1
|
Zhang Z, Zhu T, Zhang L, Xing Y, Yan Z, Li Q. Critical influence of cytokines and immune cells in autoimmune gastritis. Autoimmunity 2023; 56:2174531. [PMID: 36762543 DOI: 10.1080/08916934.2023.2174531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gastric cancer (GC) is a type of the most common cancers. Autoimmune gastritis (AIG) and infection with Helicobacter pylori (HP) are the risk factors of triggering GC. With the emphasis on the treatment of HP, the incidence and prevalence of HP infection in population is decreasing. However, AIG lacks accurate diagnosis and treatment methods, which occupies high cancer risk factors. AIG is controlled by the immune environment of the stomach, including immune cells, inflammatory cells, and infiltrating intercellular material. Various immune cells or cytokines play a central role in the process of regulating gastric parietal cells. Abnormal expression levels of cytokines involved in immunity are bound to face the risk of tumorigenesis. Therefore, it is particularly important for preventing or treating AIG and avoiding the risk of gastric cancer to clarify the confirmed action mode of immune cells and cytokines in the gastric system. Herein, we briefly reviewed the role of the immune environment under AIG, focussing on describing these double-edged effects between immune cells and cytokines, and pointing out potential research challenges.
Collapse
Affiliation(s)
- Zepeng Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Tongtong Zhu
- Kunshan Hospital of Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Lei Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yanchao Xing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yan
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Qingsong Li
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Lymphopenia, Lymphopenia-Induced Proliferation, and Autoimmunity. Int J Mol Sci 2021; 22:ijms22084152. [PMID: 33923792 PMCID: PMC8073364 DOI: 10.3390/ijms22084152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immune homeostasis is a tightly regulated system that is critical for defense against invasion by foreign pathogens and protection from self-reactivity for the survival of an individual. How the defects in this system might result in autoimmunity is discussed in this review. Reduced lymphocyte number, termed lymphopenia, can mediate lymphopenia-induced proliferation (LIP) to maintain peripheral lymphocyte numbers. LIP not only occurs in normal physiological conditions but also correlates with autoimmunity. Of note, lymphopenia is also a typical marker of immune aging, consistent with the fact that not only the autoimmunity increases in the elderly, but also autoimmune diseases (ADs) show characteristics of immune aging. Here, we discuss the types and rates of LIP in normal and autoimmune conditions, as well as the coronavirus disease 2019 in the context of LIP. Importantly, although the causative role of LIP has been demonstrated in the development of type 1 diabetes and rheumatoid arthritis, a two-hit model has suggested that the factors other than lymphopenia are required to mediate the loss of control over homeostasis to result in ADs. Interestingly, these factors may be, if not totally, related to the function/number of regulatory T cells which are key modulators to protect from self-reactivity. In this review, we summarize the important roles of lymphopenia/LIP and the Treg cells in various autoimmune conditions, thereby highlighting them as key therapeutic targets for autoimmunity treatments.
Collapse
|
3
|
|
4
|
Huo F, Li D, Zhao B, Luo Y, Zhao B, Zou X, Li Y, Yang W. Deficiency of autoimmune regulator impairs the immune tolerance effect of bone marrow-derived dendritic cells in mice. Autoimmunity 2018; 51:10-17. [PMID: 29297233 DOI: 10.1080/08916934.2017.1422124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
As a transcription factor, autoimmune regulator (Aire) participates in thymic negative selection and maintains immune tolerance mainly by regulating the ectopic expression of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). Aire is also expressed in dendritic cells (DCs). DCs are professional antigen-presenting cells (APCs) that affect the differentiation of T cells toward distinct subpopulations and participate in the immune response and tolerance, thereby playing an important role in maintaining homeostasis. To determine the role of Aire in maintaining immune tolerance by bone marrow-derived dendritic cells (BMDCs), in the present study we utilized Aire-knockout mice to examine the changes of maturation status and TRAs expression on BMDCs, additionally investigate the differentiation of CD4+ T cells. The results showed that expression of costimulatory molecule and major histocompatibility complex class II (MHC-II) molecule was increased and expression of various TRAs was decreased in BMDCs from Aire-knockout mice. Aire deficiency reduced the differentiation of naïve CD4+ T cells into type 2T helper (Th2) cells and regulatory T cells (Tregs) but enhanced the differentiation of naïve CD4+ T cells into Th1 cells, Th17 cells, and follicular helper T (Tfh) cells. The results demonstrate that Aire expressed by BMDCs plays an important role in the maintenance of homeostasis by regulating TRA expression and the differentiation of T cell subsets.
Collapse
Affiliation(s)
- Feifei Huo
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
- b Department of Intensive Care Unit , First Hospital, Jilin University , Changchun , Jilin , China
| | - Dongbei Li
- c College of Life Science and Technology , Xinxiang Medical University , Xinxiang , Henan , China
| | - Bo Zhao
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Yadong Luo
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Bingjie Zhao
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Xueyang Zou
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Yi Li
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| | - Wei Yang
- a Department of Immunology, College of Basic Medical Sciences , Jilin University , Changchun , Jilin , China
| |
Collapse
|
5
|
Overall SA, Bourges D, van Driel IR, Gleeson PA. Increased endogenous antigen presentation in the periphery enhances susceptibility to inflammation-induced gastric autoimmunity in mice. Eur J Immunol 2016; 47:155-167. [PMID: 27759162 DOI: 10.1002/eji.201646572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/06/2016] [Accepted: 10/17/2016] [Indexed: 11/12/2022]
Abstract
How the immune system maintains peripheral tolerance under inflammatory conditions is poorly understood. Here we assessed the fate of gastritogenic T cells following inflammatory activation in vivo. Self-reactive T cells (A23 T cells) specific for the gastric H+ /K+ ATPase α subunit (HKα) were transferred into immunosufficient recipient mice and immunised at a site distant to the stomach with adjuvant containing the cognate HKα peptide antigen. Activation of A23 T cells by immunisation did not impact on either immune tolerance or protection from gastric autoimmunity in wild-type BALB/c mice. However, increased presentation of endogenously derived HKα epitopes by dendritic cells (DCs) in the gastric lymph node of IE-H+ /K+ β transgenic mice (IEβ) reduces A23 T-cell tolerance to gastric antigens after inflammatory activation, with subsequent development of gastritis. While HKα-specific A23 T cells from immunised wild-type mice were poorly responsive to in vitro antigen specific activation, A23 T cells from immunised IEβ transgenic mice were readily re-activated, indicating loss of T-cell anergy. These findings show that DCs of gastric lymph nodes can maintain tolerance of pathogenic T cells following inflammatory stimulation and that the density of endogenous antigen presented to self-reactive T cells is critical in the balance between tolerance and autoimmunity.
Collapse
Affiliation(s)
- Sarah A Overall
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| | - Dorothée Bourges
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| | - Ian R van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Kodaira H, Mizoroki T, Shimada H, Ishii K, Hosono M, Kumazawa Y. Potential role of bacterial lipopolysaccharides in the development of autoimmune gastritis induced by neonatal thymectomy. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050050301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of LPS in the development of autoimmune gastritis (AIG) in BALB/c mice thymectomized on day 3 after birth (d3-Tx) was investigated in LPS-non-responder BALB/lpsdmice. The symptoms were classified into three types: (i) hypertrophic stomach (HS) and lymphocyte infiltration (LI)-double negative; (ii) HS-negative and LI-positive; and (iii) HS- and LI-double positive. The double positive type-3 was termed AIG. Following d3-Tx, LPS-responder BALB/c ( Lpsn) mice showed the following incidence: type-1 (14%), type-2 (14%) and type-3 (72%). In contrast, the incidence in BALB/lpsdmice was 67%, 22% and 11%, respectively. Thus the frequency of AIG development in BALB/lpsdmice was much lower than in BALB/c mice. A single administration of LPS on day 2 post-d3-Tx induced severe AIG incidence in all d3-Tx BALB/c mice but not in d3-Tx BALB/lpsdmice, suggesting that LPS influences the progression of AIG development. Formation of auto-antibodies against the proton pump (H+/K+-ATPase) seemed to be related to AIG incidence in d3-Tx BALB/c mice. In d3-Tx BALB/lpsdmice, however, higher levels of auto-antibodies were detected in the type-2 mice, whereas AIG incidence was much lower than that in d3-Tx BALB/c mice. Thus, formation of auto-antibodies against the proton pump in d3-Tx BALB/lpsdmice does not appear to correlate with AIG pathogenesis.
