1
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Cai HJ, Shi J, Yin LB, Zheng JF, Fu YJ, Jiang YJ, Shang H, Zhang ZN. Downregulation of TCF1 in HIV Infection Impairs T-cell Proliferative Capacity by Disrupting Mitochondrial Function. Front Microbiol 2022; 13:880873. [PMID: 35875558 PMCID: PMC9298517 DOI: 10.3389/fmicb.2022.880873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDespite the benefits of antiretroviral therapy (ART) for people with HIV, T-cell dysfunction cannot be fully restored. Metabolic dysregulation is associated with dysfunction of HIV-1-specific T-cells. Exploration of the factors regulating metabolic fitness can help reverse T-cell dysfunction and provide new insights into the underlying mechanism.MethodsIn this study, HIV-infected individuals and HIV-negative control individuals (NCs) were enrolled. T-cell factor (TCF)1 expression in cells was determined by quantitative reverse-transcriptase polymerase chain reaction and flow cytometry. Relevant microarray data from the GEO database were analyzed to explore the underlying mechanism. The effects of TCF1 on T-cell function and metabolic function were assessed in vitro.ResultsTCF7 mRNA expression in peripheral blood mononuclear cells was downregulated in rapid progressors compared with long-term non-progressors individuals and NCs. TCF1 expression on CD4+ and CD8+ T-cells was downregulated in treatment-naïve HIV-infected individuals compared with NCs. Interleukin (IL)2 production and proliferative capacity were impaired in TCF1 knockdown T-cells. Moreover, glycolytic capacity and mitochondrial respiratory function were decreased in TCF1 knockdown T-cells, and depolarized mitochondria were increased in TCF1 knockdown T-cells.ConclusionDownregulation of TCF1 in HIV infection impairs T-cell proliferative capacity by disrupting mitochondrial function. These findings highlight the metabolic regulation as a pivotal mechanism of TCF1 in the regulation of T-cell dysfunction.
Collapse
Affiliation(s)
- Hong-Jiao Cai
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Central Laboratory, Dalian Municipal Central Hospital, Dalian, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jue Shi
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Department of Laboratory Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Lin-Bo Yin
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jie-Fu Zheng
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- *Correspondence: Hong Shang,
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Zi-Ning Zhang,
| |
Collapse
|
3
|
Preservation of lymphocyte functional fitness in perinatally-infected and treated HIV+ pediatric patients displaying sub-optimal viral control. COMMUNICATIONS MEDICINE 2022; 2. [PMID: 35434722 PMCID: PMC9012494 DOI: 10.1038/s43856-022-00085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Host–pathogen dynamics associated with HIV infection are quite distinct in children versus adults. We interrogated the functional fitness of the lymphocyte responses in two cohorts of perinatally infected HIV+ pediatric subjects with early anti-retroviral therapy (ART) initiation but divergent patterns of virologic control. We hypothesized that sub-optimal viral control would compromise immune functional fitness.
Methods
The immune responses in the two HIV+ cohorts (n = 6 in each cohort) were benchmarked against the responses measured in age-range matched, uninfected healthy control subjects (n = 11) by utilizing tests for normality, and comparison [the Kruskal–Wallis test, and the two-tailed Mann–Whitney U test (where appropriate)]. Lymphocyte responses were examined by intra-cellular cytokine secretion, degranulation assays as well as phosflow. A subset of these data were further queried by an automated clustering algorithm. Finally, we evaluated the humoral immune responses to four childhood vaccines in all three cohorts.
Results
We demonstrate that contrary to expectations pediatric HIV+ patients with sub-optimal viral control display no significant deficits in immune functional fitness. In fact, the patients that display better virologic control lack functional Gag-specific T cell responses and compared to healthy controls they display signaling deficits and an enrichment of mitogen-stimulated CD3 negative and positive lymphocyte clusters with suppressed cytokine production.
Conclusions
These results highlight the immune resilience in HIV+ children on ART with sub-optimal viral control. With respect to HIV+ children on ART with better viral control, our data suggest that this cohort might potentially benefit from targeted interventions that might mitigate cell-mediated immune functional quiescence.
Collapse
|
4
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Dalel J, Ung SK, Hayes P, Black SL, Joseph S, King DF, Makinde J, Gilmour J. HIV-1 infection and the lack of viral control are associated with greater expression of interleukin-21 receptor on CD8+ T cells. AIDS 2021; 35:1167-1177. [PMID: 33710028 PMCID: PMC8183476 DOI: 10.1097/qad.0000000000002864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Interleukin-21 (IL-21) has been linked with the generation of virus-specific memory CD8+ T cells following acute infection with HIV-1 and reduced exhaustion of CD8+ T cells. IL-21 has also been implicated in the promotion of CD8+ T-cell effector functions during viral infection. Little is known about the expression of interleukin-21 receptor (IL-21R) during HIV-1 infection or its role in HIV-1-specific CD8+ T-cell maintenance and subsequent viral control. METHODS We compared levels of IL-21R expression on total and memory subsets of CD8+ T cells from HIV-1-negative and HIV-1-positive donors. We also measured IL-21R on antigen-specific CD8+ T cells in volunteers who were positive for HIV-1 and had cytomegalovirus-responding T cells. Finally, we quantified plasma IL-21 in treatment-naive HIV-1-positive individuals and compared this with IL-21R expression. RESULTS IL-21R expression was significantly higher on CD8+ T cells (P = 0.0256), and on central memory (P = 0.0055) and effector memory (P = 0.0487) CD8+ T-cell subsets from HIV-1-positive individuals relative to HIV-1-negative individuals. For those infected with HIV-1, the levels of IL-21R expression on HIV-1-specific CD8+ T cells correlated significantly with visit viral load (r = 0.6667, P = 0.0152, n = 13) and inversely correlated with plasma IL-21 (r = -0.6273, P = 0.0440, n = 11). Lastly, CD8+ T cells from individuals with lower set point viral load who demonstrated better viral control had the lowest levels of IL-21R expression and highest levels of plasma IL-21. CONCLUSION Our data demonstrates significant associations between IL-21R expression on peripheral CD8+ T cells and viral load, as well as disease trajectory. This suggests that the IL-21 receptor could be a novel marker of CD8+ T-cell dysfunction during HIV-1 infection.
Collapse
Affiliation(s)
- Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
MAVS Genetic Variation Is Associated with Decreased HIV-1 Replication In Vitro and Reduced CD4 + T Cell Infection in HIV-1-Infected Individuals. Viruses 2020; 12:v12070764. [PMID: 32708557 PMCID: PMC7412276 DOI: 10.3390/v12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses. Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load at set point and delayed increase of viral load during disease progression. Here, we studied the underlying mechanisms involved in the control of viral replication in individuals homozygous for this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads. Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS minor genotype resulted in decreased viral replication. Although the precise underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.
Collapse
|
7
|
Abstract
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of host trafficking proteins. Substantial progress has been achieved in identifying the targets of Nef, and a structural and mechanistic understanding of Nef's ability to command the protein trafficking machinery has recently started to coalesce. Comparative analysis of HIV and simian immunodeficiency virus (SIV) Nef proteins in the context of recent structural advances sheds further light on both viral evolution and the mechanisms whereby trafficking is hijacked. This review describes how advances in cell and structural biology are uncovering in growing detail how Nef subverts the host immune system, facilitates virus release, and enhances viral infectivity.
Collapse
|
8
|
Simian-Human Immunodeficiency Virus SHIV.CH505 Infection of Rhesus Macaques Results in Persistent Viral Replication and Induces Intestinal Immunopathology. J Virol 2019; 93:JVI.00372-19. [PMID: 31217249 DOI: 10.1128/jvi.00372-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.
Collapse
|
9
|
Miller CJ, Veazey RS. T Cells in the Female Reproductive Tract Can Both Block and Facilitate HIV Transmission. ACTA ACUST UNITED AC 2019; 15:36-40. [PMID: 31431806 DOI: 10.2174/1573395514666180807113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because HIV is sexually transmitted, there is considerable interest in defining the nature of anti-HIV immunity in the female reproductive tract (FRT) and in developing ways to elicit antiviral immunity in the FRT through vaccination. Although it is assumed that the mucosal immune system of the FRT is of central importance for protection against sexually transmitted diseases, including HIV, this arm of the immune system has only recently been studied. Here we provide a brief review of the role of T cells in the FRT in blocking and facilitating HIV transmission.
