1
|
Matsuda M, Sokol SY. Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation. J Cell Biol 2025; 224:e202407025. [PMID: 39951022 PMCID: PMC11827586 DOI: 10.1083/jcb.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser/Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased dynamics of C-cadherin and tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Lin YC, Chang YJ, Gau SS, Lo CM, Yang RB. SCUBE2 regulates adherens junction dynamics and vascular barrier function during inflammation. Cardiovasc Res 2024; 120:1636-1649. [PMID: 38870316 DOI: 10.1093/cvr/cvae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/22/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
AIMS SCUBE2 (signal peptide-CUB-epidermal growth factor-like domain-containing protein 2) is a secreted or membrane-bound protein originally identified from endothelial cells (ECs). Our previous work showed that SCUBE2 forms a complex with E-cadherin and stabilizes epithelial adherens junctions (AJs) to promote epithelial phenotypes. However, it remains unclear whether SCUBE2 also interacts with vascular endothelial (VE)-cadherin and modulates EC barrier function. In this study, we investigated whether and how SCUBE2 in ECs regulates vascular barrier maintenance. METHODS AND RESULTS We showed that SCUBE2 colocalized and interacted with VE-cadherin and VE-protein tyrosine phosphatase (VE-PTP) within EC AJs. Furthermore, SCUBE2 knockdown disrupted EC AJs and increased EC permeability. Expression of EC SCUBE2 was suppressed at both mRNA and protein levels via the nuclear factor-κB signalling pathway in response to pro-inflammatory cytokines or permeability-inducing agents. In line with these findings, EC-specific deletion of Scube2 (EC-KO) in mice impaired baseline barrier function and worsened vascular leakiness of peripheral capillaries after local injection of histamine or vascular endothelial growth factor. EC-KO mice were also sensitive to pulmonary vascular hyperpermeability and leucocyte infiltration in response to acute endotoxin- or influenza virus-induced systemic inflammation. Meanwhile, EC-specific SCUBE2-overexpressing mice were protected from these effects. Molecular studies suggested that SCUBE2 acts as a scaffold molecule enabling VE-PTP to dephosphorylate VE-cadherin, which prevents VE-cadherin internalization and stabilizes EC AJs. As such, loss of SCUBE2 resulted in hyperphosphorylation of VE-cadherin at tyrosine 685, which led to its endocytosis, thus destabilizing EC AJs and reducing barrier function. All of these effects were exacerbated by inflammatory insults. CONCLUSION We found that SCUBE2 contributes to vascular integrity by recruiting VE-PTP to dephosphorylate VE-cadherin and stabilize AJs, thereby promoting EC barrier function. Moreover, our data suggest that genetic overexpression or pharmacological up-regulation of SCUBE2 may help to prevent vascular leakage and oedema in inflammatory diseases.
Collapse
Affiliation(s)
- Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
| | - Shiang-Shin Gau
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
- Graduate School of Biostudies, Kyoto University, Kyoto 6068501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 6068501, Japan
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei 115201, Taiwan
- Biomedical Translation Research Center, Academia Sinica, 99, Ln. 130, Academia Rd., Sec. 1, Taipei 115201, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 110301, Taiwan
| |
Collapse
|
3
|
Raza Q, Nadeem T, Youn SW, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman SL, Naiche LA, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Sci Rep 2024; 14:13603. [PMID: 38866944 PMCID: PMC11169293 DOI: 10.1038/s41598-024-64375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Bhairavi Swaminathan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Timothy Sargis
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III- CNIC- (F.S.P), Madrid, Spain
| | | | | | - L A Naiche
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA.
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, USA
| |
Collapse
|
4
|
Akamine T, Terabayashi T, Sasaki T, Hayashi R, Abe I, Hirayama F, Nureki SI, Ikawa M, Miyata H, Tokunaga A, Kobayashi T, Hanada K, Thumkeo D, Narumiya S, Ishizaki T. Conditional deficiency of Rho-associated kinases disrupts endothelial cell junctions and impairs respiratory function in adult mice. FEBS Open Bio 2024; 14:906-921. [PMID: 38604990 PMCID: PMC11148122 DOI: 10.1002/2211-5463.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown. In this study, we aimed to examine the roles of ROCK1 and ROCK2 proteins in normal adult mice. Tamoxifen (TAM)-inducible ROCK1 and ROCK2 single and double knockout mice (ROCK1flox/flox and/or ROCK2flox/flox;Ubc-CreERT2) were generated and administered a 5-day course of TAM. No deaths occurred in either of the single knockout strains, whereas all of the ROCK1/ROCK2 double conditional knockout mice (DcKO) had died by Day 11 following the TAM course. DcKO mice exhibited increased lung tissue vascular permeability, thickening of alveolar walls, and a decrease in percutaneous oxygen saturation compared with noninducible ROCK1/ROCK2 double-floxed control mice. On Day 3 post-TAM, there was a decrease in phalloidin staining in the lungs in DcKO mice. On Day 5 post-TAM, immunohistochemical analysis also revealed reduced staining for vascular endothelial (VE)-cadherin, β-catenin, and p120-catenin at cell-cell contact sites in vascular endothelial cells in DcKO mice. Additionally, VE-cadherin/β-catenin complexes were decreased in DcKO mice, indicating that ROCK proteins play a crucial role in maintaining lung function by regulating cell-cell adhesion.