Collapse
Affiliation(s)
- Hisamasa Kodaira
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences Kitasato University, Tokyo, Japan
| | - Tatsuya Mizoroki
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Hideyo Shimada
- Division of Pathophysiology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences Kitasato University, Tokyo, Japan
| | - Masamichi Hosono
- Department of Cell Biology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yoshio Kumazawa
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan, -u.ac.jp
| |
Collapse
|
7
|
Krishnamurthy B, Selck C, Chee J, Jhala G, Kay TWH. Analysis of antigen specific T cells in diabetes - Lessons from pre-clinical studies and early clinical trials. J Autoimmun 2016; 71:35-43. [PMID: 27083395 DOI: 10.1016/j.jaut.2016.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
Antigen-specific immune tolerance promises to provide safe and effective therapies to prevent type 1 diabetes (T1D). Antigen-specific therapy requires two components: well-defined, clinically relevant autoantigens; and safe approaches to inducing tolerance in T cells specific for these antigens. Proinsulin is a critical autoantigen in both NOD mice, based on knockout mouse studies and induction of immune tolerance to proinsulin preventing disease whereas most antigens cannot, and also in human T1D based on proinsulin-specific T cells being found in the islets of affected individuals and the early appearance of insulin autoantibodies. Effective antigen-specific therapies that prevent T1D in humans have not yet been developed although doubt remains about the best molecular form of the antigen, the dose and the route of administration. Preclinical studies suggest that antigen specific therapy is most useful when administered before onset of autoimmunity but this time-window has not been tested in humans until the recent "pre-point" study. There may be a 'window of opportunity' during the neonatal period when 'vaccine' like administration of proinsulin for a short period may be sufficient to prevent diabetes. After the onset of autoimmunity, naive antigen-specific T cells have differentiated into antigen-experienced memory cells and the immune responses have spread to multiple antigens. Induction of tolerance at this stage becomes more difficult although recent studies have suggested generation of antigen-specific TR1 cells can inhibit memory T cells. Preclinical studies are required to identify additional 'help' that is required to induce tolerance to memory T cells and develop protocols for effective therapy in individuals with established autoimmunity.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Claudia Selck
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Jonathan Chee
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Guarang Jhala
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia.
| |
Collapse
|
8
|
Herling AW. Pharmacological Effects on Gastric Function. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016:2341-2413. [DOI: 10.1007/978-3-319-05392-9_56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Wenzlau JM, Fain PR, Gardner TJ, Frisch LM, Annibale B, Hutton JC. ATPase4A Autoreactivity and Its Association With Autoimmune Phenotypes in the Type 1 Diabetes Genetics Consortium Study. Diabetes Care 2015; 38 Suppl 2:S29-S36. [PMID: 26405069 PMCID: PMC4582907 DOI: 10.2337/dcs15-2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/04/2015] [Indexed: 02/05/2023]
Abstract
Autoantibodies targeting the H+/K+-ATPase proton pump of the gastric parietal cell (parietal cell antibodies [PCA]) are diagnostic of atrophic body gastritis (ABG) leading to pernicious anemia (PA). PCA, ABG, and PA occur in increased frequency in patients with type 1 diabetes and their relatives and are considered "minor" components of forms of autoimmune polyglandular syndrome (APS). A customized radioimmunoprecipitation assay was applied to 6,749 samples from the Type 1 Diabetes Genetics Consortium to measure ATP4A autoreactivity. Autoantibody prevalence was correlated with variants in HLA class II, PTPN22, and CTLA4 genes. With an ATP4A radioimmunoprecipitation assay, PCA were detected in sera from 20.9% of affected individuals. PCA prevalence increased with age and was greater in females (25.3%) than males (16.5%) and among Hispanics (36.3%) and blacks (26.2%) compared with non-Hispanic whites (20.8%) and Asians (16.7%). PCA and other organ-specific autoantibodies GAD65, IA-2, thyroid peroxidase (TPO), 21-hydroxylase (21-OH), and transglutaminase (TG) clustered within families with heritability estimates from 71 to 95%. PCA clustered with TPO, 21-OH, and persistent GAD65 autoantibodies but not with celiac (TG) or IA-2 autoantibodies. PCA-positive subjects showed an increased frequency of DRB1*0404, DPB1*0201, and PTPN22 R620W (rs2476601-T) and a decreased frequency of DRB1*0101, DPB1*0301, and CTLA4 CT60 (rs3087243-T). Genetic variants accounted for 4-5% of the heritable risk for PCA. The same alleles were associated with other autoantibody phenotypes in a consistent pattern. Whereas most of the heritable risk for PCA and other antibodies reflects genetic effects that are tissue specific, parietal cell autoimmunity is a major pathogenetic contributor in APS2.
Collapse
Affiliation(s)
- Janet M Wenzlau
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Pamela R Fain
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Thomas J Gardner
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Lisa M Frisch
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Bruno Annibale
- Digestive and Liver Disease Unit, University "La Sapienza," Sant'Andrea Hospital, Rome, Italy
| | - John C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| |
Collapse
|
10
|
Nyström SN, Bourges D, Garry S, Ross EM, van Driel IR, Gleeson PA. Transient Treg-cell depletion in adult mice results in persistent self-reactive CD4(+) T-cell responses. Eur J Immunol 2014; 44:3621-31. [PMID: 25231532 DOI: 10.1002/eji.201344432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 07/21/2014] [Accepted: 09/15/2014] [Indexed: 01/26/2023]
Abstract
Depletion of Foxp3(+) CD4(+) regulatory T cells (Treg) in adults results in chronic inflammation and autoimmune disease. However, the impact of transient Treg-cell depletion on self-reactive responses is poorly defined. Here, we studied the effect of transient depletion of Treg cells on CD4(+) T-cell responses to endogenous self-antigens. Short-term ablation of Treg cells in mice resulted in rapid activation of CD4(+) T cells, increased percentage of IFN-γ(+) and Th17 cells in lymphoid organs, and development of autoimmune gastritis. To track self-reactive responses, we analyzed the activation of naïve gastric-specific CD4(+) T cells. There was a dramatic increase in proliferation and acquisition of effector function of gastric-specific T cells in the stomach draining LNs of Treg-cell-depleted mice, compared with untreated mice, either during Treg-cell depletion or after Treg-cell reconstitution. Moreover, the hyperproliferation of gastric-specific T cells in the Treg-cell-ablated mice was predominantly antigen-dependent. Transient depletion of Treg cells resulted in a shift in the ratio of peripheral:thymic Treg cells in the reemerged Treg-cell population, indicating an altered composition of Treg cells. These findings indicate that transient Treg-cell depletion results in ongoing antigen-driven self-reactive T-cell responses and emphasize the continual requirement for an intact Treg-cell population.
Collapse
Affiliation(s)
- Sofia N Nyström
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Ross EM, Bourges D, Hogan TV, Gleeson PA, van Driel IR. Helios defines T cells being driven to tolerance in the periphery and thymus. Eur J Immunol 2014; 44:2048-58. [PMID: 24740292 DOI: 10.1002/eji.201343999] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 03/04/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The expression of the Ikaros transcription factor family member, Helios, has been shown to be associated with T-cell tolerance in both the thymus and the periphery. To better understand the importance of Helios in tolerance pathways, we have examined the expression of Helios in TCR-transgenic T cells specific for the gastric H(+) /K(+) ATPase, the autoantigen target in autoimmune gastritis. Analysis of H(+) /K(+) ATPase-specific T cells in mice with different patterns of H(+) /K(+) ATPase expression revealed that, in addition to the expression of Helios in CD4(+) Foxp3(+) regulatory T (Treg) cells, Helios is expressed by a large proportion of CD4(+) Foxp3(-) T cells in both the thymus and the paragastric lymph node (PgLN), which drains the stomach. In the thymus, Helios was expressed by H(+) /K(+) ATPase-specific thymocytes that were undergoing negative selection. In the periphery, Helios was expressed in H(+) /K(+) ATPase-specific CD4(+) T cells following H(+) /K(+) ATPase presentation and was more highly expressed when T-cell activation occurred in the absence of inflammation. Analysis of purified H(+) /K(+) ATPase-specific CD4(+) Foxp3(-) Helios(+) T cells demonstrated that they were functionally anergic. These results demonstrate that Helios is expressed by thymic and peripheral T cells that are being driven to tolerance in response to a genuine autoantigen.
