1
|
Fillatreau S, Anderton SM. B-cell function in CNS inflammatory demyelinating disease: a complexity of roles and a wealth of possibilities. Expert Rev Clin Immunol 2014; 3:565-78. [DOI: 10.1586/1744666x.3.4.565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Mannie MD, Blanchfield JL, Islam SMT, Abbott DJ. Cytokine-neuroantigen fusion proteins as a new class of tolerogenic, therapeutic vaccines for treatment of inflammatory demyelinating disease in rodent models of multiple sclerosis. Front Immunol 2012; 3:255. [PMID: 22934095 PMCID: PMC3422719 DOI: 10.3389/fimmu.2012.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/30/2012] [Indexed: 11/13/2022] Open
Abstract
Myelin-specific induction of tolerance represents a promising means to modify the course of autoimmune inflammatory demyelinating diseases such as multiple sclerosis (MS). Our laboratory has focused on a novel preclinical strategy for the induction of tolerance to the major encephalitogenic epitopes of myelin that cause experimental autoimmune encephalomyelitis (EAE) in rats and mice. This novel approach is based on the use of cytokine-NAg (neuroantigen) fusion proteins comprised of the native cytokine fused either with or without a linker to a NAg domain. Several single-chain cytokine-NAg fusion proteins were tested including GMCSF-NAg, IFNbeta-NAg, NAgIL16, and IL2-NAg. These cytokine-NAg vaccines were tolerogenic, therapeutic vaccines that had tolerogenic activity when given as pre-treatments before encephalitogenic immunization and also were effective as therapeutic interventions during the effector phase of EAE. The rank order of inhibitory activity was as follows: GMCSF-NAg, IFNbeta-NAg > NAgIL16 > IL2-NAg > MCSF-NAg, IL4-NAg, IL-13-NAg, IL1RA-NAg, and NAg. Several cytokine-NAg fusion proteins exhibited antigen-targeting activity. High affinity binding of the cytokine domain to specific cytokine receptors on particular subsets of APC resulted in the concentrated uptake of the NAg domain by those APC which in turn facilitated the enhanced processing and presentation of the NAg domain on cell surface MHC class II glycoproteins. For most cytokine-NAg vaccines, the covalent linkage of the cytokine domain and NAg domain was required for inhibition of EAE, thereby indicating that antigenic targeting of the NAg domain to APC was also required in vivo for tolerogenic activity. Overall, these studies introduced a new concept of cytokine-NAg fusion proteins as a means to induce tolerance and to inhibit the effector phase of autoimmune disease. The approach has broad application for suppressive vaccination as a therapy for autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Mark D. Mannie
- Department of Microbiology and Immunology, East Carolina UniversityGreenville, NC, USA
| | | | - S. M. Touhidul Islam
- Department of Microbiology and Immunology, East Carolina UniversityGreenville, NC, USA
| | - Derek J. Abbott
- Department of Microbiology and Immunology, East Carolina UniversityGreenville, NC, USA
| |
Collapse
|
3
|
Friedrich RI, Nopora K, Brocker T. Transcriptional targeting of B cells with viral vectors. Eur J Cell Biol 2012; 91:86-96. [DOI: 10.1016/j.ejcb.2011.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 10/18/2022] Open
|
4
|
Rezende AB, Neto NN, Fernandes LR, Ribeiro ACC, Alvarez-Leite JI, Teixeira HC. Splenectomy Increases Atherosclerotic Lesions in Apolipoprotein E Deficient Mice. J Surg Res 2011; 171:e231-6. [DOI: 10.1016/j.jss.2011.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
|
5
|
Blank F, Stumbles P, von Garnier C. Opportunities and challenges of the pulmonary route for vaccination. Expert Opin Drug Deliv 2011; 8:547-63. [PMID: 21438741 DOI: 10.1517/17425247.2011.565326] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The respiratory tract is an attractive target for the delivery of vaccine antigens. Potential advantages of drug delivery by means of the pulmonary route include accessibility, non-invasiveness, ease of administration, and the possibility to reach an elaborate mucosal network of antigen-presenting cells. AREAS COVERED This review discusses current pulmonary vaccination strategies and their advantages and disadvantages. EXPERT OPINION To improve efficiency of vaccination and develop new strategies, a well-founded knowledge about composition and characterization of antigen-presenting cell populations throughout the respiratory tract is essential. In particular, respiratory tract dendritic cells, as key antigen-presenting cells in the lung, constitute an ideal target for vaccine delivery. Furthermore, particle size is a key factor when designing new inhalable vaccines, as size determines not only deposition in different respiratory tract compartments, but also how an antigen and its carrier will interact with lung tissue components and immune cells. An increased knowledge of different respiratory tract antigen-presenting cell populations and their interactions with other components of the immune system will enable new targeting strategies to improve the efficacy of pulmonary vaccination.