Collapse
Affiliation(s)
- Christopher J Miller
- Professor of Pathology, Microbiology, and Immunology, Center for Comparative Medicine.,California National Primate Research Center, University of California, Davis, Davis, Ca, 95616
| | - Ronald S Veazey
- Professor of Pathology and Laboratory Medicine, Tulane University School of Medicine.,Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
10
|
Nyanhete TE, Frisbee AL, Bradley T, Faison WJ, Robins E, Payne T, Freel SA, Sawant S, Weinhold KJ, Wiehe K, Haynes BF, Ferrari G, Li QJ, Moody MA, Tomaras GD. HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers. Sci Rep 2019; 9:10165. [PMID: 31308388 PMCID: PMC6629643 DOI: 10.1038/s41598-019-46462-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
A paradigm shifting study demonstrated that induction of MHC class E and II-restricted CD8+ T cells was associated with the clearance of SIV infection in rhesus macaques. Another recent study highlighted the presence of HIV-1-specific class II-restricted CD8+ T cells in HIV-1 patients who naturally control infection (virus controllers; VCs). However, questions regarding class II-restricted CD8+ T cells ontogeny, distribution across different HIV-1 disease states and their role in viral control remain unclear. In this study, we investigated the distribution and anti-viral properties of HLA-DRB1*0701 and DQB1*0501 class II-restricted CD8+ T cells in different HIV-1 patient cohorts; and whether class II-restricted CD8+ T cells represent a unique T cell subset. We show that memory class II-restricted CD8+ T cell responses were more often detectable in VCs than in chronically infected patients, but not in healthy seronegative donors. We also demonstrate that VC CD8+ T cells inhibit virus replication in both a class I- and class II-dependent manner, and that in two VC patients the class II-restricted CD8+ T cells with an anti-viral gene signature expressed both CD4+ and CD8+ T cell lineage-specific genes. These data demonstrated that anti-viral memory class II-restricted CD8+ T cells with hybrid CD4+ and CD8+ features are present during natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E Nyanhete
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alyse L Frisbee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,University of Virginia Department of Microbiology, Immunology and Cancer Biology, 345 Crispell Drive, University of Virginia Health System, Charlottesville, Virginia, 22908, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William J Faison
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elizabeth Robins
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tamika Payne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Stephanie A Freel
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kent J Weinhold
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Effective Suppression of HIV-1 Replication by Cytotoxic T Lymphocytes Specific for Pol Epitopes in Conserved Mosaic Vaccine Immunogens. J Virol 2019; 93:JVI.02142-18. [PMID: 30674626 PMCID: PMC6430542 DOI: 10.1128/jvi.02142-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure. Cytotoxic T lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize circulating HIV-1 could be key for both HIV-1 cure and prophylaxis. We recently designed conserved mosaic T-cell vaccine immunogens (tHIVconsvX) composed of 6 Gag and Pol regions. Since the tHIVconsvX vaccine targets conserved regions common to most global HIV-1 variants and employs a bivalent mosaic design, it is expected that it could be universal if the vaccine works. Although we recently demonstrated that CTLs specific for 5 Gag epitopes in the vaccine immunogens had strong ability to suppress HIV-1 replication in vitro and in vivo, it remains unknown whether the Pol region-specific CTLs are equally efficient. In this study, we investigated CTLs specific for Pol epitopes in the immunogens in treatment-naive Japanese patients infected with HIV-1 clade B. Overall, we mapped 20 reported and 5 novel Pol conserved epitopes in tHIVconsvX. Responses to 6 Pol epitopes were significantly associated with good clinical outcome, suggesting that CTLs specific for these 6 Pol epitopes had a strong ability to suppress HIV-1 replication in HIV-1-infected individuals. In vitro T-cell analyses further confirmed that the Pol-specific CTLs could effectively suppress HIV-1 replication. The present study thus demonstrated that the Pol regions of the vaccine contained protective epitopes. T-cell responses to the previous 5 Gag and present 6 Pol protective epitopes together also showed a strong correlation with better clinical outcome. These findings support the testing of the conserved mosaic vaccine in HIV-1 cure and prevention in humans. IMPORTANCE It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure.
Collapse
|
12
|
Immunogenicity and Efficacy of a Novel Multi-Antigenic Peptide Vaccine Based on Cross-Reactivity between Feline and Human Immunodeficiency Viruses. Viruses 2019; 11:v11020136. [PMID: 30717485 PMCID: PMC6409633 DOI: 10.3390/v11020136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
For the development of an effective HIV-1 vaccine, evolutionarily conserved epitopes between feline and human immunodeficiency viruses (FIV and HIV-1) were determined by analyzing overlapping peptides from retroviral genomes that induced both anti-FIV/HIV T cell-immunity in the peripheral blood mononuclear cells from the FIV-vaccinated cats and the HIV-infected humans. The conserved T-cell epitopes on p24 and reverse transcriptase were selected based on their robust FIV/HIV-specific CD8⁺ cytotoxic T lymphocyte (CTL), CD4⁺ CTL, and polyfunctional T-cell activities. Four such evolutionarily conserved epitopes were formulated into four multiple antigen peptides (MAPs), mixed with an adjuvant, to be tested as FIV vaccine in cats. The immunogenicity and protective efficacy were evaluated against a pathogenic FIV. More MAP/peptide-specific CD4⁺ than CD8⁺ T-cell responses were initially observed. By post-third vaccination, half of the MAP/peptide-specific CD8⁺ T-cell responses were higher or equivalent to those of CD4⁺ T-cell responses. Upon challenge, 15/19 (78.9%) vaccinated cats were protected, whereas 6/16 (37.5%) control cats remained uninfected, resulting in a protection rate of 66.3% preventable fraction (p = 0.0180). Thus, the selection method used to identify the protective FIV peptides should be useful in identifying protective HIV-1 peptides needed for a highly protective HIV-1 vaccine in humans.
Collapse
|
13
|
Negi N, Mojumdar K, Singh R, Sharma A, Das BK, Sreenivas V, Vajpayee M. Comparative Proliferation Capacity of Gag-C-Specific Naive and Memory CD4+ and CD8+ T Lymphocytes in Rapid, Viremic Slow, and Slow Progressors During Human Immunodeficiency Virus Infection. Viral Immunol 2018; 31:513-524. [PMID: 30156469 DOI: 10.1089/vim.2018.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The exact cause of altered dynamics in T cells compartment during HIV infection remains elusive to date. In this longitudinal study, the proliferation frequency of different T cell subsets was investigated in untreated HIV-1-infected Indian individuals stratified as rapid (R), viremic slow (VS), slow (S) progressors, and healthy controls. Ten healthy and 20 treatment-naive HIV-1-infected individuals were enrolled. Expression of Ki67 nuclear antigen was examined on HIV-specific T cell subsets in peripheral blood lymphocytes. Upon stimulation with HIV-1 Gag-C peptide pools, effector memory (EM) CD4 T cells (R vs. S, EM CD4, p < 0.05) of R progressors proliferated significantly compared with those of S progressors at baseline. However, central memory (CM) CD8 T cell subsets proliferated significantly in VS and S progressors compared with those in R progressors, wherein highest proliferation frequency of EM CD8 T cells was observed. At follow-up visit, the proliferation frequency of naive CD8 T cells was significantly higher in R progressors than S progressors (R vs. S naive CD8, p < 0.05). The findings suggest altered dynamics of different CD4+ and CD8+ T cell subsets in R, VS, and S progressors. The increase in CM T cell proliferation in VS and S progressors could be attributed to slower progression of the HIV infection. Hence, treatment strategies must be focused on restoring the homeostatic balance to restore T cell functionality.
Collapse
Affiliation(s)
- Neema Negi
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| | | | - Ravinder Singh
- 3 Department of Paediatrics, All India Institute of Medical Sciences , New Delhi, India
| | - Ashutosh Sharma
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| | - Bimal Kumar Das
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| | - Vishnubhatla Sreenivas
- 4 Department of Biostatistics, All India Institute of Medical Sciences , New Delhi, India
| | - Madhu Vajpayee
- 1 Department of Microbiology, All India Institute of Medical Sciences , New Delhi, India
| |
Collapse
|
14
|
Murakoshi H, Zou C, Kuse N, Akahoshi T, Chikata T, Gatanaga H, Oka S, Hanke T, Takiguchi M. CD8 + T cells specific for conserved, cross-reactive Gag epitopes with strong ability to suppress HIV-1 replication. Retrovirology 2018; 15:46. [PMID: 29970102 PMCID: PMC6029025 DOI: 10.1186/s12977-018-0429-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of AIDS vaccines for effective prevention of circulating HIV-1 is required, but no trial has demonstrated definitive effects on the prevention. Several recent T-cell vaccine trials showed no protection against HIV-1 acquisition although the vaccines induced HIV-1-specific T-cell responses, suggesting that the vaccine-induced T cells have insufficient capacities to suppress HIV-1 replication and/or cross-recognize circulating HIV-1. Therefore, it is necessary to develop T-cell vaccines that elicit T cells recognizing shared protective epitopes with strong ability to suppress HIV-1. We recently designed T-cell mosaic vaccine immunogens tHIVconsvX composed of 6 conserved Gag and Pol regions and demonstrated that the T-cell responses to peptides derived from the vaccine immunogens were significantly associated with lower plasma viral load (pVL) and higher CD4+ T-cell count (CD4 count) in HIV-1-infected, treatment-naive Japanese individuals. However, it remains unknown T cells of which specificities have the ability to suppress HIV-1 replication. In the present study, we sought to identify more T cells specific for protective Gag epitopes in the vaccine immunogens, and analyze their abilities to suppress HIV-1 replication and recognize epitope variants in circulating HIV-1. RESULTS We determined 17 optimal Gag epitopes and their HLA restriction, and found that T-cell responses to 9 were associated significantly with lower pVL and/or higher CD4 count. T-cells recognizing 5 of these Gag peptides remained associated with good clinical outcome in 221 HIV-1-infected individuals even when comparing responders and non-responders with the same restricting HLA alleles. Although it was known previously that T cells specific for 3 of these protective epitopes had strong abilities to suppress HIV-1 replication in vivo, here we demonstrated equivalent abilities for the 2 novel epitopes. Furthermore, T cells against all 5 Gag epitopes cross-recognized variants in majority of circulating HIV-1. CONCLUSIONS We demonstrated that T cells specific for 5 Gag conserved epitopes in the tHIVconsvX have ability to suppress replication of circulating HIV-1 in HIV-1-infected individuals. Therefore, the tHIVconsvX vaccines have the right specificity to contribute to prevention of HIV-1 infection and eradication of latently infected cells following HIV-1 reactivation.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Chengcheng Zou
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomáš Hanke
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
15
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Sahay B, Yamamoto JK. Lessons Learned in Developing a Commercial FIV Vaccine: The Immunity Required for an Effective HIV-1 Vaccine. Viruses 2018; 10:v10050277. [PMID: 29789450 PMCID: PMC5977270 DOI: 10.3390/v10050277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 11/16/2022] Open
Abstract
The feline immunodeficiency virus (FIV) vaccine called Fel-O-Vax® FIV is the first commercial FIV vaccine released worldwide for the use in domestic cats against global FIV subtypes (A⁻E). This vaccine consists of inactivated dual-subtype (A plus D) FIV-infected cells, whereas its prototype vaccine consists of inactivated dual-subtype whole viruses. Both vaccines in experimental trials conferred moderate-to-substantial protection against heterologous strains from homologous and heterologous subtypes. Importantly, a recent case-control field study of Fel-O-Vax-vaccinated cats with outdoor access and ≥3 years of annual vaccine boost, resulted in a vaccine efficacy of 56% in Australia where subtype-A viruses prevail. Remarkably, this protection rate is far better than the protection rate of 31.2% observed in the best HIV-1 vaccine (RV144) trial. Current review describes the findings from the commercial and prototype vaccine trials and compares their immune correlates of protection. The studies described in this review demonstrate the overarching importance of ant-FIV T-cell immunity more than anti-FIV antibody immunity in affording protection. Thus, future efforts in developing the next generation FIV vaccine and the first effective HIV-1 vaccine should consider incorporating highly conserved protective T-cell epitopes together with the conserved protective B-cell epitopes, but without inducing adverse factors that eliminate efficacy.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA.