Collapse
Affiliation(s)
- Takahiro Akamine
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takako Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Riku Hayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu, Japan
| | - Fumihiro Hirayama
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shin-Ichi Nureki
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Suita, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Suita, Japan
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Eiheiji-cho, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
5
|
Su Y, Lucas R, Fulton DJ, Verin AD. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:80-87. [PMID: 39006829 PMCID: PMC11242916 DOI: 10.1016/j.pccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 07/16/2024]
Abstract
Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia. Pro-inflammatory agonists such as histamine, thrombin, bradykinin, interleukin 1β, tumor necrosis factor α, vascular endothelial growth factor, angiopoietin-2, and platelet-activating factor, as well as bacterial toxins and reactive oxygen species, cause dynamic changes in cytoskeletal structure, adherens junction disorganization, and detachment of vascular endothelial cadherin (VE-cadherin) from the actin cytoskeleton, leading to an increase in endothelial permeability. Endothelial interactions with leukocytes, platelets, and coagulation enhance the inflammatory response. Moreover, inflammatory infiltration and the associated generation of pro-inflammatory cytokines during infection cause EC death, resulting in further compromise of the structural integrity of lung endothelial barrier. Despite the use of potent antibiotics and aggressive intensive care support, the mortality of ALI is still high, because the mechanisms of pulmonary EC barrier disruption are not fully understood. In this review, we summarized recent advances in the studies of endothelial cytoskeletal reorganization, inter-endothelial junctions, endothelial inflammation, EC death, and endothelial repair in ALI and ARDS, intending to shed some light on the potential diagnostic and therapeutic targets in the clinical management of the disease.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J.R. Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Ahmed DW, Eiken MK, DePalma SJ, Helms AS, Zemans RL, Spence JR, Baker BM, Loebel C. Integrating mechanical cues with engineered platforms to explore cardiopulmonary development and disease. iScience 2023; 26:108472. [PMID: 38077130 PMCID: PMC10698280 DOI: 10.1016/j.isci.2023.108472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.
Collapse
Affiliation(s)
- Donia W. Ahmed
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, Division of Pulmonary Sciences and Critical Care Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Yazbeck P, Cullere X, Bennett P, Yajnik V, Wang H, Kawada K, Davis V, Parikh A, Kuo A, Mysore V, Hla T, Milstone D, Mayadas TN. DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:886-902. [PMID: 35477279 PMCID: PMC9233130 DOI: 10.1161/atvbaha.122.317565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.
Collapse
Affiliation(s)
- Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Bennett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Vijay Yajnik
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Huan Wang
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kenji Kawada
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Vanessa Davis
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Asit Parikh
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - David Milstone
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Li X, Li X, Sun R, Gao M, Wang H. Cadmium exposure enhances VE‑cadherin expression in endothelial cells via suppression of ROCK signaling. Exp Ther Med 2022; 23:355. [DOI: 10.3892/etm.2022.11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/22/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xiaorui Li
- Public Health Clinical Center Affiliated to Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xiao Li
- Department of Pathophysiology, School of Traditional Chinese Medicine, Shandong University of Traditional Medicine, Jinan, Shandong 250014, P.R. China
| | - Rong Sun
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Mei Gao
- Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Hui Wang
- Key Laboratory of Molecular and Nano Probes, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
9
|
Endothelial Cell Plasma Membrane Biomechanics Mediates Effects of Pro-Inflammatory Factors on Endothelial Mechanosensors: Vicious Circle Formation in Atherogenic Inflammation. MEMBRANES 2022; 12:membranes12020205. [PMID: 35207126 PMCID: PMC8877251 DOI: 10.3390/membranes12020205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
Chronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.
Collapse
|
10
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:e202103080. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V. Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
11
|
Anwar M, Amin MR, Balaji Ragunathrao VA, Matsche J, Karginov A, Minshall RD, Mo GCH, Komarova Y, Mehta D. Tyrosine phosphorylation of S1PR1 leads to chaperone BiP-mediated import to the endoplasmic reticulum. J Cell Biol 2021; 220:212707. [PMID: 34652421 PMCID: PMC8562845 DOI: 10.1083/jcb.202006021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
Cell surface G protein–coupled receptors (GPCRs), upon agonist binding, undergo serine–threonine phosphorylation, leading to either receptor recycling or degradation. Here, we show a new fate of GPCRs, exemplified by ER retention of sphingosine-1-phosphate receptor 1 (S1PR1). We show that S1P phosphorylates S1PR1 on tyrosine residue Y143, which is associated with recruitment of activated BiP from the ER into the cytosol. BiP then interacts with endocytosed Y143-S1PR1 and delivers it into the ER. In contrast to WT-S1PR1, which is recycled and stabilizes the endothelial barrier, phosphomimicking S1PR1 (Y143D-S1PR1) is retained by BiP in the ER and increases cytosolic Ca2+ and disrupts barrier function. Intriguingly, a proinflammatory, but non-GPCR agonist, TNF-α, also triggered barrier-disruptive signaling by promoting S1PR1 phosphorylation on Y143 and its import into ER via BiP. BiP depletion restored Y143D-S1PR1 expression on the endothelial cell surface and rescued canonical receptor functions. Findings identify Y143-phosphorylated S1PR1 as a potential target for prevention of endothelial barrier breakdown under inflammatory conditions.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Md Ruhul Amin
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vijay Avin Balaji Ragunathrao
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrei Karginov
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Richard D Minshall
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Anesthesiology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Gary C H Mo
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Yulia Komarova
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
12
|
Binding of the Andes Virus Nucleocapsid Protein to RhoGDI Induces the Release and Activation of the Permeability Factor RhoA. J Virol 2021; 95:e0039621. [PMID: 34133221 DOI: 10.1128/jvi.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs), causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every PMEC is infected; however, the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase RhoA in primary human PMECs, causing VE-cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA but coprecipitates RhoGDI (Rho GDP dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C terminus (residues 69 to 204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N terminus (residues 1 to 69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and vascular endothelial growth factor (VEGF) increase RhoA-induced PMEC permeability by directing protein kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF-activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing protein kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV-induced capillary permeability, edema, and HPS. IMPORTANCE HPS-causing hantaviruses infect pulmonary endothelial cells (ECs), causing vascular leakage, pulmonary edema, and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses do not lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia-directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34-phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC-phosphorylated RhoGDI, synergistically enhancing hypoxia-directed RhoA activation and PMEC permeability. Our data suggest inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV-directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.