Collapse
Affiliation(s)
- Ellen M Ross
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
12
|
Chung JY, Figgett W, Fairfax K, Bernard C, Chan J, Toh BH, Mackay F, Alderuccio F. Gene therapy delivery of myelin oligodendrocyte glycoprotein (MOG) via hematopoietic stem cell transfer induces MOG-specific B cell deletion. THE JOURNAL OF IMMUNOLOGY 2014; 192:2593-601. [PMID: 24532581 DOI: 10.4049/jimmunol.1203563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The various mechanisms that have been described for immune tolerance govern our ability to control self-reactivity and minimize autoimmunity. However, the capacity to genetically manipulate the immune system provides a powerful avenue to supplement this natural tolerance in an Ag-specific manner. We have previously shown in the mouse model of experimental autoimmune encephalomyelitis that transfer of bone marrow (BM) transduced with retrovirus encoding myelin oligodendrocyte glycoprotein (MOG) promotes disease resistance and CD4(+) T cell deletion within the thymus. However, the consequence of this strategy on B cell tolerance is not known. Using BM from IgH(MOG) mice that develop MOG-specific B cell receptors, we generated mixed chimeras together with BM-encoding MOG. In these animals, the development of MOG-specific B cells was abrogated, resulting in a lack of MOG-specific B cells in all B cell compartments examined. This finding adds a further dimension to our understanding of the mechanisms of tolerance that are associated with this gene therapy approach to treating autoimmunity and may have important implications for Ab-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Jie-Yu Chung
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria 3181, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Costelloe L, Jones J, Coles A. Secondary autoimmune diseases following alemtuzumab therapy for multiple sclerosis. Expert Rev Neurother 2014; 12:335-41. [DOI: 10.1586/ern.12.5] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Tu E, Bourges D, Gleeson PA, Ang DKY, van Driel IR. Pathogenic T cells persist after reversal of autoimmune disease by immunosuppression with regulatory T cells. Eur J Immunol 2013; 43:1286-96. [PMID: 23420509 DOI: 10.1002/eji.201242771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/16/2013] [Accepted: 02/13/2013] [Indexed: 11/10/2022]
Abstract
Autoimmune disease can be prevented with immunosuppressive agents; however, the effectiveness of these treatments in advanced stage of disease and the fate of pathogenic T cells following such treatments are not clear. In this study we demonstrate that a single dose of in vitro-induced Treg cells (iTreg cells) resulted in the functional repair and restitution of stomach tissue that had been severely damaged in advanced autoimmune gastritis. iTreg cells caused depletion or inactivation of autoreactive naïve T cells that were antigen inexperienced, however, autoreactive effector/memory T cells persisted in treated mice, resulting in residual cellular infiltrates within the repaired stomach tissue. The persisting autoreactive T cells were able to rapidly cause autoimmune disease if iTreg cells were removed. Similar data were obtained from mice treated continuously with corticosteroid, in that there was substantial restitution of the gastric mucosa; however, effector T cells persisted and rapidly caused pathology following drug removal. Therefore, iTreg cells or corticosteroid can suppress pathogenic autoreactive cells in advanced autoimmune disease, reversing tissue damage and improving tissue function. However, the persistence of pathogenic T cells represents a disease risk.
Collapse
Affiliation(s)
- Eric Tu
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
15
|
Induction of antigen-specific tolerance through hematopoietic stem cell-mediated gene therapy: the future for therapy of autoimmune disease? Autoimmun Rev 2012; 12:195-203. [PMID: 23047179 DOI: 10.1016/j.autrev.2011.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 12/29/2022]
Abstract
Based on the principle that immune ablation followed by HSC-mediated recovery purges disease-causing leukocytes to interrupt autoimmune disease progression, hematopoietic stem cell transplantation (HSCT) has been increasingly used as a treatment for severe autoimmune diseases. Despite clinically-relevant outcomes, HSCT is associated with serious iatrogenic risks and is suitable only for the most serious and intractable diseases. A further limitation of autologous HSCT is that relapse rates can be high, suggesting disease-causing leukocytes are incompletely purged or the environmental and genetic determinants that drive disease remain active. Incorporation of antigen-specific tolerance approaches that synergise with autologous HSCT could reduce or prevent relapse. Further, by reducing the requirement for highly toxic immune-ablation and instead relying on antigen-specific tolerance, the clinical utility of HSCT could be significantly diversified. Substantial progress has been made exploring HSCT-mediated induction of antigen-specific tolerance in animal models but studies have focussed on primarily on prevention of autoimmune diseases. However, as diagnosis of autoimmune disease is often not made until autoimmune disease is well developed and populations of autoantigen-specific pathogenic effector and memory T cells have become well established, immunotherapies must be developed to address effector and memory T-cell responses which have traditionally been considered the key impediment to immunotherapy. Here, focusing on T-cell mediated autoimmune diseases we review progress made in antigen-specific immunotherapy using HSCT-mediated approaches, induction of tolerance in effector and memory T cells and the challenges for progression and clinical application of antigen-specific 'tolerogenic' HSCT therapy.
Collapse
|
16
|
Toh BH, Chan J, Kyaw T, Alderuccio F. Cutting edge issues in autoimmune gastritis. Clin Rev Allergy Immunol 2012; 42:269-78. [PMID: 21174235 DOI: 10.1007/s12016-010-8218-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune gastritis is the outcome of a pathological CD4 T cell-mediated autoimmune response directed against the gastric H/K-ATPase. Silent initially, the gastric lesion becomes manifest in humans by the development of megaloblastic pernicious anemia arising from vitamin B12 deficiency. Cutting edge issues in this disease relate to its epidemiology, immunogenetics, a role for Helicobacter pylori as an infective trigger through molecular mimicry, its immunopathogenesis, associated organ-specific autoimmune diseases, laboratory diagnosis, and approaches to curative therapy.
Collapse
Affiliation(s)
- Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
17
|
Nasa Z, Chung JY, Chan J, Toh BH, Alderuccio F. Nonmyeloablative conditioning generates autoantigen-encoding bone marrow that prevents and cures an experimental autoimmune disease. Am J Transplant 2012; 12:2062-71. [PMID: 22694476 DOI: 10.1111/j.1600-6143.2012.04068.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoimmune diseases result from chronic targeted immune responses that lead to tissue pathology and disease. The potential of autologous hematopoietic stem cells transplantation as a treatment for autoimmunity is currently being trialled but disease relapse is an issue. We have previously shown in a mouse model of experimental autoimmune encephalomyelitis (EAE) that the transplantation of bone marrow (BM) transduced to encode the autoantigen myelin oligodendrocyte glycoprotein (MOG) can prevent disease induction. However these studies were performed using lethal irradiation to generate BM chimeras and a critical factor for translation to humans would be the ability to utilize low toxic preconditioning regimes. In this study, treosulfan was used as a nonmyeloablative agent to generate BM chimeras encoding MOG and assessed in models of EAE induction and reversal. We find that treosulfan conditioning can promote a low degree of chimerism that is sufficient to promote antigen specific tolerance and protect mice from EAE. When incorporated into a curative protocol for treating mice with established EAE, nonmyeloablative conditioning and low chimerism was equally efficient in maintaining disease resistance. These studies further underpin the potential and feasibility of utilizing a gene therapy approach to treat autoimmune disease.
Collapse
Affiliation(s)
- Z Nasa
- Department of Immunology, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
18
|
Jindra PT, Tripathi S, Tian C, Iacomini J, Bagley J. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow. Gene Ther 2012; 20:478-86. [PMID: 22833118 PMCID: PMC3651743 DOI: 10.1038/gt.2012.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction.
Collapse
Affiliation(s)
- P T Jindra
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Autoimmune diseases result from an aberrant response of the immune system that target self-tissues. Our understanding of normal immune development has been used to subvert this self-reactivity and involves exposing self-antigen to the developing immune system. This can be achieved through bone marrow derived cells, thus introducing potential clinical application. We have used the mouse model of multiple sclerosis to demonstrate that the transfer of bone marrow encoding a target autoantigen can be used to promote immune tolerance. The process of preconditioning recipients for hematopoietic stem cell transfer is critical for potential human translation. Thus, we have directly addressed if our model can also be applied in non-myeloablative and less toxic conditioning to promote tolerance and reverse established disease. Our studies to date indicate that this can indeed be achieved and that only low levels of chimerism are required to achieve tolerance.
