1
|
Cen W, Umrath F, Salgado AJ, Reinert S, Alexander D. Secretomes derived from osteogenically differentiated jaw periosteal cells inhibit phenotypic and functional maturation of CD14 + monocyte-derived dendritic cells. Front Immunol 2023; 13:1024509. [PMID: 36700194 PMCID: PMC9868599 DOI: 10.3389/fimmu.2022.1024509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The jaw periosteal tissue is generally recognized as a suitable source for the isolation of mesenchymal stem cells (MSCs). In previous studies we showed evidence that two- and three-dimensionally cultured jaw periosteum-derived MSCs (JPCs) are able to induce a more immature phenotype of dendritic cells (DCs). To further expand our knowledge of JPCs' immunoregulative function, we investigated the effects of JPC secretomes derived from undifferentiated (CO) or osteogenically differentiated cells (treated with or without dexamethasone: OB+/-D) on CD14+ monocyte-derived DCs (MoDCs). We detected a remarkably reduced formation of MoDC homotypic clusters under the influence of secretomes from osteogenically induced JPCs. Further, significantly decreased numbers of CD83+ cells, up-regulated CD209 and down-regulated CD80, CD86 and CD197 expression levels were detected on the surface of MoDCs. Whereas secretomes from JPCs osteogenically stimulated with dexamethasone significantly enhanced FITC-dextran uptake capacity of MoDCs, the increase by secretomes of JPCs treated without dexamethasone did not reach significance. The analysis of mixed lymphocyte reactions revealed that OB+/-D secretomes were able to significantly reduce the numbers of proliferating CD14- peripheral blood mononuclear cells (PBMCs) and of proliferating CD4+ T cells. The OB-D secretome significantly promoted the expansion of regulatory CD25+ T cells. Regarding gene expression of MoDCs, remarkably up-regulated mRNA expression of CD209, HLA-DRA, CSF3, IL10 and IL8 was detected when DCs were cultured in the presence of OB+/-D secretomes. At the same time, secretomes seemed to have an impact in the down-regulation of IFNγ and IL12B gene expression. At protein level, OB+/-D secretomes significantly up-regulated IL-10 and IDO (indoleamine-pyrrole 2,3-dioxygenase) levels whereas IL-12/IL-23p40 levels were down-regulated in supernatants of MoDCs when cultured under the presence of OB+/-D secretomes. Taken together, while secretomes from untreated JPCs had only little effects on the process of maturation of MoDCs, secretomes derived from osteogenically induced JPCs were able to inhibit the phenotypic and functional maturation of MoDCs.
Collapse
Affiliation(s)
- Wanjing Cen
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany,Clinic for Orthopaedic Surgery, University Hospital Tübingen, Tübingen, Germany
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s-PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany,*Correspondence: Dorothea Alexander,
| |
Collapse
|
2
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
3
|
Kang-Pettinger T, Walker K, Brown R, Cowan R, Wright H, Baravalle R, Waters LC, Muskett FW, Bowler MW, Sawmynaden K, Coombs PJ, Carr MD, Hall G. Identification, binding, and structural characterization of single domain anti-PD-L1 antibodies inhibitory of immune regulatory proteins PD-1 and CD80. J Biol Chem 2022; 299:102769. [PMID: 36470427 PMCID: PMC9811221 DOI: 10.1016/j.jbc.2022.102769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 μM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.
Collapse
Affiliation(s)
- Tara Kang-Pettinger
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Kayleigh Walker
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Richard Brown
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Helena Wright
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Roberta Baravalle
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Lorna C. Waters
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | - Frederick W. Muskett
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | | | - Kovilen Sawmynaden
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Peter J. Coombs
- LifeArc, Centre for Therapeutics Discovery, Open Innovation Campus, Stevenage, UK
| | - Mark D. Carr
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK,For correspondence: Gareth Hall; Mark D. Carr
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, UK,For correspondence: Gareth Hall; Mark D. Carr
| |
Collapse
|
4
|
Widyagarini A, Nishii N, Kawano Y, Zhang C, Azuma M. VSIG4/CRIg directly regulates early CD8 + T cell activation through its counter-receptor in a narrow window. Biochem Biophys Res Commun 2022; 614:100-106. [PMID: 35576680 DOI: 10.1016/j.bbrc.2022.04.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
T-cell responses are fine-tuned by positive and negative co-signal molecules expressed on immune cells and adjacent tissues. VSIG4 is a newly identified member of the B7 family of ligands, which negatively regulates innate inflammatory and CD4+ T cell-mediated responses. However, little is known about the direct effects of VSIG4, which are exerted through an unidentified counter-receptor on CD8+ T cells. We investigated the binding of the VSIG4-Ig fusion protein during CD8+ T cell activation, and the functional involvement of VSIG4 pathway, using VSIG4-Ig and VSIG4-transfectants. VSIG4-Ig binding to CD8+ T cells was temporally observed in the CD44high phenotype during initial activation. VSIG4-Ig binding was observed earlier than the induction of PD-1, LAG3, and TIM-3, which are immune checkpoint receptors for exhausted CD8+ T cells. Immobilized VSIG4-Ig inhibited anti-CD3/CD28 mAb-induced CD8+ T cell activation, as indicated by proliferation and IFN-γ production, similar to the downregulation of T-bet and Eomesodermin transcription factors. VSIG4 on FcγR+ P815 or specific antigen-presenting E.G7 cells inhibited the generation of effector CD8+ T cells, as indicated by proliferation, IFN-γ and TNF-α expression, and granule degradation, compared to parental cells. However, the window for the regulatory function of VSIG4 was narrow and dependent on the strength of TCR (and CD28)-mediated signals. Our results suggested that VSIG4 directly delivers co-inhibitory signals via an as-yet unidentified counter-receptor on activated CD8+ T cells. VSIG4-mediated CD8+ T cell tolerance might contribute to the steady-state maintenance of homeostasis.
Collapse
Affiliation(s)
- Amrita Widyagarini
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoto Nishii
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yohei Kawano
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chenyang Zhang
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
5
|
Nishimura CD, Pulanco MC, Cui W, Lu L, Zang X. PD-L1 and B7-1 Cis-Interaction: New Mechanisms in Immune Checkpoints and Immunotherapies. Trends Mol Med 2021; 27:207-219. [PMID: 33199209 PMCID: PMC7914151 DOI: 10.1016/j.molmed.2020.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Immune checkpoints negatively regulate immune cell responses. Programmed cell death protein 1:programmed death ligand 1 (PD-1:PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4):B7-1 are among the most important immune checkpoint pathways, and are key targets for immunotherapies that seek to modulate the balance between stimulatory and inhibitory signals to lead to favorable therapeutic outcomes. The current dogma of these two immune checkpoint pathways has regarded them as independent with no interactions. However, the newly characterized PD-L1:B7-1 ligand-ligand cis-interaction and its ability to bind CTLA-4 and CD28, but not PD-1, suggests that these pathways have significant crosstalk. Here, we propose that the PD-L1:B7-1 cis-interaction brings novel mechanistic understanding of these pathways, new insights into mechanisms of current immunotherapies, and fresh ideas to develop better treatments in a variety of therapeutic settings.
Collapse
Affiliation(s)
- Christopher D Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Urology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
6
|
Co-signal Molecules in T-Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:3-23. [DOI: 10.1007/978-981-32-9717-3_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Zhang W, Jordan KR, Schulte B, Purev E. Characterization of clinical grade CD19 chimeric antigen receptor T cells produced using automated CliniMACS Prodigy system. Drug Des Devel Ther 2018; 12:3343-3356. [PMID: 30323566 PMCID: PMC6181073 DOI: 10.2147/dddt.s175113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating acute lymphoblastic leukemia and non-Hodgkin's lymphoma with high rate complete responses. However, the broad clinical application of CAR T-cell therapy has been challenging, largely due to the lack of widespread ability to produce and high cost of CAR T-cell products using traditional methods of production. Automated cell processing in a closed system has emerged as a potential method to increase the feasibility of producing CAR T cells locally at academic centers due to its minimal reliance on experienced labor, thereby making the process less expensive and more consistent than traditional methods of production. METHOD In this study, we describe the successful production of clinical grade CD19 CAR T cells using the Miltenyi CliniMACS Prodigy Automated Cell Processor at University of Colorado Anschutz Medical Campus in a rapid manner with a high frequent CD19 CAR expression. RESULTS The final CAR T-cell product is highly active, low in immune suppression, and absent in exhaustion. Full panel cytokine assays also showed elevated production of Th1 cytokines upon IL-2 stimulation when specifically killing CD19+ target cells. CONCLUSION These results demonstrate the feasibility of producing CAR T cells locally in a university hospital setting using automated cell processor for future clinical applications.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| | - Kimberly R Jordan
- Division of Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian Schulte
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Enkhtsetseg Purev
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| |
Collapse
|
8
|
Gastrointestinal toxicity of immune checkpoint inhibitors: from mechanisms to management. Nat Rev Gastroenterol Hepatol 2018; 15:222-234. [PMID: 29512649 DOI: 10.1038/nrgastro.2018.14] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitor therapies are a novel group of monoclonal antibodies with proven effectiveness in a wide range of malignancies, including melanoma, renal cell carcinoma, non-small-cell lung cancer, urothelial carcinoma and Hodgkin lymphoma. Their use in a range of other indications, such as gastrointestinal and head and neck cancer, is currently under investigation. The number of agents included in this drug group is increasing, as is their use. Although they have the potential to improve the treatment of advanced malignancies, they are also associated with a substantial risk of immune-related adverse events. The incidence of gastrointestinal toxicity associated with their use is second only in frequency to dermatological toxicity. Thus, gastroenterologists can expect to be increasingly frequently consulted by oncologists as part of a multidisciplinary approach to managing toxicity. Here, we describe this novel group of agents and their mechanisms of action. We review the manifestations of gastrointestinal toxicity associated with their use so that it can be recognized early and diagnosed accurately. We also discuss the proposed mechanisms underlying this toxicity and describe an algorithmic and, wherever possible, evidence-based approach to its management.
