1
|
Matz HC, Ellebedy AH. Vaccination against influenza viruses annually: Renewing or narrowing the protective shield? J Exp Med 2025; 222:e20241283. [PMID: 40272481 PMCID: PMC12020744 DOI: 10.1084/jem.20241283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Annual vaccines are recommended for the seasonal influenza virus. While yearly updates to the vaccine are necessary due to the constant evolution of influenza viruses, some studies have suggested repeat vaccination may result in a reduction in vaccine effectiveness in subsequent years. This review examines the available evidence that repeated annual influenza virus vaccination may have effects on future vaccine responses, and it synthesizes the available data with studies that may indicate potential immunological mechanisms underlying these effects. The goal is to examine the available literature to determine whether these mechanisms can be subverted to improve seasonal influenza virus vaccine efficacy.
Collapse
Affiliation(s)
- Hanover C. Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Amoah S, Cao W, Sayedahmed EE, Wang Y, Kumar A, Mishina M, Eddins DJ, Wang WC, Burroughs M, Sheth M, Lee J, Shieh WJ, Ray SD, Bohannon CD, Ranjan P, Sharma SD, Hoehner J, Arthur RA, Gangappa S, Wakamatsu N, Johnston HR, Pohl J, Mittal SK, Sambhara S. The frequency and function of nucleoprotein-specific CD8 + T cells are critical for heterosubtypic immunity against influenza virus infection. J Virol 2024; 98:e0071124. [PMID: 39082839 PMCID: PMC11334528 DOI: 10.1128/jvi.00711-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8+ T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8+ T cells. Our results indicate that both CD8+ T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8+ T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8+ T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8+ T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8+ T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer.
Collapse
Affiliation(s)
- Samuel Amoah
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margarita Mishina
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Devon J. Eddins
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Mark Burroughs
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Justin Lee
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wun-Ju Shieh
- Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sean D. Ray
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Caitlin D. Bohannon
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suresh D. Sharma
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica Hoehner
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia, USA
| | - Robert A. Arthur
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia, USA
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nobuko Wakamatsu
- Indiana Animal Disease Diagnostic Laboratory, Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - H. Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Uddbäck I, Michalets SE, Saha A, Mattingly C, Kost KN, Williams ME, Lawrence LA, Hicks SL, Lowen AC, Ahmed H, Thomsen AR, Russell CJ, Scharer CD, Boss JM, Koelle K, Antia R, Christensen JP, Kohlmeier JE. Prevention of respiratory virus transmission by resident memory CD8 + T cells. Nature 2024; 626:392-400. [PMID: 38086420 PMCID: PMC11040656 DOI: 10.1038/s41586-023-06937-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.
Collapse
Affiliation(s)
- Ida Uddbäck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah E Michalets
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ananya Saha
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Cameron Mattingly
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsten N Kost
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laurel A Lawrence
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
6
|
Hudson WH, Wieland A. Technology meets TILs: Deciphering T cell function in the -omics era. Cancer Cell 2023; 41:41-57. [PMID: 36206755 PMCID: PMC9839604 DOI: 10.1016/j.ccell.2022.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
T cells are at the center of cancer immunology because of their ability to recognize mutations in tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate exhausted T cell responses have transformed the clinical management of several malignancies. In parallel, the development of novel multidimensional analysis platforms, such as single-cell RNA sequencing and high-dimensional flow cytometry, has yielded unprecedented insights into immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating immune cells in single tumors, across tumor types, and among individuals with cancer. Here we discuss the opportunities and challenges of studying the complex tumor microenvironment with -omics technologies that generate vast amounts of data, highlighting the opportunities and limitations of these technologies with a particular focus on interpreting high-dimensional studies of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- William H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Cipolla EM, Yue M, Nickolich KL, Huckestein BR, Antos D, Chen W, Alcorn JF. Heterotypic Influenza Infections Mitigate Susceptibility to Secondary Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:760-771. [PMID: 35914833 PMCID: PMC9378502 DOI: 10.4049/jimmunol.2200261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 01/04/2023]
Abstract
Influenza-associated bacterial superinfections have devastating impacts on the lung and can result in increased risk of mortality. New strains of influenza circulate throughout the population yearly, promoting the establishment of immune memory. Nearly all individuals have some degree of influenza memory before adulthood. Due to this, we sought to understand the role of immune memory during bacterial superinfections. An influenza heterotypic immunity model was established using influenza A/Puerto Rico/8/34 and influenza A/X31. We report in this article that influenza-experienced mice are more resistant to secondary bacterial infection with methicillin-resistant Staphylococcus aureus as determined by wasting, bacterial burden, pulmonary inflammation, and lung leak, despite significant ongoing lung remodeling. Multidimensional flow cytometry and lung transcriptomics revealed significant alterations in the lung environment in influenza-experienced mice compared with naive animals. These include changes in the lung monocyte and T cell compartments, characterized by increased expansion of influenza tetramer-specific CD8+ T cells. The protection that was seen in the memory-experienced mouse model is associated with the reduction in inflammatory mechanisms, making the lung less susceptible to damage and subsequent bacterial colonization. These findings provide insight into how influenza heterotypic immunity reshapes the lung environment and the immune response to a rechallenge event, which is highly relevant to the context of human infection.
Collapse
Affiliation(s)
- Ellyse M Cipolla
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Molin Yue
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kara L Nickolich
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Brydie R Huckestein
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| | - Wei Chen
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA;
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA; and
| |
Collapse
|
8
|
El-Hage C, Hartley C, Savage C, Watson J, Gilkerson J, Paillot R. Assessment of Humoral and Long-Term Cell-Mediated Immune Responses to Recombinant Canarypox-Vectored Equine Influenza Virus Vaccination in Horses Using Conventional and Accelerated Regimens Respectively. Vaccines (Basel) 2022; 10:vaccines10060855. [PMID: 35746463 PMCID: PMC9229645 DOI: 10.3390/vaccines10060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
During Australia's first and only outbreak of equine influenza (EI), which was restricted to two northeastern states, horses were strategically vaccinated with a recombinant canarypox-vectored vaccine (rCP-EIV; ProteqFlu™, Merial P/L). The vaccine encoded for haemagglutinin (HA) belonging to two equine influenza viruses (EIVs), including an American and Eurasian lineage subtype that predated the EIV responsible for the outbreak (A/equine/Sydney/07). Racehorses in Victoria (a southern state that remained free of EI) were vaccinated prophylactically. Although the vaccine encoded for (HA) belonged to two EIVs of distinct strains of the field virus, clinical protection was reported in vaccinated horses. Our aim is to assess the extent of humoral immunity in one group of vaccinated horses and interferon-gamma ((EIV)-IFN-γ)) production in the peripheral blood mononuclear cells (PBMCs) of a second population of vaccinated horses. Twelve racehorses at work were monitored for haemagglutination inhibition antibodies to three antigenically distinct equine influenza viruses (EIVs) The EIV antigens included two H3N8 subtypes: A/equine/Sydney/07) A/equine/Newmarket/95 (a European lineage strain) and an H7N7 subtype (A/equine/Prague1956). Cell-mediated immune responses of: seven racehorses following an accelerated vaccination schedule, two horses vaccinated using a conventional regimen, and six unvaccinated horses were evaluated by determining (EIV)-IFN-γ levels. Antibody responses following vaccination with ProteqFlu™ were cross-reactive in nature, with responses to both H3N8 EIV strains. Although (EIV)IFN-γ was clearly detected following the in vitro re-stimulation of PBMC, there was no significant difference between the different groups of horses. Results of this study support reports of clinical protection of Australian horses following vaccination with Proteq-Flu™ with objective evidence of humoral cross-reactivity to the outbreak viral strain A/equine/Sydney/07.
