1
|
Choudhary P, Magloire D, Hamonic G, Wilson HL. Immune responses in the uterine mucosa: clues for vaccine development in pigs. Front Immunol 2023; 14:1171212. [PMID: 37483639 PMCID: PMC10361056 DOI: 10.3389/fimmu.2023.1171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The immune system in the upper reproductive tract (URT) protects against sexually transmitted pathogens, while at the same time providing immune tolerance responses against allogenic sperm and the developing fetus. The uterine environment is also responsive to hormonal variations during the estrus cycle, although the most likely timing of exposure to pathogens is during estrus and breeding when the cervix is semi-permissive. The goal for intrauterine immunization would be to induce local or systemic immunity and/or to promote colostral/lactogenic immunity that will passively protect suckling offspring. The developing fetus is not the vaccine target. This minireview article focuses on the immune response induced in the pig uterus (uterine body and uterine horns) with some comparative references to other livestock species, mice, and humans.
Collapse
Affiliation(s)
- Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Donaldson Magloire
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L. Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Abstract
Anti-PD-1 therapies can activate tumor-specific T cells to destroy tumors. However, whether and how T cells with different antigen specificity and affinity are differentially regulated by PD-1 remain vaguely understood. Upon antigen stimulation, a variety of genes is induced in T cells. Recently, we found that T cell receptor (TCR) signal strength required for the induction of genes varies across different genes and PD-1 preferentially inhibits the induction of genes that require stronger TCR signal. As each T cell has its own response characteristics, inducibility of genes likely differs across different T cells. Accordingly, the inhibitory effects of PD-1 are also expected to differ across different T cells. In the current study, we investigated whether and how factors that modulate T cell responsiveness to antigenic stimuli influence PD-1 function. By analyzing TCRs with different affinities to peptide-MHC complexes (pMHC) and pMHCs with different affinities to TCR, we demonstrated that PD-1 inhibits the expression of TCR-inducible genes efficiently when TCR:pMHC affinity is low. In contrast, affinities of peptides to MHC and MHC expression levels did not affect PD-1 sensitivity of TCR-inducible genes although they markedly altered the dose responsiveness of T cells by changing the efficiency of pMHC formation, suggesting that the strength of individual TCR signal is the key determinant of PD-1 sensitivity. Accordingly, we observed a preferential expansion of T cells with low-affinity to tumor-antigen in PD-1-deficient mice upon inoculation of tumor cells. These results demonstrate that PD-1 imposes qualitative control of T cell responses by preferentially suppressing low-affinity T cells.
Collapse
|
3
|
Hua Z, Hou B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunol Rev 2020; 296:24-35. [PMID: 32304104 DOI: 10.1111/imr.12859] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 01/21/2023]
Abstract
B cells have been known for their ability to present antigens to T cells for almost 40 years. However, the precise roles of B cell antigen presentation in various immune responses are not completely understood. The term "professional" antigen-presenting cells (APCs) was proposed to distinguish APCs that are required for initiating the immune responses from those use antigen presentation to enhance their own effector functions. Unlike dendritic cells, which are defined as professional APCs for their well-established functions in activating naive T cells, B cells have been shown in the past to mostly present antigens to activated CD4+ T cells mainly to seek help from T helper cells. However, recent evidence suggested that B cells can act as professional APCs under infectious conditions or conditions mimicking viral infections. B cell antigen receptors (BCRs) and the innate receptor Toll-like receptors are activated synergistically in response to pathogens or virus-like particles, under which conditions B cells are not only potent but also the predominant APCs to turn naive CD4+ T cells into T follicular helper cells. The discovery of B cells as professional APCs to initiate CD4+ T cell response provides a new insight for both autoimmune diseases and vaccine development.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Increase of Hspa1a and Hspa1b genes in the resting B cells of Sirt1 knockout mice. Mol Biol Rep 2019; 46:4225-4234. [DOI: 10.1007/s11033-019-04876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/14/2019] [Indexed: 01/12/2023]
|
5
|
DeFranco AL. Multilayer Control of B Cell Activation by the B Cell Antigen Receptor: Following Themes Initiated With Bill Paul. Front Immunol 2018; 9:739. [PMID: 29740430 PMCID: PMC5925841 DOI: 10.3389/fimmu.2018.00739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
This article describes the work I did in Bill Paul's lab as a postdoctoral fellow between 1979 and 1983, and to a lesser extent puts that work in the context of other work on B cell activation and antibody responses that was going on in Bill's lab at that time and shortly beforehand, including the discovery of interleukin 4. In addition, this work describes the subsequent and continuing work in my own lab following-up on themes I began during my time working directly with Bill. A particular emphasis was on understanding the biochemical mechanisms of signaling by the B cell antigen receptor (BCR) to the interior of the B cell. Some of the studies from my lab related to the regulation of BCR signaling by Lyn are described in relationship to the lymphocyte tuning hypothesis put forth by Grossman and Paul in 1992 and subsequently.
Collapse
Affiliation(s)
- Anthony L. DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Fuchs E. Haploidentical Hematopoietic Cell Transplantation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Sánchez-Gómez FJ, González-Morena JM, Vida Y, Pérez-Inestrosa E, Blanca M, Torres MJ, Pérez-Sala D. Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells. Allergy 2017; 72:385-396. [PMID: 27319758 DOI: 10.1111/all.12958] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Allergic reactions to β-lactams are among the most frequent causes of drug allergy and constitute an important clinical problem. Drug covalent binding to endogenous proteins (haptenation) is thought to be required for activation of the immune system. Nevertheless, neither the nature nor the role of the drug protein targets involved in this process is fully understood. Here, we aim to identify novel intracellular targets for haptenation by amoxicillin (AX) and their cellular fate. METHODS We have treated B lymphocytes with either AX or a biotinylated analog (AX-B). The identification of protein targets for haptenation by AX has been approached by mass spectrometry and immunoaffinity techniques. In addition, intercellular communication mediated by the delivery of vesicles loaded with AX-B-protein adducts has been explored by microscopy techniques. RESULTS We have observed a complex pattern of AX-haptenated proteins. Several novel targets for haptenation by AX in B lymphocytes have been identified. AX-haptenated proteins were detected in cell lysates and extracellularly, either as soluble proteins or in lymphocyte-derived extracellular vesicles. Interestingly, exosomes from AX-B-treated cells showed a positive biotin signal in electron microscopy. Moreover, they were internalized by endothelial cells, thus supporting their involvement in intercellular transfer of haptenated proteins. CONCLUSIONS These results represent the first identification of AX-mediated haptenation of intracellular proteins. Moreover, they show that exosomes can constitute a novel vehicle for haptenated proteins, and raise the hypothesis that they could provide antigens for activation of the immune system during the allergic response.
Collapse
Affiliation(s)
- F. J. Sánchez-Gómez
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas; CSIC; Madrid Spain
| | - J. M. González-Morena
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas; CSIC; Madrid Spain
| | - Y. Vida
- Department of Organic Chemistry; University of Málaga; IBIMA; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology-BIONAND; Parque Tecnológico de Andalucía; Málaga Spain
| | - E. Pérez-Inestrosa
- Department of Organic Chemistry; University of Málaga; IBIMA; Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology-BIONAND; Parque Tecnológico de Andalucía; Málaga Spain
| | - M. Blanca
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Málaga Spain
| | - M. J. Torres
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Málaga Spain
| | - D. Pérez-Sala
- Department of Chemical and Physical Biology; Centro de Investigaciones Biológicas; CSIC; Madrid Spain
| |
Collapse
|
8
|
Abstract
In vitro culture is an important complement, or substitute, to in vivo approaches in order to study T cell effector differentiation. Here, we describe culture conditions that generate specific effector cell types by exposing naïve T cells to appropriate cytokine signals.