Collapse
|
9
|
Smyth MJ. Generation and cytotoxic profile of human peripheral blood CD4 +
T lymphocytes. Immunol Cell Biol 2017; 70 ( Pt 6):379-90. [PMID: 1363236 DOI: 10.1038/icb.1992.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of a variety of metabolic and anti-tumour necrosis factor (TNF) antibodies were utilized to distinguish several different mechanisms of cytotoxicity employed by CD4+ effectors isolated from human peripheral blood lymphocytes (PBL). PBL, unseparated high buoyant density T cells and their CD4+ T cell subsets were activated with anti-CD3 monoclonal antibody (MoAb) and interleukin-2 (IL-2) for 1-5 days. CD4+ T cells activated with IL-2/anti-CD3 MoAb were cytotoxic when directed by a bispecific anti-nitrophenyl (NP)-anti-CD3 MoAb heteroconjugate against both NP-modified nucleated target cells (TC) and non-nucleated sheep red blood cells (SRBC). This CD4+ T population also lysed L929 in a TNF-alpha dependent manner. Interestingly, different mechanisms of nucleated and non-nucleated TC directed lysis by CD4+ effectors were implied by distinct patterns of sensitivity to cholera toxin (CT) and cyclosporin A (CsA). Cyclosporin A and CT inhibited CD4+ T cell directed lysis of SRBC, but not EL4. Cholera toxin, CsA or EGTA pretreatment also significantly inhibited the release of alpha-N-benzyloxycarbonyl-L-lysine-thiobenzylester (BLT)-esterase activity suggesting that degranulation of CD4+ effectors may be a critical step in their redirected lysis of SRBC. Overall, these findings suggested that activated human peripheral blood (PB) CD4+ effectors can lyse TC by at least three distinct mechanisms: (i) a CsA-sensitive directed lysis of SRBC which correlates with exocytosis and presumably occurs via membrane lesions; (ii) a CsA-insensitive directed lysis of NP-modified nucleated TC that does not appear to involve exocytosis and is metabolically distinct; and (iii) a direct TNF-dependent lysis of TNF-sensitive TC. The highly proliferative CD4+ T cell population could be propagated for at least 35 days while retaining cytotoxicity and secreting up to 80 U/mL of IL-2. These data raise the possibility that anti-CD3 MoAb plus IL-2 activated CD4+ T cells may prove effective in adoptive tumour immunotherapy.
Collapse
Affiliation(s)
- M J Smyth
- Cellular Cytotoxicity Laboratory, Austin Research Institute, Austin Hospital, Heidelberg, Victoria, Australia
| |
Collapse
|
10
|
Hickey RM, Kulik LM, Nimeiri H, Kalyan A, Kircher S, Desai K, Riaz A, Lewandowski RJ, Salem R. Immuno-oncology and Its Opportunities for Interventional Radiologists: Immune Checkpoint Inhibition and Potential Synergies with Interventional Oncology Procedures. J Vasc Interv Radiol 2017; 28:1487-1494. [PMID: 28912090 DOI: 10.1016/j.jvir.2017.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy, specifically the use of immune checkpoint inhibitors, offers a new approach to fighting cancer. Although the results of treatment with immune checkpoint inhibition alone have been remarkable for certain cancers, these results are not universal. Preclinical and early clinical studies indicate the potential for synergistic effects when immune checkpoint inhibition is combined with immunogenic local therapies such as ablation and embolization. This review offers an overview of immunology as it relates to immune checkpoint inhibition and the possibilities for synergy when combined with interventional radiology treatments.
Collapse
Affiliation(s)
- Ryan M Hickey
- Department of Radiology, Section of Interventional Radiology, New York University, 560 First Ave., New York, NY 10016.
| | - Laura M Kulik
- Department of Medicine, Division of Hepatology, Northwestern University, Chicago, Illinois
| | - Halla Nimeiri
- Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Aparna Kalyan
- Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Sheetal Kircher
- Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kush Desai
- Department of Radiology, Section of Interventional Radiology, Northwestern University, Chicago, Illinois
| | - Ahsun Riaz
- Department of Radiology, Section of Interventional Radiology, Northwestern University, Chicago, Illinois
| | - Robert J Lewandowski
- Department of Radiology, Section of Interventional Radiology, Northwestern University, Chicago, Illinois
| | - Riad Salem
- Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois; Department of Radiology, Section of Interventional Radiology, Northwestern University, Chicago, Illinois
| |
Collapse
|
11
|
Adams AB, Ford ML, Larsen CP. Costimulation Blockade in Autoimmunity and Transplantation: The CD28 Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 197:2045-50. [PMID: 27591335 DOI: 10.4049/jimmunol.1601135] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
Abstract
T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. TCR signaling in the absence of costimulatory signals can lead to an abortive attempt at activation and subsequent anergy. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. The development of the fusion protein CTLA-4-Ig as an experimental and subsequent therapeutic tool is one of the major success stories in modern immunology. Abatacept and belatacept are clinically approved agents for the treatment of rheumatoid arthritis and renal transplantation, respectively. Future interventions may include selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4.
Collapse
Affiliation(s)
- Andrew B Adams
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| | - Christian P Larsen
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
12
|
Iannone F, Lopalco G, Cauli A, Cantarini L. Circulating CD8+CD28 null T Cytotoxic Cells in Polymyositis-A Possible Biomarker? Comment on the Article by Pandya et al. Arthritis Rheumatol 2016; 69:243. [PMID: 27696772 DOI: 10.1002/art.39942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 11/07/2022]
|
13
|
Holtappels R, Podlech J, Lemmermann NAW, Schmitt E, Reddehase MJ. Non-cognate bystander cytolysis by clonal epitope-specific CTL lines through CD28-CD80 interaction inhibits antibody production: A potential caveat to CD8 T-cell immunotherapy. Cell Immunol 2016; 308:44-56. [PMID: 26717854 DOI: 10.1016/j.cellimm.2015.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Adoptive transfer of virus epitope-specific CD8 T cells is an immunotherapy option to control cytomegalovirus (CMV) infection and prevent CMV organ disease in immunocompromised solid organ transplantation (SOT) and hematopoietic cell transplantation (HCT) recipients. The therapy aims at an early, selective recognition and cytolysis of infected cells for preventing viral spread in tissues with no adverse immunopathogenic side-effects by attack of uninfected bystander cells. Here we describe that virus epitope-specific, cloned T-cell lines lyse target cells that present the cognate antigenic peptide to the TCR, but simultaneously have the potential to lyse uninfected cells expressing the CD28 ligand CD80 (B7-1). While TCR-mediated cytolysis requires co-receptor CD8 and depends on perforin, the TCR-independent and viral epitope-independent cytolysis through CD28-CD80 signaling does not require CD8 on the effector cells and is perforin-independent. Importantly, this non-cognate cytolysis pathway leads to bystander cytolysis of CD80-expressing B-cell blasts and thereby inhibits pan-specific antibody production.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Edgar Schmitt
- Institute for Immunology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Jezeršek Novaković B. Checkpoint inhibitors in Hodgkin's lymphoma. Eur J Haematol 2015; 96:335-43. [PMID: 26560962 DOI: 10.1111/ejh.12697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
Hodgkin's lymphoma is unusual among cancers in that it consists of a small number of malignant Hodgkin/Reed-Sternberg cells in a sea of immune system cells, including T cells. Most of these T cells are reversibly inactivated in different ways and their reactivation may induce a very strong immune response to cancer cells. One way of reactivation of T cells is with antibodies blocking the CTLA-4 and especially with antibodies directed against PD-1 or the PD-L1 ligand thereby reversing the tumor-induced downregulation of T-cell function and augmenting antitumor immune activity at the priming (CTLA-4) or tissue effector (PD-1) phase. Immune checkpoint inhibitors have been evidenced as an additional treatment option with substantial effectiveness and acceptable toxicity in heavily pretreated patients with Hodgkin's lymphoma. Particularly, PD-1 blockade with nivolumab and pembrolizumab has demonstrated significant single-agent activity in this select population.
