1
|
Bernstein ZJ, Gierke TR, Dammen-Brower K, Tzeng SY, Zhu S, Chen SS, Wilson DS, Green JJ, Yarema KJ, Spangler JB. Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants. J Biol Chem 2024; 300:108005. [PMID: 39551135 PMCID: PMC11697773 DOI: 10.1016/j.jbc.2024.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Molecular conjugation to antibodies has emerged as a growing strategy to combine the mechanistic activities of the attached molecule with the specificity of antibodies. A variety of technologies have been applied for molecular conjugation; however, these approaches face several limitations, including disruption of antibody structure, destabilization of the antibody, and/or heterogeneous conjugation patterns. Collectively, these challenges lead to reduced yield, purity, and function of conjugated antibodies. While glycoengineering strategies have largely been applied to study protein glycosylation and manipulate cellular metabolism, these approaches also harbor great potential to enhance the production and performance of protein therapeutics. Here, we devise a novel glycoengineering workflow for the development of site-specific antibody conjugates. This approach combines metabolic glycoengineering using azido-sugar analogs with newly installed N-linked glycosylation sites in the antibody constant domain to achieve specific conjugation to the antibody via the introduced N-glycans. Our technique allows facile and efficient manufacturing of well-defined antibody conjugates without the need for complex or destructive chemistries. Moreover, the introduction of conjugation sites in the antibody fragment crystallizable (Fc) domain renders this approach widely applicable and target agnostic. Our platform can accommodate up to three conjugation sites in tandem, and the extent of conjugation can be tuned through the use of different sugar analogs or production in different cell lines. We demonstrated that our platform is compatible with various use-cases, including fluorescent labeling, antibody-drug conjugation, and targeted gene delivery. Overall, this study introduces a versatile and effective yet strikingly simple approach to producing antibody conjugates for research, industrial, and medical applications.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taylor R Gierke
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kris Dammen-Brower
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stanley Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabrina S Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Scott Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Shin J, Oh S, Jang M, Lee S, Min C, Eu Y, Begum H, Kim J, Lee GR, Oh H, Paul MJ, Ma JK, Gwak H, Youn H, Kim S. Enhanced efficacy of glycoengineered rice cell-produced trastuzumab. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3068-3081. [PMID: 39016470 PMCID: PMC11500988 DOI: 10.1111/pbi.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 μg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.
Collapse
Affiliation(s)
- Jun‐Hye Shin
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| | - Sera Oh
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | | | - Seok‐Yong Lee
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Chanhong Min
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | | | - Hilal Begum
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Jong‐Chan Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Gap Ryol Lee
- Department of Life ScienceSogang UniversitySeoulSouth Korea
| | - Han‐Bin Oh
- Department of ChemistrySogang UniversitySeoulSouth Korea
| | - Matthew J. Paul
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K.‐C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Ho‐Shin Gwak
- National Cancer Center KoreaGoyang‐si, Kyunggi‐doSouth Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging CenterSeoul National University HospitalSeoulSouth Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Ryong Kim
- Department of Life ScienceSogang UniversitySeoulSouth Korea
- PhytoMab Co. Ltd.SeoulSouth Korea
| |
Collapse
|
3
|
Baumeister J, Meudt M, Ebert S, Rosenau F, Mizaikoff B, Blech M, Aertker KMJ, Higel F. Decoding the mannose receptor-mAb interaction: the importance of high-mannose N-glycans and glycan-pairing. MAbs 2024; 16:2400414. [PMID: 39245969 PMCID: PMC11385167 DOI: 10.1080/19420862.2024.2400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media. Furthermore, mAbs have either one high mannose N-glycan (asymmetrical high-mannose glyco-pair) or two high mannose N-glycans (symmetrical high-mannose glyco-pair). The hypothesis that the mannose receptor (MR, CD206) accelerates clearance by facilitating their internalization and subsequent lysosomal degradation is widespread. However, the interaction between MR and mAbs has not been explicitly demonstrated. This study aimed to investigate this interaction, providing the first systematic demonstration of MR binding to the Fc region of mAbs with high-mannose N-glycans. Two novel analytical methods, MR surface plasmon resonance and MR affinity chromatography, were developed and applied to investigate the MR-mAb interaction. The interaction is found to be dependent on high-mannose content, but is independent of the mAb format or sequence. However, different glyco-pairs exhibited varying binding affinities to the MR, with the symmetrical high-mannose glyco-pair showing the strongest binding properties. These findings strengthen the hypothesis for the MR-mediated mAb interaction and contribute to a deeper understanding of the MR-mAb interaction, which could affect the criticality of high-mannose containing mAbs development strategies of IgG-based molecules and improve their PK profiles.
Collapse
Affiliation(s)
- Julia Baumeister
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Maximilian Meudt
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Sybille Ebert
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach an der Riss, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Michaela Blech
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kristina M J Aertker
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fabian Higel
- Global CMC Experts NBE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
4
|
Cvijić T, Horvat M, Plahutnik J, Golob A, Marušič J. Multivariate quantitative analysis of glycan impact on IgG1 effector functions. MAbs 2024; 16:2430295. [PMID: 39572418 PMCID: PMC11587841 DOI: 10.1080/19420862.2024.2430295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Development of novel therapeutic proteins and biosimilars requires a thorough understanding of the relationship between their structure and function. Particularly, how IgG glycosylation affects its effector functions is a point increasingly underscored in guidelines by the World Health Organization and regulatory agencies. Our results show that just a 1% decrease in Fc fucosylation can lead to a more than 25% increase in antibody-dependent cell-mediated cytotoxicity. The intercorrelated nature of glycan patterns, combined with the low variability and lack of well-defined glycan patterns in process development and manufacture samples, makes studying the effects of individual glycan structures challenging. The conventional approach to structure-function studies often relies on a suboptimal set of tools, such as the one-factor-at-a-time method for experimental planning and univariate data analysis. Here, we introduce a systematic approach to understanding and prediction of the impact of Fc glycans on effector functions, using a combination of the design of experiment, multivariate data analysis, and in-vitro glycoengineering. This approach adheres to quality-by-design principles and aligns with regulatory agency guidelines. A variety of analytical assays, including binding and cell-based assays, were applied to investigate the effect of individual glycans of the IgG1 molecule. The regression models developed here provide a quantitative explanation and prediction of the impact of individual glycan features on the binding to FcγRs and bioactivity of the therapeutic protein. To the best of our knowledge, this is the first report of a systematic approach to quantitatively understand the multivariate impact of glycosylation on the effector functionality of therapeutic monoclonal antibodies, providing valuable tools for advancing therapeutic protein development.