Collapse
Affiliation(s)
- Elizabeth A Wohlfert
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), 251 Biomedical Research Building, Buffalo, NY, 14214, USA,
| | | | | | | |
Collapse
|
9
|
Wira CR, Rodriguez-Garcia M, Patel MV, Biswas N, Fahey JV. Endocrine Regulation of the Mucosal Immune System in the Female Reproductive Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Johnson RM, Kerr MS, Slaven JE. An atypical CD8 T-cell response to Chlamydia muridarum genital tract infections includes T cells that produce interleukin-13. Immunology 2014; 142:248-57. [PMID: 24428415 DOI: 10.1111/imm.12248] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/24/2022] Open
Abstract
Chlamydia trachomatis urogenital serovars D-K are intracellular bacterial pathogens that replicate almost exclusively in human reproductive tract epithelium. In the C. muridarum mouse model for human Chlamydia genital tract infections CD4 T helper type 1 cell responses mediate protective immunity while CD8 T-cell responses have been associated with scarring and infertility. Scarring mediated by CD8 T cells requires production of tumour necrosis factor-α (TNF-α); however, TNF-α is associated with protective immunity mediated by CD4 T cells. The latter result suggests that TNF-α in-and-of itself may not be the sole determining factor in immunopathology. CD8 T cells mediating immunopathology presumably do something in addition to producing TNF-α that is detrimental during resolution of genital tract infections. To investigate the mechanism underlying CD8 immunopathology we attempted to isolate Chlamydia-specific CD8 T-cell clones from mice that self-cleared genital tract infections. They could not be derived with antigen-pulsed irradiated naive splenocytes; instead derivation required use of irradiated immune splenocyte antigen-presenting cells. The Chlamydia-specific CD8 T-cell clones had relatively low cell surface CD8 levels and the majority were not restricted by MHC class Ia molecules. They did not express Plac8, and had varying abilities to terminate Chlamydia replication in epithelial cells. Two of the five CD8 clones produced interleukin-13 (IL-13) in addition to IL-2, TNF-α, IL-10 and interferon-γ. IL-13-producing Chlamydia-specific CD8 T cells may contribute to immunopathology during C. muridarum genital tract infections based on known roles of TNF-α and IL-13 in scar formation.
Collapse
Affiliation(s)
- Raymond M Johnson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
11
|
Jain S, Chodisetti SB, Agrewala JN. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells. PLoS One 2011; 6:e20651. [PMID: 21674065 PMCID: PMC3107243 DOI: 10.1371/journal.pone.0020651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022] Open
Abstract
Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40 - molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.
Collapse
Affiliation(s)
- Shweta Jain
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Sathi Babu Chodisetti
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Javed N. Agrewala
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
- * E-mail: .
| |
Collapse
|
12
|
Timke C, Winnenthal HS, Klug F, Roeder FFF, Bonertz A, Reissfelder C, Rochet N, Koch M, Tjaden C, Buechler MW, Debus J, Werner J, Beckhove P, Weitz J, Huber PE. Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer. BMC Cancer 2011; 11:134. [PMID: 21489291 PMCID: PMC3101175 DOI: 10.1186/1471-2407-11-134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/13/2011] [Indexed: 12/18/2022] Open
Abstract
Background The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer. Methods/Design This trial has been designed as an investigator initiated; prospective randomised, 4-armed, controlled Phase I/II trial. Patients who are candidates for resection of pancreatic cancer will be randomized into 4 arms. A total of 40 patients will be enrolled. The patients receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation precisely targeted to their pancreatic carcinoma. Radiation will be delivered by external beam radiotherapy using a 6 MV Linac with IMRT technique 48 h prior to the surgical resection. The primary objective is the determination of an active local external beam radiation dose, leading to tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include local tumor control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality, as well as quality of life. Further, frequencies of tumor reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. An interim analysis will be performed after the enrolment of 20 patients for safety reasons. The evaluation of the primary endpoint will start four weeks after the last patient's enrolment. Discussion This trial will answer the question whether a low dose radiotherapy localized to the pancreatic tumor only can increase the number of tumor infiltrating T cells and thus potentially enhance the antitumor immune response. The study will also investigate the prognostic and predictive value of radiation-induced T cell activity along with transcriptomic and proteomic data with respect to clinical outcome. Trial registration ClinicalTrials.gov - NCT01027221
Collapse
Affiliation(s)
- Carmen Timke
- Department of Radiation Oncology, German Cancer Research Center and University Hospital Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Singh NJ, Cox M, Schwartz RH. TLR Ligands Differentially Modulate T Cell Responses to Acute and Chronic Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2007; 179:7999-8008. [DOI: 10.4049/jimmunol.179.12.7999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Rowe V, Banovic T, MacDonald KP, Kuns R, Don AL, Morris ES, Burman AC, Bofinger HM, Clouston AD, Hill GR. Host B cells produce IL-10 following TBI and attenuate acute GVHD after allogeneic bone marrow transplantation. Blood 2006; 108:2485-92. [PMID: 16788097 DOI: 10.1182/blood-2006-04-016063] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Host antigen-presenting cells (APCs) are known to be critical for the induction of graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT), but the relative contribution of specific APC subsets remains unclear. We have studied the role of host B cells in GVHD by using B-cell-deficient microMT mice as BMT recipients in a model of CD4-dependent GVHD to major histocompatibility complex antigens. We demonstrate that acute GVHD is initially augmented in microMT recipients relative to wild-type recipients (mortality: 85% vs 44%, P < .01), and this is the result of an increase in donor T-cell proliferation, expansion, and inflammatory cytokine production early after BMT. Recipient B cells were depleted 28-fold at the time of BMT by total body irradiation (TBI) administered 24 hours earlier, and we demonstrate that TBI rapidly induces sustained interleukin-10 (IL-10) generation from B cells but not dendritic cells (DCs) or other cellular populations within the spleen. Finally, recipient mice in which B cells are unable to produce IL-10 due to homologous gene deletion develop more severe acute GVHD than recipient mice in which B cells are wild type. Thus, the induction of IL-10 in host B cells during conditioning attenuates experimental acute GVHD.
Collapse
Affiliation(s)
- Vanessa Rowe
- Bone Marrow Transplantation Laboratory, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fitch FW, Gajewski TF, Hu-Li J. Production of TH1 and TH2 cell lines and clones. CURRENT PROTOCOLS IN IMMUNOLOGY 2006; Chapter 3:3.13.1-3.13.15. [PMID: 18432972 DOI: 10.1002/0471142735.im0313s72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes protocols for the generation of polyclonal T(H)1 and T(H)2 cell lines from naive CD4(+) T cells as well as for generation of antigen-specific cell lines from TCR-transgenic mice and antigen-specific T cell clones from primed mice. Also described are methods for the preparation and maintenance of alloreactive murine helper T (T(H)) lymphocyte and cytotoxic T lymphocyte (CTL) clones using the limiting dilution technique, as well as derivation of T(H) clones reactive with soluble protein antigens, including a method for the selection of either T(H)1 or T(H)2 lymphocyte subsets. These two subsets of T(H) cells exhibit helper function in different ways and can be distinguished by the patterns of cytokines they synthesize. Support protocols describe a micromanipulation method for cloning T cells and a roadmap for using protocols published elsewhere in this series to assess cytokine production by T cell clones and lines.
Collapse
Affiliation(s)
| | | | - Jane Hu-Li
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Lal G, Shaila MS, Nayak R. Activated mouse T-cells synthesize MHC class II, process, and present morbillivirus nucleocapsid protein to primed T-cells. Cell Immunol 2005; 234:133-45. [PMID: 16083868 DOI: 10.1016/j.cellimm.2005.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 06/02/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022]
Abstract
A pivotal step in the initiation of T-cell immunity is the presentation of antigenic peptides by major histocompatibility complex (MHC) expressed on antigen presenting cells. The expression of MHC class II molecules by mouse T-cells has not been shown unequivocally. In the present work, we demonstrate that activated mouse T-cells synthesize MHC class II molecules de novo and express them on their surface. Further, we have demonstrated that in vitro activated T-cells take up extra-cellular soluble nucleocapsid protein of a morbillivirus. The internalized antigen goes to antigen processing compartment as shown by co-localization of antigen and LAMP-1 using confocal microscopy. We show that activated T-cells express H2M, a chaperone molecule known to have a role in antigen presentation. Further, we demonstrate that activated T-cells process and present internalized extra-cellular antigen to primed T-cells as shown by IL-2 secretion and in vitro proliferation. The presentation of antigen by T-cells may have implications in immuno-regulation, control of infection by lymphotropic viruses and maintenance of immunological memory.