Collapse
|
15
|
Abstract
The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise novel strategies that exploit the patient's immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematologic malignancies, including (i) conventional monoclonal therapies like rituximab; (ii) engineered monoclonal antibodies called bispecific T-cell engagers; (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4, and IDO); and (iv) adoptive cell transfer therapy with T cells engineered to express chimeric antigen receptors or T-cell receptors. We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients.
Collapse
Affiliation(s)
- Michelle H Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
16
|
Jenkins MK. The in vivo response of naive CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:3829-31. [PMID: 25281752 DOI: 10.4049/jimmunol.1490035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Marc K Jenkins
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
17
|
Lines JL, Sempere LF, Broughton T, Wang L, Noelle R. VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res 2014; 2:510-7. [PMID: 24894088 PMCID: PMC4085258 DOI: 10.1158/2326-6066.cir-14-0072] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past few years, the field of cancer immunotherapy has made great progress and is finally starting to change the way cancer is treated. We are now learning that multiple negative checkpoint regulators (NCR) restrict the ability of T-cell responses to effectively attack tumors. Releasing these brakes through antibody blockade, first with anti-CTLA4 and now followed by anti-PD1 and anti-PDL1, has emerged as an exciting strategy for cancer treatment. More recently, a new NCR has surfaced called V-domain immunoglobulin (Ig)-containing suppressor of T-cell activation (VISTA). This NCR is predominantly expressed on hematopoietic cells, and in multiple murine cancer models is found at particularly high levels on myeloid cells that infiltrated the tumors. Preclinical studies with VISTA blockade have shown promising improvement in antitumor T-cell responses, leading to impeded tumor growth and improved survival. Clinical trials support combined anti-PD1 and anti-CTLA4 as safe and effective against late-stage melanoma. In the future, treatment may involve combination therapy to target the multiple cell types and stages at which NCRs, including VISTA, act during adaptive immune responses.
Collapse
Affiliation(s)
- J Louise Lines
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lorenzo F Sempere
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Thomas Broughton
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Li Wang
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Randolph Noelle
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Coun
| |
Collapse
|
18
|
Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2014; 2:14. [PMID: 24883190 PMCID: PMC4039332 DOI: 10.1186/2051-1426-2-14] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 01/05/2023] Open
Abstract
Knowledge of the basic mechanisms of the immune system as it relates to cancer has been increasing rapidly. These developments have accelerated the translation of these advancements into medical breakthroughs for many cancer patients. The immune system is designed to discriminate between self and non-self, and through genetic recombination there is virtually no limit to the number of antigens it can recognize. Thus, mutational events, translocations, and other genetic abnormalities within cancer cells may be distinguished as “altered-self” and these differences may play an important role in preventing the development or progression of cancer. However, tumors may utilize a variety of mechanisms to evade the immune system as well. Cancer biologists are aiming to both better understand the relationship between tumors and the normal immune system, and to look for ways to alter the playing field for cancer immunotherapy. Summarized in this review are discussions from the 2013 SITC Primer, which focused on reviewing current knowledge and future directions of research related to tumor immunology and cancer immunotherapy, including sessions on innate immunity, adaptive immunity, therapeutic approaches (dendritic cells, adoptive T cell therapy, anti-tumor antibodies, cancer vaccines, and immune checkpoint blockade), challenges to driving an anti-tumor immune response, monitoring immune responses, and the future of immunotherapy clinical trial design.
Collapse
Affiliation(s)
- Raju R Raval
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew B Sharabi
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda J Walker
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA ; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Sullivan RJ, Lorusso PM, Flaherty KT. The intersection of immune-directed and molecularly targeted therapy in advanced melanoma: where we have been, are, and will be. Clin Cancer Res 2013; 19:5283-91. [PMID: 24089441 PMCID: PMC4100326 DOI: 10.1158/1078-0432.ccr-13-2151] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In three years, four drugs have gained regulatory approval for the treatment of metastatic and unresectable melanoma, with at least seven other drugs having recently completed, currently in, or soon to be in phase III clinical testing. This amazing achievement has been made following a remarkable increase of knowledge in molecular biology and immunology that led to the identification of high-valued therapeutic targets and the clinical development of agents that effectively engage and inhibit these targets. The discovery of either effective molecularly targeted therapies or immunotherapies would have led to dramatic improvements to the standard-of-care treatment of melanoma. However, through parallel efforts that have showcased the efficacy of small-molecule BRAF and MAP-ERK kinase (MEK) inhibitors, as well as the immune checkpoint inhibitors, namely ipilimumab and the anti-PD1/PDL1 antibodies (lambrolizumab, nivolumab, MPDL3280), an opportunity exists to transform the treatment of melanoma specifically and cancer generally by exploring rational combinations of molecularly targeted therapies, immunotherapies, and molecular targeted therapies with immunotherapies. This overview presents the historical context to this therapeutic revolution, reviews the benefits and limitations of current therapies, and provides a look ahead at where the field is headed.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Authors' Affiliations: Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | | |
Collapse
|
20
|
Harris TJ, Drake CG. Primer on tumor immunology and cancer immunotherapy. J Immunother Cancer 2013; 1:12. [PMID: 24829749 PMCID: PMC4019888 DOI: 10.1186/2051-1426-1-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/10/2013] [Indexed: 01/05/2023] Open
Abstract
Individualized cancer therapy is a central goal of cancer biologists. Immunotherapy is a rational means to this end—because the immune system can recognize a virtually limitless number of antigens secondary to the biology of genetic recombination in B and T lymphocytes. The immune system is exquisitely structured to distinguish self from non-self, as demonstrated by anti-microbial immune responses. Moreover the immune system has the potential to recognize self from “altered-self”, which is the case for cancer. However, the immune system has mechanisms in place to inhibit self-reactive responses, many of which are usurped by evolving tumors. Understanding the interaction of cancer with the immune system provides insights into mechanisms that can be exploited to disinhibit anti-tumor immune responses. Here, we summarize the 2012 SITC Primer, reviewing past, present, and emerging immunotherapeutic approaches for the treatment of cancer—including targeting innate versus adaptive immune components; targeting and/or utilizing dendritic cells and T cells; the role of the tumor microenvironment; and immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy J Harris
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Charles G Drake
- Department of Oncology and Brady Urological Institute, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans St., CRB I #410, Baltimore, MD 21231, USA
| |
Collapse
|
21
|
Ertelt JM, Buyukbasaran EZ, Jiang TT, Rowe JH, Xin L, Way SS. B7-1/B7-2 blockade overrides the activation of protective CD8 T cells stimulated in the absence of Foxp3+ regulatory T cells. J Leukoc Biol 2013; 94:367-76. [PMID: 23744647 DOI: 10.1189/jlb.0313118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although T cell activation has been classically described to require distinct, positive stimulation signals that include B7-1 (CD80) and B7-2 (CD86) costimulation, overriding suppression signals that avert immune-mediated host injury are equally important. How these opposing stimulation and suppression signals work together remains incompletely defined. Our recent studies demonstrate that CD8 Teff activation in response to cognate peptide stimulation is actively suppressed by the Foxp3(+) subset of CD4 cells, called Tregs. Here, we show that the elimination of Treg suppression does not bypass the requirement for positive B7-1/B7-2 costimulation. The expansion, IFN-γ cytokine production, cytolytic, and protective features of antigen-specific CD8 T cells stimulated with purified cognate peptide in Treg-ablated mice were each neutralized effectively by CTLA-4-Ig that blocks B7-1/B7-2. In turn, given the efficiency whereby CTLA-4-Ig overrides the effects of Treg ablation, the role of Foxp3(+) cell-intrinsic CTLA-4 in mitigating CD8 Teff activation was also investigated. With the use of mixed chimera mice that contain CTLA-4-deficient Tregs exclusively after the ablation of WT Foxp3(+) cells, a critical role for Treg CTLA-4 in suppressing the expansion, cytokine production, cytotoxicity, and protective features of peptide-stimulated CD8 T cells is revealed. Thus, the activation of protective CD8 T cells requires positive B7-1/B7-2 costimulation even when suppression by Tregs and in particular, Treg-intrinsic CTLA-4 is circumvented.