Collapse
Affiliation(s)
- Tamara Cvijić
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
- Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Horvat
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| | - Jakob Plahutnik
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| | - Ana Golob
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| | - Jaka Marušič
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| |
Collapse
|
5
|
Dadas O, Allen JD, Buchan SL, Kim J, Chan HTC, Mockridge CI, Duriez PJ, Rogel A, Crispin M, Al-Shamkhani A. Fcγ receptor binding is required for maximal immunostimulation by CD70-Fc. Front Immunol 2023; 14:1252274. [PMID: 37965342 PMCID: PMC10641686 DOI: 10.3389/fimmu.2023.1252274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction T cell expressed CD27 provides costimulation upon binding to inducible membrane expressed trimeric CD70 and is required for protective CD8 T cell responses. CD27 agonists could therefore be used to bolster cellular vaccines and anti-tumour immune responses. To date, clinical development of CD27 agonists has focussed on anti-CD27 antibodies with little attention given to alternative approaches. Methods Here, we describe the generation and activity of soluble variants of CD70 that form either trimeric (t) or dimer-of-trimer proteins and conduct side-by-side comparisons with an agonist anti-CD27 antibody. To generate a dimer-of-trimer protein (dt), we fused three extracellular domains of CD70 to the Fc domain of mouse IgG1 in a 'string of beads' configuration (dtCD70-Fc). Results Whereas tCD70 failed to costimulate CD8 T cells, both dtCD70-Fc and an agonist anti-CD27 antibody were capable of enhancing T cell proliferation in vitro. Initial studies demonstrated that dtCD70-Fc was less efficacious than anti-CD27 in boosting a CD8 T cell vaccine response in vivo, concomitant with rapid clearance of dtCD70-Fc from the circulation. The accelerated plasma clearance of dtCD70-Fc was not due to the lack of neonatal Fc receptor binding but was dependent on the large population of oligomannose type glycosylation. Enzymatic treatment to reduce the oligomannose-type glycans in dtCD70-Fc improved its half-life and significantly enhanced its T cell stimulatory activity in vivo surpassing that of anti-CD27 antibody. We also show that whereas the ability of the anti-CD27 to boost a vaccine response was abolished in Fc gamma receptor (FcγR)-deficient mice, dtCD70-Fc remained active. By comparing the activity of dtCD70-Fc with a variant (dtCD70-Fc(D265A)) that lacks binding to FcγRs, we unexpectedly found that FcγR binding to dtCD70-Fc was required for maximal boosting of a CD8 T cell response in vivo. Interestingly, both dtCD70-Fc and dtCD70-Fc(D265A) were effective in prolonging the survival of mice harbouring BCL1 B cell lymphoma, demonstrating that a substantial part of the stimulatory activity of dtCD70-Fc in this setting is retained in the absence of FcγR interaction. Discussion These data reveal that TNFRSF ligands can be generated with a tunable activity profile and suggest that this class of immune agonists could have broad applications in immunotherapy.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, European University of Lefke, Lefke, Cyprus
| | - Joel D. Allen
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Sarah L. Buchan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jinny Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - H. T. Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C. Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick J. Duriez
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anne Rogel
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Max Crispin
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Svecla M, Nour J, Bladergroen MR, Nicolardi S, Zhang T, Beretta G, Wuhrer M, Norata GD, Falck D. Impact of Asialoglycoprotein Receptor and Mannose Receptor Deficiency on Murine Plasma N-glycome Profiles. Mol Cell Proteomics 2023; 22:100615. [PMID: 37414249 PMCID: PMC10462831 DOI: 10.1016/j.mcpro.2023.100615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
The asialoglycoprotein receptor (ASGPR) and the mannose receptor C-type 1 (MRC1) are well known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied by higher levels of apolipoprotein D, haptoglobin, and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and N-glycosylation of the major plasma proteins are tightly controlled and further suggest that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.
Collapse
Affiliation(s)
- M Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J Nour
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M R Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - S Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - D Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Deng Q, He L, Xu F, Deng Q, Xu T, Jiang J, Hu Z, Yang J. Characterization of beta subunit variants of recombinant human chorionic gonadotrophin. Anal Biochem 2023; 668:115089. [PMID: 36858250 DOI: 10.1016/j.ab.2023.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Human chorionic gonadotropin (hCG), an endogenous glycoprotein hormone, has been widely used for the treatment of infertility and corpus luteum defect in women. The biological specificity of hCG is essentially determined by its beta (β-) subunit, whereas the alpha (α-) subunit is a common subunit shared among the gonadotropin family. In development of a therapeutic recombinant hCG, the purity analysis showed that the beta (β-) subunit has two variants, β1 and β2. Structural characterization using a combination of analytical techniques has demonstrated that β1-subunit is derived from non-glycosylation at Asn 13, whereas β2-subunit is a normal species with complete N-glycosylation at both Asn 13 and Asn 30. In vivo Bioactivity evaluation of the r-hCG fractions with various ratios of β1-and β2-subunits showed that incomplete glycosylation at Asn 13 potentially reduced the biological activity of r-hCG to promote uterus growth. Although hCG has a long history of medicinal use, this is the first report to identify the structural difference of hCG β-subunit variants, as well as to preliminary establish the structure-activity relationship of this variation. The obtained results also suggest the importance of variant characterization and necessary quality control of product variants during the development of recombinant protein therapeutics.
Collapse
Affiliation(s)
- Qinpei Deng
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | - Lixiu He
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | - Fangyan Xu
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | | | - Tongze Xu
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | | | | | | |
Collapse
|
8
|
Wolf B, Piksa M, Beley I, Patoux A, Besson T, Cordier V, Voedisch B, Schindler P, Stöllner D, Perrot L, von Gunten S, Brees D, Kammüller M. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022; 166:380-407. [PMID: 35416297 DOI: 10.1111/imm.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.
Collapse
Affiliation(s)
- Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mateusz Piksa
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabelle Beley
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Agnes Patoux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thierry Besson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Valerie Cordier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bernd Voedisch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Ludovic Perrot
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
9
|
Baksmeier C, Blundell P, Steckel J, Schultz V, Gu Q, Da Silva Filipe A, Kohl A, Linnington C, Lu D, Dell A, Haslam S, Wang J, Czajkowsky D, Goebels N, Pleass RJ. Modified recombinant human IgG1-Fc is superior to natural intravenous immunoglobulin at inhibiting immune-mediated demyelination. Immunology 2021; 164:90-105. [PMID: 33880776 PMCID: PMC8358725 DOI: 10.1111/imm.13341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is an established treatment for numerous autoimmune conditions. Although Fc fragments derived from IVIG have shown efficacy in controlling immune thrombocytopenia in children, the mechanisms of action are unclear and controversial. The aim of this study was to dissect IVIG effector mechanisms using further adapted Fc fragments on demyelination in an ex vivo model of the central nervous system-immune interface. Using organotypic cerebellar slice cultures (OSCs) from transgenic mice, we induced extensive immune-mediated demyelination and oligodendrocyte loss with an antibody specific for myelin oligodendrocyte glycoprotein (MOG) and complement. Protective effects of adapted Fc fragments were assessed by live imaging of green fluorescent protein expression, immunohistochemistry and confocal microscopy. Cysteine- and glycan-adapted Fc fragments protected OSC from demyelination in a dose-dependent manner where equimolar concentrations of either IVIG or control Fc were ineffective. The protective effects of the adapted Fc fragments are partly attributed to interference with complement-mediated oligodendroglia damage. Transcriptome analysis ruled out signatures associated with inflammatory or innate immune responses. Taken together, our findings show that recombinant biomimetics can be made that are at least two hundred-fold more effective than IVIG in controlling demyelination by anti-MOG antibodies.
Collapse
Affiliation(s)
- Christine Baksmeier
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Pat Blundell
- Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Julia Steckel
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Verena Schultz
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Quan Gu
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ana Da Silva Filipe
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Alain Kohl
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Chris Linnington
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Dongli Lu
- Department of Life SciencesImperial College LondonLondonUK
| | - Anne Dell
- Department of Life SciencesImperial College LondonLondonUK
| | - Stuart Haslam
- Department of Life SciencesImperial College LondonLondonUK
| | - Jiabin Wang
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
| | - Dan Czajkowsky
- State Key Laboratory for Oncogenes and Related Genes and Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Norbert Goebels
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Richard J. Pleass
- Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
10
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
11
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
12
|
Developing a medium combination to attain similar glycosylation profile to originator by DoE and cluster analysis method. Sci Rep 2021; 11:7103. [PMID: 33782463 PMCID: PMC8007809 DOI: 10.1038/s41598-021-86447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
Glycosylation is critical for monoclonal antibody production because of its impact on pharmacokinetics and pharmacodynamics. Modulation of glycan profile is frequently needed in biosimilar development. However, glycosylation profile is not a single value like that of cell culture titer, hence making it challenging for the Design of Experiment (DoE) methodology to be directly applied. In this study, a Her2-binding antibody was developed as a biosimilar to Herceptin. Cluster analysis was introduced to demonstrate the similarity of glycan profiles between the samples and the reference with specific value-distance. The glycosylation was subsequently optimized with the DoE method. Basal medium and feed medium were found to be the significant factors to the glycosylation pattern. Moreover, a combination of medium and feed strategy was developed to attain the most similar glycoprotein molecule to that of the originator biologic drug. This study may provide an additional option to evaluate multivariable factors and assess biosimilarity and/or comparability in monoclonal antibody production.