Collapse
Affiliation(s)
- Fabian Blank
- Bern University, Pulmonary Medicine, Department of Clinical Research, Murtenstrasse 50, CH-3010 Berne, Switzerland.
| | | | | |
Collapse
|
6
|
Kandagaddala LD, Kang MJ, Chung BC, Patterson TA, Kwon OS. Expression and activation of matrix metalloproteinase-9 and NADPH oxidase in tissues and plasma of experimental autoimmune encephalomyelitis in mice. ACTA ACUST UNITED AC 2010; 64:109-14. [PMID: 20810258 DOI: 10.1016/j.etp.2010.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/28/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for multiple sclerosis (MS) that can be induced by immunization with myelin antigens such as myelin oligodendrocyte glycoprotein (MOG). The objective of this study was (i) to investigate how matrix metalloproteinase-9 (MMP-9) and NADPH oxidase enzymes are affected in the EAE mouse model and (ii) to know whether peripheral organs also express these enzymes in the EAE model. MOG(33-55) was administered subcutaneously on two sites over the back. Pertussis toxin was administered intraperitoneally immediately after MOG and again two days later. A significant difference was observed in body weights and clinical signs of EAE-induced mice. MMP-9 and NADPH oxidase enzymes were measured in central nervous system (CNS) tissues, peripheral tissues and plasma of EAE-induced mice. The primary findings include the distribution pattern of MMP-9 in CNS and peripheral tissues, and alterations in the enzymatic expression of MMP-9 and NADPH oxidase in the CNS tissues, spleen and plasma of EAE-induced mice. From these results, it can be considered that the spleen as well as the CNS can act as target organs in EAE disease, and plasma MMP-9 and NADPH oxidase may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Lakshmi Devi Kandagaddala
- Toxicology Laboratory, Korea Institute of Science and Technology, Sungbuk-gu, Seoul 136-791, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
Blanchfield JL, Mannie MD. A GMCSF-neuroantigen fusion protein is a potent tolerogen in experimental autoimmune encephalomyelitis (EAE) that is associated with efficient targeting of neuroantigen to APC. J Leukoc Biol 2010; 87:509-21. [PMID: 20007248 DOI: 10.1189/jlb.0709520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokine-NAg fusion proteins represent an emerging platform for specific targeting of self-antigen to particular APC subsets as a means to achieve antigen-specific immunological tolerance. This study focused on cytokine-NAg fusion proteins that targeted NAg to myeloid APC. Fusion proteins contained GM-CSF or the soluble extracellular domain of M-CSF as the N-terminal domain and the encephalitogenic 69-87 peptide of MBP as the C-terminal domain. GMCSF-NAg and MCSF-NAg fusion proteins were approximately 1000-fold and 32-fold more potent than NAg in stimulating antigenic proliferation of MBP-specific T cells, respectively. The potentiated antigenic responses required cytokine-NAg covalent linkage and receptor-mediated uptake. That is, the respective cytokines did not potentiate antigenic responses when cytokine and NAg were added as separate molecules, and the potentiated responses were inhibited specifically by the respective free cytokine. Cytokine-dependent targeting of NAg was specific for particular subsets of APC. GMCSF-NAg and MCSF-NAg targeted NAg to DC and macrophages; conversely, IL4-NAg and IL2-NAg fusion proteins, respectively, induced an 1000-fold enhancement in NAg reactivity in the presence of B cell and T cell APC. GMCSF-NAg significantly attenuated severity of EAE when treatment was completed before encephalitogenic challenge or alternatively, when treatment was initiated after onset of EAE. MCSF-NAg also had significant tolerogenic activity, but GMCSF-NAg was substantially more efficacious as a tolerogen. Covalent GMCSF-NAg linkage was required for prevention and treatment of EAE. In conclusion, GMCSF-NAg was highly effective for targeting NAg to myeloid APC and was a potent, antigen-specific tolerogen in EAE.
Collapse
Affiliation(s)
- J Lori Blanchfield
- The Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | | |
Collapse
|
8
|
Activated B cells in autoimmune diseases: the case for a regulatory role. ACTA ACUST UNITED AC 2009; 4:657-66. [PMID: 19037227 DOI: 10.1038/ncprheum0950] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 10/13/2008] [Indexed: 11/09/2022]
Abstract
B lymphocytes contribute to immunity through organogenesis of secondary lymphoid organs, presentation of antigen to T cells, production of antibodies, and secretion of cytokines. Their roles in autoimmune diseases are complex. Clinical trials have shown that depleting B cells can significantly ameliorate such diseases, underlining the contributions of B cells to pathogenesis. Conversely, B-cell depletion can lead to exacerbation of symptoms in some patients. In mice, B cells can offer protection from chronic autoimmune pathologies. It is important to understand the mechanisms responsible for the distinct roles of B cells in autoimmune diseases, and investigation of these processes could highlight new therapeutic strategies. Here, we review recent progress in our understanding of the suppressive functions of activated B cells in mice, as well as the promising potential of B cells for use as cell-based therapy for experimental autoimmune diseases, and, finally, discuss the possibility of translating this cellular approach to treat human autoimmune diseases.