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA.
| |
Collapse
|
17
|
Valenzuela-Ponce H, Alva-Hernández S, Garrido-Rodríguez D, Soto-Nava M, García-Téllez T, Escamilla-Gómez T, García-Morales C, Quiroz-Morales VS, Tapia-Trejo D, Del Arenal-Sánchez S, Prado-Galbarro FJ, Hernández-Juan R, Rodríguez-Aguirre E, Murakami-Ogasawara A, Mejía-Villatoro C, Escobar-Urias IY, Pinzón-Meza R, Pascale JM, Zaldivar Y, Porras-Cortés G, Quant-Durán C, Lorenzana I, Meza RI, Palou EY, Manzanero M, Cedillos RA, Aláez C, Brockman MA, Harrigan PR, Brumme CJ, Brumme ZL, Ávila-Ríos S, Reyes-Terán G. Novel HLA class I associations with HIV-1 control in a unique genetically admixed population. Sci Rep 2018; 8:6111. [PMID: 29666450 PMCID: PMC5904102 DOI: 10.1038/s41598-018-23849-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Associations between HLA class I alleles and HIV progression in populations exhibiting Amerindian and Caucasian genetic admixture remain understudied. Using univariable and multivariable analyses we evaluated HLA associations with five HIV clinical parameters in 3,213 HIV clade B-infected, ART-naïve individuals from Mexico and Central America (MEX/CAM cohort). A Canadian cohort (HOMER, n = 1622) was used for comparison. As expected, HLA allele frequencies in MEX/CAM and HOMER differed markedly. In MEX/CAM, 13 HLA-A, 24 HLA-B, and 14 HLA-C alleles were significantly associated with at least one clinical parameter. These included previously described protective (e.g. B*27:05, B*57:01/02/03 and B*58:01) and risk (e.g. B*35:02) alleles, as well as novel ones (e.g. A*03:01, B*15:39 and B*39:02 identified as protective, and A*68:03/05, B*15:30, B*35:12/14, B*39:01/06, B*39:05~C*07:02, and B*40:01~C*03:04 identified as risk). Interestingly, both protective (e.g. B*39:02) and risk (e.g. B*39:01/05/06) subtypes were identified within the common and genetically diverse HLA-B*39 allele group, characteristic to Amerindian populations. While HLA-HIV associations identified in MEX and CAM separately were similar overall (Spearman's rho = 0.33, p = 0.03), region-specific associations were also noted. The identification of both canonical and novel HLA/HIV associations provides a first step towards improved understanding of HIV immune control among unique and understudied Mestizo populations.
Collapse
Affiliation(s)
- Humberto Valenzuela-Ponce
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Selma Alva-Hernández
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Daniela Garrido-Rodríguez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Maribel Soto-Nava
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Thalía García-Téllez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.,Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Tania Escamilla-Gómez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Claudia García-Morales
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | - Daniela Tapia-Trejo
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Silvia Del Arenal-Sánchez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | - Ramón Hernández-Juan
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Edna Rodríguez-Aguirre
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | | | | | | | - Yamitzel Zaldivar
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | | | | | - Ivette Lorenzana
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Rita I Meza
- Honduras HIV National Laboratory, Tegucigalpa, Honduras
| | - Elsa Y Palou
- Hospital Escuela Universitario, Tegucigalpa, Honduras
| | | | | | - Carmen Aláez
- National Institute of Genomic Medicine, Translational Medicine Laboratory, Mexico City, Mexico
| | - Mark A Brockman
- Simon Fraser University, Faculty of Health Sciences, Burnaby, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Zabrina L Brumme
- Simon Fraser University, Faculty of Health Sciences, Burnaby, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Santiago Ávila-Ríos
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.
| | - Gustavo Reyes-Terán
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.
| | | |
Collapse
|
18
|
Hua CK, Ackerman ME. Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Front Immunol 2017; 8:1655. [PMID: 29234320 PMCID: PMC5712301 DOI: 10.3389/fimmu.2017.01655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) to prevent and treat HIV infection support the clinical utility and potential of bNAbs for prevention, postexposure prophylaxis, and treatment of acute and chronic infection. Observed and potential limitations of bNAbs from these recent studies include the selection of resistant viral populations, immunogenicity resulting in the development of antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regeneration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV Abs to address these challenges and further accomplish functional targets for anti-HIV Ab therapy at various stages of exposure/infection. Before exposure, bNAbs' ability to serve as prophylaxis by neutralization may be improved by increasing serum half-life to necessitate less frequent administration, delivering genes for durable in vivo expression, and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be enhanced by increasing the potency with which autologous adaptive immune responses are stimulated, clearing acutely infected cells, and preventing cell-cell transmission of virus. In the setting of chronic infection, bNAbs may better mediate viral remission or "cure" in combination with antiretroviral therapy and/or latency reversing agents, by targeting additional markers of tissue reservoirs or infected cell types, or by serving as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has never been closer, remaining studies to precisely define, model, and understand the complex roles and dynamics of HIV Abs and viral evolution in the context of the human immune system and anatomical compartmentalization will be critical to both optimize their clinical use in combination with existing agents and define further strategies with which to enhance their clinical safety and efficacy.
Collapse
Affiliation(s)
- Casey K. Hua
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
19
|
Leitman EM, Willberg CB, Tsai MH, Chen H, Buus S, Chen F, Riddell L, Haas D, Fellay J, Goedert JJ, Piechocka-Trocha A, Walker BD, Martin J, Deeks S, Wolinsky SM, Martinson J, Martin M, Qi Y, Sáez-Cirión A, Yang OO, Matthews PC, Carrington M, Goulder PJR. HLA-B*14:02-Restricted Env-Specific CD8 + T-Cell Activity Has Highly Potent Antiviral Efficacy Associated with Immune Control of HIV Infection. J Virol 2017; 91:e00544-17. [PMID: 28878089 PMCID: PMC5660483 DOI: 10.1128/jvi.00544-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Immune control of human immunodeficiency virus type 1 (HIV) infection is typically associated with effective Gag-specific CD8+ T-cell responses. We here focus on HLA-B*14, which protects against HIV disease progression, but the immunodominant HLA-B*14-restricted anti-HIV response is Env specific (ERYLKDQQL, HLA-B*14-EL9). A subdominant HLA-B*14-restricted response targets Gag (DRYFKTLRA, HLA-B*14-DA9). Using HLA-B*14/peptide-saporin-conjugated tetramers, we show that HLA-B*14-EL9 is substantially more potent at inhibiting viral replication than HLA-B*14-DA9. HLA-B*14-EL9 also has significantly higher functional avidity (P < 0.0001) and drives stronger selection pressure on the virus than HLA-B*14-DA9. However, these differences were HLA-B*14 subtype specific, applying only to HLA-B*14:02 and not to HLA-B*14:01. Furthermore, the HLA-B*14-associated protection against HIV disease progression is significantly greater for HLA-B*14:02 than for HLA-B*14:01, consistent with the superior antiviral efficacy of the HLA-B*14-EL9 response. Thus, although Gag-specific CD8+ T-cell responses may usually have greater anti-HIV efficacy, factors independent of protein specificity, including functional avidity of individual responses, are also critically important to immune control of HIV.IMPORTANCE In HIV infection, although cytotoxic T lymphocytes (CTL) play a potentially critical role in eradication of viral reservoirs, the features that constitute an effective response remain poorly defined. We focus on HLA-B*14, unique among HLAs associated with control of HIV in that the dominant CTL response is Env specific, not Gag specific. We demonstrate that Env-specific HLA-B*14-restricted activity is substantially more efficacious than the subdominant HLA-B*14-restricted Gag response. Env immunodominance over Gag and strong Env-mediated selection pressure on HIV are observed only in subjects expressing HLA-B*14:02, and not HLA-B*14:01. This reflects the increased functional avidity of the Env response over Gag, substantially more marked for HLA-B*14:02. Finally, we show that HLA-B*14:02 is significantly more strongly associated with viremic control than HLA-B*14:01. These findings indicate that, although Gag-specific CTL may usually have greater anti-HIV efficacy than Env responses, factors independent of protein specificity, including functional avidity, may carry greater weight in mediating effective control of HIV.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Huabiao Chen
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Lynn Riddell
- Integrated Sexual Health Services, Northamptonshire Healthcare NHS Trust, Northampton, United Kingdom
| | - David Haas
- Departments of Medicine, Pharmacology, Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James J Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jeffrey Martin
- Department of Medicine, University of California San Francisco Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| | - Steven M Wolinsky
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maureen Martin
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Otto O Yang
- Department of Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- AIDS Healthcare Foundation, Los Angeles, California, USA
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Leitman EM, Thobakgale CF, Adland E, Ansari MA, Raghwani J, Prendergast AJ, Tudor-Williams G, Kiepiela P, Hemelaar J, Brener J, Tsai MH, Mori M, Riddell L, Luzzi G, Jooste P, Ndung'u T, Walker BD, Pybus OG, Kellam P, Naranbhai V, Matthews PC, Gall A, Goulder PJR. Role of HIV-specific CD8 + T cells in pediatric HIV cure strategies after widespread early viral escape. J Exp Med 2017; 214:3239-3261. [PMID: 28983013 PMCID: PMC5679167 DOI: 10.1084/jem.20162123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/22/2017] [Accepted: 08/30/2017] [Indexed: 11/04/2022] Open
Abstract
Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Christina F Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - M Azim Ansari
- Oxford Martin School, University of Oxford, Oxford, England, UK
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, England, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Division of Medicine, Department of Paediatrics, Imperial College London, London, England, UK