Collapse
|
13
|
Miroshnikova YA, Manet S, Li X, Wickström SA, Faurobert E, Albiges-Rizo C. Calcium signaling mediates a biphasic mechanoadaptive response of endothelial cells to cyclic mechanical stretch. Mol Biol Cell 2021; 32:1724-1736. [PMID: 34081532 PMCID: PMC8684738 DOI: 10.1091/mbc.e21-03-0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin–based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France.,Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sandra Manet
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Sara A Wickström
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Eva Faurobert
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| |
Collapse
|
14
|
Anwar M, Mehta D. Post-translational modifications of S1PR1 and endothelial barrier regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158760. [PMID: 32585303 PMCID: PMC7409382 DOI: 10.1016/j.bbalip.2020.158760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Sphingosine-1-phosphate receptor-1 (S1PR1), a G-protein coupled receptor that is expressed in endothelium and activated upon ligation by the bioactive lipid sphingosine-1-phosphate (S1P), is an important vascular-barrier protective mechanism at the level of adherens junctions (AJ). Loss of endothelial barrier function is a central factor in the pathogenesis of various inflammatory conditions characterized by protein-rich lung edema formation, such as acute respiratory distress syndrome (ARDS). While several S1PR1 agonists are available, the challenge of arresting the progression of protein-rich edema formation remains to be met. In this review, we discuss the role of S1PRs, especially S1PR1, in regulating endothelial barrier function. We review recent findings showing that replenishment of the pool of cell-surface S1PR1 may be crucial to the effectiveness of S1P in repairing the endothelial barrier. In this context, we discuss the S1P generating machinery and mechanisms that regulate S1PR1 at the cell surface and their impact on endothelial barrier function.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America.
| |
Collapse
|
15
|
Angé M, Castanares-Zapatero D, De Poortere J, Dufeys C, Courtoy GE, Bouzin C, Quarck R, Bertrand L, Beauloye C, Horman S. α1AMP-Activated Protein Kinase Protects against Lipopolysaccharide-Induced Endothelial Barrier Disruption via Junctional Reinforcement and Activation of the p38 MAPK/HSP27 Pathway. Int J Mol Sci 2020; 21:ijms21155581. [PMID: 32759774 PMCID: PMC7432762 DOI: 10.3390/ijms21155581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular hyperpermeability is a determinant factor in the pathophysiology of sepsis. While, AMP-activated protein kinase (AMPK) is known to play a role in maintaining endothelial barrier function in this condition. Therefore, we investigated the underlying molecular mechanisms of this protective effect. α1AMPK expression and/or activity was modulated in human dermal microvascular endothelial cells using either α1AMPK-targeting small interfering RNA or the direct pharmacological AMPK activator 991, prior to lipopolysaccharide (LPS) treatment. Western blotting was used to analyze the expression and/or phosphorylation of proteins that compose cellular junctions (zonula occludens-1 (ZO-1), vascular endothelial cadherin (VE-Cad), connexin 43 (Cx43)) or that regulate actin cytoskeleton (p38 MAPK; heat shock protein 27 (HSP27)). Functional endothelial permeability was assessed by in vitro Transwell assays, and quantification of cellular junctions in the plasma membrane was assessed by immunofluorescence. Actin cytoskeleton remodeling was evaluated through actin fluorescent staining. We consequently demonstrate that α1AMPK deficiency is associated with reduced expression of CX43, ZO-1, and VE-Cad, and that the drastic loss of CX43 is likely responsible for the subsequent decreased expression and localization of ZO-1 and VE-Cad in the plasma membrane. Moreover, α1AMPK activation by 991 protects against LPS-induced endothelial barrier disruption by reinforcing cortical actin cytoskeleton. This is due to a mechanism that involves the phosphorylation of p38 MAPK and HSP27, which is nonetheless independent of the small GTPase Rac1. This results in a drastic decrease of LPS-induced hyperpermeability. We conclude that α1AMPK activators that are suitable for clinical use may provide a specific therapeutic intervention that limits sepsis-induced vascular leakage.
Collapse
Affiliation(s)
- Marine Angé
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Division of Intensive Care, Cliniques Universitaires Saint Luc, 1200 Brussels, Belgium
| | - Julien De Poortere
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Cécile Dufeys
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Guillaume E. Courtoy
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (G.E.C.); (C.B.)
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (G.E.C.); (C.B.)
| | - Rozenn Quarck
- Department of Chronic Diseases & Metabolism (CHROMETA), Laboratory of Respiratory Diseases & Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium;
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Division of Cardiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.A.); (D.C.-Z.); (J.D.P.); (C.D.); (L.B.); (C.B.)
- Correspondence: ; Tel.: +32-2-764-55-66
| |
Collapse
|
16
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
18
|
Kruse K, Lee QS, Sun Y, Klomp J, Yang X, Huang F, Sun MY, Zhao S, Hong Z, Vogel SM, Shin JW, Leckband DE, Tai LM, Malik AB, Komarova YA. N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. J Cell Biol 2018; 218:299-316. [PMID: 30463880 PMCID: PMC6314553 DOI: 10.1083/jcb.201802076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/10/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
This work describes a role for endothelial N-cadherin in the regulation of endothelial permeability in the brain and lung. N-cadherin adhesions formed between endothelial cells and pericytes increase the abundance of VE-cadherin at adherens junctions through the RhoGEF Trio-dependent activation of RhoA and Rac1. Vascular endothelial (VE)–cadherin forms homotypic adherens junctions (AJs) in the endothelium, whereas N-cadherin forms heterotypic adhesion between endothelial cells and surrounding vascular smooth muscle cells and pericytes. Here we addressed the question whether both cadherin adhesion complexes communicate through intracellular signaling and contribute to the integrity of the endothelial barrier. We demonstrated that deletion of N-cadherin (Cdh2) in either endothelial cells or pericytes increases junctional endothelial permeability in lung and brain secondary to reduced accumulation of VE-cadherin at AJs. N-cadherin functions by increasing the rate of VE-cadherin recruitment to AJs and induces the assembly of VE-cadherin junctions. We identified the dual Rac1/RhoA Rho guanine nucleotide exchange factor (GEF) Trio as a critical component of the N-cadherin adhesion complex, which activates both Rac1 and RhoA signaling pathways at AJs. Trio GEF1-mediated Rac1 activation induces the recruitment of VE-cadherin to AJs, whereas Trio GEF2-mediated RhoA activation increases intracellular tension and reinforces Rac1 activation to promote assembly of VE-cadherin junctions and thereby establish the characteristic restrictive endothelial barrier.