Collapse
|
9
|
Frommer F, Heinen TJAJ, Wunderlich FT, Yogev N, Buch T, Roers A, Bettelli E, Müller W, Anderton SM, Waisman A. Tolerance without clonal expansion: self-antigen-expressing B cells program self-reactive T cells for future deletion. THE JOURNAL OF IMMUNOLOGY 2008; 181:5748-59. [PMID: 18832734 DOI: 10.4049/jimmunol.181.8.5748] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
B cells have been shown in various animal models to induce immunological tolerance leading to reduced immune responses and protection from autoimmunity. We show that interaction of B cells with naive T cells results in T cell triggering accompanied by the expression of negative costimulatory molecules such as PD-1, CTLA-4, B and T lymphocyte attenuator, and CD5. Following interaction with B cells, T cells were not induced to proliferate, in a process that was dependent on their expression of PD-1 and CTLA-4, but not CD5. In contrast, the T cells became sensitive to Ag-induced cell death. Our results demonstrate that B cells participate in the homeostasis of the immune system by ablation of conventional self-reactive T cells.
Collapse
Affiliation(s)
- Friederike Frommer
- I. Medical Department, Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 63, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fillatreau S, Gray D, Anderton SM. Not always the bad guys: B cells as regulators of autoimmune pathology. Nat Rev Immunol 2008; 8:391-7. [PMID: 18437156 DOI: 10.1038/nri2315] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When B cells react aggressively against self, the potential for pathology is extreme. It is therefore not surprising that B-cell depletion is seen as an attractive therapy in autoimmune diseases. However, B cells can also be essential for restraining unwanted autoaggressive T-cell responses. Recent advances have pointed to interleukin-10 (IL-10) production as a key component in B-cell-mediated immune regulation. In this Opinion article, we develop a hypothesis that triggering of Toll-like receptors controls the propensity of B cells for IL-10 production and immune suppression. According to this model, B cells can translate exposure to certain microbial infections into protection from chronic inflammatory diseases.
Collapse
Affiliation(s)
- Simon Fillatreau
- Simon Fillatreau is at the Immune regulation group, Deutsches Rheuma-ForschungsZentrum, Charitéplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
11
|
Lyons JA, Ramsbottom MJ, Mikesell RJ, Cross AH. B cells limit epitope spreading and reduce severity of EAE induced with PLP peptide in BALB/c mice. J Autoimmun 2008; 31:149-55. [PMID: 18539432 DOI: 10.1016/j.jaut.2008.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 04/15/2008] [Accepted: 04/26/2008] [Indexed: 10/22/2022]
Abstract
The role of B cells and antibody in experimental autoimmune encephalomyelitis (EAE) appears to differ based on the identity and state (protein vs. encephalitogenic peptide) of the inducing antigen and the strain of mouse utilized. The involvement of B cells in the induction of EAE by peptides of proteolipid protein (PLP) in BALB/c mice was investigated. Wild-type and B cell-deficient (B cell-/-) mice on the BALB/c background were immunized with overlapping PLP peptides, and the disease course was followed. Although incidence and onset of PLP(180-199)-induced EAE was similar in WT and B cell-/- mice, the clinical course was more severe in B cell-/- mice. During acute disease, proliferation and interferon-gamma production by lymphoid cells from both strains were similar and were elicited predominantly in response to the immunizing antigen. However, during chronic disease lymphoid cells isolated from B cell-/- mice proliferated to a greater extent and produced more interferon-gamma in response to the overlapping peptide PLP185-206 and to the smaller internal peptide PLP185-199 than did WT mice. These data suggest that B cells regulate PLP-induced EAE in BALB/c mice through control of epitope spreading.