Collapse
Affiliation(s)
- Frank Alderuccio
- Department of Immunology, Monash University, Melbourne, Australia.
| | | |
Collapse
|
20
|
Tu E, Ang DKY, Hogan TV, Read S, Chia CPZ, Gleeson PA, van Driel IR. A convenient model of severe, high incidence autoimmune gastritis caused by polyclonal effector T cells and without perturbation of regulatory T cells. PLoS One 2011; 6:e27153. [PMID: 22096532 PMCID: PMC3212540 DOI: 10.1371/journal.pone.0027153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 10/11/2011] [Indexed: 01/28/2023] Open
Abstract
Autoimmune gastritis results from the breakdown of T cell tolerance to the gastric H(+)/K(+) ATPase. The gastric H(+)/K(+) ATPase is responsible for the acidification of gastric juice and consists of an α subunit (H/Kα) and a β subunit (H/Kβ). Here we show that CD4(+) T cells from H/Kα-deficient mice (H/Kα(-/-)) are highly pathogenic and autoimmune gastritis can be induced in sublethally irradiated wildtype mice by adoptive transfer of unfractionated CD4(+) T cells from H/Kα(-/-) mice. All recipient mice consistently developed the most severe form of autoimmune gastritis 8 weeks after the transfer, featuring hypertrophy of the gastric mucosa, complete depletion of the parietal and zymogenic cells, and presence of autoantibodies to H(+)/K(+) ATPase in the serum. Furthermore, we demonstrated that the disease significantly affected stomach weight and stomach pH of recipient mice. Depletion of parietal cells in this disease model required the presence of both H/Kα and H/Kβ since transfer of H/Kα(-/-) CD4(+) T cells did not result in depletion of parietal cells in H/Kα(-/-) or H/Kβ(-/-) recipient mice. The consistency of disease severity, the use of polyclonal T cells and a specific T cell response to the gastric autoantigen make this an ideal disease model for the study of many aspects of organ-specific autoimmunity including prevention and treatment of the disease.
Collapse
Affiliation(s)
- Eric Tu
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Desmond K. Y. Ang
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Thea V. Hogan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon Read
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Cheryl P. Z. Chia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian R. van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
21
|
Alderuccio F, Nasa Z, Chung J, Ko HJ, Chan J, Toh BH. Hematopoietic Stem Cell Gene Therapy as a Treatment for Autoimmune Diseases. Mol Pharm 2011; 8:1488-94. [DOI: 10.1021/mp2001523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Frank Alderuccio
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Zeyad Nasa
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Jieyu Chung
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Hyun-Ja Ko
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - James Chan
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| | - Ban-Hock Toh
- Department of Immunology, Monash Central Clinical School, and ‡Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Victoria, Australia
| |
Collapse
|
22
|
Otsuka N, Tong ZB, Vanevski K, Tu W, Cheng MH, Nelson LM. Autoimmune oophoritis with multiple molecular targets mitigated by transgenic expression of mater. Endocrinology 2011; 152:2465-73. [PMID: 21447630 PMCID: PMC3100611 DOI: 10.1210/en.2011-0022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/09/2011] [Indexed: 11/19/2022]
Abstract
Primary ovarian insufficiency (POI) resulting from ovarian autoimmunity is a poorly understood clinical condition lacking in effective treatments. Understanding the targets of the autoimmune response and induction of ovarian-specific tolerance would allow development of focused therapies to preserve fertility in an at-risk population. MATER (maternal antigen that embryos require) is a known ovarian autoantigen targeted in autoimmune syndromes of POI. We attempt to induce ovarian-specific tolerance via transgenic expression of the MATER antigen on potentially tolerogenic antigen-presenting cells (APC), which typically present antigen via the major histocompatibility complex (MHC) class II molecule. We hypothesize that expression of MATER in a MHC class II-dependent manner on APC can mediate induction of ovarian tolerance. We utilized a well-characterized murine model of ovarian autoimmunity, whereby oophoritis develops after d 3 neonatal thymectomy (NTx). Wild-type and transgenic mice, carrying an MHC Class II-driven Mater gene (IE-Mater), were subjected to NTx and assessed for evidence of autoimmune oophoritis. After disease induction by NTx, female mice carrying the IE-Mater transgene had significant reductions in histological oophoritis (56%) and circulating ovarian autoantibodies (28%) compared with wild-type females (94% and 82%, respectively). Incidence of other autoimmunity was unaffected as assessed by antinuclear autoantibodies. Transgenic expression of MATER in APC can induce antigen-specific tolerance with a significant reduction in ovarian autoimmunity. Lack of complete disease protection suggests that other antigens may also play a role in autoimmune oophoritis. As a known autoantigen in the human APS1 (autoimmune polyglandular syndrome type 1), which is associated with POI, MATER may represent a relevant target for future diagnostic and therapeutic clinical interventions.
Collapse
Affiliation(s)
- Noriyuki Otsuka
- University of California San Francisco Diabetes Center, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
23
|
Alderuccio F, Chan J, Scott DW, Toh BH. Gene therapy and bone marrow stem-cell transfer to treat autoimmune disease. Trends Mol Med 2009; 15:344-51. [PMID: 19665432 DOI: 10.1016/j.molmed.2009.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 12/14/2022]
Abstract
Current treatment of human autoimmune disease by autologous bone marrow stem-cell transfer is hampered by frequent disease relapses. This is most probably owing to re-emergent self-reactive lymphocytes. Gene therapy combined with bone marrow stem cells has successfully introduced genes lacking in immunodeficiences. Because the bone marrow compartment has a key role in establishing immune tolerance, this combination strategy should offer a rational approach to prevent re-emergent self-reactive lymphocytes by establishing solid, life-long immune tolerance to causative self-antigen. Indeed, we have recently demonstrated the success of this combination approach to prevent and cure an experimental autoimmune disease. We suggest that this combination strategy has the potential for translation to treat human autoimmune diseases in which causative self-antigens are known.
Collapse
Affiliation(s)
- Frank Alderuccio
- Department of Immunology, Nursing and Health Sciences, Monash University, Victoria 3181, Australia.
| | | | | | | |
Collapse
|
24
|
Alderuccio F, Murphy K, Biondo M, Field J, Toh BH. Reversing the Autoimmune Condition: Experience with Experimental Autoimmune Gastritis. Int Rev Immunol 2009; 24:135-55. [PMID: 15763994 DOI: 10.1080/08830180590884396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Autoimmune diseases remain a significant health problem in our society, despite the best efforts to understand and treat these conditions. Current clinical treatments are aimed at alleviating the consequences of these diseases, with limited prospects for cure. Our studies with the experimental model of autoimmune gastritis have led us to explore potential curative strategies that can reverse the autoimmune condition. Using mouse models, we have shown that expression of the known gastric autoantigen in the thymus results in immunological tolerance and resistance to the induction of autoimmune gastritis. Also, induced tolerance in donor mice can be transferred to syngeneic recipient mice by bone marrow cells. Strategies based on these observations could lead to reversal of established disease. Transfer of ensuing knowledge to the cure of serious human autoimmune diseases is our ultimate goal.
Collapse
Affiliation(s)
- Frank Alderuccio
- Department of Pathology and Immunology, Monash University Central and Eastern Clinical School, Prahran, Victoria, Australia.
| | | | | | | | | |
Collapse
|
25
|
Field J, Biondo MA, Murphy K, Alderuccio F, Toh BH. Experimental Autoimmune Gastritis: Mouse Models Of Human Organ-specific Autoimmune Disease. Int Rev Immunol 2009; 24:93-110. [PMID: 15763991 DOI: 10.1080/08830180590884585] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Experimental autoimmune gastritis (EAG) is an excellent model of human autoimmune gastritis, the underlying cause of pernicious anaemia. Murine autoimmune gastritis replicates human gastritis in being characterized by a chronic inflammatory mononuclear cell infiltrate in the gastric mucosa, destruction of parietal and zymogenic cells, and autoantibodies to the alpha-and beta-subunits of the gastric H+/K+ ATPase. Disease is induced strain specifically in gastritis-susceptible BALB/c mice by methods with a greater variety than those for most other experimental autoimmune diseases. The disease is induced in the regional gastric lymph node in which pathogenic CD4+ T cells are recruited. The model provides an excellent illustration of regulation by CD4+CD25+T cells, and, indeed, the removal of such regulatory cells, e.g., by neonatal thymectomy, is thought to be a major mechanism by which disease can develop. The culprit T helper type 1 (Th1) CD4+ T cells recognize either the alpha- or beta-subunits of the gastric H+/K+ ATPase, but the beta-subunit appears to be the initiating autoantigen, while the alpha-subunit may have a role in perpetuating disease. Since no specific environmental modifiers are identifiable, the origins of the disease are intrinsic; this is illustrated by the capacity of a cytokine (GM-CSF)-dependent inflammatory stimulus in the stomach to initiate EAG, according to a transgenic model in which thymectomy is dispensible. Thus, EAG is an exquisite model for a reductionist analysis of the multiple elements that in combination induce autoimmunity in humans.