Collapse
Affiliation(s)
- Charles El-Hage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
- Correspondence: ; Tel.: +61-417166029
| | - Carol Hartley
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Catherine Savage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - James Watson
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3216, Australia;
| | - James Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford CM1 3RR, UK;
| |
Collapse
|
9
|
PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. Eur J Pharm Sci 2022; 175:106209. [DOI: 10.1016/j.ejps.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
|
10
|
Çalık Başaran N, Tan Ç, Özışık L, Özbek B, İnkaya AÇ, Alp Ş, Ersoy EO, Ayvaz DÇ, Tezcan İ. Evaluation of the peripheral blood T and B cell subsets and IRF-7 variants in adult patients with severe influenza virus infection. Health Sci Rep 2022; 5:e492. [PMID: 35229048 PMCID: PMC8865064 DOI: 10.1002/hsr2.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND AIMS Influenza virus is one of the leading infections causing death among human being. Despite known risks, primary immune deficiency due to Interferon Regulatory Factor-7 (IRF7) gene defect was reported as a possible cause of the risk factors for complicated influenza. We aimed to investigate the changes in peripheral T and B cell subsets in adult patients with severe seasonal influenza virus infection and the investigation of variants of IRF7 gene. METHODS In this study, 32 patients, hospitalized due to influenza infection-related acute respiratory failure were included. RESULTS The median age of the patients was 76 years (26-96), and 13/32 (40.6%) were in the intensive care unit. Central memory Th, effector memory Th, TEMRA Th, cytotoxic T lymphocytes (CTL), central memory CTL of the patients were found to be increased, naive CTL were decreased. There was a significant increase in the percentage of effector memory Th, and a decrease in the percentage of naive CTL in patients ≥65 years-old compared to patients <65 years old (P = .039, and P = .017, respectively). IRF7 gene analysis revealed two different nucleotide changes in three patients; c.535 A > G; p.Lys179Glu (K179E) and c584A > T; p.His195Leu (H195L), located in the fourth exon of the IRF7 gene. DISCUSSION The increases in central and effector memory Th, central memory CTL and decrease of naive CTLs may be secondary to the virus infection. K179E (rs1061502) and H195L (rs139709725) variants were not reported to be related with susceptibility to an infection yet. It is conceivable to investigate for novel variants in other genes related to antiviral immunity.
Collapse
Affiliation(s)
- Nursel Çalık Başaran
- Faculty of Medicine, Department of Internal Medicine, General Internal Medicine DivisionHacettepe UniversityAnkaraTurkey
| | - Çağman Tan
- Faculty of Medicine, İhsan Doğramacı Children's Hospital, Section of Pediatric ImmunologyHacettepe UniversityAnkaraTurkey
| | - Lale Özışık
- Faculty of Medicine, Department of Internal Medicine, General Internal Medicine DivisionHacettepe UniversityAnkaraTurkey
| | - Begüm Özbek
- Faculty of Medicine, İhsan Doğramacı Children's Hospital, Section of Pediatric ImmunologyHacettepe UniversityAnkaraTurkey
| | - Ahmet Çağkan İnkaya
- Faculty of Medicine, Department of Infectious Diseases and Clinical MicrobiologyHacettepe UniversityAnkaraTurkey
| | - Şehnaz Alp
- Faculty of Medicine, Department of Infectious Diseases and Clinical MicrobiologyHacettepe UniversityAnkaraTurkey
| | - Ebru Ortaç Ersoy
- Faculty of Medicine, Department of Internal Medicine, Intensive Care DivisionHacettepe UniversityAnkaraTurkey
| | - Deniz Çağdaş Ayvaz
- Faculty of Medicine, İhsan Doğramacı Children's Hospital, Section of Pediatric ImmunologyHacettepe UniversityAnkaraTurkey
| | - İlhan Tezcan
- Faculty of Medicine, İhsan Doğramacı Children's Hospital, Section of Pediatric ImmunologyHacettepe UniversityAnkaraTurkey
| |
Collapse
|
11
|
Singleton EV, Gates CJ, David SC, Hirst TR, Davies JB, Alsharifi M. Enhanced Immunogenicity of a Whole-Inactivated Influenza A Virus Vaccine Using Optimised Irradiation Conditions. Front Immunol 2021; 12:761632. [PMID: 34899711 PMCID: PMC8652198 DOI: 10.3389/fimmu.2021.761632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus presents a constant pandemic threat due to the mutagenic nature of the virus and the inadequacy of current vaccines to protect against emerging strains. We have developed a whole-inactivated influenza vaccine using γ-irradiation (γ-Flu) that can protect against both vaccine-included strains as well as emerging pandemic strains. γ-irradiation is a widely used inactivation method and several γ-irradiated vaccines are currently in clinical or pre-clinical testing. To enhance vaccine efficacy, irradiation conditions should be carefully considered, particularly irradiation temperature. Specifically, while more damage to virus structure is expected when using higher irradiation temperatures, reduced radiation doses will be required to achieve sterility. In this study, we compared immunogenicity of γ-Flu irradiated at room temperature, chilled on ice or frozen on dry ice using different doses of γ-irradiation to meet internationally accepted sterility assurance levels. We found that, when irradiating at sterilising doses, the structural integrity and vaccine efficacy were well maintained in all preparations regardless of irradiation temperature. In fact, using a higher temperature and lower radiation dose appeared to induce higher neutralising antibody responses and more effective cytotoxic T cell responses. This outcome is expected to simplify irradiation protocols for manufacturing of highly effective irradiated vaccines.
Collapse
Affiliation(s)
- Eve Victoria Singleton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chloe Jayne Gates
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shannon Christa David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Raymond Hirst
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - Justin Bryan Davies
- Irradiations Group, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| |
Collapse
|
12
|
Becker T, Elbahesh H, Reperant LA, Rimmelzwaan GF, Osterhaus ADME. Influenza Vaccines: Successes and Continuing Challenges. J Infect Dis 2021; 224:S405-S419. [PMID: 34590139 PMCID: PMC8482026 DOI: 10.1093/infdis/jiab269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza vaccines have been available for over 80 years. They have contributed to significant reductions in influenza morbidity and mortality. However, there have been limitations in their effectiveness, in part due to the continuous antigenic evolution of seasonal influenza viruses, but also due to the predominant use of embryonated chicken eggs for their production. The latter furthermore limits their worldwide production timelines and scale. Therefore today, alternative approaches for their design and production are increasingly pursued, with already licensed quadrivalent seasonal influenza vaccines produced in cell cultures, including based on a baculovirus expression system. Next-generation influenza vaccines aim at inducing broader and longer-lasting immune responses to overcome seasonal influenza virus antigenic drift and to timely address the emergence of a new pandemic influenza virus. Tailored approaches target mechanisms to improve vaccine-induced immune responses in individuals with a weakened immune system, in particular older adults.