Collapse
Affiliation(s)
- Jeri-Anne Lyons
- Department of Neurology & Neurosurgery, Washington University, 660 S. Euclid, Box 8111, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
12
|
Hoehlig K, Lampropoulou V, Roch T, Neves P, Calderon-Gomez E, Anderton SM, Steinhoff U, Fillatreau S. Immune regulation by B cells and antibodies a view towards the clinic. Adv Immunol 2008; 98:1-38. [PMID: 18772002 DOI: 10.1016/s0065-2776(08)00401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B lymphocytes contribute to immunity in multiple ways, including production of antibodies, presentation of antigen to T cells, organogenesis of secondary lymphoid organs, and secretion of cytokines. Recent clinical trials have shown that depleting B cells can be highly beneficial for patients with autoimmune diseases, implicating B cells and antibodies as key drivers of pathology. However, it should be kept in mind that B cell responses and antibodies also have important regulatory roles in limiting autoimmune pathology. Here, we analyze clinical examples illustrating the potential of antibodies as treatment for immune-mediated disorders and discuss the underlying mechanisms. Furthermore, we examine the regulatory functions of activated B cells, their involvement in the termination of some experimental autoimmune diseases, and their use in cell-based therapy for such pathologies. These suppressive functions of B cells and antibodies do not only open new ways for harnessing autoimmune illnesses, but they also should be taken into account when designing new strategies for vaccination against microbes and tumors.
Collapse
Affiliation(s)
- Kai Hoehlig
- Laboratory of immune regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Romagnani S. Role for CD30 antigen in human T helper 2-type responses. CIBA FOUNDATION SYMPOSIUM 2007; 195:55-62; discussion 62-7. [PMID: 8724830 DOI: 10.1002/9780470514849.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human T helper 1 (Th1) cells develop preferentially during infections by intracellular parasites and trigger phagocyte-mediated host defence. In contrast, human Th2 cells are responsible for phagocyte-independent host response, and they predominate during helminthic infestations and in atopic humans in response to common environmental antigens. Polarized human Th1 and Th2 cell responses play different roles in protection, and they can promote different immunopathological reactions. Strong and persistent Th1 responses seem to be involved in organ-specific autoimmunity, contact dermatitis and some chronic non-allergic inflammatory disorders. Polarized Th2 responses favour reduced protection against the majority of infections, including HIV, and they are responsible for triggering allergic disorders in genetically predisposed hosts. Th1 and Th2 cells probably exhibit distinct surface markers; for example, Th2 cells express preferentially membrane CD30 and release the soluble form of CD30, which is a member of the tumour necrosis factor receptor superfamily. CD30-mediated signalling promotes the in vitro development of Th2-like cells. The expression of CD30 in HIV-infected T cells results in enhanced HIV replication, suggesting the existence of complex links among CD30 expression, production of Th2-type cytokines and immunopathogenesis of HIV infection.
Collapse
Affiliation(s)
- S Romagnani
- Division of Clinical Immunology and Allergy, Institute of Clinical Medicine 3, University of Florence, Italy
| |
Collapse
|
14
|
Werner-Klein M, Dresch C, Marconi P, Brocker T. Transcriptional targeting of B cells for induction of peripheral CD8 T cell tolerance. THE JOURNAL OF IMMUNOLOGY 2007; 178:7738-46. [PMID: 17548611 DOI: 10.4049/jimmunol.178.12.7738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several mechanisms are in place to neutralize autoimmune CD8 T cells by tolerance induction. Developing self-specific CD8 T cells are eliminated in the thymus by Ag-presenting epithelial and dendritic cells (DCs). However, CD8 T cells escaping thymic central tolerance can also be inactivated by tolerance mechanisms in peripheral organs. In contrast to DCs, the role of B cells in generating CD8 T cell tolerance is not well-characterized. To investigate this question in more detail, we transcriptionally targeted Ag to B cells using B cell-specific retroviral vectors in vivo. Although Ag expression could be detected in B cells of thymus, lymph nodes, and spleen, B cells were unable to induce central tolerance of CD8 thymocytes. In contrast, in peripheral organs, we could identify clonal deletion and functional inhibition (anergy) of CD8 T cells as tolerance-inducing mechanisms. Although Ag expressed by B cells was acquired and cross-presented by DCs, B cells were also sufficient to tolerize CD8 T cells directly. These findings suggest exploitation of B cells for Ag-specific immunotherapy of CD8 T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Melanie Werner-Klein
- Institute for Immunology, Ludwig-Maximilians-University, Goethestrasse 31, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
15
|
Fernández O. Combination therapy in multiple sclerosis. J Neurol Sci 2007; 259:95-103. [PMID: 17507031 DOI: 10.1016/j.jns.2006.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/27/2006] [Accepted: 08/31/2006] [Indexed: 11/12/2022]
Abstract
Multiple sclerosis is an inflammatory/demyelinating and neurodegenerative disease. Treatment of MS is currently based on various different therapeutic algorithms of a sequential or escalating therapy with immunomodulators or immunosuppressants, generated partly from evidence based medicine and partly from expert's consensus. However, these therapies are not always effective as monotherapies. An alternative would be the combination of agents which already have some proven efficacy in MS therapy, are directed against different mechanisms of the pathogenic chain, and ideally result in synergic effects and a profile of reduced toxicity. Combination therapy in multiple sclerosis can be: Combination of two or more anti-inflammatory agents or combination of anti-inflammatory agents plus neuroprotective agents. Many combinations of drugs have been or are being tested in multiple sclerosis. Clinical trials have included a low number of patients for short periods of time. Preliminary studies on safety suggest that some combination therapies might be safe and efficacious. Ongoing and new phase III clinical trials involving a greater number of patients for longer periods of time are needed to verify this hypothesis. A wise balance between efficacy and safety and extremely clear information to patients should drive clinical decisions.