Collapse
|
13
|
Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol 2021; 41:300-315. [PMID: 33430641 DOI: 10.1080/07388551.2020.1869684] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the structurally diverse and complex forms of post translational modifications observed in proteins which influence the effector functions of IgG-Fc. Although the glycosylation constitutes 2-3% of the total mass of the IgG antibody, a thorough assessment of glycoform distribution present on the antibody is a critical quality attribute (cQA) for the majority of novel and biosimilar monoclonal antibody (mAb) development. This review paper will highlight the impact of different glycoforms such as galactose, fucose, high mannose, NANA (N-acetylneuraminic acid), and NGNA (N-glycoylneuraminic acid) on the safety/immunogeneicity, efficacy/biological activity and clearance (pharmacodynamics/pharmacokinetic property (PD/PK)) of biological molecules. In addition, this paper will summarize routinely employed reliable analytical techniques such as hydrophilic interaction chromatography (HILIC), high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) for characterizing and monitoring glycosylation in monoclonal antibodies (mAbs). The advantages and disadvantages of each of the methods are addressed. The scope of this review paper is limited to only N-linked and O-linked glycosylation.
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
14
|
Falck D, Thomann M, Lechmann M, Koeleman CAM, Malik S, Jany C, Wuhrer M, Reusch D. Glycoform-resolved pharmacokinetic studies in a rat model employing glycoengineered variants of a therapeutic monoclonal antibody. MAbs 2021; 13:1865596. [PMID: 33382957 PMCID: PMC7781607 DOI: 10.1080/19420862.2020.1865596] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Good pharmacokinetic (PK) behavior is a key prerequisite for sufficient efficacy of therapeutic monoclonal antibodies (mAbs). Fc glycosylation is a critical quality attribute (CQA) of mAbs, due to its impact on stability and effector functions. However, the effects of various IgG Fc glycoforms on antibody PK remain unclear. We used a combination of glycoengineering and glycoform-resolved PK measurements by mass spectrometry (MS) to assess glycoform effects on PK. Four differently glycoengineered mAbs, each still containing multiple glycoforms, were separately injected into rats. Rat models have been shown to be predictive of human PK. At different time points, blood was taken, from which the mAbs were purified and analyzed with a liquid chromatography-MS-based bottom-up glycoproteomics approach. This allowed us to follow changes in the glycosylation profiles of each glycoengineered mAb over time. Enzyme-linked immunosorbent assay measurements provided an absolute concentration in the form of a sum value for all glycoforms. Information from both readouts was then combined to calculate PK parameters per glycoform. Thereby, multiple glycoform kinetics were resolved within one mAb preparation. We confirmed increased clearance of high-mannose (Man5) and hybrid-type (Man5G0) glycoforms. Specifically, Man5 showed a 1.8 to 2.6-fold higher clearance than agalactosylated, complex glycans (G0F). Unexpectedly, clearance was even higher (4.7-fold) for the hybrid-type glycan Man5G0. In contrast, clearance of agalactosylated, monoantennary glycoforms (G0F-N) was only slightly increased over G0F (1.2 to 1.4-fold). Thus, monoantennary, hybrid-type and high-mannose glycoforms should be distinguished in CQA assessments. Strikingly, α2,3-linked sialylation did not affect clearance, contradicting the involvement of the asialoglycoprotein receptor in mAb clearance.
Collapse
Affiliation(s)
- David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco Thomann
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Martin Lechmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastian Malik
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Cordula Jany
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
15
|
Pleass RJ. The therapeutic potential of sialylated Fc domains of human IgG. MAbs 2021; 13:1953220. [PMID: 34288809 PMCID: PMC8296966 DOI: 10.1080/19420862.2021.1953220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogens frequently use multivalent binding to sialic acid to infect cells or to modulate immunity through interactions with human sialic acid-binding immunoglobulin-type lectins (Siglecs). Molecules that interfere with these interactions could be of interest as diagnostics, anti-infectives or as immune modulators. This review describes the development of molecular scaffolds based on the crystallizable fragment (Fc) region of immunoglobulin (Ig) G that deliver high-avidity binding to innate immune receptors, including sialic acid-dependent receptors. The ways in which the sialylated Fc may be engineered as immune modulators that mimic the anti-inflammatory properties of intravenous polyclonal Ig or as blockers of sialic-acid-dependent infectivity by viruses are also discussed.
Collapse
Affiliation(s)
- Richard J. Pleass
- Department of Tropical Disease Biology, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
16
|
Cobb BA. The history of IgG glycosylation and where we are now. Glycobiology 2020; 30:202-213. [PMID: 31504525 DOI: 10.1093/glycob/cwz065] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
IgG glycosylation is currently at the forefront of both immunology and glycobiology, likely due in part to the widespread and growing use of antibodies as drugs. For over four decades, it has been recognized that the conserved N-linked glycan on asparagine 297 found within the second Ig domain of the heavy chain (CH2) that helps to comprise Fc region of IgG plays a special role in IgG structure and function. Changes in galactosylation, fucosylation and sialylation are now well-established factors, which drive differential IgG function, ranging from inhibitory/anti-inflammatory to activating complement and promoting antibody-dependent cellular cytotoxicity. Thus, if we are to truly understand how to design and deploy antibody-based drugs with maximal efficacy and evaluate proper vaccine responses from a protective and functional perspective, a deep understanding of IgG glycosylation is essential. This article is intended to provide a comprehensive review of the IgG glycosylation field and the impact glycans have on IgG function, beginning with the earliest findings over 40 years ago, in order to provide a robust foundation for moving forward.
Collapse
Affiliation(s)
- Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Kim J, Luo H, White W, Rees W, Venkat R, Albarghouthi M. Impact of Fc N-linked glycans on in vivo clearance of an immunoglobulin G1 antibody produced by NS0 cell line. MAbs 2020; 12:1844928. [PMID: 33171078 PMCID: PMC7671047 DOI: 10.1080/19420862.2020.1844928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterogeneity of glycosylation on therapeutic monoclonal antibodies (mAbs) may affect the safety and efficacy of these agents. In particular, glycans of nonhuman origin, such as galactose-alpha-1,3-galactose (gal-α-gal) and N-glycolylneuraminic acid (NGNA), in the Fc region of therapeutic mAbs produced from murine cell lines carry a risk of immunogenicity. Immunogenic glycan structures can have immune-mediated clearance, resulting in faster clearance from in vivo circulation than non-immunogenic structures. To demonstrate the impact of these Fc nonhuman glycans on in vivo clearance, we purified and analyzed the glycan profile of a monoclonal antibody (mAb1) from human serum samples collected from clinical study participants. We purified mAb1 in a three-step chromatographic separation process (protein A, immobilized anti-mAb1 antibody affinity, and weak cation exchange chromatography) and extracted and labeled its N-linked oligosaccharide structures with 2-aminobenzamide acid for analysis on ultrahigh-performance hydrophilic interaction liquid chromatography. A comparison of the glycan profile of mAb1 recovered from human serum on the same day and 4 weeks after dosing revealed no significant differences, indicating similar clearance of mAb1 with nonhuman gal-α-gal or NGNA glycan in the Fc region compared with the human glycans. The relative proportions of the glycans remained similar, and all patients who had already received multiple doses of mAb1 over the course of a year were negative for antidrug antibodies, suggesting that none of the glycans induced an immune response. Therefore, we concluded that mAb1 gal-α-gal and NGNA glycoforms represent a low risk of conferring immunogenicity.
Collapse
Affiliation(s)
- Jun Kim
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - Haibin Luo
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - Wendy White
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - William Rees
- Research and Development, Viela Bio , Gaithersburg, MD, USA
| | - Raghavan Venkat
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| | - Methal Albarghouthi
- BioPharmaceuticals Research and Development, AstraZeneca , Gaithersburg, MD, USA
| |
Collapse
|
18
|
Chi B, Veyssier C, Kasali T, Uddin F, Sellick CA. At-line high throughput site-specific glycan profiling using targeted mass spectrometry. ACTA ACUST UNITED AC 2020; 25:e00424. [PMID: 32071892 PMCID: PMC7016254 DOI: 10.1016/j.btre.2020.e00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
High throughput, site-specific glycan profiling using targeted mass spectrometry. Rapid analysis of glycan profiles directly from culture media. Methodology is fully compatible with automation. Methodology can be integrated into cell line selection and process development. Strategy can be used for multi-attribute product quality screening/monitoring.