| | - Photini Kiepiela
- Medical Research Council, Durban, South Africa.,Witwatersrand Health Consortium, Johannesburg, South Africa
| | - Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, England, UK.,Linacre Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Jacqui Brener
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Masahiko Mori
- Department of Paediatrics, University of Oxford, Oxford, England, UK.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Lynn Riddell
- Northampton Healthcare NHS Foundation Trust, Cliftonville, England, UK
| | - Graz Luzzi
- Buckinghampshire Healthcare NHS Foundation Trust, High Wycombe, England, UK
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Babraham, England, UK.,Department of Medicine, Division of Infectious Diseases, Imperial College Faculty of Medicine, London, England, UK
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA.,Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Philippa C Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, England, UK
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Hinxton, England, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, England, UK .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Abstract
Despite major advances in antiretroviral therapy against HIV-1, an effective HIV vaccine is urgently required to reduce the number of new cases of HIV infections in the world. Vaccines are the ultimate tool in the medical arsenal to control and prevent the spread of infectious diseases such as HIV/AIDS. Several failed phase-IIb to –III clinical vaccine trials against HIV-1 in the past generated a plethora of information that could be used for better designing of an effective HIV vaccine in the future. Most of the tested vaccine candidates produced strong humoral responses against the HIV proteins; however, failed to protect due to: 1) the low levels and the narrow breadth of the HIV-1 neutralizing antibodies and the HIV-specific antibody-dependent Fc-mediated effector activities, 2) the low levels and the poor quality of the anti-HIV T-cell responses, and 3) the excessive responses to immunodominant non-protective HIV epitopes, which in some cases blocked the protective immunity and/or enhanced HIV infection. The B-cell epitopes on HIV for producing broadly neutralizing antibodies (bNAbs) against HIV have been extensively characterized, and the next step is to develop bNAb epitope immunogen for HIV vaccine. The bNAb epitopes are often conformational epitopes and therefore more difficult to construct as vaccine immunogen and likely to include immunodominant non-protective HIV epitopes. In comparison, T-cell epitopes are short linear peptides which are easier to construct into vaccine immunogen free of immunodominant non-protective epitopes. However, its difficulty lies in identifying the T-cell epitopes conserved among HIV subtypes and induce long-lasting, potent polyfunctional T-cell and cytotoxic T lymphocyte (CTL) activities against HIV. In addition, these protective T-cell epitopes must be recognized by the HLA prevalent in the country(s) targeted for the vaccine trial. In conclusion, extending from the findings from previous vaccine trials, future vaccines should combine both T- and B-cell epitopes as vaccine immunogen to induce multitude of broad and potent immune effector activities required for sterilizing protection against global HIV subtypes.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
22
|
Gonzalez SM, Taborda NA, Rugeles MT. Role of Different Subpopulations of CD8 + T Cells during HIV Exposure and Infection. Front Immunol 2017; 8:936. [PMID: 28824656 PMCID: PMC5545716 DOI: 10.3389/fimmu.2017.00936] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/12/2023] Open
Abstract
During HIV infection, specific responses exhibited by CD8+ T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8+ T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8+ T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8+ T cells, as evidenced in HLA-DR+ CD38− cells. CD8+ T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8+ T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8+ T cells in relation with natural resistance to HIV infection and progression.
Collapse
Affiliation(s)
- Sandra Milena Gonzalez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
23
|
Abstract
An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising.
Collapse
Affiliation(s)
- Denise C Hsu
- a Armed Forces Research Institute of Medical Sciences , Bangkok , Thailand.,b US Military HIV Research Program , Silver Spring , MD , USA.,c Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | - Robert J O'Connell
- a Armed Forces Research Institute of Medical Sciences , Bangkok , Thailand.,b US Military HIV Research Program , Silver Spring , MD , USA
| |
Collapse
|
24
|
Hsu DC, Ananworanich J. Immune Interventions to Eliminate the HIV Reservoir. Curr Top Microbiol Immunol 2017; 417:181-210. [PMID: 29071472 DOI: 10.1007/82_2017_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. .,US Military HIV Research Program (MHRP), 6720-A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA.
| |
Collapse
|
25
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
26
|
Adenovirus-based HIV-1 vaccine candidates tested in efficacy trials elicit CD8+ T cells with limited breadth of HIV-1 inhibition. AIDS 2016; 30:1703-12. [PMID: 27088318 DOI: 10.1097/qad.0000000000001122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The ability of HIV-1 vaccine candidates MRKAd5, VRC DNA/Ad5 and ALVAC/AIDSVAX to elicit CD8 T cells with direct antiviral function was assessed and compared with HIV-1-infected volunteers. DESIGN Adenovirus serotype 5 (Ad5)-based regimens MRKAd5 and VRC DNA/Ad5, designed to elicit HIV-1-specific T cells, are immunogenic but failed to prevent infection or impact on viral loads in volunteers infected subsequently. Failure may be due in part to a lack of CD8 T cells with effective antiviral functions. METHODS An in-vitro viral inhibition assay tested the ability of bispecific antibody expanded CD8 T cells from peripheral blood mononuclear cells to inhibit replication of a multiclade panel of HIV-1 isolates in autologous CD4 T cells. HIV-1 proteins recognized by CD8 T cells were assessed by IFNγ enzyme-linked immunospot assay. RESULTS Ad5-based regimens elicited CD8 T cells that inhibited replication of HIV-1 IIIB isolate with more limited inhibition of other isolates. IIIB isolate Gag and Pol genes have high sequence identities (>96%) to vector HIV-1 gene inserts, and these were the predominant HIV-1 proteins recognized by CD8 T cells. Virus inhibition breadth was greater in antiretroviral naïve HIV-1-infected volunteers naturally controlling viremia (plasma viral load < 10 000/ml). HIV-1-inhibitory CD8 T cells were not elicited by the ALVAC/AIDSVAX regimen. CONCLUSION The Ad5-based regimens, although immunogenic, elicited CD8 T cells with limited HIV-1-inhibition breadth. Effective T-cell-based vaccines should presumably elicit broader HIV-1-inhibition profiles. The viral inhibition assay can be used in vaccine design and to prioritize promising candidates with greater inhibition breadth for further clinical trials.
Collapse
|
27
|
Kinchington D, Ng T, Mathews N, Tisdale M, Devine D, Ayuko WO. T Cell Costimulation by Derivatives of Benzoic Acid. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A number of analogues of benzoic acid were evaluated in a T cell costimulation assay. One compound, the sodium salt of 2-chloro-5-nitrobenzoic acid (CNBA-Na) was chosen for further study and was found to be a potent costimulator of anti-CD3-induced proliferation of both H9 lymphoblastoid cells ( P<0.001) and human peripheral blood mononuclear cells ( P=0.001) in a dose-dependent manner. The costimulatory effect of CNBA-Na on CD3-triggered DNA synthesis did not enhance human immunodeficiency virus replication in infected cells. Studies with blocking monoclonal antibodies against B7-1 or B7-2 indicated that the immunopotentiatory effect of CNBA-Na required a macromolecular interaction between CD28 (a costimulatory receptor on T cells) and its counter receptor B7 expressed on antigen-presenting cells. The discovery that this low molecular weight compound causes T cell proliferation highlights a potentially novel therapeutic approach to immunodeficiency diseases.
Collapse
Affiliation(s)
- D Kinchington
- Department of Virology, St Bartholomew's and the Royal London School of Medicine and Dentistry, 51-53 Bartholomew Place, West Smithfield, London EC1A 7BE, UK
| | - T Ng
- Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, 38 Little Britain, West Smithfield, London EC1A 7BE, UK
| | - N Mathews
- Department of Virology, St Bartholomew's and the Royal London School of Medicine and Dentistry, 51-53 Bartholomew Place, West Smithfield, London EC1A 7BE, UK
| | - M Tisdale
- Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - D Devine
- Department of Virology, St Bartholomew's and the Royal London School of Medicine and Dentistry, 51-53 Bartholomew Place, West Smithfield, London EC1A 7BE, UK
| | - WO Ayuko
- Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
28
|
Ajbani SP, Velhal SM, Kadam RB, Patel VV, Bandivdekar AH. Immunogenicity of Semliki Forest virus based self-amplifying RNA expressing Indian HIV-1C genes in mice. Int J Biol Macromol 2015; 81:794-802. [PMID: 26361864 DOI: 10.1016/j.ijbiomac.2015.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/18/2022]
Abstract
Development of recombinant vaccines is considered as a promising approach to prevent transmission and eradication of HIV/AIDS. Candidate vaccines tested so far have shown poor to modest efficacy. Self-amplifying RNAs of positive strand alphaviruses are reported to be promising vectors for development of recombinant vaccines. This study describes the construction, in vitro expression and in vivo immunogenicity of recombinant RNA vaccines developed by individually cloning gag, env and polRT genes of primary HIV-1C Indian isolates using Semliki Forest virus (SFV) vector. HIV-1C specific T cell responses were detected in mice immunized with rSFV2gen/gag RNA by IFN-γ ELISPOT assay. Furthermore, using flow cytometry based intracellular cytokine staining (ICCS) assay HIV-1C specific IL-2 responses were detected in immunized mice that were mediated by both CD4(+) and CD8(+) T cells. Mice immunized with rSFV2gen/env RNA elicited HIV-1C Env-specific antibodies as detected by gp120 ELISA. The Env, Gag and Pol (RT) RNA constructs in combination elicited better HIV-1C Env-specific humoral responses compared to mice immunized with Env RNA alone. In conclusion, rSFV2gen RNA constructs encoding HIV-1C antigens elicited clear cell mediated and humoral immune responses in mice, thus demonstrating the potential of self-amplifying rSFV2gen RNA as a promising candidate for anti-HIV vaccine development.