Collapse
Affiliation(s)
- Oscar Fernández
- Institute of Clinical Neurosciences, Hospital Regional Universitario Carlos Haya, Málaga, Spain. fernandez.sspa.@juntadeandalucia.es
| |
Collapse
|
16
|
Ashour HM, Seif TM. The role of B cells in the induction of peripheral T cell tolerance. J Leukoc Biol 2007; 82:1033-9. [PMID: 17656652 DOI: 10.1189/jlb.0507310] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hossam M Ashour
- Cairo University, Department of Microbiology and Immunology, Cairo, Egypt.
| | | |
Collapse
|
17
|
Brod SA, Hood Z. Ingested (oral) SIRS peptide 1–21 inhibits acute EAE by inducing Th2-like cytokines. J Neuroimmunol 2007; 183:89-95. [PMID: 17196668 DOI: 10.1016/j.jneuroim.2006.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 11/15/2006] [Accepted: 11/20/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Ingested type I IFN inhibits clinical attacks, relapses and inflammation in murine chronic relapsing EAE by inhibiting Th1-like cytokines. Type I IFN activates human suppressor T cells that produce SIRS. METHODS We examined whether oral (ingested) SIRS peptide inhibits EAE by decreasing Th1-like cytokines. RESULTS Parenteral SIRS peptide 1-21 showed a significant inhibition of disease severity in murine EAE. Ingested SIRS peptide at 10 and 100 microg SIRS peptide showed a significant inhibition of disease severity but also a prolonged delay in the onset of disease compared to placebo. There were significantly less inflammatory foci in the SIRS peptide fed group compared to the control mock fed group. Splenocytes from SIRS peptide 1-21 fed mice showed increased production of Th2-like CD30L, IL-13, TCA-3 cytokines/chemokines and decreased production of Th1-like cytokine lymphotactin. INTERPRETATION Ingested (oral) SIRS peptide significantly inhibits both clinical EAE and inflammation predominately via counter-regulatory type 2-like cytokines/chemokines IL-13, CD30L and TCA-3.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, University of Texas-Houston, Health Science Center, 6431 Fannin St, Houston, TX 77030, USA.
| | | |
Collapse
|
18
|
Agrawal SM, Yong VW. Immunopathogenesis of multiple sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:99-126. [PMID: 17531839 DOI: 10.1016/s0074-7742(07)79005-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is considered an immune-mediated disorder in which immune cells cross the blood-brain barrier to enter the central nervous system (CNS) wherein they augment the neuropathology of the disease. This chapter discusses the role of various immune cell types that contribute to the development and progression of MS. Specifically, the role of T cells, antigen-presenting cells, and components of the innate immune system such as macrophages, B cells, and the complement system are discussed. The involvement of CNS-specific cells such as microglia, astrocytes, and neurons in MS are discussed and the immunosuppressive role of regulatory T cells is considered. We introduce the involvement of chemokines and matrix metalloproteinases which helps recruit immune cells into the CNS in MS. Although the causes of MS are unknown, various factors such as genetic influences, environmental effects, and involvement of infectious agents as potential contributors to MS immune dysfunctions are also considered. With this background, we discuss the mechanisms of the immunomodulators that are used to treat MS.