Collapse
Affiliation(s)
- James M Ertelt
- Division of Infectious Diseases, 3333 Burnet Ave., MLC 7017, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Fan J, Cai H, Li Q, Du Z, Tan W. The effects of ROS-mediating oxygen tension on human CD34+CD38− cells induced into mature dendritic cells. J Biotechnol 2012; 158:104-11. [DOI: 10.1016/j.jbiotec.2012.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/04/2012] [Accepted: 01/14/2012] [Indexed: 11/29/2022]
|
23
|
Hashiguchi M, Inamochi Y, Nagai S, Otsuki N, Piao J, Kobori H, Kanno Y, Kojima H, Kobata T, Azuma M. Human B7-H3 binds to Triggering receptor expressed on myeloid cells-like transcript 2 (TLT-2) and enhances T cell responses. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/oji.2012.21002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Thakur A, Lum LG. Cancer therapy with bispecific antibodies: Clinical experience. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2010; 12:340-349. [PMID: 20521223 PMCID: PMC3785321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The binding of at least two molecular targets simultaneously with a single bispecific antibody is an attractive concept. The use of bispecific antibodies as possible therapeutic agents for cancer treatment was proposed in the mid-1980s. The design and production of bispecific antibodies using antibody- and/or receptor-based platform technology has improved significantly with advances in the knowledge of molecular manipulations, protein engineering techniques, and the expression of antigens and receptors on healthy and malignant cells. The common strategy for making bispecific antibodies involves combining the variable domains of the desired mAbs into a single bispecific structure. Many different formats of bispecific antibodies have been generated within the research field of bispecific immunotherapeutics, including the chemical heteroconjugation of two complete molecules or fragments of mAbs, quadromas, F(ab')2, diabodies, tandem diabodies and single-chain antibodies. This review describes key modifications in the development of bispecific antibodies that can improve their efficacy and stability, and provides a clinical perspective on the application of bispecific antibodies for the treatment of solid and liquid tumors, including the promises and research limitations of this approach.
Collapse
Affiliation(s)
- Archana Thakur
- Barbara Ann Karmanos Cancer Institute and Wayne State University, Blood and Marrow Stem Cell Transplantation and Immunotherapy Program, 4100 John R, 4th Floor, Hudson-Webber Cancer Research Center, Detroit, MI 48201, USA
| | - Lawrence G Lum
- Barbara Ann Karmanos Cancer Institute and Wayne State University, Department of Medicine and Department of Immunology and Microbiology, 4100 John R, 7th Floor, Hudson-Webber Cancer Research Center, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Bomble M, Tacke F, Rink L, Kovalenko E, Weiskirchen R. Analysis of antigen-presenting functionality of cultured rat hepatic stellate cells and transdifferentiated myofibroblasts. Biochem Biophys Res Commun 2010; 396:342-7. [PMID: 20403338 DOI: 10.1016/j.bbrc.2010.04.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 04/14/2010] [Indexed: 11/27/2022]
Abstract
Here, we demonstrate that hepatic stellate cells (HSC) isolated from Lewis rats have in vitro antigen-presentation cell (APC) functionality and are able to process and present exogenous antigens. We show activation of a major histocompatibility complex II (RT1BI)-restricted T-cell hybridoma specific for guinea pig myelin basic protein (gpMBP) after coculture with HSC. During transdifferentiation of HSC into myofibroblasts (MFB) the APC function was markedly decreased but restorable by addition of interferon-gamma (IFN-gamma). Based on our findings we conclude that HSC play a key role in hepatic immune function and that IFN-gamma treatment might mediate its beneficial therapeutic effects via activation of APC function in MFB.
Collapse
Affiliation(s)
- Michael Bomble
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
26
|
Bere A, Denny L, Hanekom W, Burgers WA, Passmore JAS. Comparison of polyclonal expansion methods to improve the recovery of cervical cytobrush-derived T cells from the female genital tract of HIV-infected women. J Immunol Methods 2010; 354:68-79. [PMID: 20149794 PMCID: PMC2854893 DOI: 10.1016/j.jim.2010.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/02/2022]
Abstract
Cervical cytobrushing is a useful and non-invasive method for obtaining mucosal mononuclear cells from the female genital tract, but yields few cells. The aim of this study was to compare in vitro expansion protocols (anti-CD3, anti-CD3/CD28 or Dynal anti-CD3/CD28 beads) and cytokine combinations (IL-2, IL-7 and IL-15) to improve cervical T cell yields and viability. Eighteen HIV-infected women were included in this study to compare methods for polyclonal expansion of T cells from the female genital tract and blood. Comparison of T cell yields, viability and maturational status (by differential staining with CD45RO, CCR7 and CD27) was determined following 7 days of in vitro expansion. Anti-CD3 and IL-2 resulted in a 4.5-fold (range 3.7–5.3) expansion of cervical CD3+ T cells in 7 days compared to day 0. Inclusion of anti-CD28 or addition of IL-7 and IL-15 to this combination did not improve expansion. Culturing cells with Dynal beads (1:1) and IL-2, IL-7 and IL-15 gave rise to the highest yields after 7 days in both blood (7.1-fold) and cervix (5.6-fold). While expansion with anti-CD3 led to the accumulation of effector memory T cells (CD45RO+CCR7−CD27−), expansion with Dynabeads selected for accumulation of central memory T cells (CD45RO+CCR7+CD27+). We conclude that in vitro expansion with Dynabeads (1:1) in the presence of IL-2, IL-7 and IL-15 resulted in the greatest increase in viable T cells from both blood and cytobrush. Irrespective of the expansion method used, the T cell memory profile was altered following expansion.
Collapse
Affiliation(s)
- Alfred Bere
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | | | | | |
Collapse
|
27
|
Ivanova-Todorova E, Bochev I, Mourdjeva M, Dimitrov R, Bukarev D, Kyurkchiev S, Tivchev P, Altunkova I, Kyurkchiev DS. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunol Lett 2009; 126:37-42. [DOI: 10.1016/j.imlet.2009.07.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/09/2009] [Accepted: 07/22/2009] [Indexed: 12/13/2022]
|
28
|
Rosen DB, Cao W, Avery DT, Tangye SG, Liu YJ, Houchins JP, Lanier LL. Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6508-17. [PMID: 18453569 PMCID: PMC2577150 DOI: 10.4049/jimmunol.180.10.6508] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lectin-like transcript-1 (LLT1) (also named osteoclast inhibitory lectin or CLEC2D) is a ligand for the human NKR-P1A (CD161) receptor, present on NK cells and T cells. To further understand the physiological relevance of this interaction, we developed mAbs against LLT1, characterized the expression pattern of LLT1, and explored the functional consequence of LLT1 engagement of the NKR-P1A receptor on NK cells and T cells. LLT1 is expressed on TLR-activated plasmacytoid dendritic, TLR-activated monocyte-derived dendritic cells, and on B cells stimulated through TLR9, surface Ig, or CD40. Interactions between NKR-P1A on NK cells and LLT1 on target cells inhibit NK cell-mediated cytotoxicity and cytokine production and can inhibit TNF-alpha production by TCR-activated NKR-P1A(+) CD8(+) T cells. In contrast, NKR-P1A failed to inhibit or augment the TCR-dependent activation of NKR-P1A-bearing CD4(+) T cells. Expression of LLT1 on activated dendritic cells and B cells suggests that it might regulate the cross-talk between NK cells and APCs.
Collapse
Affiliation(s)
- David B. Rosen
- Department of Microbiology and Immunology, Biomedical Sciences Graduate Program, and Cancer Research Institute, University of California, San Francisco, CA 94143
| | - Wei Cao
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Yong-Jun Liu
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | | | - Lewis L. Lanier
- Department of Microbiology and Immunology, Biomedical Sciences Graduate Program, and Cancer Research Institute, University of California, San Francisco, CA 94143
| |
Collapse
|
29
|
Kawano A, Shimoda S, Kamihira T, Ishikawa F, Niiro H, Soejima Y, Taketomi A, Maehara Y, Nakamura M, Komori A, Migita K, Ishibashi H, Azuma M, Gershwin ME, Harada M. Peripheral tolerance and the qualitative characteristics of autoreactive T cell clones in primary biliary cirrhosis. THE JOURNAL OF IMMUNOLOGY 2007; 179:3315-24. [PMID: 17709548 DOI: 10.4049/jimmunol.179.5.3315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primary biliary cirrhosis is characterized by autoreactive T cells specific for the mitochondrial Ag PDC-E2(163-176). We studied the ability of eight T cell clones (TCC) specific for PDC-E2(163-176) to proliferate or become anergic in the presence of costimulation signals. TCC were stimulated with either human PDC-E2(163-176), an Escherichia coli 2-oxoglutarate dehydrogenase mimic (OGDC-E2(34-47)), or analogs with amino acid substitutions using HLA-matched allogeneic PBMC or mouse L-DR53 fibroblasts as APC. Based on their differential responses to these peptides (human PDC-E2(163-176), E. coli OGDC-E2(34-47)) in the different APC systems, TCC were classified as costimulation dependent or independent. Only costimulation-dependent TCC could become anergic. TCC with costimulation-dependent responses to OGDC-E2 become anergic to PDC-E2 when preincubated with mimic, even if costimulation is independent for PDC-E2(163-176). Anergic TCC produced IL-10. One selected TCC could not become anergic after preincubation with PDC-E2(163-176)-pulsed L-DR53 but became anergic using L-DR53 pulsed with PDC-E2 peptide analogs with a substitution at a critical TCR binding site. TCC that only respond to peptide-pulsed PBMC, but not L-DR53, proliferate with peptide-pulsed CD80/CD86-transfected L-DR53; however, anergy was not induced with peptide-pulsed L-DR53 transfected with only CD80 or CD86. These data highlight that costimulation plays a dominant role in maintaining peripheral tolerance to PBC-specific Ags. They further suggest that, under specific circumstances, molecular mimicry of an autoantigen may restore rather than break peripheral tolerance.