Collapse
Affiliation(s)
- Seema P Ajbani
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai 400012, India.
| | - Shilpa M Velhal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai 400012, India.
| | - Ravindra B Kadam
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai 400012, India.
| | - Vainav V Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai 400012, India.
| | - Atmaram H Bandivdekar
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai 400012, India.
| |
Collapse
|
29
|
HIV-1 Coreceptor CXCR4 Antagonists Promote Clonal Expansion of Viral Epitope-Specific CD8+ T Cells During Acute SIV Infection in Rhesus Monkeys In Vivo. J Acquir Immune Defic Syndr 2015; 69:145-53. [PMID: 25714247 DOI: 10.1097/qai.0000000000000586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The underlying molecular mechanisms and the kinetics of T cell receptor (TCR) repertoire selection during administration of CXCR4 or CCR5 inhibitors in infection of AIDS viruses in vivo have remained largely unexplored. Viral epitope-specific CD8(+) T lymphocytes play a dominant role in the control of HIV and simian immunodeficiency virus (SIV). We hypothesized that blockade of CXCR4 or CCR5 might influence the clonal expansion of epitope-specific CD8(+) T cells, contributing to antiviral immune responses in vivo. METHODS We measured frequencies of the dominant epitope p11C-specific CD8(+) T cells and analyzed the TCR repertoire of those cells in SIV-infected rhesus monkeys treated by CXCR4 or CCR5 inhibitors and vMIP-II, which binds multiple chemokine receptors. RESULTS A significantly increase in the levels of epitope-specific CD8(+) T cells was observed after blockade of CXCR4 or CCR5 compared with untreated control groups. Those CD8(+) T cells exhibited selected usage of TCR Vβ families and complementarity-determining region 3 (CDR3) segments. The clonal expansion of distinct Vβ populations could efficiently inhibit SIV replication in vitro, and CXCR4 inhibitor induced more expansion of epitope-specific CD8(+) T cells than CCR5 antagonist (P < 0.01), whereas vMIP-II treatment showed the most marked augmentation of p11C-specific CD8(+) T cells. CONCLUSIONS Antagonists of HIV coreceptors, particularly CXCR4, play an important role in the clonal expansion of SIV epitope-specific CD8(+) T cells in vivo, thus inhibitors of chemokine receptors such as CXCR4 or CCR5 may contribute to the ability of epitope-specific CD8(+) T cells to inhibit SIV or HIV infection.
Collapse
|
30
|
Liu AY, Lohman-Payne B, Chung MH, Kiarie J, Kinuthia J, Slyker J, Richardson B, Lehman D, Farquhar C, John-Stewart G. Maternal plasma and breastmilk viral loads are associated with HIV-1-specific cellular immune responses among HIV-1-exposed, uninfected infants in Kenya. Clin Exp Immunol 2015; 180:509-19. [PMID: 25652232 PMCID: PMC4449779 DOI: 10.1111/cei.12599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 11/28/2022] Open
Abstract
Infants exposed to maternal HIV-1 provide an opportunity to assess correlates of HIV-1-specific interferon (IFN)-γ responses and may be informative in the development of HIV-1 vaccines. HIV-1-infected women with CD4 counts 200-500 cells/mm(3) were randomized to short-course zidovudine/nevirapine (ZDV/NVP) or highly active anti-retroviral therapy (HAART) between 2003 and 2005. Maternal plasma and breastmilk HIV-1 RNA and DNA were quantified during the first 6-12 months postpartum. HIV-1 gag peptide-stimulated enzyme-linked immunospot (ELISPOT) assays were conducted in HIV-1-exposed, uninfected infants (EU), and correlates were determined using regression and generalized estimating equations. Among 47 EU infants, 21 (45%) had ≥1 positive ELISPOT result during follow-up. Infants had a median response magnitude of 177 HIV-1-specific spot-forming units (SFU)/106 peripheral blood mononuclear cells (PBMC) [interquartile range (IQR)=117-287] directed against 2 (IQR = 1-3) gag peptide pools. The prevalence and magnitude of responses did not differ by maternal anti-retroviral (ARV) randomization arm. Maternal plasma HIV-1 RNA levels during pregnancy (P=0.009) and breastmilk HIV-1 DNA levels at 1 month (P=0.02) were associated with a higher magnitude of infant HIV-1-specific ELISPOT responses at 1 month postpartum. During follow-up, concurrent breastmilk HIV-1 RNA and DNA (cell-free virus and cell-associated virus, respectively) each were associated positively with magnitude of infant HIV-1-specific responses (P=0.01). Our data demonstrate the importance of antigenic exposure on the induction of infant HIV-1-specific cellular immune responses in the absence of infection.
Collapse
Affiliation(s)
- A Y Liu
- Department of Epidemiology, University of WashingtonSeattle, WA, USA
| | - B Lohman-Payne
- Department of Medicine, University of WashingtonSeattle, WA, USA
- Department of Global Health, University of WashingtonSeattle, WA, USA
- Department of Biostatistics, University of WashingtonSeattle, WA, USA
| | - M H Chung
- Department of Epidemiology, University of WashingtonSeattle, WA, USA
- Department of Medicine, University of WashingtonSeattle, WA, USA
- Department of Global Health, University of WashingtonSeattle, WA, USA
| | - J Kiarie
- Department of Obstetrics and Gynaecology, University of NairobiNairobi, Kenya
| | - J Kinuthia
- Department of Biostatistics, University of WashingtonSeattle, WA, USA
| | - J Slyker
- Department of Global Health, University of WashingtonSeattle, WA, USA
| | - B Richardson
- Department of Global Health, University of WashingtonSeattle, WA, USA
- Department of Paediatrics, University of NairobiNairobi, Kenya
- Departments of Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research CenterSeattle, WA, USA
| | - D Lehman
- Departments of Human Biology, Fred Hutchinson Cancer Research CenterSeattle, WA, USA
| | - C Farquhar
- Department of Epidemiology, University of WashingtonSeattle, WA, USA
- Department of Medicine, University of WashingtonSeattle, WA, USA
- Department of Global Health, University of WashingtonSeattle, WA, USA
| | - G John-Stewart
- Department of Epidemiology, University of WashingtonSeattle, WA, USA
- Department of Medicine, University of WashingtonSeattle, WA, USA
- Department of Global Health, University of WashingtonSeattle, WA, USA
| |
Collapse
|
31
|
Papasavvas E, Foulkes A, Yin X, Joseph J, Ross B, Azzoni L, Kostman JR, Mounzer K, Shull J, Montaner LJ. Plasmacytoid dendritic cell and functional HIV Gag p55-specific T cells before treatment interruption can inform set-point plasma HIV viral load after treatment interruption in chronically suppressed HIV-1(+) patients. Immunology 2015; 145:380-90. [PMID: 25684333 DOI: 10.1111/imm.12452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
The identification of immune correlates of HIV control is important for the design of immunotherapies that could support cure or antiretroviral therapy (ART) intensification-related strategies. ART interruptions may facilitate this task through exposure of an ART partially reconstituted immune system to endogenous virus. We investigated the relationship between set-point plasma HIV viral load (VL) during an ART interruption and innate/adaptive parameters before or after interruption. Dendritic cell (DC), natural killer (NK) cell and HIV Gag p55-specific T-cell functional responses were measured in paired cryopreserved peripheral blood mononuclear cells obtained at the beginning (on ART) and at set-point of an open-ended interruption from 31 ART-suppressed chronically HIV-1(+) patients. Spearman correlation and linear regression modeling were used. Frequencies of plasmacytoid DC (pDC), and HIV Gag p55-specific CD3(+) CD4(-) perforin(+) IFN-γ(+) cells at the beginning of interruption associated negatively with set-point plasma VL. Inclusion of both variables with interaction into a model resulted in the best fit (adjusted R(2) = 0·6874). Frequencies of pDC or HIV Gag p55-specific CD3(+) CD4(-) CSFE(lo) CD107a(+) cells at set-point associated negatively with set-point plasma VL. The dual contribution of pDC and anti-HIV T-cell responses to viral control, supported by our models, suggests that these variables may serve as immune correlates of viral control and could be integrated in cure or ART-intensification strategies.