Collapse
Affiliation(s)
- Smriti M Agrawal
- Department of Clinical Neuroscience, University of Calgary Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
19
|
Wang Y, Kai H, Chang F, Shibata K, Tahara-Hanaoka S, Honda SI, Shibuya A, Shibuya K. A critical role of LFA-1 in the development of Th17 cells and induction of experimental autoimmune encephalomyelytis. Biochem Biophys Res Commun 2006; 353:857-62. [PMID: 17207459 DOI: 10.1016/j.bbrc.2006.12.104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 11/26/2022]
Abstract
The alphaLbeta2 integrin adhesion molecule LFA-1 is believed to be involved in the migration of autoreactive T cells to the central nervous system across the endothelial blood-brain barrier in experimental autoimmune encephalomyelitis (EAE). Here, we demonstrate that the incidence and clinical scores of EAE in LFA-1-/- mice induced by the immunization with the myelin oligodendrocyte glycoprotein (MOG)-peptide antigen were significantly lower than those in wild type mice. Further studies demonstrated that lymphocytes recruitment to the draining lymph nodes (dLN) after the immunization with the MOG-peptide was severely suppressed in LFA-1-/- mice. Moreover, generation of the MOG-specific IL-17-producing helper T (Th17) cells in the dLN was impaired in LFA-1-/- mice. These results suggest that LFA-1 may play an important role for the generation of MOG-specific Th17 cells in the dLN as well as the immigration of MOG-specific naïve CD4+ T cells to the dLN.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD4 Antigens/metabolism
- Cell Movement/immunology
- Cell Movement/physiology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Flow Cytometry
- Genotype
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymphocyte Function-Associated Antigen-1/genetics
- Lymphocyte Function-Associated Antigen-1/physiology
- Lymphocytes/cytology
- Lymphocytes/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Myelin Proteins
- Myelin-Associated Glycoprotein/chemistry
- Myelin-Associated Glycoprotein/immunology
- Myelin-Associated Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Yinan Wang
- Department of Immunology, Institute of Basic Medical Sciences and Center for TARA, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rodríguez-Pinto D. B cells as antigen presenting cells. Cell Immunol 2006; 238:67-75. [PMID: 16574086 DOI: 10.1016/j.cellimm.2006.02.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 02/18/2006] [Accepted: 02/21/2006] [Indexed: 01/09/2023]
Abstract
Several characteristics confer on B cells the ability to present antigen efficiently: (1) they can find T cells in secondary lymphoid organs shortly after antigen entrance, (2) BCR-mediated endocytosis allows them to concentrate small amounts of specific antigen, and (3) BCR signaling and HLA-DO expression direct their antigen processing machinery to favor presentation of antigens internalized through the BCR. When presenting antigen in a resting state, B cells can induce T cell tolerance. On the other hand, activation by antigen and T cell help converts them into APC capable of promoting immune responses. Presentation of self antigens by B cells is important in the development of autoimmune diseases, while presentation of tumor antigens is being used in vaccine strategies to generate immunity. Thus, detailed understanding of the antigen presenting function of B cells can lead to their use for the generation or inhibition of immune responses.
Collapse
Affiliation(s)
- Daniel Rodríguez-Pinto
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208020, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Kang HK, Chung YJ, Park CU, Jang YS, Kim BS. Induction of autoimmunity by immunization with hapten-modified hen egg lysozyme in hen egg lysozyme-transgenic mice. Immunology 2006; 117:368-78. [PMID: 16476056 PMCID: PMC1782231 DOI: 10.1111/j.1365-2567.2005.02310.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/20/2005] [Indexed: 12/01/2022] Open
Abstract
To understand the mechanism of autoimmunity induction, hen egg lysozyme (HEL)-transgenic (Tg) C57BL/6 (B6) mice were immunized with HEL or phosphorylcholine-conjugated HEL (PC-HEL). Repeated immunization of HEL-Tg mice with native HEL failed to induce the antibody response against HEL. However, immunization with PC-HEL generated a significant anti-HEL antibody response. Immunization of the Tg mice with dominant (HEL(74-88)) or cryptic (HEL(47-61)) T-cell epitope peptide stimulated the corresponding T-cell response and similarly yielded the anti-HEL antibody response. Predominance of immunoglobulin G1 (IgG1) anti-HEL antibody response in the HEL-Tg mice and preferential IL-4 production by HEL-specific T cells suggested the dependency of the antibody response to the presence of T helper 2. HEL-Tg mice received HEL-primed B6 T cells, but not HEL-primed Tg T cells, were able to generate anti-HEL antibody response following PC-HEL immunization. The pattern and the level of epitope peptides generated by splenic antigen-presenting cells indicated that PC-HEL results in much more efficient processing as compared to HEL. These results strongly suggest that the enhancement of antigen processing by hapten (PC) conjugation to the antigen facilitates more efficient stimulation of T cells reactive to self antigen, HEL in HEL-Tg mice resulting in the production of anti-self HEL antibody.
Collapse
Affiliation(s)
- Hee-Kap Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
22
|
Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, Mor F, Carmi P, Zanin-Zhorov A, Lider O, Cohen IR. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. THE JOURNAL OF IMMUNOLOGY 2005; 175:3594-602. [PMID: 16148103 DOI: 10.4049/jimmunol.175.6.3594] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that soluble 60-kDa heat shock protein (HSP60) can directly activate T cells via TLR2 signaling to enhance their Th2 response. In this study we investigated whether HSP60 might also activate B cells by an innate signaling pathway. We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6. In addition, the HSP60-treated B cells up-regulated their expression of MHC class II and accessory molecules CD69, CD40, and B7-2. We tested the functional ability of HSP60-treated B cells to activate an allogeneic T cell response and found enhanced secretion of both IL-10 and IFN-gamma by the responding T cells. The effects of HSP60 were found to be largely dependent on TLR4 and MyD88 signaling; B cells from TLR4-mutant mice or from MyD88 knockout mice showed decreased responses to HSP60. Care was taken to rule out contamination of the HSP60 with LPS as a causative factor. These findings add B cells to the complex web of interactions by which HSP60 can regulate immune responses.