Collapse
Affiliation(s)
- J Field
- Department of Pathology and Immunology, Monash University Medical School, Prahran, Victoria, Australia
| | | | | | | | | |
Collapse
|
26
|
Whittingham S, Mackay IR. Autoimmune Gastritis: Historical Antecedents, Outstanding Discoveries, and Unresolved Problems. Int Rev Immunol 2009; 24:1-29. [PMID: 15763987 DOI: 10.1080/08830180590884413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The earliest recorded history of autoimmune gastritis can be traced to 1849 in London, when Thomas Addison described "a very remarkable form of anemia" later called pernicious (fatal) anemia (PA). This was followed by the recognition of a gastric mucosal defect suspected to have a nutritional basis, the discovery of the megaloblast that characterized the anemia, the insufficiency of a dietary extrinsic factor characterized as vitamin B12 (cobalamin), and a gastric-secreted intrinsic factor. Treatment with vitamin B12 proved curative. The link between PA and gastritis and atrophy was first confirmed histologically after immediate fixation of the stomach postmortem and later, in the 1940s, by peroral tube biopsy. The causes of gastritis remained enigmatic until the era of autoimmunity, when autoantibodies were detected first to gastric intrinsic factor and then to gastric parietal cells. Hints of a dichotomy in pathogenesis of gastritis were crystallized by the description in 1973 of Type A (Autoimmune) and Type B (later, Bacterial) gastritis. Clarification was enhanced by identification in Type A gastritis of the autoantigen of the parietal cell antibody, by the alpha and beta subunits of gastric H+/K+ ATPase, and by the highly informative experimental murine model of postneonatal thymectomy autoimmune gastritis, and in Type B of the causative role of gastric infection with Helicobacter pylori (H. pylori). A denouement will require a full understanding of (1) the origin and pathogenetic contribution of antibody to intrinsic factor; (2) the connection, if any, between H. pylori infection and Type A autoimmune gastritis; and (3) the genetic contributions to gastritis, whether due to autoimmunity or to H. pylori infection.
Collapse
Affiliation(s)
- Senga Whittingham
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
27
|
Alderuccio F, Chan J, Toh BH. Tweaking the immune system: Gene therapy-assisted autologous haematopoietic stem cell transplantation as a treatment for autoimmune disease. Autoimmunity 2009; 41:679-85. [DOI: 10.1080/08916930802197123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Jones JL, Phuah CL, Cox AL, Thompson SA, Ban M, Shawcross J, Walton A, Sawcer SJ, Compston A, Coles AJ. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest 2009; 119:2052-61. [PMID: 19546505 PMCID: PMC2701868 DOI: 10.1172/jci37878] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 04/15/2009] [Indexed: 01/29/2023] Open
Abstract
Phase II clinical trials revealed that the lymphocyte-depleting humanized monoclonal antibody alemtuzumab (Campath-1H) is highly effective in the treatment of early relapsing-remitting multiple sclerosis. However, 30% of patients develop autoimmunity months to years after pulsed exposure to alemtuzumab, usually targeting the thyroid gland and, more rarely, blood components. In this study, we show that autoimmunity arose in those patients with greater T cell apoptosis and cell cycling in response to alemtuzumab-induced lymphocyte depletion, a phenomenon that is driven by higher levels of IL-21. Before treatment, patients who went on to develop secondary autoimmunity had more than 2-fold greater levels of serum IL-21 than the nonautoimmune group. We suggest that serum IL-21 may, therefore, serve as a biomarker for the risk of developing autoimmunity months to years after alemtuzumab treatment. This has implications for counseling those patients with multiple sclerosis who are considering lymphocyte-depleting therapy with alemtuzumab. Finally, we demonstrate through genotyping that IL-21 expression is genetically predetermined. We propose that, by driving cycles of T cell expansion and apoptosis to excess, IL-21 increases the stochastic opportunities for T cells to encounter self antigen and, hence, for autoimmunity.
Collapse
Affiliation(s)
- Joanne L Jones
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Monteiro JP, Farache J, Mercadante AC, Mignaco JA, Bonamino M, Bonomo A. Pathogenic effector T cell enrichment overcomes regulatory T cell control and generates autoimmune gastritis. THE JOURNAL OF IMMUNOLOGY 2009; 181:5895-903. [PMID: 18941178 DOI: 10.4049/jimmunol.181.9.5895] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regulatory T cells (Treg) deficiency leads to a severe, systemic, and lethal disease, as showed in immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome patients, and scurfy mouse. Postneonatal thymectomy autoimmune gastritis has also been attributed to the absence of Tregs. In this case however, disease is mild, organ-specific, and, more important, it is not an obligatory outcome. We addressed this paradox comparing T cell compartments in gastritis-susceptible and resistant animals. We found that neonatal thymectomy-induced gastritis is not caused by the absence of Tregs. Instead of this, it is the presence of gastritogenic T cell clones that determines susceptibility to disease. The expansion of such clones under lymphopenic conditions results in a reduced Treg:effector T cell ratio that is not enough to control gastritis development. Finally, the presence of gastritogenic clones is determined by the amount of gastric Ag expressed in the neonatal thymus, emphasizing the importance of effector repertoire variability, present even in genetically identical subjects, to organ-specific autoimmune disease susceptibility.
Collapse
Affiliation(s)
- João P Monteiro
- Divisão de Medicina Experimental, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Chan J, Ban EJ, Chun KH, Wang S, Bäckström BT, Bernard CCA, Toh BH, Alderuccio F. Transplantation of bone marrow transduced to express self-antigen establishes deletional tolerance and permanently remits autoimmune disease. THE JOURNAL OF IMMUNOLOGY 2008; 181:7571-80. [PMID: 19017946 DOI: 10.4049/jimmunol.181.11.7571] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune diseases are incurable. We have hypothesized that these diseases can be cured by the transplantation of bone marrow (BM) stem cells that have been genetically engineered to express self-Ag. Here we have tested this hypothesis in experimental autoimmune encephalomyelitis (EAE) induced by the self-Ag myelin oligodendrocyte glycoprotein (MOG). We show that, in mice, transplantation of BM genetically modified to express MOG prevented the induction and progression of EAE, and combined with antecedent corticosteroid treatment, induced long-term remission of established disease. Mice remained resistant to EAE development upon subsequent rechallenge with MOG. Transfer of BM from these mice rendered recipients resistant to EAE. Splenocytes from these mice failed to proliferate or produce IL-17, IFN-gamma, and GM-CSF in response to MOG(35-55) peptide stimulation and they failed to produce MOG autoantibody. Mechanistically, we demonstrated in vivo reduction in development of CD4(+) MOG(35-55)-specific thymocytes, indicative of clonal deletion with no evidence for selection of Ag-specific regulatory T cells. These findings validate our hypothesis that transplantation of genetically modified BM expressing disease-causative self-Ag provides a curative approach by clonal deletion of disease-causative self-reactive T cells.