Collapse
Affiliation(s)
| | - Andrea Foulkes
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | - Brian Ross
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Jay R Kostman
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Karam Mounzer
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA, USA
| | - Jane Shull
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Nolte MA, van der Meer JWM. Inflammatory responses to infection: the Dutch contribution. Immunol Lett 2014; 162:113-20. [PMID: 25455597 PMCID: PMC7132409 DOI: 10.1016/j.imlet.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
At any given moment, our body is under attack by a large variety of pathogens, which aim to enter and use our body to propagate and disseminate. The extensive cellular and molecular complexity of our immune system enables us to efficiently eliminate invading pathogens or at least develop a condition in which propagation of the microorganism is reduced to a minimum. Yet, the evolutionary pressure on pathogens to circumvent our immune defense mechanisms is immense, which continuously leads to the development of novel pathogenic strains that challenge the health of mankind. Understanding this battle between pathogen and the immune system has been a fruitful area of immunological research over the last century and will continue to do so for many years. In this review, which has been written on the occasion of the 50th anniversary of the Dutch Society for Immunology, we provide an overview of the major contributions that Dutch immunologists and infection biologists have made in the last decades on the inflammatory response to viral, bacterial, fungal or parasitic infections. We focus on those studies that have addressed both the host and the pathogen, as these are most interesting from an immunological point of view. Although it is not possible to completely cover this comprehensive research field, this review does provide an interesting overview of Dutch research on inflammatory responses to infection.
Collapse
Affiliation(s)
- Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Reguzova AY, Karpenko LI, Mechetina LV, Belyakov IM. Peptide-MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development. Expert Rev Vaccines 2014; 14:69-84. [PMID: 25373312 DOI: 10.1586/14760584.2015.962520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of MHC multimers allows precise and direct detecting and analyzing of antigen-specific T-cell populations and provides new opportunities to characterize T-cell responses in humans and animals. MHC-multimers enable us to enumerate specific T-cells targeting to viral, tumor and vaccine antigens with exceptional sensitivity and specificity. In the field of HIV/SIV immunology, this technique provides valuable information about the frequencies of HIV- and SIV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in different tissues and sites of infection, AIDS progression, and pathogenesis. Peptide-MHC multimer technology remains a very sensitive tool in detecting virus-specific T -cells for evaluation of the immunogenicity of vaccines against HIV-1 in preclinical trials. Moreover, it helps to understand how immune responses are formed following vaccination in the dynamics from priming point until T-cell memory is matured. Here we review a diversity of peptide-MHC class I multimer applications for fundamental immunological studies in different aspects of HIV/SIV infection and vaccine development.
Collapse
Affiliation(s)
- Alena Y Reguzova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
34
|
Connick E, Folkvord JM, Lind KT, Rakasz EG, Miles B, Wilson NA, Santiago ML, Schmitt K, Stephens EB, Kim HO, Wagstaff R, Li S, Abdelaal HM, Kemp N, Watkins DI, MaWhinney S, Skinner PJ. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. THE JOURNAL OF IMMUNOLOGY 2014; 193:5613-25. [PMID: 25362178 DOI: 10.4049/jimmunol.1401161] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We previously demonstrated that HIV replication is concentrated in lymph node B cell follicles during chronic infection and that HIV-specific CTL fail to accumulate in large numbers at those sites. It is unknown whether these observations can be generalized to other secondary lymphoid tissues or whether virus compartmentalization occurs in the absence of CTL. We evaluated these questions in SIVmac239-infected rhesus macaques by quantifying SIV RNA(+) cells and SIV-specific CTL in situ in spleen, lymph nodes, and intestinal tissues obtained at several stages of infection. During chronic asymptomatic infection prior to simian AIDS, SIV-producing cells were more concentrated in follicular (F) compared with extrafollicular (EF) regions of secondary lymphoid tissues. At day 14 of infection, when CTL have minimal impact on virus replication, there was no compartmentalization of SIV-producing cells. Virus compartmentalization was diminished in animals with simian AIDS, which often have low-frequency CTL responses. SIV-specific CTL were consistently more concentrated within EF regions of lymph node and spleen in chronically infected animals regardless of epitope specificity. Frequencies of SIV-specific CTL within F and EF compartments predicted SIV RNA(+) cells within these compartments in a mixed model. Few SIV-specific CTL expressed the F homing molecule CXCR5 in the absence of the EF retention molecule CCR7, possibly accounting for the paucity of F CTL. These findings bolster the hypothesis that B cell follicles are immune privileged sites and suggest that strategies to augment CTL in B cell follicles could lead to improved viral control and possibly a functional cure for HIV infection.
Collapse
Affiliation(s)
- Elizabeth Connick
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045;
| | - Joy M Folkvord
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Katherine T Lind
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Brodie Miles
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Nancy A Wilson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO 80045
| | - Kimberly Schmitt
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hyeon O Kim
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Reece Wagstaff
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Shengbin Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Hadia M Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN; Department of Microbiology and Immunology, Zagazig University, Zagazig, Egypt 44519; and
| | - Nathan Kemp
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - David I Watkins
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, University of Colorado Denver, Aurora, CO 80045
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| |
Collapse
|
35
|
Godinho RMDC, Matassoli FL, Lucas CGDO, Rigato PO, Gonçalves JLS, Sato MN, Maciel M, Peçanha LMT, August JT, Marques ETDA, de Arruda LB. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1) enhance Gag-specific immune response. PLoS One 2014; 9:e99887. [PMID: 24932692 PMCID: PMC4059647 DOI: 10.1371/journal.pone.0099887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/19/2014] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.
Collapse
Affiliation(s)
- Rodrigo Maciel da Costa Godinho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paula Ordonhez Rigato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Luiz Santos Gonçalves
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Notomi Sato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Maciel
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America; Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ligia Maria Torres Peçanha
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ernesto Torres de Azevedo Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America; Departamento de Virologia, Fiocruz - Pernambuco, Recife, Brazil
| | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Gijsbers EF, van Nuenen AC, de la Peňa AT, Bowles EJ, Stewart-Jones GB, Schuitemaker H, Kootstra NA. Low level of HIV-1 evolution after transmission from mother to child. Sci Rep 2014; 4:5079. [PMID: 24866155 PMCID: PMC5381489 DOI: 10.1038/srep05079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2014] [Indexed: 02/06/2023] Open
Abstract
Mother-to-child HIV-1 transmission pairs represent a good opportunity to study the dynamics of CTL escape and reversion after transmission in the light of shared and non-shared HLA-alleles. Mothers share half of their HLA alleles with their children, while the other half is inherited from the father and is generally discordant between mother and child. This implies that HIV-1 transmitted from mother to child enters a host environment to which it has already partially adapted. Here, we studied viral evolution and the dynamics of CTL escape mutations and reversion of these mutations after transmission in the context of shared and non-shared HLA alleles in viral variants obtained from five mother-to-child transmission pairs. Only limited HIV-1 evolution was observed in the children after mother-to-child transmission. Viral evolution was mainly driven by forward mutations located inside CTL epitopes restricted by HLA alleles inherited from the father, which may be indicative of CTL pressure.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ad C van Nuenen
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alba Torrents de la Peňa
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emma J Bowles
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Guillaume B Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Hanneke Schuitemaker
- 1] Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands [2]
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Chanzu N, Ondondo B. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy. Front Immunol 2014; 5:202. [PMID: 24847327 PMCID: PMC4021115 DOI: 10.3389/fimmu.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/28/2023] Open
Abstract
The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
Collapse
Affiliation(s)
- Nadia Chanzu
- Institute of Tropical and Infectious Diseases, College of Health Sciences, University of Nairobi , Nairobi , Kenya
| | - Beatrice Ondondo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
38
|
Siewe B, Wallace J, Rygielski S, Stapleton JT, Martin J, Deeks SG, Landay A. Regulatory B cells inhibit cytotoxic T lymphocyte (CTL) activity and elimination of infected CD4 T cells after in vitro reactivation of HIV latent reservoirs. PLoS One 2014; 9:e92934. [PMID: 24739950 PMCID: PMC3989168 DOI: 10.1371/journal.pone.0092934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 12/24/2022] Open
Abstract
During HIV infection, IL-10/IL-10 receptor and programmed death-1 (PD-1)/programmed death-1-ligand (PD-L1) interactions have been implicated in the impairment of cytotoxic T lymphocyte (CTL) activity. Despite antiretroviral therapy (ART), attenuated anti-HIV CTL functions present a major hurdle towards curative measures requiring viral eradication. Therefore, deeper understanding of the mechanisms underlying impaired CTL is crucial before HIV viral eradication is viable. The generation of robust CTL activity necessitates interactions between antigen-presenting cells (APC), CD4+ and CD8+ T cells. We have shown that in vitro, IL-10hiPD-L1hi regulatory B cells (Bregs) directly attenuate HIV-specific CD8+-mediated CTL activity. Bregs also modulate APC and CD4+ T cell function; herein we characterize the Breg compartment in uninfected (HIVNEG), HIV-infected "elite controllers" (HIVEC), ART-treated (HIVART), and viremic (HIVvir), subjects, and in vitro, assess the impact of Bregs on anti-HIV CTL generation and activity after reactivation of HIV latent reservoirs using suberoylanilide hydroxamic acid (SAHA). We find that Bregs from HIVEC and HIVART subjects exhibit comparable IL-10 expression levels significantly higher than HIVNEG subjects, but significantly lower than HIVVIR subjects. Bregs from HIVEC and HIVART subjects exhibit comparable PD-L1 expression, significantly higher than in HIVVIR and HIVNEG subjects. SAHA-treated Breg-depleted PBMC from HIVEC and HIVART subjects, displayed enhanced CD4+ T-cell proliferation, significant upregulation of antigen-presentation molecules, increased frequency of CD107a+ and HIV-specific CD8+ T cells, associated with efficient elimination of infected CD4+ T cells, and reduction in integrated viral DNA. Finally, IL-10-R and PD-1 antibody blockade partially reversed Breg-mediated inhibition of CD4+ T-cell proliferation. Our data suggest that, possibly, via an IL-10 and PD-L1 synergistic mechanism; Bregs likely inhibit APC function and CD4+ T-cell proliferation, leading to anti-HIV CTL attenuation, hindering viral eradication.