Collapse
Affiliation(s)
- Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
13
|
Engineered influenza virions reveal the contributions of non-hemagglutinin structural proteins to vaccine mediated protection. J Virol 2021; 95:JVI.02021-20. [PMID: 33658342 PMCID: PMC8139674 DOI: 10.1128/jvi.02021-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of improved and universal anti-influenza vaccines would represent a major advance in the protection of human health. In order to facilitate the development of such vaccines, understanding how viral proteins can contribute to protection from disease is critical. Much of the previous work to address these questions relied on reductionist systems (i.e. vaccinating with individual proteins or VLPs that contain only a few viral proteins); thus we have an incomplete understanding of how immunity to different subsets of viral proteins contribute to protection. Here, we report the development of a platform in which a single viral protein can be deleted from an authentic viral particle that retains the remaining full complement of structural proteins and viral RNA. As a first study with this system, we chose to delete the major IAV antigen, the hemagglutinin protein, to evaluate how the other components of the viral particle contribute en masse to protection from influenza disease. Our results show that while anti-HA immunity plays a major role in protection from challenge with a vaccine-matched strain, the contributions from other structural proteins were the major drivers of protection against highly antigenically drifted, homosubtypic strains. This work highlights the importance of evaluating the inclusion of non-HA viral proteins in the development of broadly efficacious and long-lasting influenza vaccines.ImportanceInfluenza virus vaccines currently afford short-term protection from viruses that are closely related to the vaccine strains. There is currently much effort to develop improved, next-generation influenza vaccines that elicit broader and longer-lasting protection. While the hemagglutinin protein is the major viral antigen, in this work, we developed an approach with which to evaluate the contributions of the non-hemagglutinin proteins to vaccine mediated protection. Our results indicate that other structural proteins together may help to mediate broad antiviral protection and should be considered in the development of more universal influenza vaccines.
Collapse
|
14
|
Wu W, Tian L, Zhang W, Booth JL, Ainsua-Enrich E, Kovats S, Brown BR, Metcalf JP. Long-term cigarette smoke exposure dysregulates pulmonary T cell response and IFN-γ protection to influenza virus in mouse. Respir Res 2021; 22:112. [PMID: 33879121 PMCID: PMC8056367 DOI: 10.1186/s12931-021-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a highly contagious, acute, febrile respiratory infection caused by a negative-sense, single-stranded RNA virus, which belongs in the Orthomyxoviridae family. Cigarette smoke (CS) exposure worsens influenza infection in terms of frequency and severity in both human and animal models. METHODS C57BL/6 mice with or without CS exposure for 6 weeks were inoculated intranasally with a single, non-lethal dose of the influenza A virus (IAV) A/Puerto Rico/8/1934 (PR8) strain. At 7 and 10 days after infection, lung and mediastinal lymph nodes (MLN) cells were collected to determine the numbers of total CD4 + and CD8 + T cells, and IAV-specific CD4 + and CD8 + T cells, using flow cytometry. Bronchoalveolar lavage fluid (BALF) was also collected to determine IFN-γ levels and total protein concentration. RESULTS Although long-term CS exposure suppressed early pulmonary IAV-antigen specific CD8 + and CD4 + T cell numbers and IFN-γ production in response to IAV infection on day 7 post-infection, CS enhanced numbers of these cells and IFN-γ production on day 10. The changes of total protein concentration in BALF are consistent with the changes in the IFN-γ amounts between day 7 and 10, which suggested that excessive IFN-γ impaired barrier function and caused lung injury at the later stage of infection. CONCLUSIONS Our results demonstrated that prior CS exposure caused a biphasic T cell and IFN-γ response to subsequent infection with influenza in the lung. Specifically, the number of IAV antigen-specific T cells on day 10 was greatly increased by CS exposure even though CS decreased the number of the same group of cells on day 7. The result suggested that CS affected the kinetics of the T cell response to IAV, which was suppressed at an early stage and exaggerated at a later stage. This study is the first to describe the different effect of long-term CS on T cell responses to IAV at early and late stages of infection in vivo.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
| | - Lili Tian
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Wei Zhang
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Erola Ainsua-Enrich
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brent R Brown
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021; 13:v13020199. [PMID: 33525620 PMCID: PMC7911237 DOI: 10.3390/v13020199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.
Collapse
|
16
|
Van Den Eeckhout B, Van Hoecke L, Burg E, Van Lint S, Peelman F, Kley N, Uzé G, Saelens X, Tavernier J, Gerlo S. Specific targeting of IL-1β activity to CD8 + T cells allows for safe use as a vaccine adjuvant. NPJ Vaccines 2020; 5:64. [PMID: 32714571 PMCID: PMC7378068 DOI: 10.1038/s41541-020-00211-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/19/2020] [Indexed: 11/08/2022] Open
Abstract
Annual administration and reformulation of influenza vaccines is required for protection against seasonal infections. However, the induction of strong and long-lasting T cells is critical to reach broad and potentially lifelong antiviral immunity. The NLRP3 inflammasome and its product interleukin-1β (IL-1β) are pivotal mediators of cellular immune responses to influenza, yet, overactivation of these systems leads to side effects, which hamper clinical applications. Here, we present a bypass around these toxicities by targeting the activity of IL-1β to CD8+ T cells. Using this approach, we demonstrate safe inclusion of IL-1β as an adjuvant in vaccination strategies, leading to full protection of mice against a high influenza virus challenge dose by raising potent T cell responses. In conclusion, this paper proposes a class of IL-1β-based vaccine adjuvants and also provides further insight in the mechanics of cellular immune responses driven by IL-1β.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elianne Burg
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Lint
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Niko Kley
- Orionis Biosciences Inc, Waltham, MA 02451 USA
| | - Gilles Uzé
- CNRS 5235, University of Montpellier, 34090 Montpellier, France
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Orionis Biosciences Inc, Waltham, MA 02451 USA
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Chen F, Seong Seo H, Ji HJ, Yang E, Choi JA, Yang JS, Song M, Han SH, Lim S, Lim JH, Ahn KB. Characterization of humoral and cellular immune features of gamma-irradiated influenza vaccine. Hum Vaccin Immunother 2020; 17:485-496. [PMID: 32643515 DOI: 10.1080/21645515.2020.1780091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most widely used influenza vaccines are prepared by chemical inactivation. However, chemical, especially formalin, treatment-induced modifications of the antigenic structure of the virus are frequently associated with adverse effects including low efficacy of protection, unexpected immune responses, or exacerbation of disease. Gamma-irradiation was suggested as an alternative influenza virus inactivation method due to its great features of completely inactivating virus while not damaging the structures of protein antigens, and cross-protective ability against heterologous strains. However, immunological features of gamma radiation-inactivated influenza vaccine have not been fully understood. In this study, we aimed to investigate the humoral and cellular immune responses of gamma radiation-inactivated influenza vaccine. The gamma irradiation-inactivated influenza vaccine (RADVAXFluA) showed complete viral inactivation but retained normal viral structure with functional activities of viral protein antigens. Intranasal immunization of RADVAXFluA provided better protection against influenza virus infection than formalin-inactivated influenza virus (FIV) in mice. RADVAXFluA greatly enhanced the production of virus-specific serum IgG and alveolar mucosal IgA, which effectively neutralized HA (hemagglutinin) and NA (neuraminidase) activities, and blocked viral binding to the cells, respectively. Further analysis of IgG subclasses showed RADVAXFluA-immunized sera had higher levels of IgG1 and IgG2a than those of FIV-immunized sera. In addition, analysis of cellular immunity found RADVAXFluA induced strong dendritic cells (DC) activation resulting in higher DC-mediated activation of CD8+ T cells than FIV. The results support improved immunogenicity by RADVAXFluA.