Collapse
Affiliation(s)
- Akira Kawano
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cohen PA, Fowler DH, Kim H, White RL, Czerniecki BJ, Carter C, Gress RE, Rosenberg SA. Propagation of mouse and human T cells with defined antigen specificity and function. CIBA FOUNDATION SYMPOSIUM 2007; 187:179-93; discussion 194-7. [PMID: 7540969 DOI: 10.1002/9780470514672.ch12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Difficulties maintaining fully functional CD4+ T cells in culture have historically limited the study of their role in tumour rejection as well as other clinical applications. As the therapeutic value of current antitumour CD8+ T cell adoptive therapy becomes better defined, a strong impetus exists to determine optimal conditions for culturing antitumour CD4+ T cells. Our goal is to promote broadly polyclonal, antigen-specific CD4+ T cell responses of either Th1 or Th2 character for use in antitumour therapy or allograft facilitation, respectively. Similar obstacles exist in murine and human cultures: (1) during even brief periods of culture CD4+ T cells develop high 'background' reactivity to class II-positive antigen-presenting cells; (2) maintenance of antigen specificity as evidenced by cytokine secretion and short-term proliferation assays is insufficient to ensure bulk numerical expansion; (3) Th1-type CD4+ T cells often lose their potential for antigen-specific secretion of interleukin 2 on re-stimulation (though remain inducible by 12-O-tetradecanoylphorbol 13-acetate/ionomycin); (4) during prolonged culture selection pressure favours CD4+ subpopulations that recognize artifactual antigens such as culture medium proteins; (5) even with optimal culture conditions, cultured CD4+ T cells may function differently in vivo to uncultured CD4+ T cells. We have devised various strategies to surmount these obstacles by use of selected cytokines, antigen-presenting cells and timely culture manoeuvres.
Collapse
Affiliation(s)
- P A Cohen
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pearl JP, Xu H, Leopardi F, Preston E, Kirk AD. CD154 Blockade, Sirolimus, and Donor-Specific Transfusion Prevents Renal Allograft Rejection in Cynomolgus Monkeys Despite Homeostatic T-Cell Activation. Transplantation 2007; 83:1219-25. [PMID: 17496539 DOI: 10.1097/01.tp.0000259929.04596.d5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND CD154-specific antibodies have been shown to prevent acute rejection in many preclinical models including nonhuman primates (NHPs). However, they have been ineffective in pilot clinical trials, suggesting a need for more robust preclinical analysis. One factor affecting the disparate results may be related to the recipient's immune activation state. Specifically, adult humans have a high percentage of memory-phenotype T cells compared to young animals. Postdepletional homeostatic repopulation has been shown to enrich for memory-phenotype T cells and interfere with CD154-based therapies in rodents. METHODS We developed a NHP model nonspecifically enriched for peripheral memory-phenotype T cells. Thymectomized cynomolgus macaques underwent depletion with polyclonal anti-thymocyte globulin followed by repopulation. Peripheral phenotype was serially determined using polychromatic flow cytometry. In vitro response to donor and environmental antigens was also confirmed before and after manipulation. We then tested a regimen previously successful in rhesus monkeys combining anti-CD154, sirolimus, and donor-specific blood transfusion (DST), in a second primate species with and without the provocation of increased peripheral homeostatic T-cell activation. RESULTS Monkeys that were thymectomized (n=3) and depleted recovered via homeostatic repopulation with a repertoire enriched for cells with a memory surface phenotype compared to unmanipulated controls (n=3). Despite a repertoire markedly enriched for memory-phenotype cells, the regimen effectively prevented acute rejection for the duration of therapy. CONCLUSIONS Cynomolgus monkeys can be rendered memory phenotype enriched using homeostatic repopulation. Despite a generally activated T-cell repertoire, anti-CD154, sirolimus, and DST effectively prevents rejection in cynomolgus monkeys.
Collapse
Affiliation(s)
- Jonathan P Pearl
- Transplantation Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
32
|
Talarn C, Urbano-Ispizua A, Martino R, Batlle M, Fernández-Avilés F, Herrera C, Pérez-Simón JA, Gaya A, Aymerich M, Pétriz J, Marín P, Sierra J, Montserrat E. G-CSF increases the number of peripheral blood dendritic cells CD16+ and modifies the expression of the costimulatory molecule CD86+. Bone Marrow Transplant 2006; 37:873-9. [PMID: 16547488 DOI: 10.1038/sj.bmt.1705345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DC) play a key role in initiating immune reactions after allogeneic stem cell transplantation. The two main peripheral blood DC populations are myeloid (DC1) and lymphoplasmacytoid (DC2). A new subset of myeloid DC, expressing CD16, has been identified. We analyzed the number and CD86 expression of DC subsets in peripheral blood of 18 healthy donors, before and after granulocyte colony-stimulating factor (G-CSF) and in the inoculum of allogeneic peripheral blood transplants (allo-PBT; n=100) and allogeneic bone marrow transplants (allo-BMT; n=22). Granulocyte colony-stimulating factor administration increased the median number of DC1 (P=0.0007), of DC2 (P<0.0001) and of DC CD16+ (P=0.0001). Granulocyte colony-stimulating factor administration was also associated with a significant decrease of CD86 expression on DC1 (P=0.0003) and with a trend for an increase on DC CD16+ (P=0.07). Recipients of allo-PBT received similar quantities of DC1 and higher doses of DC2 and DC CD16+ than recipients of allo-BMT (P=0.5; P=0.0001; P<0.0001, respectively). Granulocyte colony-stimulating factor modifies the number of DC in peripheral blood and the expression of the costimulatory molecule CD86. This resulted in a different composition of DC2 and especially of DC CD16+ in the harvests, which might explain some of the differences observed in allogeneic reactions after allo-PBT with respect to allo-BMT.
Collapse
Affiliation(s)
- C Talarn
- Department of Hematology, Institute of Hematology and Oncology, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim HJ, Kim HY, Kim BK, Kim S, Chung DH. Engagement of glucocorticoid-induced TNF receptor costimulates NKT cell activation in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2006; 176:3507-15. [PMID: 16517719 DOI: 10.4049/jimmunol.176.6.3507] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucocorticoid-induced TNF receptor (GITR) is known to provide costimulatory signals to CD4+CD25- and CD4+CD25+ T cells during immune responses in vivo. However, the functional roles of GITR expressed on NKT cells have not been well characterized. In this study, we have explored the functions of GITR as a costimulatory factor on NKT cells. GITR was found to be constitutively expressed on NKT cells and its expression was enhanced by TCR signals. GITR engagement using DTA-1, an agonistic mAb against GITR, in the presence of TCR signals, augmented IL-2 production, the expression of activation markers, cell cycle progression, and the nuclear translocations of NF-kappaB p50 and p65. Furthermore, GITR engagement enhanced the production of IL-4, IL-10, IL-13, and IFN-gamma by NKT cells and the expression level of phosphorylated p65 in NKT cells in the presence of TCR engagement, indicating that GITR provides costimulatory signals to NKT cells. The costimulatory effects of GITR on NKT cells were comparable to those of CD28 in terms of cytokine production. Moreover, the coinjection of DTA-1 and alpha-galactosylceramide into B6 mice induced more IL-4 and IFN-gamma production than the coinjection of control mAbs and alpha-galactosylceramide. In addition, the adoptive transfer of DTA-1-pretreated NKT cells into CD1d(-/-) mice attenuated hypersensitivity pneumonitis more than control IgG pretreated NKT cells in these mice. These findings demonstrate that GITR engagement on NKT cells modulates immune responses in hypersensitivity pneumonitis in vivo. Taken together, our findings suggest that GITR engagement costimulates NKT cells and contributes to the regulation of immune-associated disease processes in vivo.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Pathology and Graduate Program of Immunology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, 110-799 Seoul, Korea
| | | | | | | | | |
Collapse
|
34
|
Otsuki N, Kamimura Y, Hashiguchi M, Azuma M. Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem Biophys Res Commun 2006; 344:1121-7. [PMID: 16643847 DOI: 10.1016/j.bbrc.2006.03.242] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 01/20/2023]
Abstract
Co-signal receptors provide crucial activating or attenuating signals for T cells. The B and T lymphocyte attenuator (BTLA/CD272) is a third member of co-inhibitory receptors, which belongs to the CD28 immunoglobulin-superfamily. Using monoclonal antibodies (mAbs) against human BTLA, we show that BTLA is constitutively expressed on most CD4+ and CD8+ T cells and its expression progressively decreases upon T cell activation. Polarized Th1 and Th2 cells contained both BTLA-positive and BTLA-negative populations, but the extended culture diminished BTLA expression. Cross-linking BTLA with an agonistic mAb inhibited T cell proliferation and the production of the cytokines IFN-gamma and IL-10 in response to anti-CD3 stimulation. BTLA-mediated inhibition of T cell activation occurred during both primary CD4+ T cell responses and secondary CD4+ and CD8+ T cell responses, suggesting that BTLA ligation sends a constitutive "off" signal to T cells and thus might play an important role in the maintenance of T cell tolerance.