Collapse
Affiliation(s)
- Kevin Kruse
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Quinn S Lee
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Ying Sun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Xiaoyan Yang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Fei Huang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Mitchell Y Sun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Shuangping Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Jae-Won Shin
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago, IL
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Yulia A Komarova
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
19
|
Yang R, Broussard JA, Green KJ, Espinosa HD. Techniques to stimulate and interrogate cell-cell adhesion mechanics. EXTREME MECHANICS LETTERS 2018; 20:125-139. [PMID: 30320194 PMCID: PMC6181239 DOI: 10.1016/j.eml.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell-cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell-extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell-cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell-cell adhesive junctions. This review covers established experimental techniques for stimulation and interrogation of cell-cell adhesion from cell pairs to monolayers.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Kathleen J. Green
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, United States
- Institute for Cellular Engineering Technologies, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
20
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
21
|
Lisowska J, Rödel CJ, Manet S, Miroshnikova YA, Boyault C, Planus E, De Mets R, Lee HH, Destaing O, Mertani H, Boulday G, Tournier-Lasserve E, Balland M, Abdelilah-Seyfried S, Albiges-Rizo C, Faurobert E. Cerebral Cavernous Malformation 1/2 complex controls ROCK1 and ROCK2 complementary functions for endothelial integrity. J Cell Sci 2018; 131:jcs.216093. [DOI: 10.1242/jcs.216093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This cross-talk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in CCM genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. Our study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1/2-depleted endothelial monolayers and rescues cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down of Rock2 but not Rock1 in WT zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it identifies solely the ROCK1 isoform as therapeutic target for the CCM disease.
Collapse
Affiliation(s)
- Justyna Lisowska
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Sandra Manet
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Yekaterina A. Miroshnikova
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Cyril Boyault
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Emmanuelle Planus
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Richard De Mets
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5588 LIPhy, F-38041 Grenoble, France
| | - Hsiao-Hui Lee
- Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| | - Olivier Destaing
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Hichem Mertani
- INSERM UMR 1052, CNRS 5286 CRCL Centre Léon Bérard F-69373 Lyon Cedex 08, France
| | - Gwénola Boulday
- INSERM, UMR-S1161, Paris, F-75010, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S1161, Paris, F-75010, France
- AP-HP, Groupe hospitalier Saint-Louis Lariboisiere-Fernand-Widal, Paris, F-75010, France
| | - Elisabeth Tournier-Lasserve
- INSERM, UMR-S1161, Paris, F-75010, France
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S1161, Paris, F-75010, France
- AP-HP, Groupe hospitalier Saint-Louis Lariboisiere-Fernand-Widal, Paris, F-75010, France
| | - Martial Balland
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5588 LIPhy, F-38041 Grenoble, France
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Corinne Albiges-Rizo
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| | - Eva Faurobert
- INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France
- Université Grenoble Alpes , F-38042 Grenoble, France
- CNRS UMR 5309, Institute for Advanced Biosciences F-38700 La Tronche, France
| |
Collapse
|
22
|
Combedazou A, Gayral S, Colombié N, Fougerat A, Laffargue M, Ramel D. Small GTPases orchestrate cell-cell communication during collective cell movement. Small GTPases 2017; 11:103-112. [PMID: 28980871 DOI: 10.1080/21541248.2017.1366965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Collective cell migration is a critical mechanism involved in cell movement during various physiological and pathological processes such as angiogenesis and metastasis formation. During collective movement, cells remain functionally connected and can coordinate individual cell behaviors to ensure efficient migration. A cell-cell communication process ensures this complex coordination. Although the mechanisms regulating cell-cell communication remain unclear, recent findings indicate that it is based on acto-myosin cytoskeleton tension transmission from cell to cell through adherens junctions. As for single cell migration, small GTPases of the Rho and Rab families have been shown to be critical regulators of collective motion. Here, we discuss our current understanding on how these small GTPases are themselves regulated and how they control cell-cell communication during collective migration. Moreover, we also shed light on the key role of cell-cell communication and RhoGTPases in the physiological context of endothelial cell migration during angiogenesis.
Collapse
Affiliation(s)
- Anne Combedazou
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| | - Nathalie Colombié
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Anne Fougerat
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| | - Damien Ramel
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, France
| |
Collapse
|
23
|
Sasidharan S, Borinskaya S, Patel F, Bernadskaya Y, Mandalapu S, Agapito M, Soto MC. WAVE regulates Cadherin junction assembly and turnover during epithelial polarization. Dev Biol 2017; 434:133-148. [PMID: 29223862 DOI: 10.1016/j.ydbio.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Actin is an integral component of epithelial apical junctions, yet the interactions of branched actin regulators with apical junction components are still not clear. Biochemical data have shown that α-catenin inhibits Arp2/3-dependent branched actin. These results suggested that branched actin is only needed at earliest stages of apical junction development. We use live imaging in developing C. elegans embryos to test models for how WAVE-induced branched actin collaborates with other apical junction proteins during the essential process of junction formation and maturation. We uncover both early and late essential roles for WAVE in apical junction formation. Early, as the C. elegans intestinal epithelium becomes polarized, we find that WAVE components become enriched concurrently with the Cadherin components and before the DLG-1 apical accumulation. Live imaging of F-actin accumulation in polarizing intestine supports that the Cadherin complex components and branched actin regulators work together for apical actin enrichment. Later in junction development, the apical accumulation of WAVE and Cadherin components is shown to be interdependent: Cadherin complex loss alters WAVE accumulation, and WAVE complex loss increases Cadherin accumulation. To determine why Cadherin levels rise when WVE-1 is depleted, we use FRAP to analyze Cadherin dynamics and find that loss of WAVE as well as of the trafficking protein EHD-1/RME-1 increases Cadherin dynamics. EM studies in adults depleted of branched actin regulators support that WVE-1 maintains established junctions, presumably through its trafficking effect on Cadherin. Thus we propose a developmental model for junction formation where branched actin regulators are tightly interconnected with Cadherin junctions through their previously unappreciated role in Cadherin transport.
Collapse
Affiliation(s)
- Shashikala Sasidharan
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sofya Borinskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Falshruti Patel
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Yelena Bernadskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sailaja Mandalapu
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Maria Agapito
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
24
|
Abstract
Endothelial cells line blood vessels and provide a dynamic interface between the blood and tissues. They remodel to allow leukocytes, fluid and small molecules to enter tissues during inflammation and infections. Here we compare the signaling networks that contribute to endothelial permeability and leukocyte transendothelial migration, focusing particularly on signals mediated by small GTPases that regulate cell adhesion and the actin cytoskeleton. Rho and Rap GTPase signaling is important for both processes, but they differ in that signals are activated locally under leukocytes, whereas endothelial permeability is a wider event that affects the whole cell. Some molecules play a unique role in one of the two processes, and could therefore be targeted to selectively alter either endothelial permeability or leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Camilla Cerutti
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
25
|
Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function. Proc Natl Acad Sci U S A 2017; 114:8758-8763. [PMID: 28765370 DOI: 10.1073/pnas.1618333114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N-cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N-cadherin in the mural cells led to loss of barrier function, and overexpression of N-cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.