Protein post-translational modification (PTM) plays an important role in many biological processes; of which glycosylation is arguably one of the most complex and diverse modifications and is crucial for the safety and efficacy of biotherapeutic proteins. Mass spectrometric characterization of protein glycosylation is well established with clear advantages and disadvantages; on one hand it is precise and information-rich, as well as being relative inexpensive in terms of the reagents and consumables despite the instrumentation cost and, depending on the method, can give site specific information; on the other hand it generally suffers from low throughput, restriction to largely purified samples and is less quantitative, especially for sialylated glycan species. Here, we describe a high throughput, site-specific, targeted mass spectrometric peptide mapping approach to quickly screen/rank candidate production cell lines and culture conditions that give favourable glycosylation profiles directly from conditioned culture media for an Fc-fusion protein. The methodology is fully compatible with automation and combines the speed of ‘top-down’ mass spectrometry with the site-specific information of ‘bottom-up’ mass spectrometry. In addition, this strategy can be used for multi-attribute product quality screening/monitoring as an integral part of cell line selection and process development.
Collapse
Affiliation(s)
- Bertie Chi
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | | - Toyin Kasali
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Faisal Uddin
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | |
Collapse
|
19
|
Blundell PA, Lu D, Dell A, Haslam S, Pleass RJ. Choice of Host Cell Line Is Essential for the Functional Glycosylation of the Fc Region of Human IgG1 Inhibitors of Influenza B Viruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1022-1034. [PMID: 31907284 PMCID: PMC6994840 DOI: 10.4049/jimmunol.1901145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Abs are glycoproteins that carry a conserved N-linked carbohydrate attached to the Fc whose presence and fine structure profoundly impacts on their in vivo immunogenicity, pharmacokinetics, and functional attributes. The host cell line used to produce IgG plays a major role in this glycosylation, as different systems express different glycosylation enzymes and transporters that contribute to the specificity and heterogeneity of the final IgG-Fc glycosylation profile. In this study, we compare two panels of glycan-adapted IgG1-Fc mutants expressed in either the human endothelial kidney 293-F or Chinese hamster ovary-K1 systems. We show that the types of N-linked glycans between matched pairs of Fc mutants vary greatly and in particular, with respect, to sialylation. These cell line effects on glycosylation profoundly influence the ability of the engineered Fcs to interact with either human or pathogen receptors. For example, we describe Fc mutants that potently disrupted influenza B-mediated agglutination of human erythrocytes when expressed in Chinese hamster ovary-K1, but not in human endothelial kidney 293-F cells.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
20
|
Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma. Drug Saf 2020; 42:769-784. [PMID: 30649752 PMCID: PMC6520328 DOI: 10.1007/s40264-018-00788-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%. External evaluation for anaphylaxis by Sampson criteria found no tralokinumab-related severe hypersensitivity or anaphylaxis reactions. Conclusion Preclinical assessments suggested a low likelihood of immunogenicity for tralokinumab. In STRATOS 1 and 2, ADA incidence was low, no differences were found between tralokinumab-treated and placebo groups in reporting of hypersensitivity reactions, and there were no Sampson criteria-evaluated anaphylaxis events with tralokinumab treatment. Together, the results suggest that tralokinumab treatment would not increase the risk for severe hypersensitivity or anaphylactic reactions. Electronic supplementary material The online version of this article (10.1007/s40264-018-00788-w) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Lucchino B, Spinelli FR, Iannuccelli C, Guzzo MP, Conti F, Di Franco M. Mucosa-Environment Interactions in the Pathogenesis of Rheumatoid Arthritis. Cells 2019; 8:E700. [PMID: 31295951 PMCID: PMC6678242 DOI: 10.3390/cells8070700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is gaining increased attention for its involvement in the disease pathogenesis, modulating the immune cell response at a local and subsequently at a systemic level. Currently, the onset of the clinical manifest arthritis is thought to be the last step of a series of pathogenic events lasting years. The positivity for anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF), in absence of symptoms, characterizes a preclinical phase of RA-namely systemic autoimmune phase- which is at high risk for disease progression. Several immune abnormalities, such as local ACPA production, increased T cell polarization towards a pro-inflammatory phenotype, and innate immune cell activation can be documented in at-risk subjects. Many of these abnormalities are direct consequences of the interaction between the environment and the host, which takes place at the mucosal level. The purpose of this review is to describe the humoral and cellular immune abnormalities detected in subjects at risk of RA, highlighting their origin from the mucosa-environment interaction.
Collapse
Affiliation(s)
- Bruno Lucchino
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesca Romani Spinelli
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Cristina Iannuccelli
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Paola Guzzo
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Di Franco
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
22
|
McClellan JE, Conlon HD, Bolt MW, Kalfayan V, Palaparthy R, Rehman MI, Kirchhoff CF. The 'totality-of-the-evidence' approach in the development of PF-06438179/GP1111, an infliximab biosimilar, and in support of its use in all indications of the reference product. Therap Adv Gastroenterol 2019; 12:1756284819852535. [PMID: 31223341 PMCID: PMC6566480 DOI: 10.1177/1756284819852535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/25/2019] [Indexed: 02/04/2023] Open
Abstract
The 'totality-of-the-evidence' biosimilarity concept requires that sufficient structural, functional, nonclinical, and clinical data are acquired in a stepwise manner, to demonstrate that no clinically meaningful differences in quality, safety, or efficacy are observed compared with the reference product. We describe the totality of the evidence for PF-06438179/GP1111 (PF-SZ-IFX; IXIFI™ [infliximab-qbtx]/Zessly®) that supported its approval as an infliximab (IFX) biosimilar for all eligible indications of reference IFX (ref-IFX; Remicade®) in Europe and in the US. Analytical similarity involving in vitro assays capable of distinguishing structural or functional differences between PF-SZ-IFX and ref-IFX formed a foundation for the biosimilarity exercise. Differences identified in N-glycosylation and charge heterogeneity were found not to impact the results in in vitro biological assays reflective of the pharmacology underlying the mechanisms of action (tumor necrosis factor binding, reverse signaling, antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity) of IFX across disease indications. Similarity was assessed in a comparative clinical pharmacokinetic study and in a clinical efficacy and safety study in patients with rheumatoid arthritis, where therapeutic equivalence between PF-SZ-IFX and ref-IFX provided confirmatory evidence of biosimilarity, and, when coupled with the analytical similarity already established, supported extrapolation to all eligible disease indications of ref-IFX.
Collapse
Affiliation(s)
| | - Hugh D. Conlon
- Analytical Research and Development, Pfizer Inc., Andover, MA, USA
| | - Michael W. Bolt
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | - Carol F. Kirchhoff
- Global Technology Services, Biotechnology and Aseptic Sciences Group, Pfizer Inc., Chesterfield, MO, USA
| |
Collapse
|
23
|
Saunders KO. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front Immunol 2019; 10:1296. [PMID: 31231397 PMCID: PMC6568213 DOI: 10.3389/fimmu.2019.01296] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies and Fc-fusion antibody-like proteins have become successful biologics developed for cancer treatment, passive immunity against infection, addiction, and autoimmune diseases. In general these biopharmaceuticals can be used for blocking protein:protein interactions, crosslinking host receptors to induce signaling, recruiting effector cells to targets, and fixing complement. With the vast capability of antibodies to affect infectious and genetic diseases much effort has been placed on improving and tailoring antibodies for specific functions. While antibody:antigen engagement is critical for an efficacious antibody biologic, equally as important are the hinge and constant domains of the heavy chain. It is the hinge and constant domains of the antibody that engage host receptors or complement protein to mediate a myriad of effector functions and regulate antibody circulation. Molecular and structural studies have provided insight into how the hinge and constant domains from antibodies across different species, isotypes, subclasses, and alleles are recognized by host cell receptors and complement protein C1q. The molecular details of these interactions have led to manipulation of the sequences and glycosylation of hinge and constant domains to enhance or reduce antibody effector functions and circulating half-life. This review will describe the concepts being applied to optimize the hinge and crystallizable fragment of antibodies, and it will detail how these interactions can be tuned up or down to mediate a biological function that confers a desired disease outcome.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Laboratory of Protein Expression, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| |
Collapse
|
24
|
Beck A, Liu H. Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies (Basel) 2019; 8:antib8010018. [PMID: 31544824 PMCID: PMC6640695 DOI: 10.3390/antib8010018] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) intended for therapeutic usage are required to be thoroughly characterized, which has promoted an extensive effort towards the understanding of the structures and heterogeneity of this major class of molecules. Batch consistency and comparability are highly relevant to the successful pharmaceutical development of mAbs and related products. Small structural modifications that contribute to molecule variants (or proteoforms) differing in size, charge or hydrophobicity have been identified. These modifications may impact (or not) the stability, pharmacokinetics, and efficacy of mAbs. The presence of the same type of modifications as found in endogenous immunoglobulin G (IgG) can substantially lower the safety risks of mAbs. The knowledge of modifications is also critical to the ranking of critical quality attributes (CQAs) of the drug and define the Quality Target Product Profile (QTPP). This review provides a summary of the current understanding of post-translational and physico-chemical modifications identified in recombinant mAbs and endogenous IgGs at physiological conditions.