Collapse
Affiliation(s)
- Girdhari Lal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
18
|
Wira CR, Crane-Godreau MA, Grant KS. Endocrine Regulation of the Mucosal Immune System in the Female Reproductive Tract. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50101-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Kruisbeek AM, Shevach E, Thornton AM. Proliferative Assays for T Cell Function. ACTA ACUST UNITED AC 2004; Chapter 3:Unit 3.12. [DOI: 10.1002/0471142735.im0312s60] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ethan Shevach
- National Institute of Allergy and Infectious Diseases Bethesda Maryland
| | - Angela M. Thornton
- National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda Maryland
| |
Collapse
|
20
|
Wira CR, Rossoll RM. Oestradiol regulation of antigen presentation by uterine stromal cells: role of transforming growth factor-beta production by epithelial cells in mediating antigen-presenting cell function. Immunology 2003; 109:398-406. [PMID: 12807486 PMCID: PMC1782972 DOI: 10.1046/j.1365-2567.2003.01670.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Revised: 03/27/2003] [Accepted: 04/09/2003] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that oestradiol treatment of ovariectomized rats for 3 days inhibits antigen presentation by uterine stromal cells at a time when oestradiol increases the numbers of antigen-presenting cells (APC) in the uterine stroma. In the present study, we found that oestradiol treatment for 1 day is sufficient to inhibit antigen presentation by stromal cells. To define the mechanism(s) of this inhibition, we examined the effect of cytokines and found that exogenous transforming growth factor-beta (TGF-beta) inhibits antigen presentation when stromal cells from saline- but not oestradiol-treated animals are incubated with ovalbumin (OVA)-specific T cells and OVA. In contrast, antigen presentation by uterine epithelial cells was not affected by TGF-beta. In other studies, the acute inhibitory effect of oestradiol (1 day) on stromal antigen presentation is fully reversed when anti-TGF-beta antibody is added to the culture media. When given for 3 days, oestradiol inhibition of antigen presentation is partially reversed by anti-TGF-beta antibody at a time when antibodies to tumour necrosis factor-alpha and interleukin-10 have no effect. To determine whether uterine epithelial cells produce TGF-beta, epithelial cells were grown to confluence on transwell inserts. Our findings indicate that uterine epithelial cells produce biologically active TGF-beta which is preferentially released basolaterally in the direction of underlying stromal cells. When oestradiol is given to ovariectomized rats 1 day before sacrifice, TGF-beta production by epithelial cells increases within 24 hr in culture, relative to saline controls. Taken together, these results suggest that oestradiol inhibition of stromal cell antigen presentation is mediated through the stimulatory effect of oestradiol on TGF-beta production by epithelial cells.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA.
| | | |
Collapse
|
21
|
Snyder CM, Zhang X, Wysocki LJ. Negligible class II MHC presentation of B cell receptor-derived peptides by high density resting B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3865-73. [PMID: 11937540 DOI: 10.4049/jimmunol.168.8.3865] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Resting B lymphocytes have been credited with inducing T cell tolerance to Ig-derived and monovalent self-Ags that are internalized via the B cell receptor (BCR). These conclusions are predicated upon the assumptions that resting B cells display BCR-associated peptides in class II MHC and that the cells remain quiescent during the course of experimental manipulation. To determine whether resting B cells display BCR-associated epitopes in class II MHC, we devised a sensitive assay that averted potential activation of B cells by Ag and minimized activation by prolonged culture. Ex vivo, Percoll-fractionated B cells expressing a kappa transgene encoding a T cell epitope were cultured with a reactive T cell hybridoma for 12 h. Whereas low density, LPS-activated, and BCR-activated B cells elicited significant IL-2 from the T cell hybridoma, resting high density B cells did not. Parallel results were obtained with normal B cells expressing a second epitope encoded by an endogenous V(H) gene. Anergic B cells, which are uniformly low density, also significantly stimulated the T cell hybridoma. Finally, longer culture periods with normal B cells resulted in a higher degree of B cell activation and significant stimulation of reactive T cell hybridomas. Our results provide evidence that activation of B cells profoundly enhances the processing and presentation of BCR-associated Ags.
Collapse
Affiliation(s)
- Christopher M Snyder
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
22
|
Lunde E, Western KH, Rasmussen IB, Sandlie I, Bogen B. Efficient delivery of T cell epitopes to APC by use of MHC class II-specific Troybodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2154-62. [PMID: 11859101 DOI: 10.4049/jimmunol.168.5.2154] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A major objective in vaccine development is the design of reagents that give strong, specific T cell responses. We have constructed a series of rAb with specificity for MHC class II (I-E). Each has one of four different class II-restricted T cell epitopes genetically introduced into the first C domain of the H chain. These four epitopes are: 91-101 lambda2(315), which is presented by I-E(d); 110-120 hemagglutinin (I-E(d)); 323-339 OVA (I-A(d)); and 46-61 hen egg lysozyme (I-A(k)). We denote such APC-specific, epitope-containing Ab "Troybodies." When mixed with APC, all four class II-specific Troybodies were approximately 1,000 times more efficient at inducing specific T cell activation in vitro compared with nontargeting peptide Ab. Furthermore, they were 1,000-10,000 times more efficient than synthetic peptide or native protein. Conventional intracellular processing of the Troybodies was required to load the epitopes onto MHC class II. Different types of professional APC, such as purified B cells, dendritic cells, and macrophages, were equally efficient at processing and presenting the Troybodies. In vivo, class II-specific Troybodies were at least 100 times more efficient at targeting APC and activating TCR-transgenic T cells than were the nontargeting peptide Ab. Furthermore, they were 100-100,000 times more efficient than synthetic peptide or native protein. The study shows that class II-specific Troybodies can deliver a variety of T cell epitopes to professional APC for efficient presentation, in vitro as well as in vivo. Thus, Troybodies may be useful as tools in vaccine development.
Collapse
Affiliation(s)
- Elin Lunde
- Institute of Immunology, University of Oslo, National Hospital, P.O. Box 1050 Blindern, N-0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
23
|
Stadlbauer TH, Schaub M, Magee CC, Kupiec-Weglinski JW, Sayegh MH. Intrathymic immunomodulation in sensitized rat recipients of cardiac allografts: requirements for allorecognition pathways. J Heart Lung Transplant 2000; 19:566-75. [PMID: 10867337 DOI: 10.1016/s1053-2498(00)00098-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Intrathymic injection of alloantigen in the form of donor cells, soluble major histocompatibility complex (MHC) molecules, or MHC allopeptides induces donor-specific tolerance in a variety of acute allograft rejection models. We have previously shown that a single intrathymic injection of donor spleen cells into pre-sensitized rats abrogates accelerated (circa 24-hour) rejection and prolongs the survival of cardiac allografts to about 7 days. The present study was designed to investigate the mechanisms by which intrathymic administration of donor cells modifies the course of accelerated rejection. METHODS Lewis RT1(1) (LEW) rats sensitized by transplantation with Wistar-Furth RT1(u) (WF) skin grafts received WF cardiac allografts 7 days later-a classic model of accelerated rejection. At the time of skin challenge, however, certain animals received intrathymic cell suspensions (either allogeneic or syngeneic) or donor-derived class I and/or class II MHC peptides. RESULTS Control animals (sensitized by skin grafts but receiving no other treatment) rejected cardiac allografts within 24 hours. Intrathymic injection of WF splenocytes at the time of skin transplantation abrogated rejection at 24 hours and prolonged cardiac allograft survival to 6.6+/-0.6 days (p<0.001), whereas intrathymic administration of syngeneic (LEW) or allogeneic third party Brown Norway RT1(n) cells was ineffective in this regard. Intrathymic injection of gamma-irradiated donor cells marginally extended cardiac allograft survival to 3.0+/-0.9 days (p< 0.001), but the grafts were still rejected in an accelerated fashion. Intrathymic injection of donor-derived class I and/or class II MHC allopeptides at the same time period also failed to prolong cardiac allograft survival beyond 3 days. In the group receiving unmodified donor cells, elevated immunoglobulin M (IgM) and immunoglobulin G (IgG) allo-antibodies were found at the time of cardiac transplantation; this pattern was not observed with any other treatment. CONCLUSION The superiority of non-modified donor spleen cells over gamma-irradiated donor cells or donor specific allopeptides in modifying the course of accelerated cardiac rejection suggests that direct allorecognition is the dominant pathway initiating rejection in sensitized transplant recipients. Marked alterations in the antidonor IgM and IgG responses are associated with successful abrogation of accelerated rejection by thymic immunomodulatory mechanisms.