Collapse
|
26
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
27
|
Zhang L, Jambusaria A, Hong Z, Marsboom G, Toth PT, Herbert BS, Malik AB, Rehman J. SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34 + Progenitor Cells. Circulation 2017; 135:2505-2523. [PMID: 28381471 PMCID: PMC5472005 DOI: 10.1161/circulationaha.116.025722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Abstract
Supplemental Digital Content is available in the text. Background: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. Methods: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. Results: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. Conclusions: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.
Collapse
Affiliation(s)
- Lianghui Zhang
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Ankit Jambusaria
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Zhigang Hong
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Glenn Marsboom
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Peter T Toth
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Brittney-Shea Herbert
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Asrar B Malik
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Jalees Rehman
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.).
| |
Collapse
|
28
|
Tay CY, Setyawati MI, Leong DT. Nanoparticle Density: A Critical Biophysical Regulator of Endothelial Permeability. ACS NANO 2017; 11:2764-2772. [PMID: 28287706 DOI: 10.1021/acsnano.6b07806] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The integrity of the vasculature system is intrinsically sensitive to a short list of biophysical cues spanning from nano to micro scales. We have earlier found that certain nanomaterials could induce endothelial leakiness (nanoparticle induced endothelial leakiness, nanoEL). In this study, we report that the density of the nanomaterial, a basic intrinsic material property not implicated in many nanoparticle-mediated biological effects, predominantly dictates the nanoEL effect. We demonstrated that the impinging force exerted by a library of increasing effective densities but consistently sized silica nanoparticles (SiNPs) could directly increase endothelial permeability. The crossover effective particle density that induced nanoEL was determined to be between 1.57 g/cm3 to 1.72 g/cm3. It was also found that a cumulative gravitational-mediated force of around 1.8 nN/μm along the boundaries of the vascular endothelial cadherin (VE-cad) adherens junctions appeared to be a critical threshold force required to perturb endothelial cell-cell adhesion. The net result is the "snapping" of the mechanically pretensed VE-cad (Nanosnap), leading to the formation of micron-sized gaps that would dramatically increase endothelial leakiness.
Collapse
Affiliation(s)
- Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University , N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
29
|
Endo M, Ozawa T. Strategies for development of optogenetic systems and their applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Lampi MC, Guvendiren M, Burdick JA, Reinhart-King CA. Photopatterned Hydrogels to Investigate the Endothelial Cell Response to Matrix Stiffness Heterogeneity. ACS Biomater Sci Eng 2017; 3:3007-3016. [PMID: 33418721 DOI: 10.1021/acsbiomaterials.6b00633] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Age-related intimal stiffening is associated with increased endothelium permeability, an initiating step in atherosclerosis. Notably, in addition to a bulk increase in matrix stiffness, the aged intima also exhibits increased spatial stiffness heterogeneity. We investigate the effect of heterogeneous matrix stiffness on endothelial cells. Methacrylated hyaluronic acid hydrogels are fabricated and photopatterned to create substrates with 50-and 100 μm squares containing soft and stiff matrix regions of 2.7 ± 0.7 and 10.3 ± 3.9 kPa. On the patterned matrices, endothelial cells integrate subcellular matrix stiffness cues at stiffness interfaces, and focal adhesions are increased in the cell body adhered to stiff matrix regions. Increased matrix stiffness heterogeneity disrupts cell-cell junctions in confluent endothelial monolayers. Together, this work indicates that the spatial presentation of matrix mechanical cues, in addition to bulk substrate compliance, play a role in governing endothelial single cell and monolayer behaviors.
Collapse
Affiliation(s)
- Marsha C Lampi
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 526 Campus Road, Ithaca, New York 14850, United States
| | - Murat Guvendiren
- Otto H. York Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, 240 York Center, Newark, New Jersey 07102, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, 440 Engineering Sciences Building, Nashville, Tennessee 37212, United States
| |
Collapse
|
31
|
Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, Klingauf J, van Bavel E, Bakker EN, Hellstrand P, Bhattachariya A, Albinsson S, Pincet F, Hallmann R, Sorokin LM. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J 2016; 36:183-201. [PMID: 27940654 PMCID: PMC5239996 DOI: 10.15252/embj.201694756] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that β1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lema Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sigmund Budny
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hans Oberleithner
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Verena Hofschröer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Juergen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Medical Physics, University of Muenster, Muenster, Germany
| | - Ed van Bavel
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Ntp Bakker
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Frederic Pincet
- Laboratoire de Physique Statistique, École Normale Superieure - PSL Research University, Paris, France.,CNRS UMR8550, Sorbonne Universités - UPMC Univ Paris 06, Université Paris, Paris, France
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany .,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
32
|
The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell Permeability by Activating RhoA. mBio 2016; 7:mBio.01747-16. [PMID: 27795403 PMCID: PMC5080385 DOI: 10.1128/mbio.01747-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex containing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs normally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively activated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibitors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demonstrate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC permeability further suggests therapeutically targeting RhoA, TSCs, and Rac1 as potential means of resolving capillary leakage during hantavirus infections. HPS is hallmarked by acute pulmonary edema, hypoxia, respiratory distress, and the ubiquitous infection of pulmonary MECs that occurs without disrupting the endothelium. Mechanisms of MEC permeability and targets for resolving lethal pulmonary edema during HPS remain enigmatic. Our findings suggest a novel underlying mechanism of MEC dysfunction resulting from ANDV activation of the Rheb and RhoA GTPases that, respectively, control MEC size and permeability. Our studies show that inhibition of RhoA blocks ANDV-directed permeability and implicate RhoA as a potential therapeutic target for restoring capillary barrier function to the ANDV-infected endothelium. Since RhoA activation forms a downstream nexus for factors that cause capillary leakage, blocking RhoA activation is liable to restore basal capillary integrity and prevent edema amplified by tissue hypoxia and respiratory distress. Targeting the endothelium has the potential to resolve disease during symptomatic stages, when replication inhibitors lack efficacy, and to be broadly applicable to other hemorrhagic and edematous viral diseases.