Collapse
Affiliation(s)
- Alain Beck
- Biologics CMC and developability, IRPF, Center d'immunologie Pierre Fabre, St Julien-en-Genevois CEDEX, 74160 Saint-Julien en Genevois, France.
| | - Hongcheng Liu
- Anokion, 50 Hampshire Street, Suite 402, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Jing X, Hou Y, Hallett W, Sahajwalla CG, Ji P. Key Physicochemical Characteristics Influencing ADME Properties of Therapeutic Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:115-129. [PMID: 31482497 DOI: 10.1007/978-981-13-7709-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins are a rapidly growing class of drugs in clinical settings. The pharmacokinetics (PK) of therapeutic proteins relies on their absorption, distribution, metabolism, and excretion (ADME) properties. Moreover, the ADME properties of therapeutic proteins are impacted by their physicochemical characteristics. Comprehensive evaluation of these characteristics and their impact on ADME properties are critical to successful drug development. This chapter summarizes all relevant physicochemical characteristics and their effect on ADME properties of therapeutic proteins.
Collapse
Affiliation(s)
- Xing Jing
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA.
| | - Yan Hou
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - William Hallett
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - Chandrahas G Sahajwalla
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| | - Ping Ji
- U.S. Food and Drug Administration, Office of Clinical Pharmacology, DV II, Silver Spring, MD, USA
| |
Collapse
|
26
|
Lucas AT, Robinson R, Schorzman AN, Piscitelli JA, Razo JF, Zamboni WC. Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients. Antibodies (Basel) 2019; 8:E3. [PMID: 31544809 PMCID: PMC6640706 DOI: 10.3390/antib8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. This review provides an updated summary of factors known to affect the disposition of mAbs/ADCs in development and in clinical use, as well as how these factors should be considered in the selection and design of preclinical studies of ADC agents in development.
Collapse
Affiliation(s)
- Andrew T Lucas
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ryan Robinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph A Piscitelli
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - Juan F Razo
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
28
|
Wada R, Matsui M, Kawasaki N. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. MAbs 2018; 11:350-372. [PMID: 30466347 PMCID: PMC6380427 DOI: 10.1080/19420862.2018.1551044] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.
Collapse
Affiliation(s)
- Ryuta Wada
- a Pharmaceutical Science and Technology Labs ., Pharmaceutical Technology, Astellas Pharma, Inc ., Tsukuba , Ibaraki , Japan.,b Department of Medical Life Science, Graduate School of Medical Life Science , Yokohama City University , Tsurumi , Yokohama , Japan
| | - Makoto Matsui
- a Pharmaceutical Science and Technology Labs ., Pharmaceutical Technology, Astellas Pharma, Inc ., Tsukuba , Ibaraki , Japan
| | - Nana Kawasaki
- b Department of Medical Life Science, Graduate School of Medical Life Science , Yokohama City University , Tsurumi , Yokohama , Japan
| |
Collapse
|
29
|
Zhou Q, Qiu H. The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. J Pharm Sci 2018; 108:1366-1377. [PMID: 30471292 DOI: 10.1016/j.xphs.2018.11.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
N-glycosylation is one of major post-translational modifications in nature, and it is essential for protein structure and function. As hydrophilic moieties of glycoproteins, N-glycans play important roles in protein stability. They protect the proteins against proteolytic degradation, aggregation, and thermal denaturation through maintaining optimal conformations. There are extensive evidences showing the involvement of N-glycans in the pharmacodynamics and pharmacokinetics of recombinant therapeutic proteins and antibodies. Highly sialylated complex-type glycans enable the longer serum half-lives of proteins against uptake through hepatic asialoglycoprotein receptor and mannose receptor for degradation in lysosomes. Moreover, the presence of nonhuman glycans results in clearance through pre-existing antibodies from serum and induces IgE-mediated anaphylaxis. N-glycans also facilitate or reduce the adverse immune responses of the proteins through interacting with multiple glycan-binding proteins, including those specific for mannose or mannose 6-phosphate. Due to the glycan impacts, a few therapeutic proteins were glycoengineered to improve the pharmacokinetics and stability. Thus, N-glycosylation should be extensively investigated and optimized for each individual protein for better efficacy and safety.
Collapse
Affiliation(s)
- Qun Zhou
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701.
| | - Huawei Qiu
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701
| |
Collapse
|
30
|
Borst AJ, Weidle CE, Gray MD, Frenz B, Snijder J, Joyce MG, Georgiev IS, Stewart-Jones GBE, Kwong PD, McGuire AT, DiMaio F, Stamatatos L, Pancera M, Veesler D. Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core. eLife 2018; 7:e37688. [PMID: 30403372 PMCID: PMC6237438 DOI: 10.7554/elife.37688] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
VRC01 broadly neutralizing antibodies (bnAbs) target the CD4-binding site (CD4BS) of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein (Env). Unlike mature antibodies, corresponding VRC01 germline precursors poorly bind to Env. Immunogen design has mostly relied on glycan removal from trimeric Env constructs and has had limited success in eliciting mature VRC01 bnAbs. To better understand elicitation of such bnAbs, we characterized the inferred germline precursor of VRC01 in complex with a modified trimeric 426c Env by cryo-electron microscopy and a 426c gp120 core by X-ray crystallography, biolayer interferometry, immunoprecipitation, and glycoproteomics. Our results show VRC01 germline antibodies interacted with a wild-type 426c core lacking variable loops 1-3 in the presence and absence of a glycan at position Asn276, with the latter form binding with higher affinity than the former. Interactions in the presence of an Asn276 oligosaccharide could be enhanced upon carbohydrate shortening, which should be considered for immunogen design.
Collapse
Affiliation(s)
- Andrew J Borst
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Connor E Weidle
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Matthew D Gray
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Brandon Frenz
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Joost Snijder
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - M Gordon Joyce
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Ivelin S Georgiev
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Guillaume BE Stewart-Jones
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Peter D Kwong
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Andrew T McGuire
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Global HealthUniversity of WashingtonSeattleUnited States
| | - Marie Pancera
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - David Veesler
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| |
Collapse
|
31
|
Loebrich S, Clark E, Ladd K, Takahashi S, Brousseau A, Kitchener S, Herbst R, Ryll T. Comprehensive manipulation of glycosylation profiles across development scales. MAbs 2018; 11:335-349. [PMID: 30252592 DOI: 10.1080/19420862.2018.1527665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The extent and pattern of glycosylation on therapeutic antibodies can influence their circulatory half-life, engagement of effector functions, and immunogenicity, with direct consequences to efficacy and patient safety. Hence, controlling glycosylation patterns is central to any drug development program, yet poses a formidable challenge to the bio-manufacturing industry. Process changes, which can affect glycosylation patterns, range from manufacturing at different scales or sites, to switching production process mode, all the way to using alternative host cell lines. In the emerging space of biosimilars development, often times all of these aspects apply. Gaining a deep understanding of the direction and extent to which glycosylation quality attributes can be modulated is key for efficient fine-tuning of glycan profiles in a stage appropriate manner, but establishment of such platform knowledge is time consuming and resource intensive. Here we report an inexpensive and highly adaptable screening system for comprehensive modulation of glycans on antibodies expressed in CHO cells. We characterize 10 media additives in univariable studies and in combination, using a design of experiments approach to map the design space for tuning glycosylation profile attributes. We introduce a robust workflow that does not require automation, yet enables rapid process optimization. We demonstrate scalability across deep wells, shake flasks, AMBR-15 cell culture system, and 2 L single-use bioreactors. Further, we show that it is broadly applicable to different molecules and host cell lineages. This universal approach permits fine-tuned modulation of glycan product quality, reduces development costs, and enables agile implementation of process changes throughout the product lifecycle.