Collapse
Affiliation(s)
- Basile Siewe
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- * E-mail:
| | - Jennillee Wallace
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Sonya Rygielski
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Jack T. Stapleton
- Iowa City Veterans Affairs Medical Center and the University of Iowa, Departments of Internal Medicine, Microbiology and Immunology, Iowa City, Iowa, United States of America
| | - Jeffrey Martin
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Alan Landay
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- FC Donders Chair, Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol 2014; 5:171. [PMID: 24795718 PMCID: PMC3997009 DOI: 10.3389/fimmu.2014.00171] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
An effective immune response against viral infections depends on the activation of cytotoxic T cells that can clear infection by killing virus-infected cells. Proper activation of these T cells depends on professional antigen-presenting cells, such as dendritic cells (DCs). In this review, we will discuss the potential of peptide-based vaccines for prevention and treatment of viral diseases. We will describe features of an effective response against both acute and chronic infections, such as an appropriate magnitude, breadth, and quality and discuss requirements for inducing such an effective antiviral immune response. We will address modifications that affect presentation of vaccine components by DCs, including choice of antigen, adjuvants, and formulation. Furthermore, we will describe differences in design between preventive and therapeutic peptide-based vaccines. The ultimate goal in the design of preventive vaccines is to develop a universal vaccine that cross-protects against multiple strains of the virus. For therapeutic vaccines, cross-protection is of less importance, but enhancing existing T cell responses is essential. Although peptide vaccination is successful in inducing responses in human papillomavirus (HPV) infected patients, there are still several challenges such as choosing the right target epitopes, choosing safe adjuvants that improve immunogenicity of these epitopes, and steering the immune response in the desired direction. We will conclude with an overview of the current status of peptide vaccination, hurdles to overcome, and prospects for the future.
Collapse
Affiliation(s)
- Sietske Rosendahl Huber
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
40
|
Betts MR, Gray CM, Cox JH, Ferrari G. Antigen-specific T-cell-mediated immunity after HIV-1 infection: implications for vaccine control of HIV development. Expert Rev Vaccines 2014; 5:505-16. [PMID: 16989631 DOI: 10.1586/14760584.5.4.505] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The definition of immune correlates of protection in HIV-1 infection is pivotal to the design of successful vaccine candidates and strategies. Although significant methodological and conceptual strides have been made in our understanding of HIV-specific cellular immunity, we have not yet defined those parameters that have a role in controlling the spread of HIV infection. This review discusses the basis of our understanding of HIV-specific cellular immunity and identifies its shortcomings. Furthermore, potential protective characteristics will be proposed that may ultimately be required for an effective vaccine designed to stimulate cellular immunity against HIV-1.
Collapse
Affiliation(s)
- Michael R Betts
- University of Pennsylvania, Department of Microbiology, 522E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
41
|
Safety, tolerability, and immunogenicity of repeated doses of dermavir, a candidate therapeutic HIV vaccine, in HIV-infected patients receiving combination antiretroviral therapy: results of the ACTG 5176 trial. J Acquir Immune Defic Syndr 2013; 64:351-9. [PMID: 24169120 DOI: 10.1097/qai.0b013e3182a99590] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-specific cellular immune responses are associated with control of viremia and delayed disease progression. An effective therapeutic vaccine could mimic these effects and reduce the need for continued antiretroviral therapy. DermaVir, a topically administered plasmid DNA-nanomedicine expressing HIV (CladeB) virus-like particles consisting of 15 antigens, induces predominantly central memory T-cell responses. METHODS Treated HIV-infected adults (HIV RNA <50 and CD4 >350) were randomized to placebo or escalating DermaVir doses (0.1 or 0.4 mg of plasmid DNA at weeks 1, 7, and 13 in the low- and intermediate-dose groups and 0.8 mg at weeks 0, 1, 6, 7, 12, and 13 in the high-dose group), n = 5-6 evaluable subjects per group. Immunogenicity was assessed by a 12-day cultured interferon-γ enzyme-linked immunosorbent spot assay at baseline and at weeks 9, 17, and 37 using 1 Tat/Rev and 3 overlapping Gag peptide pools (p17, p24, and p15). RESULTS Groups were comparable at baseline. The study intervention was well tolerated, without dose-limiting toxicities. Most responses were highest at week 17 (4 weeks after last vaccination) when Gag p24 responses were significantly greater among intermediate-dose group compared with control subjects [median (IQR): 67,600 (5633-74,368) versus 1194 (9-1667)] net spot-forming units per million cells, P = 0.032. In the intermediate-dose group, there was also a marginal Gag p15 response increase from baseline to week 17 [2859 (1867-56,933), P = 0.06], and this change was significantly greater than in the placebo group [0 (-713 to 297), P = 0.016]. CONCLUSIONS DermaVir administration was associated with a trend toward greater HIV-specific, predominantly central memory T-cell responses. The intermediate DermaVir dose tended to show the greatest immunogenicity, consistent with previous studies in different HIV-infected patient populations.
Collapse
|
42
|
Gijsbers EF, Feenstra KA, van Nuenen AC, Navis M, Heringa J, Schuitemaker H, Kootstra NA. HIV-1 replication fitness of HLA-B*57/58:01 CTL escape variants is restored by the accumulation of compensatory mutations in gag. PLoS One 2013; 8:e81235. [PMID: 24339913 PMCID: PMC3855271 DOI: 10.1371/journal.pone.0081235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022] Open
Abstract
Expression of HLA-B*57 and the closely related HLA-B*58:01 are associated with prolonged survival after HIV-1 infection. However, large differences in disease course are observed among HLA-B*57/58:01 patients. Escape mutations in CTL epitopes restricted by these HLA alleles come at a fitness cost and particularly the T242N mutation in the TW10 CTL epitope in Gag has been demonstrated to decrease the viral replication capacity. Additional mutations within or flanking this CTL epitope can partially restore replication fitness of CTL escape variants. Five HLA-B*57/58:01 progressors and 5 HLA-B*57/58:01 long-term nonprogressors (LTNPs) were followed longitudinally and we studied which compensatory mutations were involved in the restoration of the viral fitness of variants that escaped from HLA-B*57/58:01-restricted CTL pressure. The Sequence Harmony algorithm was used to detect homology in amino acid composition by comparing longitudinal Gag sequences obtained from HIV-1 patients positive and negative for HLA-B*57/58:01 and from HLA-B*57/58:01 progressors and LTNPs. Although virus isolates from HLA-B*57/58:01 individuals contained multiple CTL escape mutations, these escape mutations were not associated with disease progression. In sequences from HLA-B*57/58:01 progressors, 5 additional mutations in Gag were observed: S126N, L215T, H219Q, M228I and N252H. The combination of these mutations restored the replication fitness of CTL escape HIV-1 variants. Furthermore, we observed a positive correlation between the number of escape and compensatory mutations in Gag and the replication fitness of biological HIV-1 variants isolated from HLA-B*57/58:01 patients, suggesting that the replication fitness of HLA-B*57/58:01 escape variants is restored by accumulation of compensatory mutations.
Collapse
Affiliation(s)
- Esther F. Gijsbers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - K. Anton Feenstra
- Centre for Integrative Bioinformatics (IBIVU) and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University, Amsterdam, The Netherlands
- Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
| | - Ad C. van Nuenen
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjon Navis
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Heringa
- Centre for Integrative Bioinformatics (IBIVU) and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University, Amsterdam, The Netherlands
- Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
43
|
Miedema F, Hazenberg MD, Tesselaar K, van Baarle D, de Boer RJ, Borghans JAM. Immune activation and collateral damage in AIDS pathogenesis. Front Immunol 2013; 4:298. [PMID: 24133492 PMCID: PMC3783946 DOI: 10.3389/fimmu.2013.00298] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
In the past decade, evidence has accumulated that human immunodeficiency virus (HIV)-induced chronic immune activation drives progression to AIDS. Studies among different monkey species have shown that the difference between pathological and non-pathological infection is determined by the response of the immune system to the virus, rather than its cytopathicity. Here we review the current understanding of the various mechanisms driving chronic immune activation in HIV infection, the cell types involved, its effects on HIV-specific immunity, and how persistent inflammation may cause AIDS and the wide spectrum of non-AIDS related pathology. We argue that therapeutic relief of inflammation may be beneficial to delay HIV-disease progression and to reduce non-AIDS related pathological side effects of HIV-induced chronic immune stimulation.
Collapse
Affiliation(s)
- Frank Miedema
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mette D. Hazenberg
- Department of Internal Medicine and Hematology, Academic Medical Center, Amsterdam, Netherlands
| | - Kiki Tesselaar
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - José A. M. Borghans
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
44
|
Castelli FA, Szely N, Olivain A, Casartelli N, Grygar C, Schneider A, Besse A, Levy Y, Schwartz O, Maillère B. Hierarchy of CD4 T cell epitopes of the ANRS Lipo5 synthetic vaccine relies on the frequencies of pre-existing peptide-specific T cells in healthy donors. THE JOURNAL OF IMMUNOLOGY 2013; 190:5757-63. [PMID: 23636059 DOI: 10.4049/jimmunol.1300145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Agence National de Recherche sur le SIDA et les hepatitis Lipo5 vaccine is composed by five long fragments of HIV proteins and was recently shown to induce in seronegative volunteers a CD4 T cell response largely dominated by the G2 fragment. To understand this response profile, we submitted the five HIV fragments to HLA-DR-binding assays and evaluated the frequency of naive Lipo5-specific CD4 T lymphocytes in the blood of 22 healthy individuals. We enumerated the Lipo5-specific T cell lines induced in vitro by weekly rounds of specific stimulation. Four peptides and hence not only G2 exhibited a broad specificity for HLA-DR molecules. In contrast, most of the T cell lines specific for Lipo5 reacted with G2, revealing a G2-specific T cell repertoire superior to 2 cells per million, whereas it is close to 0.4 for the other peptides. We also found good cross-reactivity of all the peptides with clade B and C variants and that G2 and P1 are able to recruit T cells that recognize HIV-infected cells. We therefore mainly observed very good concordance between the frequency to individual Lipo5 peptides among vaccinees in a large-scale vaccine trial and the distribution of peptide specificity of the in vitro induced T cell lines. These findings underline the role of the size of the epitope-specific naive repertoire in shaping the CD4 T cell response after vaccination and highlight the value of evaluating the naive repertoire to predict vaccine immunogenicity.