Collapse
|
33
|
Cell-cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 2016; 74:279-292. [PMID: 27506620 PMCID: PMC5219012 DOI: 10.1007/s00018-016-2325-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/15/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
The vasculature is one of the most dynamic tissues that encounter numerous mechanical cues derived from pulsatile blood flow, blood pressure, activity of smooth muscle cells in the vessel wall, and transmigration of immune cells. The inner layer of blood and lymphatic vessels is covered by the endothelium, a monolayer of cells which separates blood from tissue, an important function that it fulfills even under the dynamic circumstances of the vascular microenvironment. In addition, remodeling of the endothelial barrier during angiogenesis and trafficking of immune cells is achieved by specific modulation of cell-cell adhesion structures between the endothelial cells. In recent years, there have been many new discoveries in the field of cellular mechanotransduction which controls the formation and destabilization of the vascular barrier. Force-induced adaptation at endothelial cell-cell adhesion structures is a crucial node in these processes that challenge the vascular barrier. One of the key examples of a force-induced molecular event is the recruitment of vinculin to the VE-cadherin complex upon pulling forces at cell-cell junctions. Here, we highlight recent advances in the current understanding of mechanotransduction responses at, and derived from, endothelial cell-cell junctions. We further discuss their importance for vascular barrier function and remodeling in development, inflammation, and vascular disease.
Collapse
|
34
|
Marston DJ, Higgins CD, Peters KA, Cupp TD, Dickinson DJ, Pani AM, Moore RP, Cox AH, Kiehart DP, Goldstein B. MRCK-1 Drives Apical Constriction in C. elegans by Linking Developmental Patterning to Force Generation. Curr Biol 2016; 26:2079-89. [PMID: 27451898 DOI: 10.1016/j.cub.2016.06.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/06/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here we identify a myosin light-chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endoderm precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically constricting cells and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis.
Collapse
Affiliation(s)
- Daniel J Marston
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Christopher D Higgins
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kimberly A Peters
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy D Cupp
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel J Dickinson
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ariel M Pani
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Regan P Moore
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Amanda H Cox
- Biology Department, Duke University, Durham, NC 27708, USA
| | | | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Kutys ML, Chen CS. Forces and mechanotransduction in 3D vascular biology. Curr Opin Cell Biol 2016; 42:73-79. [PMID: 27209346 DOI: 10.1016/j.ceb.2016.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 01/03/2023]
Abstract
The effects of hemodynamic and interstitial mechanical forces on endothelial biology in vivo have been appreciated for over half a century, regulating vessel network development, homeostatic function, and progression of vascular disease. Investigations using cultures of endothelial cells on two-dimensional (2D) substrates have elucidated important mechanisms by which microenvironmental stresses are sensed and transduced into chemical signaling responses. However recent studies in vivo and in three-dimensional (3D) in vitro models of vascular beds have enabled the investigation of forces and cellular behaviors previously not possible in traditional 2D culture systems. These studies support a developing paradigm that the 3D chemo-mechanical architecture of the vascular niche impacts how endothelial cells both sense and respond to microenvironmental forces. We present evolving concepts in endothelial force sensing and mechanical signaling and highlight recent insights gained from in vivo and 3D in vitro vascular models.
Collapse
Affiliation(s)
- Matthew L Kutys
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States.
| |
Collapse
|
36
|
Marcos-Ramiro B, García-Weber D, Barroso S, Feito J, Ortega MC, Cernuda-Morollón E, Reglero-Real N, Fernández-Martín L, Durán MC, Alonso MA, Correas I, Cox S, Ridley AJ, Millán J. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border. J Cell Biol 2016; 213:385-402. [PMID: 27138256 PMCID: PMC4862328 DOI: 10.1083/jcb.201504038] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/13/2016] [Indexed: 11/22/2022] Open
Abstract
Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that although RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane extension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. Inhibition of endosomal trafficking impairs barrier reformation, whereas induction of Rac1 translocation to the plasma membrane accelerates it. Therefore, RhoB-specific regulation of Rac1 trafficking controls endothelial barrier integrity during inflammation.
Collapse
Affiliation(s)
- Beatriz Marcos-Ramiro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego García-Weber
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Susana Barroso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Feito
- Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - María C Ortega
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eva Cernuda-Morollón
- Neurology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Reglero-Real
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria C Durán
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11519 Cadiz, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Susan Cox
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL London, England, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL London, England, UK
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
37
|
Wang W, Townes-Anderson E. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury. Invest Ophthalmol Vis Sci 2016; 56:7847-58. [PMID: 26658506 DOI: 10.1167/iovs.15-17278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. METHODS Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. RESULTS Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. CONCLUSIONS Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury.
Collapse
|
38
|
Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax 2016; 71:462-73. [DOI: 10.1136/thoraxjnl-2015-207461] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
|
39
|
Brenner MD, Zhou R, Conway DE, Lanzano L, Gratton E, Schwartz MA, Ha T. Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing. NANO LETTERS 2016; 16:2096-102. [PMID: 26824190 PMCID: PMC4851340 DOI: 10.1021/acs.nanolett.6b00305] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent development and applications of calibrated, fluorescence resonance energy transfer (FRET)-based tension sensors have led to a new understanding of single molecule mechanotransduction in a number of biological systems. To expand the range of accessible forces, we systematically measured FRET versus force trajectories for 25, 40, and 50 amino acid peptide repeats derived from spider silk. Single molecule fluorescence-force spectroscopy showed that the peptides behaved as linear springs instead of the nonlinear behavior expected for a disordered polymer. Our data are consistent with a compact, rodlike structure that measures 0.26 nm per 5 amino acid repeat that can stretch by 500% while maintaining linearity, suggesting that the remarkable elasticity of spider silk proteins may in part derive from the properties of individual chains. We found the shortest peptide to have the widest range of force sensitivity: between 2 pN and 11 pN. Live cell imaging of the three tension sensor constructs inserted into vinculin showed similar force values around 2.4 pN. We also provide a lookup table for force versus intracellular FRET for all three constructs.