Collapse
Affiliation(s)
- Fengjia Chen
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| | - Ho Seong Seo
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Hyun Jung Ji
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Eunji Yang
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Jung Ah Choi
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Jae Seung Yang
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Manki Song
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine , Seoul, Republic of Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center , Seoul, Republic of Korea
| | - Ki Bum Ahn
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| |
Collapse
|
18
|
Saika K, Kato M, Sanada H, Matsushita S, Matsui M, Handa H, Kawano M. Induction of adaptive immune responses against antigens incorporated within the capsid of simian virus 40. J Gen Virol 2020; 101:853-862. [PMID: 32501197 DOI: 10.1099/jgv.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simian virus 40 (SV40) is a monkey polyomavirus. The capsid structure is icosahedral and comprises VP1 units that measure 45 nm in diameter. Five SV40 VP1 molecules form one pentamer subunit, and a single icosahedral subunit comprises 72 pentamers; a single SV40 VP1 capsid comprises 360 SV40 VP1 molecules. In a previous study, we showed that an influenza A virus matrix protein 1 (M1) CTL epitope inserted within SV40 virus-like particles (VLPs) induced cytotoxic T lymphocytes (CTLs) without the need for an adjuvant. Here, to address whether SV40 VLPs induce adaptive immune responses against VLP-incorporated antigens, we prepared SV40 VLPs containing M1 or chicken ovalbumin (OVA). This was done by fusing M1 or OVA with the carboxyl terminus of SV40 VP2 and co-expressing them with SV40 VP1 in insect cells using a baculovirus vector. Intraperitoneal (i.p.) or intranasal administration of SV40 VLPs incorporating M1 induced the production of CTLs specific for the M1 epitope without the requirement for adjuvant. The production of antibodies against SV40 VLPs was also induced by i.p. administration of SV40 VLPs in the absence of adjuvant. Finally, the administration of SV40 VLPs incorporating OVA induced anti-OVA antibodies in the absence of adjuvant; in addition, the level of antibody production was comparable with that after i.p. administration of OVA plus alum adjuvant. These results suggest that the SV40 capsid incorporating foreign antigens can be used as a vaccine platform to induce adaptive immune responses without the need for adjuvant.
Collapse
Affiliation(s)
- Kikue Saika
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masahiko Kato
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hideaki Sanada
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Sho Matsushita
- Allergy Center, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.,Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
19
|
Pleguezuelos O, James E, Fernandez A, Lopes V, Rosas LA, Cervantes-Medina A, Cleath J, Edwards K, Neitzey D, Gu W, Hunsberger S, Taubenberger JK, Stoloff G, Memoli MJ. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. NPJ Vaccines 2020; 5:22. [PMID: 32194999 PMCID: PMC7069936 DOI: 10.1038/s41541-020-0174-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/07/2020] [Indexed: 11/14/2022] Open
Abstract
FLU-v, developed by PepTcell (SEEK), is a peptide vaccine aiming to provide a broadly protective cellular immune response against influenza A and B. A randomized, double-blind, placebo-controlled, single-center, phase IIb efficacy and safety trial was conducted. One hundred and fifty-three healthy individuals 18-55 years of age were randomized to receive one or two doses of adjuvanted FLU-v or adjuvanted placebo subcutaneously on days -43 and -22, prior to intranasal challenge on day 0 with the A/California/04/2009/H1N1 human influenza A challenge virus. The primary objective of the study was to identify a reduction in mild to moderate influenza disease (MMID) defined as the presence of viral shedding and clinical influenza symptoms. Single-dose adjuvanted FLU-v recipients (n = 40) were significantly less likely to develop MMID after challenge vs placebo (n = 42) (32.5% vs 54.8% p = 0.035). FLU-v should continue to be evaluated and cellular immunity explored further as a possible important correlate of protection against influenza.
Collapse
Affiliation(s)
| | - Emma James
- SEEK Central Point, 45 Beech Street, London, EC2Y 8AD UK
| | - Ana Fernandez
- SEEK Central Point, 45 Beech Street, London, EC2Y 8AD UK
| | | | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jason Cleath
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kristina Edwards
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Dana Neitzey
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Wenjuan Gu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892 USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892 USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Matthew J. Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
20
|
Gasanova TV, Koroleva AA, Skurat EV, Ivanov PA. Complexes Formed via Bioconjugation of Genetically Modified TMV Particles with Conserved Influenza Antigen: Synthesis and Characterization. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:224-233. [PMID: 32093598 DOI: 10.1134/s0006297920020091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Recently we obtained complexes between genetically modified Tobacco Mosaic Virus (TMV) particles and proteins carrying conserved influenza antigen such as M2e epitope. Viral vector TMV-N-lys based on TMV-U1 genome was constructed by insertion of chemically active lysine into the exposed N-terminal part of the coat protein. Nicotiana benthamiana plants were agroinjected and TMV-N-lys virions were purified from non-inoculated leaves. Preparation was analyzed by SDS-PAGE/Coomassie staining; main protein with electrophoretic mobility of 21 kDa was detected. Electron microscopy confirmed the stability of modified particles. Chemical conjugation of TMV-N-lys virions and target influenza antigen M2e expressed in E. coli was performed using 5 mM 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 1 mM N-hydroxysuccinimide. The efficiency of chemical conjugation was confirmed by Western blotting. For additional characterization we used conventional electron microscopy. The diameter of the complexes did not differ significantly from the initial TMV-N-lys virions, but complexes formed highly organized and extensive network with dense "grains" on the surface. Dynamic light scattering demonstrated that the single peaks, reflecting the complexes TMV-N-lys/DHFR-M2e were significantly shifted relative to the control TMV-N-lys virions. The indirect enzyme-linked immunosorbent assay with TMV- and DHFR-M2e-specific antibodies showed that the complexes retain stability during overnight adsorption. Thus, the results allow using these complexes for immunization of animals with the subsequent preparation of a candidate universal vaccine against the influenza virus.
Collapse
Affiliation(s)
- T V Gasanova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | - A A Koroleva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - E V Skurat
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - P A Ivanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
21
|
Pizzolla A, Wakim LM. Memory T Cell Dynamics in the Lung during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:374-381. [PMID: 30617119 DOI: 10.4049/jimmunol.1800979] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/08/2018] [Indexed: 01/06/2023]
Abstract
Influenza A virus is highly contagious, infecting 5-15% of the global population every year. It causes significant morbidity and mortality, particularly among immunocompromised and at-risk individuals. Influenza virus is constantly evolving, undergoing continuous, rapid, and unpredictable mutation, giving rise to novel viruses that can escape the humoral immunity generated by current influenza virus vaccines. Growing evidence indicates that influenza-specific T cells resident along the respiratory tract are highly effective at providing potent and rapid protection against this inhaled pathogen. As these T cells recognize fragments of the virus that are highly conserved and less prone to mutation, they have the potential to provide cross-strain protection against a wide breadth of influenza viruses, including newly emerging strains. In this review, we will discuss how influenza-specific memory T cells in the lung are established and maintained and how we can harness this knowledge to design broadly protective influenza A virus vaccines.
Collapse
Affiliation(s)
- Angela Pizzolla
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
23
|
Hom N, Gentles L, Bloom JD, Lee KK. Deep Mutational Scan of the Highly Conserved Influenza A Virus M1 Matrix Protein Reveals Substantial Intrinsic Mutational Tolerance. J Virol 2019; 93:e00161-19. [PMID: 31019050 PMCID: PMC6580950 DOI: 10.1128/jvi.00161-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Influenza A virus matrix protein M1 is involved in multiple stages of the viral infectious cycle. Despite its functional importance, our present understanding of this essential viral protein is limited. The roles of a small subset of specific amino acids have been reported, but a more comprehensive understanding of the relationship between M1 sequence, structure, and virus fitness remains elusive. In this study, we used deep mutational scanning to measure the effect of every amino acid substitution in M1 on viral replication in cell culture. The map of amino acid mutational tolerance we have generated allows us to identify sites that are functionally constrained in cell culture as well as sites that are less constrained. Several sites that exhibit low tolerance to mutation have been found to be critical for M1 function and production of viable virions. Surprisingly, significant portions of the M1 sequence, especially in the C-terminal domain, whose structure is undetermined, were found to be highly tolerant of amino acid variation, despite having extremely low levels of sequence diversity among natural influenza virus strains. This unexpected discrepancy indicates that not all sites in M1 that exhibit high sequence conservation in nature are under strong constraint during selection for viral replication in cell culture.IMPORTANCE The M1 matrix protein is critical for many stages of the influenza virus infection cycle. Currently, we have an incomplete understanding of this highly conserved protein's function and structure. Key regions of M1, particularly in the C terminus of the protein, remain poorly characterized. In this study, we used deep mutational scanning to determine the extent of M1's tolerance to mutation. Surprisingly, nearly two-thirds of the M1 sequence exhibits a high tolerance for substitutions, contrary to the extremely low sequence diversity observed across naturally occurring M1 isolates. Sites with low mutational tolerance were also identified, suggesting that they likely play critical functional roles and are under selective pressure. These results reveal the intrinsic mutational tolerance throughout M1 and shape future inquiries probing the functions of this essential influenza A virus protein.