Collapse
Affiliation(s)
- T H Stadlbauer
- Surgical Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
24
|
Evans DE, Munks MW, Purkerson JM, Parker DC. Resting B lymphocytes as APC for naive T lymphocytes: dependence on CD40 ligand/CD40. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:688-97. [PMID: 10623811 DOI: 10.4049/jimmunol.164.2.688] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although resting B cells as APC are tolerogenic for naive T cells in vivo, we show here that they can provide all the costimulatory signals necessary for naive T cell proliferation in vivo and in vitro. In the absence of an activating signal through the B cell Ag receptor, T cell proliferation after Ag recognition on resting B cells depends on CD40 expression on the B cells, implying that naive T cells use the membrane-bound cytokine, CD40 ligand (CD154), to induce the costimulatory signals that they need. Induction of B7-1 (CD80) and increased or sustained expression of CD44H, ICAM-1 (CD54), and B7-2 (CD86) are dependent on the interaction of CD40 ligand with CD40. Transient expression (12 h) of B7-2 is T cell- and peptide Ag-dependent, but CD40-independent. Only sustained (>/=24 h) expression of B7-2 and perhaps increased expression of ICAM-1 could be shown to be functionally important in this system. T cells cultured with CD40-deficient B cells and peptide remain about as responsive as fresh naive cells upon secondary culture with whole splenic APC. Therefore, B cells, and perhaps other APC, may be tolerogenic not because they fail to provide sufficient costimulation for T cell proliferation, but because they are deficient in some later functions necessary for a productive T cell response.
Collapse
Affiliation(s)
- D E Evans
- Department of Molecular Microbiology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
25
|
Munthe LA, Kyte JA, Bogen B. Resting small B cells present endogenous immunoglobulin variable-region determinants to idiotope-specific CD4(+) T cells in vivo. Eur J Immunol 1999; 29:4043-52. [PMID: 10602015 DOI: 10.1002/(sici)1521-4141(199912)29:12<4043::aid-immu4043>3.0.co;2-e] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antigenic determinants localized within the highly diversified V-regions of Ig are called idiotopes (Id). Processed Id-peptides can be presented on MHC class II molecules to CD4(+) T cells. If B cells present their endogenous Id-peptides, T cell activation could occur in the absence of nominal antigen, a potentially important process in T-B cooperation and immune regulation. To test this idea, we used mice made transgenic for a lambda2 L-chain (Id(+) mice). Another transgenic mouse strain expresses TCR transgenes with specificity for the Id (lambda2), presented on MHC class II molecules. When highly purified sorted Id(+) B cells and Id-specific T cells were sequentially injected into MHC syngeneic SCID host, T cell became blastoid, CD69(+) and proliferated. To exclude any role of host APC, MHC incompatible Rag2(- / -) mice (H-2(b)) were used as recipients for the Id(+) B and Id-specific T cells, with similar results. Exposure to extracellular Id(+) immunoglobulin (Ig) was not sufficient for Id priming of B cells in vivo, highlighting the preferential presentation of Id peptides derived from endogenous Ig, by B cells. The results suggest that B cells presenting Id self-peptides generated by V(D)J recombinations or somatic mutations may directly stimulate T cell in vivo in the absence of conventional antigen.
Collapse
Affiliation(s)
- L A Munthe
- Institut of Immunology, University of Oslo, National Hospital, Oslo, Norway.
| | | | | |
Collapse
|
26
|
Abstract
There is currently much interest in the numerical and functional loss of antigen-presenting cells (APC) in HIV-1 disease and the contribution that this may make to HIV-1 pathology. The HIV-1 virus can interfere with the normal function of APC in a number of ways involving inappropriate signalling. These include changes in cytokine balance, cell-surface molecule expression and intracellular signalling pathways. This review examines how HIV-1 is able to disregulate APC function and discusses possible outcomes for the function of the immune system.
Collapse
Affiliation(s)
- T Hewson
- Department of Pathology, University of Edinburgh Medical School, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Lunde E, Munthe LA, Vabø A, Sandlie I, Bogen B. Antibodies engineered with IgD specificity efficiently deliver integrated T-cell epitopes for antigen presentation by B cells. Nat Biotechnol 1999; 17:670-5. [PMID: 10404160 DOI: 10.1038/10883] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a strategy for improving the stimulation of T cells during immune responses by constructing recombinant antibodies that enhance the delivery of antigen to antigen-presenting cells, such as B cells. These antibodies have variable regions specific for surface molecules on B cells, and a constant region with an inserted antigen. In vitro, such antibodies make B cells approximately 1000-fold more efficient at presenting antigen and stimulating specific T cells. In vivo, the antibodies turn B cells of the spleen into potent stimulators of T cells. This approach may be useful for the generation of new vaccines.
Collapse
Affiliation(s)
- E Lunde
- Institute of Immunology and Rheumatology, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
28
|
Williams GS, Oxenius A, Hengartner H, Benoist C, Mathis D. CD4+ T cell responses in mice lacking MHC class II molecules specifically on B cells. Eur J Immunol 1998; 28:3763-72. [PMID: 9842919 DOI: 10.1002/(sici)1521-4141(199811)28:11<3763::aid-immu3763>3.0.co;2-d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of B lymphocytes in initiating and maintaining a CD4+ T cell response has been examined using a variety of strategies, but remains controversial because of weaknesses inherent to each of the approaches. Here, we address this issue by measuring CD4+ T cell priming both in mutant mice devoid of B cells and in chimeric animals lacking major histocompatibility complex class II molecules specifically on B cells. We find that peptide and some protein antigens do not require B cells expressing class II molecules, nor B cells themselves, to efficiently prime. This could be demonstrated by the usual lymph node proliferation assay, a rather indirect in vitro measure of priming, and by a direct ex vivo assay of population expansion and activation marker expression. Interestingly, one protein antigen, conalbumin, could not prime in the absence of B cells, but could in the presence of B cells devoid of class II molecules. This finding constrains the possible mechanisms whereby B lymphocytes contribute to the initiation of a CD4+ T cell response, arguing against the importance of surface immunoglobulin-mediated antigen presentation by B cells.