Collapse
Affiliation(s)
- Florence Anne Castelli
- Commissariat à l'Energie Atomique, Institut de Biologie et de Technologies, Service d'Ingénierie Moléculaire des Protéines, F-91191 Gif Sur Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ahmed Rahim MM, Chrobak P, Priceputu E, Hanna Z, Jolicoeur P. Normal development and function but impaired memory phenotype of CD8+ T cells in transgenic mice expressing HIV-1 Nef in its natural target cells. Virology 2013; 438:84-97. [DOI: 10.1016/j.virol.2013.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/08/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
46
|
Li Y, Huang Y, Liang J, Xu Z, Shen Y, Zhang N, Liu Z, Zhao Y. Immune responses induced in HHD mice by multiepitope HIV vaccine based on cryptic epitope modification. Mol Biol Rep 2013; 40:2781-7. [PMID: 23456642 DOI: 10.1007/s11033-012-2202-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
CD8+ T cells play an important role in early HIV infection. However, HIV has the capacity to avoid specific CTL responses due to a high rate of mutation under selection pressure. Although the HIV proteins, gag and pol, are relatively conserved, these sequences generate low-affinity MHC-associated epitopes that are poorly immunogenic. Here, we applied an approach that enhanced the immunogenicity of low-affinity HLA-A2.1-binding peptides. The first position with tyrosine (P1Y) substitution enhanced the affinity of HLA-A2.1-associated peptides without altering their antigenic specificity. More importantly, P1Y variants efficiently stimulated in vivo native peptide-specific CTL that also recognized the corresponding naturally processed epitope. The potential to generate CTL against any low-affinity HLA-A2.1-associated peptide provides us with the necessary technique for identification of virus cryptic epitopes for development of peptide-based immunotherapy. Therefore, identification and modification of the cryptic epitopes of gal and pol provides promising candidates for HIV immunotherapy dependent upon efficient presentation by virus cells. Furthermore, this may be a breakthrough that overcomes the obstacle of immune escape caused by high rates of mutation. In this study, bioinformatics analysis was used to predict six low-affinity cryptic HIV gag and pol epitopes presented by HLA-A*0201. A HIV compound multi-CTL epitope gene was constructed comprising the gene encoding the modified cryptic epitope and the HIV p24 antigen, which induced a strong CD8+ T cell immune response regardless of the mutation. This approach represents a novel strategy for the development of safe and effective HIV prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
McIlroy D. Do HIV-specific CTL continue to have an antiviral function during antiretroviral therapy? If not, why not, and what can be done about it? Front Immunol 2013; 4:52. [PMID: 23459829 PMCID: PMC3587146 DOI: 10.3389/fimmu.2013.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/10/2013] [Indexed: 12/15/2022] Open
Abstract
Pharmacological reactivation of human immunodeficiency virus (HIV) expression from latent proviruses coupled with fully suppressive antiretroviral therapy (ART) has been suggested as a strategy to eradicate HIV infection. In order for this strategy to be effective, latently infected cells must be killed either by the cytopathic effect of reactivated HIV gene expression, or by HIV-specific cytotoxic T lymphocyte (CTL). However, a review of current data reveals little evidence that CTL retain an antiviral effector capacity in patients on fully suppressive ART, implying that the HIV-specific CTL present in these patients will not be able to eliminate HIV-infected CD4(+) T cells effectively. If this is due to functional impairment or a quantitative deficit of HIV-specific CTL during ART, then therapeutic vaccination may improve the prospects for eradicating latent reservoirs. However, data from the macaque simian immunodeficiency virus (SIV) model indicate that in vivo, SIV-specific CTL are only effective during the early stages of the viral replication cycle, and this constitutes an alternative explanation why HIV-specific CTL do not appear to have an impact on HIV reservoirs during ART. In that case, immunotoxins that target HIV-expressing cells may be a more promising approach for HIV eradication.
Collapse
Affiliation(s)
- Dorian McIlroy
- EA4271 Laboratoire d'Immunovirologie et Polymorphisme Génétique, Faculté de Médecine et de Pharmacie, Université de Nantes, LUNAM Université Nantes, France
| |
Collapse
|
48
|
Imami N, Westrop SJ, Grageda N, Herasimtschuk AA. Long-Term Non-Progression and Broad HIV-1-Specific Proliferative T-Cell Responses. Front Immunol 2013; 4:58. [PMID: 23459797 PMCID: PMC3585435 DOI: 10.3389/fimmu.2013.00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/17/2013] [Indexed: 12/30/2022] Open
Abstract
Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1(+) patients during early stages of disease, and are maintained in long-term non-progressing subjects. In the vast majority of HIV-1(+) patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilizing cure, involving clearance of virus from the host, remains a primary aim, a "functional cure" may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilized in future strategies designed to improve upon existing therapy. The aim will be to induce long-term non-progressor or elite controller status in every infected host, through immune-mediated control of viremia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates.
Collapse
Affiliation(s)
- Nesrina Imami
- Department of Medicine, Imperial College LondonLondon, UK
| | | | | | | |
Collapse
|
49
|
Siewe B, Stapleton JT, Martinson J, Keshavarzian A, Kazmi N, Demarais PM, French AL, Landay A. Regulatory B cell frequency correlates with markers of HIV disease progression and attenuates anti-HIV CD8⁺ T cell function in vitro. J Leukoc Biol 2013; 93:811-8. [PMID: 23434518 DOI: 10.1189/jlb.0912436] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV infection is associated with elevated expression of IL-10 and PD-L1, contributing to impairment of T cell effector functions. In autoimmunity, tumor immunology, and some viral infections, Bregs modulate T cell function via IL-10 production. In this study, we tested the hypothesis that during HIV infection, Bregs attenuate CD8(+) T cell effector function, contributing to immune dysfunction. We determined that in vitro, TLR2-, TLR9-, and CD40L-costimulated Bregs from HIV(-) individuals exhibited a high frequency of cells expressing IL-10 and PD-L1. Compared with Bregs from HIV(-) individuals, a significantly higher percentage of Bregs from HIV(+) individuals spontaneously expressed IL-10 (P=0.0218). After in vitro stimulation with HIV peptides, Breg-depleted PBMCs from HIV(+) individuals exhibited a heightened frequency of cytotoxic (CD107a(+); P=0.0171) and HIV-specific CD8(+) T cells compared with total PBMCs. Furthermore, Breg depletion led to enhanced proliferation of total CD8(+) and CD107a(+)CD8(+) T cells (P=0.0280, and P=0.0102, respectively). In addition, augmented CD8(+) T cell effector function in vitro was reflected in a 67% increased clearance of infected CD4(+) T cells. The observed Breg suppression of CD8(+) T cell proliferation was IL-10-dependent. In HIV(+) individuals, Breg frequency correlated positively with viral load (r=0.4324; P=0.0095), immune activation (r=0.5978; P=0.0005), and CD8(+) T cell exhaustion (CD8(+)PD-1(+); r=0.5893; P=0.0101). Finally, the frequency of PD-L1-expressing Bregs correlated positively with CD8(+)PD-1(+) T cells (r=0.4791; P=0.0443). Our data indicate that Bregs contribute to HIV-infection associated immune dysfunction by T cell impairment, via IL-10 and possibly PD-L1 expression.
Collapse
Affiliation(s)
- Basile Siewe
- Rush University Medical Center, Departments of Immunology/Microbiology and Internal Medicine, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Poor HIV control in HLA-B*27 and B*57/58 noncontrollers is associated with limited number of polyfunctional Gag p24-specific CD8+ T cells. AIDS 2013; 27:17-27. [PMID: 23079801 DOI: 10.1097/qad.0b013e32835ac0e1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Analysis of immune response in HIV controllers, a unique group of infected individuals who are able to control HIV naturally, has provided us a chance to investigate the roles of host immune responses in HIV control. DESIGN In this study, the functional quality of HIV Gag p24-specific CD8 T-cell responses was assessed in two groups of clinically distinct, HLA-B*27, HLA-B*57/58-matched individuals, viremic controllers [plasma HIV load (pVL) ≤ 2000 copies/ml) and noncontrollers (pVL >2000 copies/ml) to determine its impacts on natural HIV clinical outcome. METHODS An ex-vivo interferon (IFN)-γ ELISpot assay was used to screen for each individual's HIV Gag p24-specific T-cell responses. Intracellular cytokine staining assay was used to determine their functional quality (as number of cytokine being produced). RESULTS We found that, in contrast to previous studies, all Thai volunteers with HLA-B*5801 were uniformly noncontrollers. Viremic controllers were observed with a significantly larger number of high functional quality p24-specific CD8 T cells than noncontrollers (P < 0.05). This superior quality of responses was observed at both total p24 and epitope-specific level. Moreover, the absolute number of high functional quality Gag p24-specific CD8 T cells was significantly in a negative correlation with pVL (r = -0.6984, P = 0.0006) and also in a positive correlation with CD4 T-cell count (r = 0.5648, P = 0.0095). CONCLUSION We concluded that an adequate number of high functional quality Gag p24-specific CD8 T cells is strongly associated with a natural HIV controller status.
Collapse
|