Collapse
Affiliation(s)
- James Chan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Field J, Alderuccio F, Hertzog P, Toh BH. GM-CSF-induced autoimmune gastritis in interferon alpha receptor deficient mice. J Autoimmun 2008; 31:274-80. [PMID: 18501559 DOI: 10.1016/j.jaut.2008.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Experimental autoimmune gastritis (EAG), a mouse model of human autoimmune gastritis, is characterised by gastric mononuclear cell infiltrates and parietal and zymogenic cell destruction. The gastritis is accompanied by circulating auto-antibodies to parietal cell-associated gastric H(+)/K(+) ATPase. As interferon alpha has been implicated in the regulation of immune responses, we asked whether EAG induced by the local transgenic expression of granulocyte-macrophage colony stimulating factor (GM-CSF) in the stomach (PC-GMCSF transgenic mice) would be affected by deficiency of its binding receptor. To address this, we crossed PC-GMCSF transgenic mice with mice deficient in interferon alpha (IFNalpha) receptor2 (IFNAR2). We found that EAG development in the PC-GMCSF transgenic mice was not affected by IFNAR2 deficiency. There was no difference in severity of gastric pathology, nor in autoantibody levels in the IFNAR2 deficient mice compared to wild-type, and heterozygous littermates. We conclude that the local transgenic expression of GM-CSF in the stomach overrides any possible modulatory effects of IFNAR2 on EAG development.
Collapse
Affiliation(s)
- Judith Field
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
32
|
Hogan TV, Ang DKY, Gleeson PA, van Driel IR. Extrathymic mechanisms of T cell tolerance: lessons from autoimmune gastritis. J Autoimmun 2008; 31:268-73. [PMID: 18499395 DOI: 10.1016/j.jaut.2008.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While the thymus plays a key role in the prevention of many autoimmune phenomena it is clear that robust mechanisms external to the thymus are also vital in controlling self-reactive T cells. Here we review the current concepts in the field of extrathymic tolerance and use recent studies of autoimmune gastritis to illustrate how T cells directed to a prominent, clinically relevant autoantigen, namely the gastric proton pump, can be silenced with little or no thymic involvement. Autoimmune gastritis represents one of the most thoroughly characterised autoimmune systems and the knowledge and tools available to study this disease will continue to allow a thorough assessment of the genetic, cellular and molecular events that underlie tolerance and autoimmunity.
Collapse
Affiliation(s)
- Thea V Hogan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
33
|
Fox RI, Theofilopoulos AN. Section Reviews: Biologicals & Immunologicals: Sjögren's syndrome: Pathogenesis and prospects for therapy. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.9.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Fantini MC, Rizzo A, Fina D, Caruso R, Becker C, Neurath MF, Macdonald TT, Pallone F, Monteleone G. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells. Eur J Immunol 2007; 37:3155-63. [PMID: 17918200 DOI: 10.1002/eji.200737766] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulatory T (T(reg)) cells play a key role in the maintenance of the immune system homeostasis. T(reg) cells can be generated in the periphery under control of TGF-beta, a cytokine involved in the negative control of the immune system. However, TGF-beta cooperates with IL-6 in the generation of Th17 cells, a novel class of effector cells involved in numerous inflammatory diseases, including colitis. Therefore, TGF-beta emerges as a mediator of both anti-inflammatory and pro-inflammatory processes, depending on the local cytokine milieu. Here we demonstrate that IL-21, a type-1 cytokine produced by T cells and involved in the pathogenesis of immune-mediated diseases, prevents the TGF-beta-dependent expression of FoxP3, the master regulator of T(reg) cell commitment, and the induction of suppressive capacity in naive CD4(+) T cells, while promoting the differentiation of Th17 cells. In vivo, CD4(+) naive T cells activated in the presence of TGF-beta and IL-21 failed to suppress colitis while inducing an inflammatory response characterized by high levels of IL-17 and RORgammat, the transcription factor expressed by Th17 cells. Therefore, IL-21 emerges as a key modulator of TGF-beta signaling, leading to the reciprocal differentiation of T(reg) and Th17 cells.
Collapse
Affiliation(s)
- Massimo C Fantini
- Division of Gastroenterology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ang DKY, Brodnicki TC, Jordan MA, Wilson WE, Silveira P, Gliddon BL, Baxter AG, van Driel IR. Two genetic loci independently confer susceptibility to autoimmune gastritis. Int Immunol 2007; 19:1135-44. [PMID: 17698560 DOI: 10.1093/intimm/dxm087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Autoimmune gastritis is a CD4+ T cell-mediated disease induced in genetically susceptible mice by thymectomy on the third day after birth. Previous linkage analysis indicated that Gasa1 and Gasa2, the major susceptibility loci for gastritis, are located on mouse chromosome 4. Here we verified these linkage data by showing that BALB.B6 congenic mice, in which the distal approximately 40 Mb of chromosome 4 was replaced by C57BL/6 DNA, were resistant to autoimmune gastritis. Analysis of further BALB.B6 congenic strains demonstrated that Gasa1 and Gasa2 can act independently to cause full expression of susceptibility to autoimmune disease. Gasa1 and Gasa2 are located between D4Mit352-D4Mit204 and D4Mit343-telomere, respectively. Numerical differences in Foxp3+ regulatory T cells were apparent between the BALB/c and congenic strains, but it is unlikely that this phenotype accounted for differences in autoimmune susceptibility. The positions of Gasa1 and Gasa2 correspond closely to the positions of Idd11 and Idd9, two autoimmune diabetes susceptibility loci in nonobese diabetic (NOD), mice and this prompted us to examine autoimmune gastritis in NOD mice. After neonatal thymectomy, NOD mice developed autoimmune gastritis, albeit at a slightly lower incidence and severity of disease than in BALB/c mice. Diabetes-resistant congenic NOD.B6 mice, harbouring a B6-derived interval encompassing the Gasa1/2-Idd9/11 loci, demonstrated a slight reduction in the incidence of autoimmune gastritis. This reduction was not significant compared with the reduction observed in BALB.B6 congenic mice, suggesting a difference in the genetic aetiology of autoimmune gastritis in NOD and BALB mice.
Collapse
Affiliation(s)
- Desmond K Y Ang
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Krishnamoorthy G, Holz A, Wekerle H. Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med (Berl) 2007; 85:1161-73. [PMID: 17569024 DOI: 10.1007/s00109-007-0218-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/18/2007] [Accepted: 05/04/2007] [Indexed: 12/11/2022]
Abstract
Animal models have become essential tools for studying the human autoimmune disease. They are of vital importance in explorations of disease aspects, where, for diverse reasons, human material is unavailable. This is especially true for disease processes preceding clinical diagnosis and for tissues, which are inaccessible to routine biopsy. Early developing multiple sclerosis (MS) makes an excellent point in case for these limitations. Useful disease models should be developing spontaneously, without a need of artificial, adjuvant-supported induction protocols, and they should reflect credibly at least some of the complex features of human disease. The aim of this review is to compile models that exhibit spontaneous organ-specific autoimmunity and explore their use for studying MS. We first evaluate a few naturally occurring models of organ-specific autoimmune diseases and then screen autoimmunity in animals with compromised immune regulation (neonatal thymectomy, transgenesis, etc.). While most of these models affect organs other than the nervous tissues, central nervous system (CNS)-specific autoimmune disease is readily noted either after transgenic overexpression of cytokines or chemokines within the CNS or by introducing CNS-specific immune receptors into the lymphocyte repertoire. Most recently, spontaneous autoimmunity resembling MS was obtained by transgenic expression of self-reactive T cell receptors and B cell receptors. These transgenic models are not only of promise for studying directly disease processes during the entire course of the disease but may also be helpful in drug discovery.
Collapse
Affiliation(s)
- Gurumoorthy Krishnamoorthy
- Department of Neuroimmunology, Max Planck Institute for Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
37
|
Chan J, Clements W, Field J, Nasa Z, Lock P, Yap F, Toh BH, Alderuccio F. Transplantation of bone marrow genetically engineered to express proinsulin II protects against autoimmune insulitis in NOD mice. J Gene Med 2007; 8:1281-90. [PMID: 16989008 DOI: 10.1002/jgm.968] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T-cell-dependent autoimmune disease resulting from destructive inflammation (insulitis) of the insulin-producing pancreatic beta-cells. Transgenic expression of proinsulin II by a MHC class II promoter or transfer of bone marrow from these transgenic mice protects NOD mice from insulitis and diabetes. We assessed the feasibility of gene therapy in the NOD mouse as an approach to treat T1D by ex vivo genetic manipulation of normal hematopoietic stem cells (HSCs) with proinsulin II followed by transfer to recipient mice. METHODS HSCs were isolated from 6-8-week-old NOD female mice and transduced in vitro with retrovirus encoding enhanced green fluorescent protein (EGFP) and either proinsulin II or control autoantigen. Additional control groups included mice transferred with non-manipulated bone marrow and mice which did not receive bone marrow transfer. EGFP-sorted or non-sorted HSCs were transferred into pre-conditioned 3-4-week-old female NOD mice and insulitis was assessed 8 weeks post-transfer. RESULTS Chimerism was established in all major lymphoid tissues, ranging from 5-15% in non-sorted bone marrow transplants to 20-45% in EGFP-sorted bone marrow transplants. The incidence and degree of insulitis was significantly reduced in mice receiving proinsulin II bone marrow compared to controls. However, the incidence of sialitis in mice receiving proinsulin II bone marrow and control mice was not altered, indicating protection from insulitis was antigen specific. CONCLUSIONS We show for the first time that ex vivo genetic manipulation of HSCs to express proinsulin II followed by transplantation to NOD mice can establish molecular chimerism and protect from destructive insulitis in an antigen-specific manner.