Collapse
Affiliation(s)
- G S Williams
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), Illkirch, C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
29
|
Chow K, Fu J, Kong H, Jiang S, Chang KS, Shih CC. The radiation-sensitive costimulatory factors involved in B-cell-dependent T-cell activation by minor lymphocyte stimulating antigen. J Biomed Sci 1998; 5:332-42. [PMID: 9758907 DOI: 10.1007/bf02253443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- K Chow
- Department of Microbiology and Immunology, Medical College, Chang-Gung University, Taoyuan, Kweishan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
30
|
Mohan C, Morel L, Yang P, Wakeland EK. Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. ARTHRITIS AND RHEUMATISM 1998; 41:1652-62. [PMID: 9751099 DOI: 10.1002/1529-0131(199809)41:9<1652::aid-art17>3.0.co;2-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE In order to shed light on the role of splenic B1 cells in disease pathogenesis in lupus-prone mice, this study was undertaken to determine how efficiently these cells can serve as antigen-presenting cells (APC) and to ascertain which murine lupus susceptibility loci dictate the expansion of these cells. METHODS Spleens and peritoneal cavities (PerC) of NZM2410 lupus-prone mice, as well as of control B6 and New Zealand white mice, were examined for the prevalence, surface phenotype, and possible anatomic location of B1 cells. The antigen-presenting ability of fluorescence-sorted splenic B1a cells was assessed. Levels of B1 cells were examined in B6 mice congenic for 4 different lupus susceptibility intervals. RESULTS NZM2410 lupus mice showed an expansion of splenic and PerC B1a cells at all ages. These cells expressed high levels of B71, B72, CD24, lymphocyte function-associated antigen 1, and intercellular adhesion molecule 1, and had the functional capability to serve as APC. Among the lupus susceptibility intervals studied, Sle2, but not Sle1, Sle3, or the H2 locus, affected the expansion of B1 cells. CONCLUSION These findings raise the possibility that the genetically determined expansion of splenic B1a cells in lupus-prone mice might contribute to disease pathogenesis by augmenting the presentation of autoantigens to pathogenic T cells.
Collapse
Affiliation(s)
- C Mohan
- College of Medicine, University of Florida, Gainesville 32610-0275, USA
| | | | | | | |
Collapse
|
31
|
Tkaczyk C, Viguier M, Boutin Y, Frandji P, David B, Hébert J, Mécheri S. Specific antigen targeting to surface IgE and IgG on mouse bone marrow-derived mast cells enhances efficiency of antigen presentation. Immunology 1998; 94:318-24. [PMID: 9767412 PMCID: PMC1364248 DOI: 10.1046/j.1365-2567.1998.00525.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The discovery that bone marrow-derived mast cells can express major histocompatibility complex class II molecules and act as antigen-presenting cells prompted us to evaluate this function when antigen is internalized through fluid-phase endocytosis or via specific uptake by using IgG and IgE antibodies. This study was performed using a specific T-cell hybridoma developed against Lol p 1, the major allergen of grass pollen Lolium perenne. Expression of Fc gamma R and Fc epsilon RI by mast cells led us to investigate the influence of IgG- and IgE-targeted antigen on the antigen-presenting function of mast cells. Internalization of Lol p 1 through different specific IgG monoclonal antibodies (mAb) resulted in the activation of Lol p 1-specific T-cell hybridoma at concentrations about 100-fold less than that required for T-cell stimulation by uncomplexed antigen. IgE-complexed Lol p 1, which facilitates trapping of antigen by mast cells, induced an accelerated and more efficient antigen-presenting capacity of mast cells than that obtained with uncomplexed antigen. However, aggregation of anti-dinitrophenyl (DNP) IgE mAb by the irrelevant antigen DNP-human serum albumin did not substantially increase the capacity of mast cells to present Lol p 1 to T cells. This suggests that the mere aggregation of Fc epsilon RI is not sufficient for enhanced antigen presentation mediated by IgE. Tissue distribution and strategic location of mast cells at the mucosal barriers and their capacity to process the antigen through efficient fluid-phase pinocytosis as well as IgG- and IgE-dependent targeting of antigens provide mast cells with a prominent role in immune surveillance.
Collapse
Affiliation(s)
- C Tkaczyk
- Unité d'Immunoallergie, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Wysocki LJ, Zhang X, Smith DS, Snyder CM, Bonorino C. Somatic origin of T-cell epitopes within antibody variable regions: significance to monoclonal therapy and genesis of systemic autoimmune disease. Immunol Rev 1998; 162:233-46. [PMID: 9602368 DOI: 10.1111/j.1600-065x.1998.tb01445.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During an immune response, specific antibody variable region genes are diversified by a somatic point mutation process that generates de novo "foreign" V-region sequences. This creates an interesting problem in immune regulation because B cells are highly proficient at self-presenting V-region peptides in the context of class II MHC. Though our studies indicate that the corresponding T-cell repertoire attains a state of tolerance to germline-encoded antibody V-region diversity, it is presently unknown whether the same is true of mutationally generated diversity. On the basis of immunoregulatory considerations, we hypothesize that contact exclusion or tolerance normally precludes T cells from helping B cells via self-presented mutant V-region peptides. The lack of recurrent somatic mutations that create known T-cell epitopes in antibody V regions lends some support to this idea. In contrast, our studies of spontaneously autoreactive B cells in systemic autoimmune disease strongly suggest that precursors of such cells are recruited by T-cell help directed to self-presented mutant idiopeptides. Failures in tolerance or contact exclusion mechanisms may be responsible for this apparently abnormal event. In addition to their importance in immune regulation, somatic mutations or other differences from germline-encoded V-region sequence may be largely responsible for undesirable patient responses to therapeutic monoclonal antibodies. These reactions might be averted or diminished by inducing tolerance in the T-cell repertoire with synthetic peptide correlates of non-germline-encoded V-region sequences in humanized antibodies.
Collapse
Affiliation(s)
- L J Wysocki
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80207, USA.
| | | | | | | | | |
Collapse
|
33
|
Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci U S A 1998; 95:1178-83. [PMID: 9448305 PMCID: PMC18712 DOI: 10.1073/pnas.95.3.1178] [Citation(s) in RCA: 505] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The priming of tumor-antigen-specific T cells is critical for the initiation of successful anti-tumor immune responses, yet the fate of such cells during tumor progression is unknown. Naive CD4(+) T cells specific for an antigen expressed by tumor cells were transferred into tumor-bearing mice. Transient clonal expansion occurred early after transfer, accompanied by phenotypic changes associated with antigen recognition. Nevertheless, these cells had a diminished response to peptide antigen in vitro and were unable to be primed in vivo. The development of antigen-specific T cell anergy is an early event in the tumor-bearing host, and it suggests that tolerance to tumor antigens may impose a significant barrier to therapeutic vaccination.
Collapse
Affiliation(s)
- K Staveley-O'Carroll
- Departments of Surgery and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
O'Rourke AM, Webb SR. Cross talk between T and B cells generates B antigen-presenting cells able to induce inositol phosphate production in T cells responding to Mls(a) superantigens. Eur J Immunol 1997; 27:3253-8. [PMID: 9464813 DOI: 10.1002/eji.1830271224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies showed that activation of CD4+ T cells with mouse mammary tumor virus-encoded Mls(a) superantigens induces strong proliferative responses and interleukin-2 production but fails to elicit typical early T cell receptor (TCR)-mediated signal transduction events, such as hydrolysis of polyphosphoinositides (PI) or an increase in intracellular calcium. Here we show that the failure of Mls(a) antigen to activate PI hydrolysis applies when resting B cells are used as antigen-presenting cells (APC). By contrast, when Mls(a)-bearing B cells are activated for 24 h by exposure to lipopolysaccharide or, more importantly, to Mls(a)-reactive T cells or anti-CD40 antibodies the cells develop the capacity to elicit easily detectable PI turnover. These studies demonstrate that, for B cells as APC, the initiation of certain TCR-associated signal transduction pathways can depend on activation of the APC. The data suggest that cross talk between T cells and resting B cells can suffice to generate competent B APC and lead to the delayed initiation of signaling pathways important in T cell responses.
