interaction of histones with DNA and/or regulate DNA-based processes (e.g., recombination, repair, replication, and transcription) and chromatin remodeling complexes. Despite their significance in metazoan life and evolution, few studies have been conducted to identify genes undergoing epigenetic control modification in aquatic invertebrates. In this study, we identified whole core histones (70 total genes) and post-translational modification (PTM) histone genes (63 total genes) in the marine rotifer Brachionus koreanus through whole-genome analysis, and annotated them according to the human nomenclature. Notably, upon comparative analysis of cis-regulatory motif sequences, we found that B. koreanus core histone protein structures were similar to those of mammals. Furthermore, to examine the effect of parental low pH stress on the offspring's epigenetic regulation, we investigated the expression of PTM genes in two generations of B. koreanus exposed to low pH conditions. Given that the B. koreanus genome does not possess DNA methyltransferase 1 and 3 genes, we concluded that histone genes could be involved as an important epigenetic mechanism in B. koreanus. Therefore, the histone-associated genes identified in this study could be useful for ecotoxicological studies and facilitate the application of chromatin immunoprecipitation sequencing using high-throughput DNA sequencing based on the genome-wide identification of transcription factor binding sites in rotifers.
Collapse
|
50
|
RAG-Mediated DNA Breaks Attenuate PU.1 Activity in Early B Cells through Activation of a SPIC-BCLAF1 Complex. Cell Rep 2020; 29:829-843.e5. [PMID: 31644907 PMCID: PMC6870970 DOI: 10.1016/j.celrep.2019.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/10/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022] Open
Abstract
Early B cell development is regulated by stage-specific transcription
factors. PU.1, an ETS-family transcription factor, is essential for coordination
of early B cell maturation and immunoglobulin gene (Ig)
rearrangement. Here we show that RAG DNA double-strand breaks (DSBs) generated
during Ig light chain gene (Igl) rearrangement
in pre-B cells induce global changes in PU.1 chromatin binding. RAG DSBs
activate a SPIC/BCLAF1 transcription factor complex that displaces PU.1
throughout the genome and regulates broad transcriptional changes. SPIC recruits
BCLAF1 to gene-regulatory elements that control expression of key B cell
developmental genes. The SPIC/BCLAF1 complex suppresses expression of the SYK
tyrosine kinase and enforces the transition from large to small pre-B cells.
These studies reveal that RAG DSBs direct genome-wide changes in ETS
transcription factor activity to promote early B cell development. ETS-family transcription factors are key regulators of early B cell
development. Soodgupta et al. show that RAG-induced DNA breaks generated during
antigen receptor gene recombination activate a SPIC/BCLAF1 transcription factor
complex that counters PU.1 activity and regulates gene expression changes to
promote transition from large to small pre-B cells.
Collapse
|