Collapse
Affiliation(s)
- Michal Cohen-Sfady
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Multiple sclerosis (MS) develops in young adults with a complex predisposing genetic trait and probably requires an inciting environmental insult such as a viral infection to trigger the disease. The activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease. Damage of the target tissue, the central nervous system, is, however, most likely mediated by other components of the immune system, such as antibodies, complement, CD8+ T cells, and factors produced by innate immune cells. Perturbations in immunomodulatory networks that include Th2 cells, regulatory CD4+ T cells, NK cells, and others may in part be responsible for the relapsing-remitting or chronic progressive nature of the disease. However, an important paradigmatic shift in the study of MS has occurred in the past decade. It is now clear that MS is not just a disease of the immune system, but that factors contributed by the central nervous system are equally important and must be considered in the future.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1400, USA.
| | | |
Collapse
|
24
|
Burrows GG. Systemic immunomodulation of autoimmune disease using MHC-derived recombinant TCR ligands. CURRENT DRUG TARGETS. INFLAMMATION AND ALLERGY 2005; 4:185-93. [PMID: 15853741 PMCID: PMC3457802 DOI: 10.2174/1568010053586363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human autoimmune disease involves local activation of antigen-specific CD4(+) T cells that produce inflammatory Th1 cytokines leading to the further recruitment and activation of lymphocytes and monocytes, resulting ultimately in the destruction of target tissue. Antigen presenting cells (APCs) initiate activation of CD4(+) T cells in a multistep process that minimally involves co-ligation of the TCR and CD4 by the MHC class II/peptide complex and costimulation through additional T cell surface molecules such as CD28. Disruption of this highly orchestrated series of events can result in the direct modulation of CD4(+) T cell behavior. The interaction between MHC and TCR holds unique promise as a focal point for therapeutic intervention in the pathology of CD4(+) T cell-mediated diseases, and MHC class II-derived Recombinant TCR Ligands ("RTLs") have emerged as a new class of therapeutics with potent clinical efficacy in a diverse set of animal models for multiple sclerosis. Here I review the systemic effect that RTL therapy has on the intact immune system and present an overview of a molecular mechanism by which RTL therapy could induce these systemic changes.
Collapse
Affiliation(s)
- Gregory G Burrows
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
25
|
Abstract
During the last few decades, the pathogenesis of atherosclerosis has been related not only to cholesterol deposition and cell proliferation in the lesions, but also to infiltration of immune cells, which are involved in both systemic and local, innate as well as adaptive, immune responses. A number of antigen candidates, such as oxidised low-density lipoprotein and heat-shock proteins, have been associated with the disease process. As some inflammatory and autoimmune diseases could be treated by immunologically based therapy, it is of particular interest whether such principles can also be applied to prevent or treat atherosclerosis. Indeed, modification of immune reactions in animal models can greatly affect the development and progression of atherosclerosis. This review provides an overview of our current understanding of how immunomodulation changes the course of atherosclerosis and how vaccination may be used for preventing the disease.
Collapse
Affiliation(s)
- Xinghua Zhou
- Center for Molecular Medicine and Department of Medicine, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
26
|
Ditamo Y, Degano AL, Maccio DR, Pistoresi-Palencia MC, Roth GA. Age-related changes in the development of experimental autoimmune encephalomyelitis. Immunol Cell Biol 2005; 83:75-82. [PMID: 15661044 DOI: 10.1111/j.1440-1711.2004.01294.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A prominent feature of multiple sclerosis is its high incidence of onset in the third decade of life and its relatively rare onset in persons older than 50 years. In order to study age-related restriction of clinical expression, a comparative biochemical, immunological and histological study was undertaken during development of experimental autoimmune encephalomyelitis (EAE) in young (7 weeks) and middle-aged (15 months) Wistar rats. Young rats showed characteristic clinical signs 12-16 days postinduction, and then they spontaneously recuperated. In middle-aged rats, the incidence of clinical signs was significantly reduced, with a later onset of the disease. Similar biochemical and histological alterations were detected in both age groups, but they were present in a later stage in middle-aged animals. However, cellular and humoral immune responses to myelin basic protein (MBP) were observed 15 days postinduction in all EAE animals. The study of anti-MBP IgG isotype pattern in 7-week-old animals indicated a predominant Th1-type immune response during the acute stage of EAE, with antibodies predominantly recognizing the MBP 96-128 peptide. In contrast, 15-month-old animals showed a less prominent Th1 response, without any epitope dominance. The changes in immune function found in middle-aged animals may account for the different susceptibility and expression of EAE, and may also be relevant to the different clinical expression observed in multiple sclerosis with maturation.