Collapse
Affiliation(s)
- Sven Loebrich
- a Cell Line and Upstream Process Development , Waltham , USA.,b Technical Operations , ImmunoGen, Waltham , USA
| | - Elisa Clark
- a Cell Line and Upstream Process Development , Waltham , USA.,b Technical Operations , ImmunoGen, Waltham , USA
| | - Kristina Ladd
- a Cell Line and Upstream Process Development , Waltham , USA.,b Technical Operations , ImmunoGen, Waltham , USA
| | - Stefani Takahashi
- b Technical Operations , ImmunoGen, Waltham , USA.,c Process Analytics , Waltham , USA
| | - Anna Brousseau
- b Technical Operations , ImmunoGen, Waltham , USA.,d High Throughput Sciences , Waltham , USA
| | - Seth Kitchener
- a Cell Line and Upstream Process Development , Waltham , USA.,b Technical Operations , ImmunoGen, Waltham , USA
| | | | - Thomas Ryll
- b Technical Operations , ImmunoGen, Waltham , USA
| |
Collapse
|
32
|
Blondeel EJM, Aucoin MG. Supplementing glycosylation: A review of applying nucleotide-sugar precursors to growth medium to affect therapeutic recombinant protein glycoform distributions. Biotechnol Adv 2018; 36:1505-1523. [PMID: 29913209 DOI: 10.1016/j.biotechadv.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
Glycosylation is a critical quality attribute (CQA) of many therapeutic proteins, particularly monoclonal antibodies (mAbs), and is a major consideration in the approval of biosimilar biologics due to its effects to therapeutic efficacy. Glycosylation generates a distribution of glycoforms, resulting in glycoproteins with inherent molecule-to-molecule heterogeneity, capable of activating (or failing to activate) different effector functions of the immune system. Glycoforms can be affected by the supplementation of nucleotide-sugar precursors, and related components, to culture growth medium, affecting the metabolism of glycosylation. These supplementations has been demonstrated to increase nucleotide-sugar intracellular pools, and impact glycoform distributions, but with varied results. These variations can be attributed to five key factors: Differences between cell platforms (enzyme/transporter expression levels); differences between recombinant proteins produced (glycan-site accessibility); the fermentation and sampling timeline (glucose availability and exoglycosidase accumulation); glutamine levels (affecting ammonia levels, which impact Golgi pH, as well as UDP-GlcNAc pools); and finally, a lack of standardized metrics for observing shifts in glycoform distributions (glycosylation indices) across different experiments. The purpose of this review is to provide detail and clarity on the state of the art of supplementation strategies for nucleotide-sugar precursors for affecting glycosylation in cell culture processes, and to apply glycosylation indices for standardized comparisons across the field.
Collapse
Affiliation(s)
- Eric J M Blondeel
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marc G Aucoin
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
33
|
Wang Q, Chung CY, Chough S, Betenbaugh MJ. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 2018; 115:1378-1393. [DOI: 10.1002/bit.26567] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Sandra Chough
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
34
|
Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, Neill A, Ponniah G, King C, Mason B, Beck A, Liu H. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs 2018; 10:513-538. [PMID: 29513619 PMCID: PMC5973765 DOI: 10.1080/19420862.2018.1438797] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Process changes are inevitable in the life cycle of recombinant monoclonal antibody therapeutics. Products made using pre- and post-change processes are required to be comparable as demonstrated by comparability studies to qualify for continuous development and commercial supply. Establishment of comparability is a systematic process of gathering and evaluating data based on scientific understanding and clinical experience of the relationship between product quality attributes and their impact on safety and efficacy. This review summarizes the current understanding of various modifications of recombinant monoclonal antibodies. It further outlines the critical steps in designing and executing successful comparability studies to support process changes at different stages of a product's lifecycle.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Biologics Analytical Operations, Pharmaceutical & Biologics Development, Gilead Sciences, Ocean Ranch Blvd, Oceanside, CA
| | - Stephen Gozo
- Analytical Research & Development-Biologics, Celgene Corporation, Morris Avenue, Summit, NJ
| | - Amit Katiyar
- Analytical Development, Bristol-Myers Squibb, Pennington Rocky Road, Pennington, NJ
| | - Shara Dellatore
- Biologics & Vaccines Bioanalytics, MRL, Merck & Co., Inc., Galloping Hill Road, Kenilworth, NJ USA
| | - Yune Kune
- Fortress Biologicals, Sawyer Road, Suite, Waltham, MA
| | - Ram Bhat
- Millennium Research laboratories, New Boston Street, Woburn, MA
| | - Joanne Sun
- Product Development, Innovent Biologics, Dongping Street, Suzhou Industrial Park, China
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Old Saw Mill River Road, Tarrytown, NY
| | - Dongdong Wang
- Analytical Department, BioAnalytix, Inc., Memorial Drive, Cambridge, MA
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alyssa Neill
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | | | - Cory King
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Bruce Mason
- Pre-formulation, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alain Beck
- Analytical Chemistry, NBEs, Center d'Immunologie Pierre Fabre, St Julien-en-Genevois Cedex, France
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| |
Collapse
|
35
|
Lucas AT, Price LSL, Schorzman AN, Storrie M, Piscitelli JA, Razo J, Zamboni WC. Factors Affecting the Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2018; 7:E10. [PMID: 31544862 PMCID: PMC6698819 DOI: 10.3390/antib7010010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Major advances in therapeutic proteins, including antibody-drug conjugates (ADCs), have created revolutionary drug delivery systems in cancer over the past decade. While these immunoconjugate agents provide several advantages compared to their small-molecule counterparts, their clinical use is still in its infancy. The considerations in their development and clinical use are complex, and consist of multiple components and variables that can affect the pharmacologic characteristics. It is critical to understand the mechanisms employed by ADCs in navigating biological barriers and how these factors affect their biodistribution, delivery to tumors, efficacy, and toxicity. Thus, future studies are warranted to better understand the complex pharmacology and interaction between ADC carriers and biological systems, such as the mononuclear phagocyte system (MPS) and tumor microenvironment. This review provides an overview of factors that affect the pharmacologic profiles of ADC therapies that are currently in clinical use and development.
Collapse
Affiliation(s)
- Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Lauren S L Price
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Mallory Storrie
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | | | - Juan Razo
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 2018; 9:15-32. [PMID: 28421387 PMCID: PMC5777971 DOI: 10.1007/s13238-017-0408-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
There are many factors that can influence the pharmacokinetics (PK) of a mAb or Fc-fusion molecule with the primary determinant being FcRn-mediated recycling. Through Fab or Fc engineering, IgG-FcRn interaction can be used to generate a variety of therapeutic antibodies with significantly enhanced half-life or ability to remove unwanted antigen from circulation. Glycosylation of a mAb or Fc-fusion protein can have a significant impact on the PK of these molecules. mAb charge can be important and variants with pI values of 1-2 unit difference are likely to impact PK with lower pI values being favorable for a longer half-life. Most mAbs display target mediated drug disposition (TMDD), which can have significant consequences on the study designs of preclinical and clinical studies. The PK of mAb can also be influenced by anti-drug antibody (ADA) response and off-target binding, which require careful consideration during the discovery stage. mAbs are primarily absorbed through the lymphatics via convection and can be conveniently administered by the subcutaneous (sc) route in large doses/volumes with co-formulation of hyaluronidase. The human PK of a mAb can be reasonably estimated using cynomolgus monkey data and allometric scaling methods.