Collapse
Affiliation(s)
- Michael D. Brenner
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruobo Zhou
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel E. Conway
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Luca Lanzano
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - E. Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Martin A. Schwartz
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Yale Cardiovascular Research Center, Departments of Internal Medicine (Section of Cardiovascular Medicine) and Cell Biology, Yale University, New Haven, CT 06511, USA
| | - Taekjip Ha
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Nohata N, Uchida Y, Stratman AN, Adams RH, Zheng Y, Weinstein BM, Mukouyama YS, Gutkind JS. Temporal-specific roles of Rac1 during vascular development and retinal angiogenesis. Dev Biol 2016; 411:183-194. [PMID: 26872874 DOI: 10.1016/j.ydbio.2016.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/07/2016] [Accepted: 02/07/2016] [Indexed: 01/04/2023]
Abstract
Angiogenesis, the formation of new blood vessels by remodeling and growth of pre-existing vessels, is a highly orchestrated process that requires a tight balance between pro-angiogenic and anti-angiogenic factors and the integration of their corresponding signaling networks. The family of Rho GTPases, including RhoA, Rac1, and Cdc42, play a central role in many cell biological processes that involve cytoskeletal changes and cell movement. Specifically for Rac1, we have shown that excision of Rac1 using a Tie2-Cre animal line results in embryonic lethality in midgestation (embryonic day (E) 9.5), with multiple vascular defects. However, Tie2-Cre can be also expressed during vasculogenesis, prior to angiogenesis, and is active in some hematopoietic precursors that can affect vessel formation. To circumvent these limitations, we have now conditionally deleted Rac1 in a temporally controlled and endothelial-restricted fashion using Cdh5(PAC)-iCreERT2 transgenic mice. In this highly controlled experimental in vivo system, we now show that Rac1 is required for embryonic vascular integrity and angiogenesis, and for the formation of superficial and deep vascular networks in the post-natal developing retina, the latter involving a novel specific function for Rac1 in vertical blood vessel sprouting. Aligned with these findings, we show that RAC1 is spatially involved in endothelial cell migration, invasion, and radial sprouting activities in 3D collagen matrix in vitro models. Hence, Rac1 and its downstream molecules may represent potential anti-angiogeneic therapeutic targets for the treatment of many human diseases that involve aberrant neovascularization and blood vessel overgrowth.
Collapse
Affiliation(s)
- Nijiro Nohata
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, United States
| | - Yutaka Uchida
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, United States
| | - Amber N Stratman
- Section on Vertebrate Development, Program in the Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Brant M Weinstein
- Section on Vertebrate Development, Program in the Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814, United States
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, United States; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
41
|
van Buul JD, Timmerman I. Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions. Small GTPases 2016; 7:21-31. [PMID: 26825121 DOI: 10.1080/21541248.2015.1131802] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VE-cadherin-based cell-cell junctions form the major restrictive barrier of the endothelium to plasma proteins and blood cells. The function of VE-cadherin and the actin cytoskeleton are intimately linked. Vascular permeability factors and adherent leukocytes signal through small Rho GTPases to tightly regulate actin cytoskeletal rearrangements in order to open and re-assemble endothelial cell-cell junctions in a rapid and controlled manner. The Rho GTPases are activated by guanine nucleotide exchange factors (GEFs), conferring specificity and context-dependent control of cell-cell junctions. Although the molecular mechanisms that couple cadherins to actin filaments are beginning to be elucidated, specific stimulus-dependent regulation of the actin cytoskeleton at VE-cadherin-based junctions remains unexplained. Accumulating evidence has suggested that depending on the vascular permeability factor and on the subcellular localization of GEFs, cell-cell junction dynamics and organization are differentially regulated by one specific Rho GTPase. In this Commentary, we focus on new insights how the junctional actin cytoskeleton is specifically and locally regulated by Rho GTPases and GEFs in the endothelium.
Collapse
Affiliation(s)
- Jaap D van Buul
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| | - Ilse Timmerman
- b Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
42
|
Lampi MC, Faber CJ, Huynh J, Bordeleau F, Zanotelli MR, Reinhart-King CA. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption. PLoS One 2016; 11:e0147033. [PMID: 26761203 PMCID: PMC4712048 DOI: 10.1371/journal.pone.0147033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022] Open
Abstract
Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening.
Collapse
Affiliation(s)
- Marsha C. Lampi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Courtney J. Faber
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - John Huynh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Francois Bordeleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Matthew R. Zanotelli
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Cynthia A. Reinhart-King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
43
|
Hoffman BD, Yap AS. Towards a Dynamic Understanding of Cadherin-Based Mechanobiology. Trends Cell Biol 2015; 25:803-814. [DOI: 10.1016/j.tcb.2015.09.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 01/23/2023]
|
44
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
45
|
Affiliation(s)
- Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Yulia A Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| |
Collapse
|
46
|
Tauseef M, Farazuddin M, Sukriti S, Rajput C, Meyer JO, Ramasamy SK, Mehta D. Transient receptor potential channel 1 maintains adherens junction plasticity by suppressing sphingosine kinase 1 expression to induce endothelial hyperpermeability. FASEB J 2015; 30:102-10. [PMID: 26316271 DOI: 10.1096/fj.15-275891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022]
Abstract
Stability of endothelial cell (EC) adherens junctions (AJs) is central for prevention of tissue edema, the hallmark of chronic inflammatory diseases including acute respiratory distress syndrome. Here, we demonstrate a previously unsuspected role of sphingosine kinase 1 (SPHK1) in the mechanism by which transient receptor potential channel 1 (Trpc1)-mediated Ca(2+) entry destabilizes AJs. Trpc1(-/-) monolayers showed a 2.2-fold increase in vascular endothelial (VE)-cadherin cell-surface expression above wild-type (WT) monolayers. Thrombin increased endothelial permeability (evident by a 5-fold increase in interendothelial gap area and 60% decrease in transendothelial electrical resistance) in WT but not Trpc1(-/-) ECs. Trpc1(-/-) mice resisted the hyperpermeability effects of the edemagenic agonists used and exhibited 60% less endotoxin-induced mortality. Because sphingosine-1-phosphate (S1P) strengthens AJs, we determined if TRPC1 functioned by inhibiting SPHK1 activity, which generates S1P. Intriguingly, Trpc1(-/-) ECs or ECs transducing a TRPC1-inactive mutant showed a 1.5-fold increase in basal SPHK1 expression compared with WT ECs, resulting in a 2-fold higher S1P level. SPHK1 inhibitor SK1-I decreased basal transendothelial electrical resistance more in WT ECs (48 and 72% reduction at 20 and 50 μM, respectively) than in Trpc1(-/-) ECs. However, SK1-I pretreatment rescued thrombin-induced EC permeability in Trpc1(-/-) ECs. Thus, TRPC1 suppression of basal SPHK1 activity enables EC-barrier destabilization by edemagenic agonists.