Collapse
Affiliation(s)
- A M O'Rourke
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
35
|
Bartnes K, Hannestad K. Engagement of the B lymphocyte antigen receptor induces presentation of intrinsic immunoglobulin peptides on major histocompatibility complex class II molecules. Eur J Immunol 1997; 27:1124-30. [PMID: 9174601 DOI: 10.1002/eji.1830270512] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By means of the clonotypic variable region, the immunoglobulin (Ig) is a tumor-specific antigen on B cell neoplasms. We report that engagement of the B cell antigen receptor (BcR) promotes presentation of peptides derived from the B cell's intrinsic Ig to major histocompatibility complex (MHC) class II-restricted T cells. Thus, anti-Ig endowed normal, ex vivo B lymphocytes from H-2d, Ig constant heavy chain allotype b (IgCHb) mice with the capacity to stimulate an I-Ad-restricted T cell clone which recognizes the gamma 2ab 435-451 allopeptide. The corresponding self gamma 2aa peptide is cryptic and 6000-fold less antigenic than the gamma 2ab allopeptide. Even so, the syngeneic B cell lymphoma A20 which expresses surface(s) IgG2aa, was also recognized by the T cells after BcR ligation. Thus, anti-Ig triggered the disclosure of a cryptic tumor antigen determinant. We propose that autoantigens, by engaging the BcR of self-reactive B cells, induce presentation of intrinsic Ig peptides to which the T helper cell (Th) repertoire is not tolerant. In this way, B cells with anti-self potential may be activated without Th recognition of nominal autoantigen.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/pharmacology
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Female
- Histocompatibility Antigens Class II/metabolism
- Lymphocyte Activation
- Lymphoma, B-Cell/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NZB
- Peptides/immunology
- Peptides/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Spleen/immunology
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K Bartnes
- Department of Immunology, University of Tromsø School of Medicine, Norway
| | | |
Collapse
|
36
|
Abstract
Antigen presentation by B cells and persistence of antigen-antibody complexes on follicular dendritic cells (FDC) have been implicated in sustaining T cell memory. In this study we have examined the role of B cells and antibody in the generation and maintenance of CD8+ cytotoxic T lymphocyte (CTL) memory. To address this issue we compared CTL responses to lymphocytic choriomeningitis virus (LCMV) in normal (+/+) versus B cell-deficient mice. The CTL response to acute LCMV infection can be broken down into three distinct phases: (a) the initial phase (days 3-8 after infection) of antigen-driven expansion of virus-specific CD8+ T cells and the development of effector CTL (i.e., direct ex vivo killers); (b) a phase of death (between days 10 and 30 after infection) during which >95% of the virus-specific CTL die and the direct effector activity subsides; and (c) the phase of long-term memory (after day 30) that is characterized by a stable pool of memory CTL that persist for the life span of the animal. The role of B cells in each of these three phases of the CTL response was analyzed. We found that B cells were not required for the expansion and activation of virus-specific CTL. The kinetics and magnitude of the effector CTL response, as measured by direct killing of infected targets by ex vivo isolated splenocytes, was identical in B cell-deficient and +/+ mice. Also, the expansion of CD8+ T cells was not affected by the absence of B cells and/or antibody; in both groups of mice there was an approximately 10,000-fold increase in the number of LCMV-specific CTL and a greater than 10-fold increase in the total number of activated (CD44hi) CD8+ T cells during the first week after virus infection. Although no differences were seen during the "expansion" phase, we found that the "death" phase was more pronounced in B cell-deficient mice. However, this increased cell death was not selective for LCMV-specific CTL, and during this period the total number of CD8+ T cells also dropped substantially more in B cell-deficient mice. As a result of this, the absolute numbers of LCMV-specific CTL were lower in B cell-deficient mice but the frequencies were comparable in both groups of mice. More significantly, the memory phase of the CTL response was not affected by the absence of B cells and a stable number of LCMV-specific CTL persisted in B cell-deficient mice for up to 6 mo. Upon reinfection, B cell-deficient mice that had resolved an acute LCMV infection were able to make accelerated CTL responses in vivo and eliminated virus more efficiently than naive B cell-deficient mice. Thus, CTL memory, as assessed by frequency of virus-specific CTL or protective immunity, does not decline in the absence of B cells. Taken together, these results show that neither B cells nor antigen-antibody complexes are essential for the maintenance of CD8+ CTL memory.
Collapse
Affiliation(s)
- M S Asano
- Department of Microbiology and Immunology, University of California at Los Angeles School of Medicine 90024, USA
| | | |
Collapse
|
37
|
Abstract
The cellular basis of immunological memory has been a debated issue. It is not clear whether CD8 T cell memory is maintained by long-lived cells or by specific or nonspecific restimulation. Here, we have approached the question from a different angle, asking whether the cellular interactions that are required to maintain memory are the same as those necessary to activate cytotoxic T lymphocytes. We studied the CD8 memory response to the male antigen H-Y in mice deficient in CD4 cells, or B cells and found that memory in these mice was virtually unimpaired. These results suggest that CD8 memory is CD4 independent and that there is no requirement for long term retention of immune complexes on follicular dendritic cells, nor for B cells as antigen-presenting cells.
Collapse
Affiliation(s)
- F Di Rosa
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
38
|
Crowley MT, Harmer SL, DeFranco AL. Activation-induced association of a 145-kDa tyrosine-phosphorylated protein with Shc and Syk in B lymphocytes and macrophages. J Biol Chem 1996; 271:1145-52. [PMID: 8557643 DOI: 10.1074/jbc.271.2.1145] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Engagement of many cell surface receptors results in tyrosine phosphorylation of an overlapping set of protein substrates. Some proteins, such as the adaptor protein Shc, and a frequently observed Shc-associated protein, p145, are common substrates in a variety of receptor signaling pathways and are thus of special interest. Tyrosine-phosphorylated Shc and p145 coprecipitated with anti-Shc antibodies following B cell antigen receptor (BCR) cross-linking or interleukin-4 (IL-4) receptor activation in B cells, and after lipopolysaccharide (LPS) treatment or IgG Fc receptor (Fc gamma R) cross-linking in macrophages. In the case of BCR stimulation, we have shown that this represented the formation of an inducible complex. Furthermore, in response to LPS activation or Fc gamma R cross-linking of macrophages and BCR cross-linking (but not IL-4 treatment) of B cells, we observed a similar tyrosine-phosphorylated p145 protein associated with the tyrosine kinase Syk. We did not detect any Shc associated with Syk, indicating that a trimolecular complex of Shc, Syk, and p145 was not formed in significant amounts. By several criteria, the Syk-associated p145 was very likely the same protein as the previously identified Shc-associated p145. The Syk-associated p145 and the Shc-associated p145 exhibited identical mobility by SDS-polyacrylamide gel electrophoresis and identical patterns of induced tyrosine phosphorylation. The p145 protein that coprecipitated with either Shc or Syk bound to a GST-Shc fusion protein. In addition, a monoclonal antibody developed against Shc-associated p145 also immunoblotted the Syk-associated p145. The observations that p145 associated with both Shc and Syk proteins, in response to stimulation of a variety of receptors, suggest that it plays an important role in coordinating early signaling events.
Collapse
Affiliation(s)
- M T Crowley
- G. W. Hooper Foundation, University of California, San Francisco 94143-0552, USA
| | | | | |
Collapse
|
39
|
Parker DC, Greiner DL, Phillips NE, Appel MC, Steele AW, Durie FH, Noelle RJ, Mordes JP, Rossini AA. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci U S A 1995; 92:9560-4. [PMID: 7568172 PMCID: PMC40841 DOI: 10.1073/pnas.92.21.9560] [Citation(s) in RCA: 350] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Combined treatment with allogeneic small lymphocytes or T-depleted small lymphocytes plus a blocking antibody to CD40 ligand (CD40L) permitted indefinite pancreatic islet allograft survival in 37 of 40 recipients that differed from islet donors at major and minor histocompatibility loci. The effect of the allogeneic small lymphocytes was donor antigen-specific. Neither treatment alone was as effective as combined treatment, although anti-CD40L by itself allowed indefinite islet allograft survival in 40% of recipients. Our interpretation is that small lymphocytes expressing donor antigens in the absence of appropriate costimulatory signals are tolerogenic for alloreactive host cells. Anti-CD40L antibody may prevent host T cells from inducing costimulatory signals in donor lymphocytes or islet grafts.