Collapse
Affiliation(s)
- Noriko Otsuki
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|
35
|
Tsushima F, Tanaka K, Otsuki N, Youngnak P, Iwai H, Omura K, Azuma M. Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol 2006; 42:268-74. [PMID: 16271509 DOI: 10.1016/j.oraloncology.2005.07.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 07/21/2005] [Indexed: 11/18/2022]
Abstract
We examined cell surface expression of five B7 costimulatory molecules (B7-H1, B7-DC, B7h, CD80 and CD86) in human oral squamous cell carcinoma (SCC) lines. Most human SCC cell lines expressed various levels of B7-H1 and B7-DC. Their expression was further upregulated by interferon (IFN)-gamma stimulation. Immunohistochemical staining revealed substantial and predominant expression of B7-H1 on human primary oral SCC. A murine SCC line, NR-S1, neither expressed B7-H1 nor B7-DC, but induced B7-H1 by IFN-gamma stimulation in culture and the inoculation in vivo. Although NR-S1 tumors grew progressively in immunocompetent syngeneic mice, the administration of blocking anti-B7-Hl or anti-PD-1 mAb significantly inhibited the tumor growth, suggesting the negative regulation of host immune responses by the PD-1:B7-H1 pathway. Our results demonstrate that B7-H1 is predominantly induced on oral SCC within the B7 family molecules. A successful inhibition of tumor growth by blockade of the PD-1:B7-H1 pathway may implicate a new approach for immunotherapy of oral SCC.
Collapse
Affiliation(s)
- Fumihiko Tsushima
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 2006; 7:156-64. [PMID: 16415873 DOI: 10.1038/ni1297] [Citation(s) in RCA: 528] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 12/01/2005] [Indexed: 11/08/2022]
Abstract
Here we have identified 'triple D' (3d), a recessive N-ethyl-N-nitrosourea-induced mutation and phenotype in which no signaling occurs via the intracellular Toll-like receptors 3, 7 and 9 (sensors for double-stranded RNA, single-stranded RNA and unmethylated DNA, respectively). The 3d mutation also prevented cross-presentation and diminished major histocompatibility complex class II presentation of exogenous antigen; it also caused hypersusceptibility to infection by mouse cytomegalovirus and other microbes. By positional identification, we found 3d to be a missense allele of Unc93b1, which encodes the 12-membrane-spanning protein UNC-93B, a highly conserved molecule found in the endoplasmic reticulum with multiple paralogs in mammals. Innate responses to nucleic acids and exogenous antigen presentation, which both initiate in endosomes, thus seem to depend on an endoplasmic reticulum-resident protein, which suggests communication between these organellar systems.
Collapse
Affiliation(s)
- Koichi Tabeta
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pahl-Seibert MF, Juelch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R. Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 2005; 79:5400-13. [PMID: 15827154 PMCID: PMC1082747 DOI: 10.1128/jvi.79.9.5400-5413.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reconstitution of antiviral CD8 T cells is essential for controlling cytomegalovirus (CMV) infection after bone marrow transplantation. Accordingly, polyclonal CD8 T cells derived from BALB/c mice infected with murine CMV protect immunocompromised adoptive transfer recipients against CMV disease. The protective population comprises CD8 T cells with T-cell receptors (TCRs) specific for defined and for as-yet-unknown viral epitopes, as well as a majority of nonprotective cells with unrelated specificities. Defined epitopes include IE1/m123 and m164, which are immunodominant in terms of the magnitude of the CD8 T-cell response, and a panel of subordinate epitopes (m04, m18, M45, M83, and M84). While cytolytic T-lymphocyte lines (CTLLs) were shown to be protective regardless of the immunodominance of the respective epitope, the individual contributions of in vivo resident epitope-specific CD8 T cells to the antiviral control awaited investigation. The IE1 peptide 168-YPHFMPTNL-176 is generated from the immediate-early protein 1 (IE1) (pp89/76) of murine CMV and is presented by the major histocompatibility complex class I (MHC-I) molecule Ld. To quantitate its contribution to the protective potential of a CD8-T memory (CD8-TM) cell population, IE1-TCR+ and IE1-TCR- CD8-TM cells were purified by epitope-specific cell sorting with IE1 peptide-loaded MHC-immunoglobulin G1 dimers as ligands of cognate TCRs. Of relevance for clinical approaches to an adoptive cellular immunotherapy, sorted IE1 epitope-specific CD8-TM cells were found to be exceedingly protective upon adoptive transfer. Compared with CTLLs specific for the same epitope and of comparable avidity and TCR beta-chain variable region (Vbeta)-defined polyclonality, sorted CD8-TM cells proved to be superior by more than 2 orders of magnitude.
Collapse
|
38
|
Tani K, Azuma M, Nakazaki Y, Oyaizu N, Hase H, Ohata J, Takahashi K, OiwaMonna M, Hanazawa K, Wakumoto Y, Kawai K, Noguchi M, Soda Y, Kunisaki R, Watari K, Takahashi S, Machida U, Satoh N, Tojo A, Maekawa T, Eriguchi M, Tomikawa S, Tahara H, Inoue Y, Yoshikawa H, Yamada Y, Iwamoto A, Hamada H, Yamashita N, Okumura K, Kakizoe T, Akaza H, Fujime M, Clift S, Ando D, Mulligan R, Asano S. Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan: clinical and immunological findings. Mol Ther 2005; 10:799-816. [PMID: 15451464 DOI: 10.1016/j.ymthe.2004.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 07/05/2004] [Indexed: 11/27/2022] Open
Abstract
We produced lethally irradiated retrovirally GM-CSF-transduced autologous renal tumor cell vaccines (GVAX) from six Japanese patients with stage IV renal cell cancer (RCC). Four patients received GVAX ranging from 1.4 x 10(8) to 3.7 x 10(8) cells on 6-17 occasions. Throughout a total of 48 vaccinations, there were no severe adverse events. After vaccination, DTH skin tests became positive to autologous RCC (auto-RCC) in all patients. The vaccination sites showed significant infiltration by CD4(+) T cells, eosinophils, and HLA-DR-positive cells. The kinetic analyses of cellular immune responses using peripheral blood lymphocytes revealed an enhanced proliferative response against auto-RCC in four patients, and cytotoxicity against auto-RCC was augmented in three patients. T cell receptor beta-chain analysis revealed oligoclonal expansion of T cells in the peripheral blood, skin biopsy specimens from DTH sites, and tumors. Western blot analysis demonstrated the induction of a humoral immune response against auto-RCC. Two of the four patients are currently alive 58 and 40 months after the initial vaccination with low-dose interleukin-2. Our results suggest that GVAX substantially enhanced the antitumor cellular and humoral immune responses, which might have contributed to the relatively long survival times of our patients in the present study.
Collapse
Affiliation(s)
- Kenzaburo Tani
- Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsuyama T, Kawai T, Izumi Y, Taubman MA. Expression of major histocompatibility complex class II and CD80 by gingival epithelial cells induces activation of CD4+ T cells in response to bacterial challenge. Infect Immun 2005; 73:1044-51. [PMID: 15664948 PMCID: PMC546936 DOI: 10.1128/iai.73.2.1044-1051.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HLA-DR (major histocompatibility complex [MHC] class II) is often expressed by epithelial cells in gingival tissues with periodontal disease but not by cells in healthy gingival tissues. Confocal microscopic analyses revealed that gingival epithelial cells (GEC) from tissue with periodontal disease express both HLA-DR and B7-1 (CD80) costimulatory molecules. Rat GEC lines were established to elucidate the possible role of MHC class II and B7-1 expression by GEC. Stimulation of a rat GEC line with gamma interferon (IFN-gamma) induced the expression of MHC class II, whereas the cell line constitutively expressed B7-1 costimulatory molecules as determined by reverse transcription-PCR and flow cytometry. Actinobacillus actinomycetemcomitans Omp29-specific CD4(+) Th1 clone cells proliferated in response to pretreatment of GEC with fixed A. actinomycetemcomitans and IFN-gamma. However, the Th1 cells did not respond to pretreatment of GEC with the bacteria alone or IFN-gamma alone. The activation of Th1 clone cells induced by the GEC was inhibited by antibody to MHC class II or by CTLA4 immunoglobulin (CTLA4-Ig). Lymph node T cells did not demonstrate superantigen activity to A. actinomycetemcomitans, although both lymph node T cells and Th1 clone cells were sensitive to superantigen activity of staphylococcal enterotoxin A as cultured in the presence of IFN-gamma-treated GEC. These results suggested that GEC can take up bacterial antigen and consequently process and present the bacterial antigen to CD4(+) T cells by MHC class II in conjunction with B7 costimulation. GEC appeared to play a role in the adaptive immune response by stimulating antigen-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Takashi Matsuyama
- Department of Immunology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115-3799, USA
| | | | | | | |
Collapse
|
40
|
Kanamaru F, Iwai H, Ikeda T, Nakajima A, Ishikawa I, Azuma M. Expression of membrane-bound and soluble receptor activator of NF-kappaB ligand (RANKL) in human T cells. Immunol Lett 2005; 94:239-46. [PMID: 15275972 DOI: 10.1016/j.imlet.2004.05.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 05/16/2004] [Accepted: 05/17/2004] [Indexed: 11/26/2022]
Abstract
The receptor activator of NF-kappaB ligand (RANKL) and its receptor RANK are critical regulators for immune responses as well as bone remodeling. RANKL is a type II transmembrane protein that has two forms-a membrane-anchored protein and a secreted protein. In this report, we demonstrate for the first time the kinetical expression of two forms of RANKL in human T cells using two monoclonal antibodies (mAbs) against human RANKL, which we newly derived. Freshly isolated T cells rarely expressed mRANKL, while the activation of T cells induced a substantial but minimal level of mRANKL as well as the accumulation of considerable amounts of sRANKL. The addition of the metalloprotease inhibitor KB-R8301 efficiently suppressed the release of sRANKL from activated T cells or RANKL-transfectants, and reciprocally enhanced the mRANKL expression. The membrane form of RANKL was also expressed on the infiltrating T cells in the rheumatoid synovial fluid and in the gingival tissues of patients with periodontitis. Our results demonstrate that the expression of mRANKL on T cells is strictly limited, and the majority of RANKL protein produced by T cells may be active in the soluble form after shedding. The mAbs that were derived in this study may be useful for investigating the regulation and function of RANKL in immune responses and bone remodeling.