Collapse
Affiliation(s)
- Nancy Hom
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Lauren Gentles
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jesse D Bloom
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Elbahesh H, Saletti G, Gerlach T, Rimmelzwaan GF. Broadly protective influenza vaccines: design and production platforms. Curr Opin Virol 2019; 34:1-9. [DOI: 10.1016/j.coviro.2018.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
|
25
|
Epstein SL. Universal Influenza Vaccines: Progress in Achieving Broad Cross-Protection In Vivo. Am J Epidemiol 2018; 187:2603-2614. [PMID: 30084906 DOI: 10.1093/aje/kwy145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Despite all we have learned since 1918 about influenza virus and immunity, available influenza vaccines remain inadequate to control outbreaks of unexpected strains. Universal vaccines not requiring strain matching would be a major improvement. Their composition would be independent of predicting circulating viruses and thus potentially effective against unexpected drift or pandemic strains. This commentary explores progress with candidate universal vaccines based on various target antigens. Candidates include vaccines based on conserved viral proteins such as nucleoprotein and matrix, on the conserved hemagglutinin (HA) stem, and various combinations. Discussion covers the differing evidence for each candidate vaccine demonstrating protection in animals against influenza viruses of widely divergent HA subtypes and groups; durability of protection; routes of administration, including mucosal, providing local immunity; and reduction of transmission. Human trials of some candidate universal vaccines have been completed or are underway. Interestingly, the HA stem, like nucleoprotein and matrix, induces immunity that permits some virus replication and emergence of escape mutants fit enough to cause disease. Vaccination with multiple target antigens will thus have advantages over use of single antigens. Ultimately, a universal vaccine providing long-term protection against all influenza virus strains might contribute to pandemic control and routine vaccination.
Collapse
Affiliation(s)
- Suzanne L Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
26
|
Fox A, Quinn KM, Subbarao K. Extending the Breadth of Influenza Vaccines: Status and Prospects for a Universal Vaccine. Drugs 2018; 78:1297-1308. [PMID: 30088204 DOI: 10.1007/s40265-018-0958-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the widespread use of seasonal influenza vaccines, there is urgent need for a universal influenza vaccine to provide broad, long-term protection. A number of factors underpin this urgency, including threats posed by zoonotic and pandemic influenza A viruses, suboptimal effectiveness of seasonal influenza vaccines, and concerns surrounding the effects of annual vaccination. In this article, we discuss approaches that are being investigated to increase influenza vaccine breadth, which are near-term, readily achievable approaches to increase the range of strains recognized within a subtype, or longer-term more challenging approaches to produce a truly universal influenza vaccine. Adjuvanted and neuraminidase-optimized vaccines are emerging as the most feasible and promising approaches to extend protection to cover a broader range of strains within a subtype. The goal of developing a universal vaccine has also been advanced with the design of immunogenic influenza HA-stem constructs that induce broadly neutralizing antibodies. However, these constructs are not yet sufficiently immunogenic to induce lasting universal immunity in humans. Advances in understanding how T cells mediate protection, and how viruses are packaged, have facilitated the rationale design and delivery of replication-incompetent virus vaccines that induce broad protection mediated by lung-resident memory T cells. While the lack of clear mechanistic correlates of protection, other than haemagglutination-inhibiting antibodies, remains an impediment to further advancing novel influenza vaccines, the pressing need for such a vaccine is supporting development of highly innovative and effective strategies.
Collapse
Affiliation(s)
- Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Mohn KGI, Zhou F. Clinical Expectations for Better Influenza Virus Vaccines-Perspectives from the Young Investigators' Point of View. Vaccines (Basel) 2018; 6:E32. [PMID: 29861454 PMCID: PMC6027204 DOI: 10.3390/vaccines6020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
The influenza virus is one of a few viruses that is capable of rendering an otherwise healthy person acutly bedridden for several days. This impressive knock-out effect, without prodromal symptoms, challenges our immune system. The influenza virus undergoes continuous mutations, escaping our pre-existing immunity and causing epidemics, and its segmented genome is subject to reassortment, resulting in novel viruses with pandemic potential. The personal and socieoeconomic burden from influenza is high. Vaccination is the most cost-effective countermeasure, with several vaccines that are available. The current limitations in vaccine effectivness, combined with the need for yearly updating of vaccine strains, is a driving force for research into developing new and improved influenza vaccines. The lack of public concern about influenza severity, and misleading information concerning vaccine safety contribute to low vaccination coverage even in high-risk groups. The success of future influeza vaccines will depend on an increased public awarness of the disease, and hence, the need for vaccination-aided through improved rapid diagnositics. The vaccines must be safe and broadly acting, with new, measurable correlates of protection and robust post-marketing safety studies, to improve the confidence in influenza vaccines.
Collapse
Affiliation(s)
- Kristin G-I Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- Emergency Care clinic, Haukeland University Hospital, Bergen 5021, Norway.
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
- K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
| |
Collapse
|
28
|
Saletti G, Gerlach T, Rimmelzwaan GF. Influenza vaccines: 'tailor-made' or 'one fits all'. Curr Opin Immunol 2018; 53:102-110. [PMID: 29734023 DOI: 10.1016/j.coi.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 02/02/2023]
Abstract
Currently used inactivated influenza vaccines aim at the induction of virus-neutralizing antibodies directed to the variable head domain of the viral hemagglutinin. Although these vaccines are effective against antigenically matching virus strains, they offer little protection against antigenically distinct drift variants or potentially pandemic viruses of alternative subtypes. In the last decades, the threat of novel influenza pandemics has sparked research efforts to develop vaccines that induce more broadly protective immunity. Here, we discuss the immune responses induced by conventional 'tailor-made' inactivated and live influenza vaccines and novel 'one fits all' candidate vaccines able to induce cross-reactive virus-specific antibody and T cell responses and to afford protection to a wider range of influenza viruses.
Collapse
Affiliation(s)
- Giulietta Saletti
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Thomas Gerlach
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Guus F Rimmelzwaan
- University of Veterinary Medicine (TiHo), Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
29
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
30
|
Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8 + T cell epitope. Nat Struct Mol Biol 2017; 24:395-406. [PMID: 28250417 PMCID: PMC5383516 DOI: 10.1038/nsmb.3383] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
A keystone of antiviral immunity is CD8 T-cell recognition of viral peptides bound to MHC-I proteins. The recognition mode of individual T cell receptors (TCRs) has been studied in some detail, but how TCR variation functions in providing a robust response to viral antigen is unclear. The influenza M1 epitope is an immunodominant target of CD8 T cells helping to control influenza in HLA-A2+ individuals. Here, we show that many distinct TCRs are used by CD8 T cells to recognize HLA-A2/M1, encoding different structural solutions to the problem of specifically recognizing a relatively featureless peptide antigen. The vast majority of responding TCRs target small clefts between peptide and MHC. These broad repertoires lead to plasticity in antigen recognition and protection against T cell clonal loss and viral escape.