Collapse
Affiliation(s)
- D C Parker
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Epstein MM, Di Rosa F, Jankovic D, Sher A, Matzinger P. Successful T cell priming in B cell-deficient mice. J Exp Med 1995; 182:915-22. [PMID: 7561694 PMCID: PMC2192294 DOI: 10.1084/jem.182.4.915] [Citation(s) in RCA: 231] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
B cells are an abundant population of lymphocytes that can efficiently capture, process, and present antigen for recognition by activated or memory T cells. Controversial experiments and arguments exist, however, as to whether B cells are or should be involved in the priming of virgin T cells in vivo. Using B cell-deficient mice, we have studied the role of B cells as antigen-presenting cells in a wide variety of tests, including assays of T cell proliferation and cytokine production in responses to protein antigens, T cell killing to minor and major histocompatibility antigens, skin graft rejection, and the in vitro and in vivo responses to shistosome eggs. We found that B cells are not critical for either CD4 or CD8 T cell priming in any of these systems. This finding lends support to the notion that the priming of T cells is reserved for specialized cells such as dendritic cells and that antigen presentation by B cells serves distinct immunological functions.
Collapse
Affiliation(s)
- M M Epstein
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Brennan FR, Mikecz K, Buzás EI, Ragasa D, Cs-Szabó G, Negroiu G, Glant TT. Antigen-specific B cells present cartilage proteoglycan (aggrecan) to an autoreactive T cell hybridoma derived from a mouse with proteoglycan-induced arthritis. Clin Exp Immunol 1995; 101:414-21. [PMID: 7664487 PMCID: PMC1553246 DOI: 10.1111/j.1365-2249.1995.tb03128.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cartilage proteoglycan (aggrecan)-induced polyarthritis in BALB/c mice is characterized by chronic inflammation and destruction of joint tissues similar to that observed in human rheumatoid arthritis. The immunization of mice with fetal human proteoglycan (PG) elicits specific antibodies to the immunizing antigen of which a population cross-reacts with native mouse PG. This (auto)antibody production is immediately followed by an explosive proliferation of autoreactive T cells, suggesting that PG-specific B cells may participate in antigen presentation of PG to autoreactive T cells. We therefore isolated B cells from the spleens and lymph nodes of PG-immunized mice and examined their ability to present PG to a PG-specific T cell hybridoma. The antigen-specific T cell responses elicited by B cells from PG-immunized mice (both arthritic and clinically asymptomatic) were markedly higher than those of non-immune mice and keyhole limpet haemocyanin (KLH)-immunized mice, and these B cells could present low PG concentrations. Levels of B cell presentation corresponded with the serum levels of PG-specific antibodies, implying that these B cells were presenting the PG specifically via their surface immunoglobulin. This B cell-T cell interaction was strongly dependent on MHC class II/T cell receptor (TCR), LFA-1/intercellular adhesion molecule-1 (ICAM-1) and CD28/B7 interactions, as antibodies to Ia, ICAM-1 and B7-2 (but not to B7-1) markedly reduced presentation. These data indicate that PG-specific B cells may play an essential role in governing the development of PG-induced arthritis.
Collapse
Affiliation(s)
- F R Brennan
- Department of Biochemistry, Rush Medical University, Rush-Presbyterian-St. Luke's Medical Centre, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chung SW, Gorczynski RM, Dziadkowiec I, Levy GA. Induction of T-cell hyporesponsiveness by intrahepatic modulation of donor antigen-presenting cells. Immunology 1995; 85:582-90. [PMID: 7558153 PMCID: PMC1383787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this study, we examined the ability of varying populations of donor cells from B6 mice to induce hyporesponsiveness in T lymphocytes from C3H mice in vitro and in vivo. Small, resting B lymphocytes were inefficient stimulators of T-lymphocyte proliferation compared to splenic mononuclear cells (SMNC) and lipopolysaccharide (LPS)-induced B-cell blasts in vitro (P < 0.05). Pretreatment of SMNC with anti-B7-1 or anti-intracellular adhesion molecule-1 (ICAM-1) monoclonal antibodies (mAb) similarly resulted in inefficient stimulation of T-cell proliferation in vitro (P < 0.05). However, in vivo, only intrahepatic, but not intravenous, injection of donor cells into C3H mice resulted in decreased T-lymphocyte proliferation in response to restimulation by alloantigen. This effect was most pronounced following intrahepatic injection of resting B lymphocytes or SMNC pretreated with anti-ICAM-1 mAb compared to uninjected or intravenously injected mice (P < 0.05). The hyporesponsiveness was associated with an increased production of interleukin-4 (IL-4) by the responder T lymphocytes and correlated with enhanced skin allograft survival. These data demonstrate that intrahepatic injection of donor-derived cells induces T-lymphocyte hyporesponsiveness. The mechanism appears to be modulated by an ICAM-1-mediated signal resulting in expansion of an IL-4-producing T-lymphocyte population.
Collapse
Affiliation(s)
- S W Chung
- Department of Surgery, Toronto Hospital, University of Toronto, Canada
| | | | | | | |
Collapse
|
43
|
Wira CR, Rossoll RM. Antigen-presenting cells in the female reproductive tract: influence of sex hormones on antigen presentation in the vagina. Immunol Suppl 1995; 84:505-8. [PMID: 7790022 PMCID: PMC1415167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report here that the stage of the reproductive cycle and the administration of physiological amounts of oestradiol to ovariectomized rats influences antigen presentation by macrophage/dendritic cells in the vagina. Antigen presentation is elevated when oestradiol levels in blood are low, and reduced just prior to ovulation. Of those hormones tested, only oestradiol lowered vaginal antigen presentation. When progesterone was given along with oestradiol, the inhibitory effect of oestradiol on vaginal antigen presentation was reversed. These studies demonstrate that the vagina is an inductive site and that antigen presentation is under hormonal control. Our results suggest that immunization studies designed to enhance mucosal immunity in the female reproductive tract should take into account the stage of the reproductive cycle when antigen is deposited.