Collapse
Affiliation(s)
- James Chan
- Department of Immunology, Monash University, Commercial Road, Prahran, Victoria 3181, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Greenwood DLV, Sentry JW. Murine experimental autoimmune gastritis models refractive to development of intrinsic factor autoantibodies, cobalamin deficiency and pernicious anemia. Clin Immunol 2006; 122:41-52. [PMID: 17035094 DOI: 10.1016/j.clim.2006.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/03/2006] [Accepted: 08/24/2006] [Indexed: 12/01/2022]
Abstract
Researchers have developed murine lymphopenic, non-lymphopenic, transgenic, spontaneous and infectious agent based models to induce an experimental autoimmune gastritis (EAG) for the study of human organ-specific autoimmune disease. These models result in a chronic inflammatory mononuclear cell infiltrate in the gastric mucosa, destruction of parietal and zymogenic cells with autoantibodies reactive to the gastric parietal cells and the gastric H+/K+ ATPase (ATP4), arguably hallmarks of a human autoimmune gastritis (AIG). In the case of AIG, it is well documented that, in addition to parietal cell antibodies being detected in up to 90% of patients, up to 70% have intrinsic factor antibodies with the later antibodies considered highly specific to patients with pernicious anemia. This is the first report specifically investigating the occurrence of intrinsic factor antibodies, cobalamin deficiency and pernicious anemia in EAG models. We conclude, in contrast to AIG, that, in the three EAG models examined, intrinsic factor is not selected as a critical autoantigen.
Collapse
Affiliation(s)
- Deanne L V Greenwood
- Department of Medicine, Monash University Central and Eastern Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road Prahran, Victoria, 3181, Australia.
| | | |
Collapse
|
39
|
Rad R, Brenner L, Bauer S, Schwendy S, Layland L, da Costa CP, Reindl W, Dossumbekova A, Friedrich M, Saur D, Wagner H, Schmid RM, Prinz C. CD25+/Foxp3+ T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo. Gastroenterology 2006; 131:525-37. [PMID: 16890606 DOI: 10.1053/j.gastro.2006.05.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 04/12/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori infects more than half of the world's population. In contrast to most other pathogens, the microbe persists for the virtual life of its host. It is unclear why the immune system is unable to eliminate the infection, but recent studies suggested that CD4+/CD25+/Foxp3+ regulatory T cells may be involved in this process. METHODS By using a mouse model of infection and gastric biopsies from 108 patients, we performed a detailed descriptive and functional characterization of the Helicobacter-induced CD25+/Foxp3+ T-cell response. RESULTS In C57BL/6 mice, H pylori induced a marked gastric Foxp3+ T-cell response, which increased over several months together with the severity of inflammation, until a stable homeostatic situation became established. Accordingly, in Helicobacter-infected patients, but not in uninfected individuals, large numbers of gastric Foxp3+ T cells were detected immunohistochemically. To define the functional in vivo relevance of this response, CD25+ cells were depleted systemically in mice by using an anti-CD25 monoclonal antibody (PC61). Already 4 weeks after infection, PC61-treated mice, but not untreated animals, developed a severe gastritis with heightened cytokine expression and increased numbers of mucosal T cells, B cells, and macrophages. This was accompanied by increased titers of H pylori-specific IgG1 and IgG2c antibodies in the sera of PC61-treated mice. This increased gastric inflammatory response in CD25-depleted mice was associated with reduced bacterial loads. CONCLUSIONS CD25+/Foxp3+ T cells actively participate in the immune response to H pylori. In vivo depletion of these cells in infected mice leads to increased gastric inflammation and reduced bacterial colonization.
Collapse
Affiliation(s)
- Roland Rad
- Second Department of Internal Medicine and Gastroenterology, Technical University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Krupica T, Fry TJ, Mackall CL. Autoimmunity during lymphopenia: A two-hit model. Clin Immunol 2006; 120:121-8. [PMID: 16766227 DOI: 10.1016/j.clim.2006.04.569] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/28/2022]
Abstract
The immune system has evolved elaborate mechanisms to respond to diverse antigens while minimizing the risk for autoimmune reactivity. During lymphopenia, however, some mechanisms that normally serve to maintain host tolerance are temporarily suspended. Peripheral T cells proliferate in response to self-antigens in lymphopenic hosts, but proliferation toward these same antigens is prevented when T cell numbers are normal. This process, termed homeostatic peripheral expansion, augments peripheral T cell number and limits repertoire skewing during recovery from lymphopenia and also predisposes lymphopenic hosts to autoimmune disease. This paper reviews murine and human settings in which autoimmunity occurs in the context of lymphopenia. We propose a two-hit model, in which lymphopenia plus another insult is sufficient to induce autoimmune disease. Among the secondary insults that appear sufficient to induce autoimmunity during lymphopenia are overproduction of IL-21 as occurs in the NOD.SCID mouse, depletion of Tregs as demonstrated in murine colitis and gastritis models, and tissue inflammation as seen in HIV infected patients who develop immune reconstitution inflammatory syndrome (IRIS). Delineating critical cofactors which result in autoimmune disease during lymphopenia can provide insight into the pathophysiology of naturally occurring autoimmune diseases as well as generating testable hypothesis for inducing tumor-specific autoimmunity in lymphopenic hosts with cancer.
Collapse
Affiliation(s)
- Tom Krupica
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
|
42
|
Lopez-Diaz L, Hinkle KL, Jain RN, Zavros Y, Brunkan CS, Keeley T, Eaton KA, Merchant JL, Chew CS, Samuelson LC. Parietal cell hyperstimulation and autoimmune gastritis in cholera toxin transgenic mice. Am J Physiol Gastrointest Liver Physiol 2006; 290:G970-9. [PMID: 16399875 DOI: 10.1152/ajpgi.00461.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.
Collapse
Affiliation(s)
- Lymari Lopez-Diaz
- Department of Molecular and Integrative Physiology, University of Michigan, 7761 Medical Science II Building, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bergman M, Del Prete G, van Kooyk Y, Appelmelk B. Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat Rev Microbiol 2006; 4:151-9. [PMID: 16415930 DOI: 10.1038/nrmicro1344] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori can be regarded as a model pathogen for studying persistent colonization of humans. Phase-variable expression of Lewis blood-group antigens by H. pylori allows this microorganism to modulate the host T-helper-1-cell versus T-helper-2-cell response. We describe a model in which interactions between host lectins and pathogen carbohydrates facilitate asymptomatic persistence of H. pylori. This delicate balance, favourable for both the pathogen and the host, could lead to gastric autoimmunity in genetically susceptible individuals.
Collapse
Affiliation(s)
- Mathijs Bergman
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Room L-253, 3015 GD Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Zwar TD, Read S, van Driel IR, Gleeson PA. CD4+CD25+ Regulatory T Cells Inhibit the Antigen-Dependent Expansion of Self-Reactive T Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2006; 176:1609-17. [PMID: 16424190 DOI: 10.4049/jimmunol.176.3.1609] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.