Collapse
|
31
|
Yang WT, Shi SH, Yang GL, Jiang YL, Zhao L, Li Y, Wang CF. Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum. Sci Rep 2016; 6:39665. [PMID: 28004787 PMCID: PMC5177883 DOI: 10.1038/srep39665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Avian influenza virus (AIV) can infect birds and mammals, including humans, and are thus a serious threat to public health. Vaccination is vital for controlling AIV circulation. In this study, we generated a recombinant lactobacillus expressing the NP-M1-DCpep of H9N2 avian influenza virus and evaluated the activation effect of NC8-pSIP409-NP-M1-DCpep on dendritic cells (DCs) in a mouse model. The specific mucosal antibody responses and B and T cell responses in lymphoid tissues were also characterized. Importantly, we confirmed that specific CD8 T cells presented in vitro and antigen-specific cytotoxicity (activated the expression of CD107a) and in vivo antigen-specific cytotoxicity after vaccination. The adoptive transfer of NC8-pSIP409-NP-M1-DCpep-primed CD8+ T cells into NOD-SCID mice resulted in effective protection against mouse-adapted AIV infection. In addition, we observed protection in immunized mice challenged with mouse-adapted H9N2 AIV and H1N1 influenza virus, as evidenced by reductions in the lung virus titers, improvements in lung pathology, and weight loss and complete survival. Our data are promising for the generation of effective, non-traditional influenza vaccines against AIVs.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Shao-Hua Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Liang Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
32
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
33
|
Dash SK, Kumar M, Kataria JM, Nagarajan S, Tosh C, Murugkar HV, Kulkarni DD. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens. Microb Pathog 2016; 95:157-165. [DOI: 10.1016/j.micpath.2016.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
|
34
|
Bracchi-Ricard V, Zha J, Smith A, Lopez-Rodriguez DM, Bethea JR, Andreansky S. Chronic spinal cord injury attenuates influenza virus-specific antiviral immunity. J Neuroinflammation 2016; 13:125. [PMID: 27245318 PMCID: PMC4886448 DOI: 10.1186/s12974-016-0574-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Background Individuals suffering from spinal cord injury (SCI) are at higher risk for respiratory-related viral infections such as influenza. In a previous study (Zha et al., J Neuroinflammation 11:65, 2014), we demonstrated that chronic spinal cord injury caused impairment in CD8+T cell function with increased expression of the immunosuppressive protein, programmed cell death 1 (PD-1). The present study was undertaken to establish whether chronic SCI-induced immune deficits would affect antiviral immunity directed against primary and secondary infections. Methods Six to seven weeks following a SCI contusion at thoracic level T9, mice were infected intranasally with influenza virus. Virus-specific immunity was analyzed at various time points post-infection and compared to uninjured controls. Results We report that chronic thoracic SCI impairs the ability of the animals to mount an adequate antiviral immune response. While all uninjured control mice cleared the virus from their lungs by day 10 post-infection, a significant number (approximately 70 %) of chronic SCI mice did not clear the virus and succumbed to infection-induced mortality. This was attributed to severe deficits in both virus-specific antibody production and CD8+ T cell response in injured mice after primary infection. We also determined that previously acquired humoral immunity was maintained after spinal cord injury as vaccination against influenza A prior to injury-protected mice from a homologous viral challenge. In contrast, prior immunization did not protect mice from a heterotypic challenge with a different strain of influenza virus. Conclusions Taken together, our data demonstrate that chronic SCI attenuates virus-specific humoral and cellular immunity during the establishment of primary response and impairs the development of memory CD8+ T cells. In contrast, B cell memory acquired through vaccination prior to SCI is preserved after injury which demonstrates that antigen-specific memory cells are refractory following injury. Our study defines important parameters of the deficits of chronic SCI-induced immune depression during a viral respiratory infection. Our objective is to better understand the mechanisms of spinal cord injury-induced immune depression with the goal of developing more effective therapies and reduce mortality due to complications from influenza and other infections. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0574-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerie Bracchi-Ricard
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Ji Zha
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Annalise Smith
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Darlah M Lopez-Rodriguez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - John R Bethea
- The Miami Project to Cure Paralysis, Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Department of Biology, Drexel University, Philadelphia, PA, 19104, USA.
| | - Samita Andreansky
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
35
|
Sridhar S. Heterosubtypic T-Cell Immunity to Influenza in Humans: Challenges for Universal T-Cell Influenza Vaccines. Front Immunol 2016; 7:195. [PMID: 27242800 PMCID: PMC4871858 DOI: 10.3389/fimmu.2016.00195] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) remains a significant global health issue causing annual epidemics, pandemics, and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza, although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the twenty-first century underlined the urgent need to develop new vaccines capable of protecting against a broad range of influenza strains. Such “universal” influenza vaccines are based on the idea of heterosubtypic immunity, wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognizing conserved antigens are a key contributor in reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell-inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.
Collapse
|
36
|
Universal influenza vaccines: a realistic option? Clin Microbiol Infect 2016; 22 Suppl 5:S120-S124. [PMID: 27130671 DOI: 10.1016/j.cmi.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 12/07/2015] [Indexed: 11/23/2022]
Abstract
The extensive antigenic drift displayed by seasonal influenza viruses and the risk of pandemics caused by newly emerging antigenically distinct influenza A viruses of novel subtypes has raised considerable interest in the development of so-called universal influenza vaccines. We review options for the development of universal flu vaccines and discuss progress that has been made recently.
Collapse
|
37
|
Baranowska M, Hauge AG, Hoornaert C, Bogen B, Grødeland G. Targeting of nucleoprotein to chemokine receptors by DNA vaccination results in increased CD8(+)-mediated cross protection against influenza. Vaccine 2015; 33:6988-96. [PMID: 26387432 DOI: 10.1016/j.vaccine.2015.08.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 11/15/2022]
Abstract
Vaccination is at present the most efficient way of preventing influenza infections. Currently used inactivated influenza vaccines can induce virus-neutralizing antibodies that are protective against a particular influenza strain, but hamper the induction of cross-protective T-cell responses to later infections. Thus, influenza vaccines need to be updated annually in order to confer protection against circulating influenza strains. This study aims at developing an efficient vaccine that can induce broader protection against influenza. For this purpose, we have used the highly conserved nucleoprotein (NP) from an influenza A virus subtype H7N7 strain, and inserted it into a vaccine format that targets an antigen directly to relevant antigen presenting cells (APCs). The vaccine format consists of bivalent antigenic and targeting units, linked via an Ig-based dimerization unit. In this study, NP was linked to MIP-1α, a chemokine that targets the linked antigen to chemokine receptors 1, 3 and 5 expressed on various APCs. The vaccine protein was indirectly delivered by DNA. Mice were vaccinated intradermally with plasmids, in combination with electroporation to enhance cellular uptake of DNA. We found that a single DNA vaccination was sufficient for induction of both antibody and T cell responses in BALB/c mice. Targeting of nucleoprotein to chemokine receptors enhanced T cell responses but not antibody responses. Moreover, a single dose of MIP1α-NP conferred protection in BALB/c mice against a lethal challenge with an H1N1 influenza virus. The observed cross-protection was mediated by CD8(+) T cells.