Collapse
Affiliation(s)
- Fumiko Kanamaru
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Engineering high avidity CTLA4Ig for therapy of rheumatic diseases. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.9.1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Abstract
CD8 T cells contribute to clearance and long-term protection following acute infection with certain viruses, bacteria, and protozoa, and may play an important role in tumor immunity. Primary adaptive CD8 T-cell responses have been conceptually divided into four phases: activation, expansion, contraction, and memory. We summarize each phase of the response, and discuss recent advances in our understanding of the development and maintenance of CD8 T-cell memory.
Collapse
Affiliation(s)
- David Masopust
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Lemieux AM, Paré ME, Audet B, Legault E, Lefort S, Boucher N, Landry S, van Opijnen T, Berkhout B, Naghavi MH, Tremblay MJ, Barbeau B. T-cell activation leads to poor activation of the HIV-1 clade E long terminal repeat and weak association of nuclear factor-kappaB and NFAT with its enhancer region. J Biol Chem 2004; 279:52949-60. [PMID: 15466412 DOI: 10.1074/jbc.m409896200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enhancer region in the human immunodeficiency virus type 1 (HIV-1) 5'-long terminal repeat (LTR) is very important for viral transcription. This promoter sequence binds both nuclear factor-kappaB and NFAT, two important modulators of HIV-1 gene expression. Previous studies have indicated that the enhancer regions of the different HIV-1 clade LTRs differ in their number of NF-kappaB-binding sites. In this study, we have compared the activation potential of the different HIV-1 clade and HIV-2 LTRs and assessed their interaction with NFAT and NF-kappaB. In T-cell lines and primary CD4(+) T-cells, the results showed that the HIV-1 clade E LTR (with a single NF-kappaB-binding site) was the weakest LTR regardless of the tested activators, whereas the HIV-2 LTR was the most responsive LTR. The clade E enhancer region was also demonstrated to be the weakest enhancer region in transfection experiments with luciferase reporter-based vectors. Electrophoretic mobility shift assays with extracts from activated CD4(+) T-cells indicated that, although NF-kappaB and NFAT bound all enhancers, HIV-1 clade E and HIV-2 LTR enhancers were poor binding targets for these two factors. Weak NFAT binding to clade E enhancers was also confirmed using NFAT1-expressing 293T cells in competition experiments. We have also shown the absence of interaction of NF-kappaB or NFAT with the third NF-kappaB repeat present in clade C. However, the clade C enhancer bound NFAT more efficiently than all other enhancer regions tested. Our results hence demonstrate for the first time that differences in the binding of NF-kappaB and NFAT to the enhancer regions could be responsible for some of the observed variation in HIV-1 clade LTR activation, whereas HIV-2 LTR activation seems mostly independent of these interactions.
Collapse
Affiliation(s)
- Anne-Marie Lemieux
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, 2705 Blvd. Laurier, Sainte-Foy, Quebec G1V 4G2, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lewis DE, Merched-Sauvage M, Goronzy JJ, Weyand CM, Vallejo AN. Tumor Necrosis Factor-α and CD80 Modulate CD28 Expression through a Similar Mechanism of T-cell Receptor-independent Inhibition of Transcription. J Biol Chem 2004; 279:29130-8. [PMID: 15128741 DOI: 10.1074/jbc.m402194200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Replicative senescence of human T cells is characterized by the loss of CD28 expression, exemplified by the clonal expansion of CD28(null) T cells during repeated stimulation in vitro as well as in chronic inflammatory and infectious diseases and in the normal course of aging. Because CD28 is the major costimulatory receptor for the induction of T cell-mediated immunity, the mechanism(s) underlying CD28 loss is of paramount interest. Current models of replicative senescence involve protracted procedures to generate CD28(null) cells from CD28(+) precursors; hence, a T-cell line model was used to examine the dynamics of CD28 expression. Here, we show the versatility of the JT and Jtag cell lines in tracking CD28(null) <--> CD28(hi) phenotypic transitions. JT and Jtag cells were CD28(null) and CD28(lo), respectively, but expressed high levels of CD28 when exposed to phorbol 12-myristate 13-acetate. This was a result of the reconstitution of the CD28 gene transcriptional initiator (INR). Tumor necrosis factor-alpha reduced CD28 expression because of the inhibition of INR-driven transcription. Ligation of CD28 by an antibody or by CD80 also down-regulated CD28 transcription through the same mechanism, providing evidence that CD28 can generate a T cell receptor-independent signal with a unique biological outcome. Collectively, these data unequivocally demonstrate the critical role of the INR in the regulation of CD28 expression. T cell lines with transient expression of CD28 are invaluable in the dissection of the biochemical processes involved in the transactivation of the CD28 INR, the silencing of which is a key event in the ontogenesis of senescent T cells.
Collapse
Affiliation(s)
- Dorothy E Lewis
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
45
|
Giguère JF, Bounou S, Paquette JS, Madrenas J, Tremblay MJ. Insertion of host-derived costimulatory molecules CD80 (B7.1) and CD86 (B7.2) into human immunodeficiency virus type 1 affects the virus life cycle. J Virol 2004; 78:6222-32. [PMID: 15163715 PMCID: PMC416533 DOI: 10.1128/jvi.78.12.6222-6232.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) carries virus-encoded and host-derived proteins. Recent advances in the functional characterization of host molecules inserted into mature virus particles have revealed that HIV-1 biology is influenced by the acquisition of host cell membrane components. The CD28/B7 receptor/ligand system is considered one of the fundamental elements of the normal immune response. Two major cell types that harbor HIV-1 in vivo, i.e., monocytes/macrophages and CD4+ T cells, express the costimulatory molecules CD80 (B7.1) and CD86 (B7.2). We investigated whether CD80 and CD86 are efficiently acquired by HIV-1, and if so, whether these host-encoded molecules can contribute to the virus life cycle. Here we provide the first evidence that the insertion of CD80 and CD86 into HIV-1 increases virus infectivity by facilitating the attachment and entry process due to interactions with their two natural ligands, CD28 and CTLA-4. Moreover, we demonstrate that NF-kappaB is induced by CD80- and CD86-bearing virions when they are combined with the engagement of the T-cell receptor/CD3 complex, an event that is inhibited upon surface expression of CTLA-4. Finally, both CD80 and CD86 were found to be efficiently incorporated into R5- and X4-tropic field strains of HIV-1 expanded in cytokine-treated macrophages. Thus, besides direct interactions between the virus envelope glycoproteins and cell surface constituents, such as CD4 and some specific chemokine coreceptors, HIV-1 may attach to target cells via interactions between cell-derived molecules incorporated into virions and their natural ligands. These findings support the theory that HIV-1-associated host proteins alter virus-host dynamics.
Collapse
Affiliation(s)
- Jean-François Giguère
- Laboratory of Human Immuno-Retrovirology, Research Center in Infectious Diseases, RC709, CHUL Research Center, 2705 Laurier Blvd., Quebec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
46
|
Ruggiero G, Terrazzano G, Becchimanzi C, Sica M, Andretta C, Masci AM, Racioppi L, Rotoli B, Zappacosta S, Alfinito F. GPI-defective monocytes from paroxysmal nocturnal hemoglobinuria patients show impaired in vitro dendritic cell differentiation. J Leukoc Biol 2004; 76:634-40. [PMID: 15197238 DOI: 10.1189/jlb.1203607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal, acquired hematopoietic disorder characterized by a phosphatidylinositol (PI) glycan-A gene mutation, which impairs the synthesis of the glycosyl-PI (GPI) anchor, thus causing the absence of all GPI-linked proteins on the membrane of the clonal-defective cells. The presence of a consistent GPI-defective monocyte compartment is a common feature in PNH patients. To investigate the functional behavior of this population, we analyzed its in vitro differentiation ability toward functional dendritic cells (DCs). Our data indicate that GPI-defective monocytes from PNH patients are unable to undergo full DC differentiation in vitro after granulocyte macrophage-colony stimulating factor and recombinant interleukin (IL)-4 treatment. In this context, the GPI-defective DC population shows mannose receptor expression, high levels of the CD86 molecule, and impaired CD1a up-regulation. The analysis of lipopolysaccharide and CD40-dependent, functional pathways in these DCs revealed a strong decrease in tumor necrosis factor alpha and IL-12 production. Finally, GPI-defective DCs showed a severe impairment in delivering accessory signals for T cell receptor-dependent T cell proliferation.