Collapse
Affiliation(s)
- Liming Liu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, West Point, PA, 19486, USA.
| |
Collapse
|
37
|
Popp O, Moser S, Zielonka J, Rüger P, Hansen S, Plöttner O. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. MAbs 2017; 10:290-303. [PMID: 29173063 PMCID: PMC5825202 DOI: 10.1080/19420862.2017.1405203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Novel biotherapeutic glycoproteins, like recombinant monoclonal antibodies (mAbs) are widely used for the treatment of numerous diseases. The N-glycans attached to the constant region of an antibody have been demonstrated to be crucial for the biological efficacy. Even minor modifications of the N-glycan structure can dictate the potency of IgG effector functions such as the antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Here, we present the development of a glycoengineered CHO-K1 host cell line (HCL), stably expressing β1,4-N-Acetylglucoseaminyltransferase III (GnT-III) and α-mannosidase II (Man-II), for the expression of a-fucosylated antibodies with enhanced Fc-mediated effector function. Glycoengineered HCLs were generated in a two-step strategy, starting with generating parental HCLs by stable transfection of CHO-K1 cells with GnT-III and Man-II. In a second step, parental HCLs were stably transfected a second time with these two transgenes to increase their copy number in the genetic background. Generated glycoengineered CHO-K1 cell lines expressing two different mAbs deliver antibody products with a content of more than 60% a-fucosylated glycans. In-depth analysis of the N-glycan structure revealed that the majority of the Fc-attached glycans of the obtained mAbs were of complex bisected type. Furthermore, we showed the efficient use of FcγRIIIa affinity chromatography as a novel method for the fast assessment of the mAbs a-fucosylation level. By testing different cultivation conditions for the pre-glycoengineered recombinant CHO-K1 clones, we identified key components essential for the production of a-fucosylated mAbs. The prevalent effect could be attributed to the trace element manganese, which leads to a strong increase of a-fucosylated complex- and hybrid-type glycans. In conclusion, the novel pre-glycoengineered CHO-K1 HCL can be used for the production of antibodies with high ratios of a-fucosylated Fc-attached N-glycans. Application of our newly developed FcγRIIIa affinity chromatography method during cell line development and use of optimized cultivation conditions can ultimately support the efficient development of a-fucosylated mAbs.
Collapse
Affiliation(s)
- Oliver Popp
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| | - Samuel Moser
- b Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Zurich , Wagistrasse 18, Schlieren , Switzerland
| | - Jörg Zielonka
- b Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Zurich , Wagistrasse 18, Schlieren , Switzerland
| | - Petra Rüger
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| | - Silke Hansen
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| | - Oliver Plöttner
- a Roche Pharma Research and Early Development , Large Molecule Research, Roche Innovation Center Munich , Nonnenwald 2, Penzberg , Germany
| |
Collapse
|
38
|
Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003. Transplantation 2017. [PMID: 28640789 PMCID: PMC5482566 DOI: 10.1097/tp.0000000000001486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. Valenzuela et al show that HLA antibody binding to human endothelial cells in vitro, triggered complement C3a and C5a deposition that mediated monocyte recruitment, and the salutary effects of inhibiting the classical complement pathway with an anti-C1s antibody. Supplemental digital content is available in the text.
Collapse
|
39
|
Verschoor A, Karsten CM, Broadley SP, Laumonnier Y, Köhl J. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol Rev 2017; 274:112-126. [PMID: 27782330 DOI: 10.1111/imr.12473] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The activation of the complement system by canonical and non-canonical mechanisms results in the generation of multiple C3 and C5 cleavage fragments including anaphylatoxins C3a and C5a as well as opsonizing C3b/iC3b. It is now well appreciated that anaphylatoxins not only act as pro-inflammatory mediators but as immunoregulatory molecules that control the activation status of cells and tissue at several levels. Likewise, C3b/iC3b is more than the opsonizing fragment that facilitates engulfment and destruction of targets by phagocytes. In the circulation, it also facilitates the transport and delivery of bacteria and immune complexes to phagocytes, through a process known as immune adherence, with consequences for adaptive immunity. Here, we will discuss non-classical immunoregulatory properties of C3 and C5 cleavage fragments. We highlight the influence of anaphylatoxins on Th2 and Th17 cell development during allergic asthma with a particular emphasis on their role in the modulation of CD11b+ conventional dendritic cells and monocyte-derived dendritic cells. Furthermore, we discuss the control of anaphylatoxin-mediated activation of dendritic cells and allergic effector cells by adaptive immune mechanisms that involve allergen-specific IgG1 antibodies and plasma or regulatory T cell-derived IL-10 production. Finally, we take a fresh look at immune adherence with a particular focus on the development of antibacterial cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Admar Verschoor
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Steven P Broadley
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany. .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
40
|
Liu H, Nowak C, Andrien B, Shao M, Ponniah G, Neill A. Impact of IgG Fc-Oligosaccharides on Recombinant Monoclonal Antibody Structure, Stability, Safety, and Efficacy. Biotechnol Prog 2017; 33:1173-1181. [DOI: 10.1002/btpr.2498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Hongcheng Liu
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; New Haven CT 06510
| | - Christine Nowak
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; New Haven CT 06510
| | - Bruce Andrien
- Early Stage Analytical Sciences, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; New Haven CT 06510
| | - Mei Shao
- Late Stage Upstream Development, Global Process Development; Alexion Pharmaceuticals; New Haven CT 06510
| | - Gomathinayagam Ponniah
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; New Haven CT 06510
| | - Alyssa Neill
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; New Haven CT 06510
| |
Collapse
|
41
|
Montacir O, Montacir H, Eravci M, Springer A, Hinderlich S, Saadati A, Parr MK. Comparability study of Rituximab originator and follow-on biopharmaceutical. J Pharm Biomed Anal 2017; 140:239-251. [DOI: 10.1016/j.jpba.2017.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
42
|
Liu H, Nowak C, Shao M, Ponniah G, Neill A. Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnol Prog 2016; 32:1103-1112. [DOI: 10.1002/btpr.2327] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hongcheng Liu
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Christine Nowak
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Mei Shao
- Late Stage Upstream Development, Global Process Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Gomathinayagam Ponniah
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Alyssa Neill
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| |
Collapse
|
43
|
Souders CA, Nelson SC, Wang Y, Crowley AR, Klempner MS, Thomas W. A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life. MAbs 2016; 7:912-21. [PMID: 26018774 PMCID: PMC4622054 DOI: 10.1080/19420862.2015.1054585] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immunoglobulin G (IgG) has an unusually long serum half-life in comparison to proteins of a similar size. It is well-known that this phenomenon is due to IgG's ability to bind the neonatal Fc receptor (FcRn) in a pH-dependent manner. FcRn binding properties can vary among IgGs, resulting in altered in vivo half-lives, and therefore it would be beneficial to accurately predict the FcRn binding properties of therapeutic IgG monoclonal antibodies (mAbs). Here we describe the development of an in vitro model capable of predicting the in vivo half-life of human IgG. Using a high-throughput biolayer interferometry (BLI) platform, the human FcRn association rate at acidic pH and subsequent dissociation rate at physiological pH was determined for 5 human IgG1 mAbs. Comparing the combined FcRn association and dissociation rates to the Phase 1 clinical study half-lives of the mAbs resulted in a strong correlation. The correlation was also verified in vivo using mice transgenic for human FcRn. The model was used to characterize various factors that may influence FcRn-mAb binding, including mAb variable region sequence differences and constant region glycosylation patterns. Results indicated that the complementarity-determining regions of the heavy chain significantly influence the mAb's FcRn binding properties, while the absence of glycosylation does not alter mAb-FcRn binding. Development of this high-throughput FcRn binding model could potentially predict the half-life of therapeutic IgGs and aid in selection of lead candidates while also serving as a screening tool for the development of mAbs with desired pharmacokinetic properties.