Collapse
Affiliation(s)
- Tricia D Zwar
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
45
|
Greenwood DLV, Sentry JW. Gastritis in Neonatal BALB/cCrSlc Mice Induced by Immunization Without Adjuvant can be Transferred to Syngeneic nu/nu Recipients. Scand J Immunol 2006; 63:50-8. [PMID: 16398701 DOI: 10.1111/j.1365-3083.2005.01712.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The popularly exploited murine neonatal thymectomy experimental autoimmune gastritis (nTx:EAG) model requires the animal to be in a state of lymphopenia. Here we report on a novel murine immunization (without adjuvant) model that can establish a lasting gastritis. We demonstrate that the immunization model (imm:EAG) results in a bona fide autoimmune disease and define the resulting pathology and serology observed and compare it with that reported for human autoimmune gastritis. Immune cells present in the stomachs of imm:EAG gastritic mice include CD8 T cells, CD11b and Gr1 (granulocytes/monocytes) and B cells. We detected circulating antibodies of immunoglobulin G1 (IgG1) subclass, with some IgG(2a) and IgG(2b) reactive to stomach membranes and the parietal cell proton pump. The class and subclass of autoreactive antibodies resulting from imm:EAG suggest a T helper 1 (Th1)/Th2 immune response. We establish that both self-reactive T and B cells from BALB/cCrSlc imm:EAG gastritic mice have the potential to induce a gastritis in BALB/c syngeneic nu/nu recipients. We conclude that this model is likely to be superior to the currently popularly exploited nTx:EAG and provide insight into and an understanding of the mechanisms of and remedies for autoimmunity in an intact immune system.
Collapse
Affiliation(s)
- D L V Greenwood
- Department of Medicine, Monash University Central & Eastern Clinical School, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | |
Collapse
|
46
|
Biondo M, Field J, Toh BH, Alderuccio F. Prednisolone promotes remission and gastric mucosal regeneration in experimental autoimmune gastritis. J Pathol 2006; 209:384-91. [PMID: 16710833 DOI: 10.1002/path.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A cardinal feature of organ-specific autoimmunity is destructive pathology in the target organ. In human and experimental models of autoimmune gastritis, mononuclear cell infiltration and cellular destruction in the gastric mucosa are disease hallmarks. Strategies to cure autoimmune disease must not only establish immunological tolerance to autoantigen, but also rid the organ of pathogenic autoreactive cells. The present study has assessed the effect of prednisolone treatment in clearing the inflammatory infiltrate in experimental autoimmune gastritis and in preventing disease relapse in athymic compared with euthymic mice. Experimental autoimmune gastritis was induced by neonatal thymectomy or by transgenic expression of GM-CSF (PC-GMCSF mice). Groups of mice were treated with prednisolone (10 mg/kg per day) for 10 weeks or with prednisolone for 10 weeks followed by 10 weeks without prednisolone. Stomachs were examined for gross morphological changes, and by histology and immunohistochemistry for composition of inflammatory infiltrate and gastric mucosal integrity. Autoantibody to gastric H+/K+ ATPase was determined by ELISA. Prednisolone promoted remission of gastritis in both mouse models of experimental autoimmune gastritis, evident by reduction in stomach size, clearing of gastric inflammatory infiltrate, and regeneration of the gastric mucosa. Prednisolone withdrawal resulted in disease relapse in all PC-GMCSF mice, whereas approximately 40% of neonatal thymectomy mice retained normal stomach morphology and remained free of gastric pathology. It is concluded that prednisolone promotes remission and gastric mucosal regeneration in experimental autoimmune gastritis. Prolonged remission of autoimmune gastritis in some athymic mice suggests a role for the thymus in disease relapse.
Collapse
Affiliation(s)
- M Biondo
- Department of Immunology, Monash University, Monash University Central and Eastern Clinical School, Commercial Road, Prahran, Melbourne, Victoria 3181, Australia
| | | | | | | |
Collapse
|
47
|
van Driel IR, Read S, Zwar TD, Gleeson PA. Shaping the T cell repertoire to a bona fide autoantigen: lessons from autoimmune gastritis. Curr Opin Immunol 2005; 17:570-6. [PMID: 16214318 DOI: 10.1016/j.coi.2005.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/22/2005] [Indexed: 12/28/2022]
Abstract
Murine autoimmune gastritis is one of the most well-defined organ-specific autoimmune diseases. CD4(+) T cells, which mediate the disease, recognize the highly abundant gastric H(+)/K(+) ATPase heterodimer. The H(+)/K(+) ATPase alpha subunit is also expressed in the thymus, in an aire-independent manner, whereas the H(+)/K(+) ATPase beta subunit is absent from the thymus. Analysis of both H(+)/K(+) ATPase-specific T cell receptor transgenic mice with different affinities for the gastric antigen and mice deficient in the H(+)/K(+) ATPase subunits has provided information on thymic and peripheral selection events. The H(+)/K(+) ATPase antigens play an important role in purging the repertoire of gastritogenic T cells, and recent data have suggested that this tolerance induction occurs primarily in the periphery. The gastritis system provides a powerful approach to determine the impact of peripheral antigen presentation in the target organ draining lymph node on tolerance and autoimmune disease.
Collapse
Affiliation(s)
- Ian R van Driel
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
48
|
Allen S, Read S, DiPaolo R, McHugh RS, Shevach EM, Gleeson PA, van Driel IR. Promiscuous Thymic Expression of an Autoantigen Gene Does Not Result in Negative Selection of Pathogenic T Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:5759-64. [PMID: 16237067 DOI: 10.4049/jimmunol.175.9.5759] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
"Promiscuous" thymic expression of peripheral autoantigens can contribute to immunological tolerance in some cases. However, in this study we show that thymic mRNA expression alone cannot predict a contribution to thymic tolerance. Autoimmune gastritis is caused by CD4+ T cells directed to the alpha (H/Kalpha) and beta (H/Kbeta) subunits of the gastric membrane protein the H+/K+ ATPase. H/Kalpha mRNA is expressed in the thymus, but H/Kbeta expression is barely detectable. In this study, we demonstrate that thymic H/Kalpha in wild-type mice or mice that overexpressed H/Kalpha did not result in negative selection of pathogenic anti-H/Kalpha T cells. However, negative selection of anti-H/Kalpha T cells did occur if H/Kbeta was artificially overexpressed in the thymus. Given that H/Kalpha cannot be exported from the endoplasmic reticulum and is rapidly degraded in the absence of H/Kbeta, we conclude that H/Kalpha epitopes are unable to access MHC class II loading compartments in cells of the normal thymus. This work, taken together with our previous studies, highlights that thymic autoantigen expression does not necessarily result in the induction of tolerance.
Collapse
Affiliation(s)
- Stacey Allen
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Alderuccio F, Toh BH. Induction of tolerance to self-antigens using genetically modified bone marrow cells. Expert Opin Biol Ther 2005; 4:1007-14. [PMID: 15268669 DOI: 10.1517/14712598.4.7.1007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The challenge of finding a lasting cure for autoimmune disease(s) has not been met. Although the use of systemic anti-inflammatory agents still dominates the treatment of these diseases, there is a push towards developing novel and more specific strategies. In addressing autoimmunity, there is the intrinsic need to understand the mechanisms that lead to the development and maintenance of immunological tolerance to self-antigens. Experimental evidence has shown that directed antigen expression in the thymus can induce immunological tolerance to that antigen. This forms the cornerstone of one strategy directed towards the cure of autoimmunity. In this strategy, individuals with autoimmune disease are transplanted with bone marrow stem cells that have been genetically modified and in this way allow expression of the self-antigen in the thymus.
Collapse
Affiliation(s)
- Frank Alderuccio
- Department of Immunology, Central and Eastern Clinical School, Monash University, Commercial Road, Prahran, Melbourne, Australia, 3181.
| | | |
Collapse
|
50
|
Bergman MP, Vandenbroucke-Grauls CMJE, Appelmelk BJ, D'Elios MM, Amedei A, Azzurri A, Benagiano M, Del Prete G. The story so far: Helicobacter pylori and gastric autoimmunity. Int Rev Immunol 2005; 24:63-91. [PMID: 15763990 DOI: 10.1080/08830180590884648] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The gastric mucosal pathogen Helicobacter pylori induces autoantibodies directed against the gastric proton pump H+,K+-ATPase in 20-30% of infected patients. The presence of these autoantibodies is associated with severity of gastritis, increased atrophy, and apoptosis in the corpus mucosa, and patients with these autoantibodies infected with H. pylori display histopathological and clinical features that are similar to those of autoimmune gastritis (AIG). This review will focus on the T helper cell responses, cytokines, and adhesion molecules involved in corpus mucosal atrophy in chronic H. pylori gastritis and in AIG, and the role of H. pylori in the onset of AIG.
Collapse
Affiliation(s)
- Mathijs P Bergman
- Department of Medical Microbiology and Infection Control, VU Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|