Collapse
Affiliation(s)
- C R Wira
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756-0001, USA
| | | |
Collapse
|
44
|
Brown WC, Woods VM, Chitko-McKown CG, Hash SM, Rice-Ficht AC. Interleukin-10 is expressed by bovine type 1 helper, type 2 helper, and unrestricted parasite-specific T-cell clones and inhibits proliferation of all three subsets in an accessory-cell-dependent manner. Infect Immun 1994; 62:4697-708. [PMID: 7927745 PMCID: PMC303176 DOI: 10.1128/iai.62.11.4697-4708.1994] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Murine interleukin-10 (IL-10) is produced by type 2 helper (Th2) cells and selectively inhibits cytokine synthesis by type 1 helper (Th1) cells, whereas human IL-10 is produced by and inhibits proliferation and cytokine synthesis by both Th1 and Th2 subsets. This study reports that bovine IL-10 mRNA is expressed by Th0, Th1, and Th2 clones of bovine T cells specific for either Babesia bovis or Fasciola hepatica but not by two CD8+ T-cell clones. The antigen-induced proliferative responses of all three subsets of CD4+ cells were inhibited by human IL-10, and low levels (10 U/ml) of exogenous human IL-2 restored the suppressed response. However, proliferation of one Th1 clone was never inhibited but was enhanced by IL-10. Human IL-10 also inhibited the expression of gamma interferon and IL-4 mRNA in Th0 clones. In the absence of accessory cells (AC), the responses of Th clones to concanavalin A or IL-2 were not inhibited by IL-10, whereas antigen-specific responses of Th1 and Th2 cells were reduced when IL-10-pretreated macrophages were used as AC. Together, our results with bovine T cells support the concept that IL-10 primarily affects AC function and does not directly inhibit CD4+ T cells and demonstrate that the immunoregulatory effects of IL-10 are not selectively directed at Th1 populations, as they are in mice.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Pathobiology, Texas A&M University, College Station 77843
| | | | | | | | | |
Collapse
|
45
|
Kanost D, McCluskey J. Anergic B cells constitutively present self antigen: enhanced immunoglobulin receptor-mediated presentation of antigenic determinants by B cells is hierarchical. Eur J Immunol 1994; 24:1186-93. [PMID: 7514133 DOI: 10.1002/eji.1830240527] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Presentation of hen egg lysozyme (HEL) by HEL-specific B cells was studied in transgenic mice expressing anti-HEL immunoglobulin (Ig-transgenic). In T hybridoma assays, presentation of the HEL46-61 determinant by B cells from Ig-transgenic mice required 10(3)-10(4)-fold lower concentrations of HEL than were required for presentation by B cells from non-transgenic mice. In contrast, presentation of the HEL determinants 112-129 and 25-43 by HEL-specific B cells was either not significantly enhanced, or enhanced only 10-fold compared with B cells from non-transgenic mice. Enhanced presentation of HEL determinants by B cells from Ig-transgenic donors was specific for HEL, since keyhole limpet hemocyanin or synthetic HEL46-61 peptide were presented comparably by B cells from Ig-transgenic mice and non-transgenic littermates. A minimum of 1-4% Ig-transgenic B cells was required to detect enhanced presentation of HEL46-61 in vitro. Constitutive presentation of the HEL46-61 determinant, but not the HEL25-43 or HEL112-129 determinants, was detectable on anergic HEL-specific B cells from double (HEL/Ig)-transgenic mice. In the presence of exogenously added HEL, anergic B cells presented all three HEL determinants. Constitutively presented HEL46-61 was not due to endogenous synthesis of HEL antigen by anergic B cells from double-transgenic mice, as comparable levels of the HEL46-61 determinant were constitutively presented by B cells from Ig-Tg-->HEL-Tg irradiation bone marrow chimeric mice. Firstly, these results indicate that the enhanced antigen presentation mediated by Ig receptors on B cells is not equivalent for all antigenic determinants. Secondly, the data demonstrate that anergic, autoreactive B cells efficiently process and present nominal antigens in addition to constitutively presenting specific self antigen in vivo.
Collapse
Affiliation(s)
- D Kanost
- Centre for Transfusion Medicine and Immunology, Flinders Medical Centre, Bedford Park, Australia
| | | |
Collapse
|
46
|
Havenith CE, van Haarst JM, Breedijk AJ, Betjes MG, Hoogsteden HC, Beelen RH, Hoefsmit EC. Enrichment and characterization of dendritic cells from human bronchoalveolar lavages. Clin Exp Immunol 1994; 96:339-43. [PMID: 8187343 PMCID: PMC1534884 DOI: 10.1111/j.1365-2249.1994.tb06564.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the present study about 0.3% to 1.6% of human bronchoalveolar lavage (BAL) cells were identified as typical dendritic cells (DC), having an irregular outline, lobulated nucleus, and clear distinguishable acid phosphatase activity or EBM11 (anti-CD68) reactivity in a spot near the nucleus. After DC enrichment, using transient adherence to plastic, FcR-panning, and a density metrizamide gradient, a population containing 7-8% typical DC was obtained. This DC-enriched low density fraction, containing the highest percentages of DC, very strongly induced T cell proliferation in an allogeneic mixed leucocyte reaction (MLR), which was significantly higher than that induced by other partly (un)fractionated BAL cells. These data indicate that DC seem to be the major accessory cells in the BAL fluid, and therefore may be important in the regulation of T cell immune responses in the lung.
Collapse
Affiliation(s)
- C E Havenith
- Department of Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Warner LM, Adams LM, Sehgal SN. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 1994; 37:289-97. [PMID: 8129783 DOI: 10.1002/art.1780370219] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To evaluate the effects of oral rapamycin (RAPA), a macrolide immunosuppressant that has been shown to interfere with T cell activation events, on the course of spontaneous disease progression in the MRL/MpJ/lpr/lpr (MRL/l) mouse model of lupus. METHODS RAPA treatment (6, 12, or 25 mg/kg 3 times per week) was evaluated by monitoring survival rates, autoantibody levels, and urinary albumin levels. Additionally, concanavalin A responsiveness, interleukin-2 (IL-2) production, lymphoid organ size, and histopathology were evaluated ex vivo. RESULTS RAPA prevented the typical rise in anti-double-stranded DNA antibody and urinary albumin levels and prolonged survival. Spleen and lymph node sizes were significantly decreased, inflammatory changes in the lung, liver, kidney, spleen, lymph node, and thymus were significantly reduced, and T cell mitogen-stimulated splenocyte proliferation and IL-2 production were restored. CONCLUSION Data from 3 independent experiments demonstrated that RAPA significantly reduced or prevented many pathologic features of lupus normally seen in the MRL/l mouse, and suggest that RAPA may be useful as a therapeutic agent in SLE in humans.
Collapse
Affiliation(s)
- L M Warner
- Inflammation/Bone Metabolism Division, Wyeth-Ayerst Research, Princeton, New Jersey 08543-8000
| | | | | |
Collapse
|
48
|
TISSUE AND CELL CULTURE. Cell Immunol 1994. [DOI: 10.1016/b978-0-12-208885-8.50010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Torgerson PR, Lloyd S. The B cell dependence of Haemonchus contortus antigen-induced lymphocyte proliferation. Int J Parasitol 1993; 23:925-30. [PMID: 8106184 DOI: 10.1016/0020-7519(93)90058-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The proliferative responses of ovine lymphocytes to soluble antigens of third-stage larvae of Haemonchus contortus (HcAg) were examined in vitro. Lymphocytes in mononuclear cell cultures responded consistently to HcAg even if the lambs were naive to H. contortus. Lymphocytes from sheep that were immune to reinfection with H. contortus also consistently responded to HcAg with a response significantly greater than that recorded from naive lambs. When the responses of T cell or B cell enriched fractions were examined, neither enriched cell population responded to HcAg, even though the T cell populations were shown to contain monocytes by histochemistry. Studies using the accessory cell dependent T cell mitogen Con A demonstrated that such T cell enriched populations had normal Con A-induced responses compared to unfractionated mononuclear cells. In addition, neither the T cell nor B cell fractions responded to HcAg in the presence of autologous mononuclear cells which contained monocytes and dendritic cells. Responses to HcAg in the T cell enriched population were restored, however, by the presence of mononuclear cells that were cultured with HcAg for 48 hours and then irradiated before the addition of the T cells. These results were seen with cells from both H. contortus naive lambs and immune sheep. This provides evidence that B cells and not dendritic cells or monocytes are acting as antigen presenting cells in Haemonchus antigen-induced lymphocyte responses in both naive lambs and immune sheep.
Collapse
Affiliation(s)
- P R Torgerson
- Department of Clinical Veterinary Medicine, University of Cambridge, U.K
| | | |
Collapse
|
50
|
Link HT, White K, Krzych U. Plasmodium berghei-specific T cells respond to non-processed sporozoites presented by B cells. Eur J Immunol 1993; 23:2263-9. [PMID: 8370405 DOI: 10.1002/eji.1830230932] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanism of malaria protective immunity induced by immunization with radiation-attenuated Plasmodium sporozoites (SPZ) is only partially understood. For example, B and T cell responses specific for the circumsporozoite (CS) protein, a 46 kDa SPZ surface protein, have been characterized; however, events leading to SPZ-specific T cell activation, i.e., processing and presentation of SPZ by antigen-presenting cells have not been investigated. In the present study we describe the in vitro analysis of requirements for accessory cell function in the presentation of SPZ to SPZ-immune T cells. The results establish that SPZ-induced proliferative T cells are reactive to non-processed SPZ presented by activated B cells and, thus, imply that the non-processed form of the SPZ-associated CS protein restricts the induction of the potential CS protein T cell repertoire.
Collapse
Affiliation(s)
- H T Link
- Department of Biology, Catholic University of America, Washington, D.C
| | | | | |
Collapse
|