Collapse
Affiliation(s)
- Colby A Souders
- a MassBiologics of the University of Massachusetts Medical School ; Boston , MA USA
| | | | | | | | | | | |
Collapse
|
44
|
Pace D, Lewis N, Wu T, Gillespie R, Leiske D, Velayudhan J, Rohrbach A, Connell-Crowley L. Characterizing the effect of multiple Fc glycan attributes on the effector functions and FcγRIIIa receptor binding activity of an IgG1 antibody. Biotechnol Prog 2016; 32:1181-1192. [PMID: 27160519 DOI: 10.1002/btpr.2300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/03/2016] [Indexed: 12/29/2022]
Abstract
N-linked Fc glycosylation of IgG1 monoclonal antibody therapeutics can directly influence their mechanism of action by impacting IgG effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Therefore, identification and detailed characterization of Fc glycan critical quality attributes (CQAs) provides important information for process design and control. A two-step approach was used to identify and characterize the Fc glycan CQAs for an IgG1 Mab with effector function. First, single factor experiments were performed to identify glycan critical quality attributes that influence ADCC and CDC activities. Next, a full-factorial design of experiment (DOE) to characterize the possible interactions and relative effect of these three glycan species on ADCC, CDC, and FcγRIIIa binding was employed. Additionally, the DOE data were used to develop models to predict ADCC, CDC, and FcγRIIIa binding of a given configuration of the three glycan species for this IgG1 molecule. The results demonstrate that for ADCC, afuco mono/bi has the largest effect, followed by HM and β-gal, while FcγRIIIa binding is affected by afuco mono/bi and β-gal. CDC, in contrast, is affected by β-gal only. This type of glycan characterization and modeling can provide valuable information for development, manufacturing support and process improvements for IgG products that require effector function for efficacy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1181-1192, 2016.
Collapse
Affiliation(s)
- Danielle Pace
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | | | - Tina Wu
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | - Ron Gillespie
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | - Dan Leiske
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | | | | | | |
Collapse
|
45
|
Brady LJ, Velayudhan J, Visone DB, Daugherty KC, Bartron JL, Coon M, Cornwall C, Hinckley PJ, Connell-Crowley L. The criticality of high-resolution N-linked carbohydrate assays and detailed characterization of antibody effector function in the context of biosimilar development. MAbs 2016; 7:562-70. [PMID: 25898160 DOI: 10.1080/19420862.2015.1016692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development.
Collapse
Key Words
- ACN, acetonitrile
- ADCC
- ADCC, antibody-dependent cell-mediated cytotoxicity
- AHGs, afucosylated hybrid glycans
- AMBGs, afucosylated monoantennary and biantennary glycans
- BGGs, β-galactosylated glycans
- CDC
- CDC, complement-dependent cytotoxicity
- CHO, Chinese hamster ovary
- CQA, critical quality attribute
- Con A, concanavalin A lectin
- EIC, extracted ion current
- FT, flow-through
- Fc domain
- HC, heavy chain
- HGs, hybrid glycans
- HILIC, hydrophilic interaction liquid chromatography
- HMGs, high-mannose glycans
- HPLC, high performance liquid chromatography
- LC, light chain
- MS, mass spectrometry
- MS/MS, tandem mass spectrometry
- N-linked carbohydrates
- PQA, product quality attribute
- SGs, sialylated glycans
- SM, starting material
- TRIS, tris(hydroxymethyl)aminomethane
- antibody
- biosimilar
- effector function
- glycosylation
- mAb
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Lowell J Brady
- a Physical Chemistry Characterization; Sandoz Biopharmaceuticals ; Oberhaching , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fang J, Richardson J, Du Z, Zhang Z. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis. Biochemistry 2016; 55:860-8. [PMID: 26812426 DOI: 10.1021/acs.biochem.5b01323] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human therapeutic immunoglobulin gamma (IgG) molecules contain an N-glycan on each of their Fc CH2 domains. These glycans include high-mannose, hybrid, and complex types. Recombinant IgG molecules containing high-mannose glycans have been shown to clear faster in human blood, and exhibit decreased thermal stability. The molecular mechanism behind these observations, however, is not well understood. In this work, we used hydrogen/deuterium exchange combined with mass spectrometry (HDX MS), as well as proteolytic degradation under a native-like condition, to assess the impact of different glycoforms on the molecular structure and stability of recombinant IgG1 and IgG2 molecules expressed from Chinese hamster ovary cells. Our HDX MS data indicate that the conformation of these IgG molecules was indeed influenced by the glycan structure. IgG molecules containing high-mannose and hybrid glycans showed more conformational flexibility in the CH2 domain. This conclusion was further supported by the analysis of glycopeptides released from these molecules by trypsin digestion under a native-like condition. The higher CH2 conformational flexibility of IgG molecules with high-mannose and hybrid glycans contributes to their decreased thermal stability. IgG molecules containing sialylated glycans in the CH2 domain exhibited similar enzymatic degradation behavior as high-mannose glycans, suggesting decreased CH2-domain stability compared to shorter complex glycans, likely resulting from steric effect that decreased the glycan-CH2 domain interaction.
Collapse
Affiliation(s)
- Jing Fang
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| | - Jason Richardson
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| | - Zhimei Du
- Process Development, Amgen, Inc. , Seattle, Washington 98119, United States
| | - Zhongqi Zhang
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| |
Collapse
|
47
|
Tibbitts J, Canter D, Graff R, Smith A, Khawli LA. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs 2015; 8:229-45. [PMID: 26636901 PMCID: PMC4966629 DOI: 10.1080/19420862.2015.1115937] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein therapeutics represent a diverse array of biologics including antibodies, fusion proteins, and therapeutic replacement enzymes. Since their inception, they have revolutionized the treatment of a wide range of diseases including respiratory, vascular, autoimmune, inflammatory, infectious, and neurodegenerative diseases, as well as cancer. While in vivo pharmacokinetic, pharmacodynamic, and efficacy studies are routinely carried out for protein therapeutics, studies that identify key factors governing their absorption, distribution, metabolism, and excretion (ADME) properties have not been fully investigated. Thorough characterization and in-depth study of their ADME properties are critical in order to support drug discovery and development processes for the production of safer and more effective biotherapeutics. In this review, we discuss the main factors affecting the ADME characteristics of these large macromolecular therapies. We also give an overview of the current tools, technologies, and approaches available to investigate key factors that influence the ADME of recombinant biotherapeutic drugs, and demonstrate how ADME studies will facilitate their future development.
Collapse
|
48
|
Leung SO, Gao K, Wang GY, Cheung BKW, Lee KY, Zhao Q, Cheung WT, Wang JZ. Surrogate target cells expressing surface anti-idiotype antibody for the clinical evaluation of an internalizing CD22-specific antibody. MAbs 2015; 7:66-76. [PMID: 25427174 DOI: 10.4161/19420862.2014.985519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Collapse
Key Words
- ADCC, antibody dependent cell cytotoxicity
- CD22
- CMC, complement mediated cytotoxicity
- HACA, human anti-chimeric antibody
- MOA, mechanism of action
- NHL, non-Hodgkins lymphoma
- PBMC, peripheral blood mononuclear cell
- PK, pharmacokinetic
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- anti-idiotype
- bioassay
- internalizing
- mAb, monoclonal antibody
- surrogate target cells
Collapse
Affiliation(s)
- Shui-On Leung
- a Institute of Biomedical Sciences ; Fudan University ; Shanghai , China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 2015; 25:1325-34. [PMID: 26263923 PMCID: PMC4634315 DOI: 10.1093/glycob/cwv065] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022] Open
Abstract
Critical quality attributes (CQA) are physical, chemical, biological or microbiological properties or characteristics that must be within an appropriate limit, range or distribution to ensure the desired product quality, safety and efficacy. For monoclonal antibody therapeutics that rely on fraction crystalizable (Fc)-mediated effector function for their clinical activity, the terminal sugars of Fc glycans have been shown to be critical for safety or efficacy. Different glycosylation variants have also been shown to influence the pharmacodynamic and pharmacokinetic behavior while other Fc glycan structural elements may be involved in adverse immune reactions. This review focuses on the role of Fc glycans as CQAs. Fc glycan information from the published literature is summarized and evaluated for impact on patient safety, immunogenicity, bioactivity and pharmacodynamics/pharmacokinetics.
Collapse
Affiliation(s)
- Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Max L Tejada
- Biological Technologies, Genentech, CA 94080, USA
| |
Collapse
|
50
|
Liu L. Antibody Glycosylation and Its Impact on the Pharmacokinetics and Pharmacodynamics of Monoclonal Antibodies and Fc-Fusion Proteins. J Pharm Sci 2015; 104:1866-1884. [DOI: 10.1002/jps.24444] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/27/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
|