Collapse
Affiliation(s)
- Mohammad Tauseef
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Mohammad Farazuddin
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Sukriti Sukriti
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Charu Rajput
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - James Otto Meyer
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Suresh Kumar Ramasamy
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
47
|
Abstract
Cells generate and experience mechanical forces that may shape tissues and regulate signaling pathways in a variety of physiological or pathological situations. How forces propagate and transduce signals at the molecular level is poorly understood. The advent of FRET-based Molecular Tension Microscopy now allows to achieve mechanical force measurements at a molecular scale with molecular specificity in situ, and thereby better understand the mechanical architecture of cells and tissues, and mechanotransduction pathways. In this review, we will first expose the basic principles of FRET-based MTM and its various incarnations. We will describe different ways of measuring FRET, their advantages and drawbacks. Then, throughout the range of proteins of interest, cells and organisms to which it has been applied, we will review the tests developed to validate the approach, how molecular tension was related to cell functions, and conclude with possible developments and offshoots.
Collapse
Affiliation(s)
- Charlène Gayrard
- Institut Jacques Monod, Unité Mixe de Recherche 7592, Centre national de la recherche scientifique, Université Paris-Diderot, Paris 75013, France
| | - Nicolas Borghi
- Institut Jacques Monod, Unité Mixe de Recherche 7592, Centre national de la recherche scientifique, Université Paris-Diderot, Paris 75013, France.
| |
Collapse
|
48
|
Shashikanth N, Petrova YI, Park S, Chekan J, Maiden S, Spano M, Ha T, Gumbiner BM, Leckband DE. Allosteric Regulation of E-Cadherin Adhesion. J Biol Chem 2015; 290:21749-61. [PMID: 26175155 DOI: 10.1074/jbc.m115.657098] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation.
Collapse
Affiliation(s)
| | - Yuliya I Petrova
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | | | - Jillian Chekan
- Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Stephanie Maiden
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Martha Spano
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Taekjip Ha
- From the Departments of Biochemistry, Physics, and the Howard Hughes Medical Institute, Urbana, Illinois 61801
| | - Barry M Gumbiner
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Deborah E Leckband
- From the Departments of Biochemistry, Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801,
| |
Collapse
|
49
|
Jiang YZ, Manduchi E, Stoeckert CJ, Davies PF. Arterial endothelial methylome: differential DNA methylation in athero-susceptible disturbed flow regions in vivo. BMC Genomics 2015; 16:506. [PMID: 26148682 PMCID: PMC4492093 DOI: 10.1186/s12864-015-1656-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis is a heterogeneously distributed disease of arteries in which the endothelium plays an important central role. Spatial transcriptome profiling of endothelium in pre-lesional arteries has demonstrated differential phenotypes primed for athero-susceptibility at hemodynamic sites associated with disturbed blood flow. DNA methylation is a powerful epigenetic regulator of endothelial transcription recently associated with flow characteristics. We investigated differential DNA methylation in flow region-specific aortic endothelial cells in vivo in adult domestic male and female swine. RESULTS Genome-wide DNA methylation was profiled in endothelial cells (EC) isolated from two robust locations of differing patho-susceptibility:--an athero-susceptible site located at the inner curvature of the aortic arch (AA) and an athero-protected region in the descending thoracic (DT) aorta. Complete methylated DNA immunoprecipitation sequencing (MeDIP-seq) identified over 5500 endothelial differentially methylated regions (DMRs). DMR density was significantly enriched in exons and 5'UTR sequences of annotated genes, 60 of which are linked to cardiovascular disease. The set of DMR-associated genes was enriched in transcriptional regulation, pattern specification HOX loci, oxidative stress and the ER stress adaptive pathway, all categories linked to athero-susceptible endothelium. Examination of the relationship between DMR and mRNA in HOXA genes demonstrated a significant inverse relationship between CpG island promoter methylation and gene expression. Methylation-specific PCR (MSP) confirmed differential CpG methylation of HOXA genes, the ER stress gene ATF4, inflammatory regulator microRNA-10a and ARHGAP25 that encodes a negative regulator of Rho GTPases involved in cytoskeleton remodeling. Gender-specific DMRs associated with ciliogenesis that may be linked to defects in cilia development were also identified in AA DMRs. CONCLUSIONS An endothelial methylome analysis identifies epigenetic DMR characteristics associated with transcriptional regulation in regions of atherosusceptibility in swine aorta in vivo. The data represent the first methylome blueprint for spatio-temporal analyses of lesion susceptibility predisposing to endothelial dysfunction in complex flow environments in vivo.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering, Perelman School of Medicine, University of Pennsylvania, 1010 Vagelos Building, 3340 Smith Walk, Philadelphia, PA, 19104, USA.
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Christian J Stoeckert
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Peter F Davies
- Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering, Perelman School of Medicine, University of Pennsylvania, 1010 Vagelos Building, 3340 Smith Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Beckers CML, Knezevic N, Valent ET, Tauseef M, Krishnan R, Rajendran K, Hardin CC, Aman J, van Bezu J, Sweetnam P, van Hinsbergh VWM, Mehta D, van Nieuw Amerongen GP. ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension. Vascul Pharmacol 2015; 70:45-54. [PMID: 25869521 PMCID: PMC4606924 DOI: 10.1016/j.vph.2015.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 12/25/2022]
Abstract
Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response.
Collapse
Affiliation(s)
- Cora M L Beckers
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Nebojsa Knezevic
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | - Erik T Valent
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Mohammad Tauseef
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kavitha Rajendran
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - C Corey Hardin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jurjan Aman
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Jan van Bezu
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Paul Sweetnam
- Surface Logix-737, Concord Ave., Cambridge, MA 02138, USA
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands; Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|