Collapse
MESH Headings
- Adult
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- B7-2 Antigen
- CD40 Antigens/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Female
- Glycosylphosphatidylinositols/deficiency
- Glycosylphosphatidylinositols/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Hemoglobinuria, Paroxysmal/blood
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/immunology
- Humans
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-4/pharmacology
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lipopolysaccharides/immunology
- Male
- Mannose Receptor
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/metabolism
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Monocytes/cytology
- Monocytes/immunology
- Mutation/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Giuseppina Ruggiero
- Cattera di Immunologia, Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universitá Frederico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kanamaru F, Youngnak P, Hashiguchi M, Nishioka T, Takahashi T, Sakaguchi S, Ishikawa I, Azuma M. Costimulation via Glucocorticoid-Induced TNF Receptor in Both Conventional and CD25+Regulatory CD4+T Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:7306-14. [PMID: 15187106 DOI: 10.4049/jimmunol.172.12.7306] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid-induced TNF receptor (GITR), which is a member of the TNF receptor family, is expressed preferentially at high levels on CD25+CD4+ regulatory T cells and plays a key role in the peripheral tolerance that is mediated by these cells. GITR is also expressed on conventional CD4+ and CD8+ T cells, and its expression is enhanced rapidly after activation. In this report we show that the GITR provides a potent costimulatory signal to both CD25+ and CD25- CD4+ T cells. GITR-mediated stimulation induced by anti-GITR mAb DTA-1 or GITR ligand transfectants efficiently augmented the proliferation of both CD25-CD4+ and CD25+CD4+ T cells under the limited dose of anti-CD3 stimulation. The augmentation of T cell activation was further confirmed by the enhanced cell cycle progression; early induction of the activation Ags, CD69 and CD25; cytokine production, such as IL-2, IFN-gamma, IL-4, and IL-10; anti-CD3-induced redirected cytotoxicity; and intracellular signaling, assessed by translocation of NF-kappaB components. GITR costimulation showed a potent ability to produce high amounts of IL-10, which resulted in counter-regulation of the enhanced proliferative responses. Our results highlight evidence that GITR acts as a potent and unique costimulator for an early CD4+ T cell activation.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- Cell Division
- Cell Line, Tumor
- Cytokines/biosynthesis
- Female
- Glucocorticoid-Induced TNFR-Related Protein
- Lectins, C-Type
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- NF-kappa B/metabolism
- Receptors, Interleukin-2/biosynthesis
- Receptors, Nerve Growth Factor/analysis
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/physiology
- Receptors, Tumor Necrosis Factor/analysis
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction
- Spleen/cytology
Collapse
Affiliation(s)
- Fumiko Kanamaru
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Schreiner B, Wischhusen J, Mitsdoerffer M, Schneider D, Bornemann A, Melms A, Tolosa E, Weller M, Wiendl H. Expression of the B7-related molecule ICOSL by human glioma cells in vitro and in vivo. Glia 2004; 44:296-301. [PMID: 14603470 DOI: 10.1002/glia.10291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human glioblastoma is a highly lethal tumor known for its capability of interfering with effective antitumor immune responses. Costimulatory signals are of critical relevance in both the inductive and effector phases of immune responses. Inducible costimulator-ligand (ICOSL), a member of the B7 family of costimulatory molecules related to CD80/CD86, regulates CD4 as well as CD8 T-cell responses via interaction with its receptor, ICOS, on activated T cells. We report the expression of ICOSL by glioma cells in vitro and in vivo. In contrast to CD80 (B7.1) and CD86 (B7.2), ICOSL protein and mRNA was expressed in 7 of 12 glioma cell lines. ICOSL expression is upregulated by the inflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), whereas interferon-gamma (IFN-gamma) has no such effect. Further, immunohistochemical analysis of human brain tumors demonstrates the expression of ICOSL in three of four tissue samples. ICOSL expression is functional in that a neutralizing ICOSL antibody (HIL-131) reduces Th1 and Th2 cytokine levels in cocultures of peripheral blood lymphocytes or T-cell subsets (CD4 and CD8) with glioma cells. However, ICOSL gene transfer into glioma cells does not alter their immunogenicity under primary or secondary alloreactive coculture assays.
Collapse
Affiliation(s)
- Bettina Schreiner
- Department of Neurology, University of Tübingen, Medical School, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cimino AM, Palaniswami P, Kim AC, Selvaraj P. Cancer vaccine development: protein transfer of membrane-anchored cytokines and immunostimulatory molecules. Immunol Res 2004; 29:231-40. [PMID: 15181285 DOI: 10.1385/ir:29:1-3:231] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many tumor cells escape host-immune recognition by the downregulation or lack of immunostimulatory molecules. Expression of immunostimulatory molecules on tumor cells by gene transfer can be used to induce an antitumor immune response. However, we have previously shown that protein transfer of glycosyl-phosphatidylinositol (GPI)-linked costimulatory molecules is a successful alternative to traditional gene transfer in preparing such a tumor vaccine. Vaccination with membranes modified by protein transfer to express GPI-linked B7.1 (CD80), a costimulatory adhesion molecule, induces protective immunity in mice and allogeneic antitumor T-cell proliferation in humans in vitro. Our goal is to develop an optimal tumor vaccine using tumor membranes modified by protein transfer to target and stimulate antigen-presenting cells (APCs) and T cells. We have investigated the efficacy of expressing GPI-anchored cytokine molecules on the surface of tumor cells. Expression of interleukin-12 (IL-12) on tumor-cell membranes in a GPI-anchored form induces a strong antitumor immune response that is comparable to the effects of secretory IL-12. Because many cytokines act synergistically, we are testing the membrane expression and immunostimulatory effects of cytokines individually as well as in combination to determine potential complementary effects of coexpression on the antitumor immune response. Ultimately, the protein-transfer vaccination may be used in humans alone or in multimodal combination therapies to induce tumor regression and to serve as a protective measure to prevent postsurgical secondary metastases.
Collapse
Affiliation(s)
- Ashley M Cimino
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Woodruff Memorial Research Building, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
50
|
Dilioglou S, Cruse JM, Lewis RE. Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 2003; 75:217-27. [PMID: 14611813 DOI: 10.1016/s0014-4800(03)00072-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) consist of a heterogeneous population of hematopoietic cells characterized by their unique dendritic morphology, their efficient antigen-presenting capability to activate naïve CD4+ and CD8+ T cells, as well as their lack of lineage-specific markers. Functional properties comparing umbilical cord blood monocyte-derived and umbilical cord blood stem cell-derived DCs have not yet been investigated. Human umbilical cord blood CD14+ monocytes and CD34+ stem cells were induced to differentiate into dendritic cells using 100 ng/mL granulocyte-macrophage colony-stimulating factor (GM-CSF), 25 ng/mL interleukin (II)-4, 2.5 ng/mL tumor necrosis factor alpha (TNF-alpha) and 100 ng/mL GM-CSF, 25 ng/mL stem cell factor, and 2.5 ng/mL TNF-alpha, respectively. Differentiated dendritic cells were CD80+, CD86+, CD83+, CD54+, CD1a+, CD11b+, CD11c+, HLA-DR+, CD34-, CD3-, CD19-, CD14-, and CD16-. Reverse transcription polymerase chain reaction revealed that differentiating monocytes initially expressed CD86 mRNA while CD80 mRNA appeared on Day 2. Differentiating stem cells expressed both CD80 and CD86 mRNA on Day 2 of culture. Mixed lymphocyte reaction was employed to evaluate the two types of lineage-derived DCs. Monoclonal antibodies (mabs) to CD80 and CD86 were employed to assess their costimulatory roles. CD14 and CD34 derived DCs prior to the functional assay were stimulated for 18 h with 0.1 and 1.0 mg/mL Escherichia coli lipopolyssacharide, respectively. A decrease in stimulation as depicted by decreased T-cell activation was significant with mabs to both CD80 and CD86 on monocyte-derived DCs while only mabs to CD86 induced decreased T-cell activation by stem cell-derived DCs. The varied functional role of CD80 and CD86 costimulatory molecules is associated with DC differentiation from distinct cord blood-isolated hematopoietic lineages. These studies demonstrate that DC association with distinct hematopoietic lineages is of relevance in transplantation and vaccine therapies.
Collapse
Affiliation(s)
- Smaroula Dilioglou
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|