Collapse
Affiliation(s)
- Marta Baranowska
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Anna G Hauge
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway; Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Chloé Hoornaert
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gunnveig Grødeland
- K.G Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Immunology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
38
|
van de Sandt CE, Bodewes R, Rimmelzwaan GF, de Vries RD. Influenza B viruses: not to be discounted. Future Microbiol 2015; 10:1447-65. [PMID: 26357957 DOI: 10.2217/fmb.15.65] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and epidemiological properties is imperative to better control this important pathogen. However, some of its characteristics are still elusive and warrant investigation. Here, we review evolution, epidemiology, pathogenesis and immunity and identify gaps in our knowledge of influenza B viruses. The divergence of two antigenically distinct influenza B viruses is highlighted. The co-circulation of viruses of these two lineages necessitated the development of quadrivalent influenza vaccines, which is discussed in addition to possibilities to develop universal vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,ViroClinics Biosciences BV, Rotterdam Science Tower, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Herrmann VL, Hartmayer C, Planz O, Groettrup M. Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease. J Control Release 2015; 216:121-31. [PMID: 26276509 DOI: 10.1016/j.jconrel.2015.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Current influenza virus vaccines aim to elicit antibodies directed toward viral surface glycoproteins, which however are prone to antigenic drift. Cytotoxic T lymphocytes (CTLs) can exhibit heterosubtypic immunity against most influenza A viruses. In our study, we encapsulated the highly conserved, immunodominant, HLA-A*0201 restricted epitope from the influenza virus matrix protein M158-66 together with TLR ligands in biodegradable poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Subcutaneous immunization of transgenic mice expressing chimeric HLA-A*0201 molecules with these microspheres induced a strong and sustained CTL response which sufficed to prevent replication of a recombinant vaccinia virus expressing the influenza A virus (IAV) matrix protein but not the replication of IAV in the lung. However, subcutaneous priming followed by intranasal boosting with M158-66 bearing PLGA microspheres was able to induce vigorous CTL responses both in the lung and spleen of mice which interfered with IAV replication, weight loss, and infection-related death. Taken together, vaccination with well-defined and highly conserved IAV-derived CTL epitopes encapsulated into clinically compatible PLGA microspheres contribute to the control of influenza A virus infections. The promptitude and broad reactivity of the CTL response may help to attenuate pandemic outbreaks of influenza viruses.
Collapse
Affiliation(s)
- Valerie L Herrmann
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Carmen Hartmayer
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.
| |
Collapse
|
40
|
Narrowing of human influenza A virus-specific T cell receptor α and β repertoires with increasing age. J Virol 2015; 89:4102-16. [PMID: 25609818 DOI: 10.1128/jvi.03020-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Alterations in memory CD8 T cell responses may contribute to the high morbidity and mortality caused by seasonal influenza A virus (IAV) infections in older individuals. We questioned whether memory CD8 responses to this nonpersistent virus, to which recurrent exposure with new strains is common, changed over time with increasing age. Here, we show a direct correlation between increasing age and narrowing of the HLA-A2-restricted IAV Vα and Vβ T cell repertoires specific to M1 residues 58 to 66 (M158-66), which simultaneously lead to oligoclonal expansions, including the usage of a single identical VA12-JA29 clonotype in all eight older donors. The Vα repertoire of older individuals also had longer CDR3 regions with increased usage of G/A runs, whose molecular flexibility may enhance T cell receptor (TCR) promiscuity. Collectively, these results suggest that CD8 memory T cell responses to nonpersistent viruses like IAV in humans are dynamic, and with aging there is a reduced diversity but a preferential retention of T cell repertoires with features of enhanced cross-reactivity. IMPORTANCE With increasing age, the immune system undergoes drastic changes, and older individuals have declined resistance to infections. Vaccinations become less effective, and infection with influenza A virus in older individuals is associated with higher morbidity and mortality. Here, we questioned whether T cell responses directed against the highly conserved HLA-A2-restricted M158-66 peptide of IAV evolves with increasing age. Specifically, we postulated that CD8 T cell repertoires narrow with recurrent exposure and may thus be less efficient in response to new infections with new strains of IAV. Detailed analyses of the VA and VB TCR repertoires simultaneously showed a direct correlation between increasing age and narrowing of the TCR repertoire. Features of the TCRs indicated potentially enhanced cross-reactivity in all older donors. In summary, T cell repertoire analysis in older individuals may be useful as one of the predictors of protection after vaccination.
Collapse
|
41
|
Altenburg AF, Rimmelzwaan GF, de Vries RD. Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine 2015; 33:500-6. [DOI: 10.1016/j.vaccine.2014.11.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/30/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
|
42
|
A Systematic Review of Recent Advances in Equine Influenza Vaccination. Vaccines (Basel) 2014; 2:797-831. [PMID: 26344892 PMCID: PMC4494246 DOI: 10.3390/vaccines2040797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 01/28/2023] Open
Abstract
Equine influenza (EI) is a major respiratory disease of horses, which is still causing substantial outbreaks worldwide despite several decades of surveillance and prevention. Alongside quarantine procedures, vaccination is widely used to prevent or limit spread of the disease. The panel of EI vaccines commercially available is probably one of the most varied, including whole inactivated virus vaccines, Immuno-Stimulating Complex adjuvanted vaccines (ISCOM and ISCOM-Matrix), a live attenuated equine influenza virus (EIV) vaccine and a recombinant poxvirus-vectored vaccine. Several other strategies of vaccination are also evaluated. This systematic review reports the advances of EI vaccines during the last few years as well as some of the mechanisms behind the inefficient or sub-optimal response of horses to vaccination.
Collapse
|
43
|
Altenburg AF, Kreijtz JHCM, de Vries RD, Song F, Fux R, Rimmelzwaan GF, Sutter G, Volz A. Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses 2014; 6:2735-61. [PMID: 25036462 PMCID: PMC4113791 DOI: 10.3390/v6072735] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
Respiratory viruses infections caused by influenza viruses, human parainfluenza virus (hPIV), respiratory syncytial virus (RSV) and coronaviruses are an eminent threat for public health. Currently, there are no licensed vaccines available for hPIV, RSV and coronaviruses, and the available seasonal influenza vaccines have considerable limitations. With regard to pandemic preparedness, it is important that procedures are in place to respond rapidly and produce tailor made vaccines against these respiratory viruses on short notice. Moreover, especially for influenza there is great need for the development of a universal vaccine that induces broad protective immunity against influenza viruses of various subtypes. Modified Vaccinia Virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform. MVA can encode one or more foreign antigens and thus functions as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant capacities and induces humoral and cellular immune responses. However, there are some practical and regulatory issues that need to be addressed in order to develop MVA-based vaccines on short notice at the verge of a pandemic. In this review, we discuss promising novel influenza virus vaccine targets and the use of MVA for vaccine development against various respiratory viruses.
Collapse
Affiliation(s)
- Arwen F Altenburg
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Joost H C M Kreijtz
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Fei Song
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| |
Collapse
|
44
|
van de Sandt CE, Kreijtz JHCM, de Mutsert G, Geelhoed-Mieras MM, Hillaire MLB, Vogelzang-van Trierum SE, Osterhaus ADME, Fouchier RAM, Rimmelzwaan GF. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol 2014; 88:1684-93. [PMID: 24257602 PMCID: PMC3911609 DOI: 10.1128/jvi.02843-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 01/05/2023] Open
Abstract
In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population, there is interest in identifying other correlates of protection, such as cross-reactive CD8(+) T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8(+) T cells are known to recognize conserved internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8(+) T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8(+) T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes, CD8(+) T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8(+) T cells may afford some protection against infection with the new virus.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cells, Cultured
- China/epidemiology
- Cross Protection
- Cross Reactions
- Disease Outbreaks
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/chemistry
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/isolation & purification
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Interferon-gamma/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Seasons
- Sequence Alignment
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ron A. M. Fouchier
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| | - Guus F. Rimmelzwaan
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 2013; 12:519-36. [PMID: 23659300 DOI: 10.1586/erv.13.35] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza vaccines remain the primary public health tool in reducing the ever-present burden of influenza and its complications. In seeking more immunogenic, more effective and more broadly cross-protective influenza vaccines, the landscape of influenza vaccines is rapidly expanding, both in near-term advances and next-generation vaccine design. Although the first influenza vaccines were licensed over 60 years ago, the hemagglutination-inhibition antibody titer is currently the only universally accepted immune correlate of protection against influenza. However, hemagglutination-inhibition titers appear to be less effective at predicting protection in populations at high risk for severe influenza disease; older adults, young children and those with certain medical conditions. The lack of knowledge and validated methods to measure alternate immune markers of protection against influenza remain a substantial barrier to the development of more immunogenic, broadly cross-reactive and effective influenza vaccines. Here, the authors review the knowledge of immune effectors of protection against influenza and discuss assessment methods for a broader range of immunological parameters that could be considered in the evaluation of traditional or new-generation influenza vaccines.
Collapse
Affiliation(s)
- Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Atlanta, GA 30333, USA
| | | |
Collapse
|
46
|
Akram A, Inman RD. Co-expression of HLA-B7 and HLA-B27 alleles is associated with B7-restricted immunodominant responses following influenza infection. Eur J Immunol 2013; 43:3254-67. [DOI: 10.1002/eji.201343597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/11/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Akram
- Division of Genetics and Development; Toronto Western Research Institute; Toronto Ontario Canada
- Department of Immunology; Faculty of Medicine; Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| | - Robert D. Inman
- Department of Medicine; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
47
|
Gildea S, Quinlivan M, Murphy BA, Cullinane A. Humoral response and antiviral cytokine expression following vaccination of thoroughbred weanlings--a blinded comparison of commercially available vaccines. Vaccine 2013; 31:5216-22. [PMID: 24021309 DOI: 10.1016/j.vaccine.2013.08.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022]
Abstract
Previous studies in experimental ponies using interferon gamma (IFN-γ) as a marker for cell mediated immune (CMI) response demonstrated an increase in IFN-γ gene expression following vaccination with an ISCOM subunit, a canarypox recombinant and more recently, an inactivated whole virus vaccine. The objective of this study was to carry out an independent comparison of both humoral antibody and CMI responses elicited following vaccination with all these vaccine presentation systems. Antibody response of 44 Thoroughbred weanlings was monitored for three weeks following the second dose of primary vaccination (V2) by single radial haemolysis (SRH). The pattern of antibody response was similar for all vaccines. The antibody response of horses vaccinated with the inactivated whole virus vaccine (Duvaxyn IE-T Plus) was superior to that of the horses vaccinated with the ISCOM-matrix subunit (Equilis Prequenza Te) and canarypox recombinant (ProteqFlu-Te) vaccine. In this study 39% of weanlings failed to seroconvert following their first dose of primary vaccination (V1). Poor response to vaccination (H3N8) was observed among weanlings vaccinated with Equilis Prequenza Te and ProteqFlu-Te but not among those vaccinated with Duvaxyn IE-T Plus. PAXgene bloods were collected on days 0, 2, 7 and 14 following V1. Gene expression levels of IFN-γ, IL-1β (proinflammatory cytokine) and IL-4 (B cell stimulating cytokine) were measured using RT-PCR. Mean gene expression levels of IL-1β and IL-4 peaked on day 14 post vaccination. The increase in IL-4 gene expression by horses vaccinated with Equilis Prequenza Te was significantly greater to those vaccinated with the other two products. Vaccination with all three vaccines resulted in a significant increase in IFN-γ gene expression which peaked at 7 days post V1. Overall, there was no significant difference in IFN-γ gene expression by the horses vaccinated with the whole inactivated, the subunit and the canarypox recombinant vaccines included in this study.
Collapse
Affiliation(s)
- Sarah Gildea
- Virology Unit, The Irish Equine Centre, Johnstown, Naas, Co., Kildare, Ireland
| | | | | | | |
Collapse
|
48
|
Abstract
Current influenza virus vaccines are annually reformulated to elicit protection by generating an immune response toward the virus strains that are predicted to circulate in the upcoming influenza season. These vaccines provide limited protection in cases of antigenic mismatch, when the vaccine and the circulating viral strains differ. The emergence of unexpected pandemic viruses presents an additional challenge to vaccine production. To increase influenza virus preparedness, much work has been dedicated to the development of a universal vaccine. Focusing on regions of viral proteins that are highly conserved across virus subtypes, vaccine strategies involving the matrix 2 protein, stalk domain of the hemagglutinin, and multivalent approaches have provided broad-based protection in animal models and show much promise. This review summarizes the most encouraging advances in the field with a focus on novel vaccine designs that have yielded promising preclinical and clinical data.
Collapse
Affiliation(s)
- Natalie Pica
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
49
|
Swinkels WJC, Hoeboer J, Sikkema R, Vervelde L, Koets ADP. Vaccination induced antibodies to recombinant avian influenza A virus M2 protein or synthetic M2e peptide do not bind to the M2 protein on the virus or virus infected cells. Virol J 2013; 10:206. [PMID: 23800100 PMCID: PMC3701469 DOI: 10.1186/1743-422x-10-206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 06/17/2013] [Indexed: 11/11/2022] Open
Abstract
Background Influenza viruses are characterized by their highly variable surface proteins HA and NA. The third surface protein M2 is a nearly invariant protein in all Influenza A strains. Despite extensive studies in other animal models, this study is the first to describe the use of recombinant M2 protein and a peptide coding for the extracellular part of the M2 protein (M2e) to vaccinate poultry. Methods Four groups of layer chickens received a prime-boost vaccination with recombinant M2 protein, M2e, a tetrameric construct from M2e peptide bound to streptavidin and a control tetrameric construct formulated with Stimune adjuvant. Results We determined the M2-specific antibody (Ab) responses in the serum before vaccination, three weeks after vaccination and two weeks after booster, at days 21, 42 and 56 of age. The group vaccinated with the M2 protein in combination with Stimune adjuvant showed a significant Ab response to the complete M2 protein as compared to the other groups. In addition an increased Ab response to M2e peptide was found in the group vaccinated with the M2e tetrameric construct. None of the vaccinated animals showed seroconversion to AI in a commercial ELISA. Finally no Ab’s were found that bound to M2 expressed on in vitro AI infected MDCK cells. Conclusion Although Ab’s are formed against the M2 protein and to Streptavidin bound M2e peptide in a tetrameric conformation these Ab’s do not recognize of M2 on the virus or on infected cells.
Collapse
Affiliation(s)
- Willem J C Swinkels
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 Utrecht CL, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Clearance of influenza virus infections by T cells: risk of collateral damage? Curr Opin Virol 2013; 3:430-7. [PMID: 23721864 DOI: 10.1016/j.coviro.2013.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 02/02/2023]
Abstract
Influenza A viruses are a major cause of respiratory infections in humans. To protect against influenza, vaccines mainly aim at the induction of antibodies against the two surface proteins and do not protect against influenza A viruses from other subtypes. There is an increasing interest in heterosubtypic immunity that does protect against different subtypes. CD8 and CD4 T cells have a beneficial effect on the course of influenza A virus infection and can recognize conserved IAV epitopes. The T cell responses are tightly regulated to avoid collateral damage due to overreaction. Different studies have shown that an aberrant T cell response to an influenza virus infection could be harmful and could contribute to immunopathology. Here we discuss the recent findings on the balance between the beneficial and detrimental effects of T cell responses in influenza virus infections.
Collapse
|