Collapse
Affiliation(s)
- Yanina Ditamo
- Department of Biological Chemistry, CIQUIBIC (CONICET), Faculty of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
27
|
Quaratino S, Ruf J, Osman M, Guo J, McLachlan S, Rapoport B, Londei M. Human autoantibodies modulate the T cell epitope repertoire but fail to unmask a pathogenic cryptic epitope. THE JOURNAL OF IMMUNOLOGY 2005; 174:557-63. [PMID: 15611283 DOI: 10.4049/jimmunol.174.1.557] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abs can tune the responses of Ag-specific T cells by influencing the nature of the epitope repertoire displayed by APCs. We explored the interaction between human self-reactive T cells and human monoclonal autoantibodies from combinatorial Ig-gene libraries derived from autoimmune thyroiditis patients and specific for the main autoantigen thyroid peroxidase (TPO). All human mAbs extensively influenced the T cell epitope repertoire recognized by different TPO-specific T cell clones. The action of the human mAbs was complex, because sometimes the same Ab suppressed or enhanced the epitopes recognized by the 10 different TPO-specific T cell clones. The human mAbs could modulate the epitope repertoire when TPO was added exogenously and when expressed constitutively on the surface of APCs. However, they could not unmask an immunodominant cryptic TPO epitope. In this study, we show that human autoantibodies influence the activity of self-reactive T cells and prove their relevance in concealing or exposing epitopes recognized by self-reactive T cells. However, our results further stress the biological significance of the immunodominant cryptic epitope we have defined and its potential importance in the evolution of autoimmunity.
Collapse
Affiliation(s)
- Sonia Quaratino
- Cancer Sciences Division, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ditamo Y, Degano AL, Maccio DR, Pistoresi‐Palencia MC, Roth GA. Age‐related changes in the development of experimental autoimmune encephalomyelitis. Immunol Cell Biol 2004. [DOI: 10.1111/j.1440-1711.2005.01294.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanina Ditamo
- Department of Biological Chemistry – CIQUIBIC (CONICET)
| | | | | | | | - German A Roth
- Department of Biological Chemistry – CIQUIBIC (CONICET)
| |
Collapse
|
29
|
Devendra D, Paronen J, Moriyama H, Miao D, Eisenbarth GS, Liu E. Differential immune response to B:9-23 insulin 1 and insulin 2 peptides in animal models of type 1 diabetes. J Autoimmun 2004; 23:17-26. [PMID: 15236749 DOI: 10.1016/j.jaut.2004.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 03/10/2004] [Indexed: 11/23/2022]
Abstract
Mice have two insulin genes that differ in the insulin sequence by two amino acids, including the B9 position. Given prior studies of the B:9-23 insulin peptide in NOD mice, a fundamental question is whether the immune response to the B:9-23 peptide of the two insulins is identical. We investigate responses to the immunization with B:9-23 insulin 1 and 2 peptides in NOD and RIP-B7.1 Balb/c mice. NOD and F1 (Balb/c x C57/Bl6) B7.1 transgenic mice were given either B:9-23 insulin 1, B:9-23 insulin 2 or tetanus toxoid (TT) control peptide. Insulin autoantibodies (IAA), and anti-B:9-23 antibodies (IgG1 and IgG2c) were measured. Subcutaneous injection of the insulin 2 but not the insulin 1 peptide significantly protected NOD mice from diabetes. Conceptually similar, insulin 1 peptide immunization accelerated diabetes in the B7.1 mice compared with insulin 2 peptide. Insulin 1 and 2 peptides induced similar levels of IAA in the NOD mice except at week 26, where insulin 2 induced higher levels of IAA. Anti-IgG1 B:9-23 peptide antibodies were higher in the insulin 2 immunized group of NOD mice, while IgG2c anti-B:9-23 peptide antibodies were higher in the insulin 1 group. Adoptive transfer of splenocytes from insulin 1 immunized mice to NOD.scid mice demonstrated accelerated diabetogenicity. The protection afforded by insulin 2 peptide but not insulin 1 peptide in the NOD mouse is reflected by its predominant Th2 humoral response. This may relate to the protection conferred by the insulin 1 knockout when bred onto NOD mice in contrast to acceleration of disease with an insulin 2 knockout.
Collapse
Affiliation(s)
- D Devendra
- Barbara Davis Center for Childhood Diabetes, 4200 East 9th Avenue, Box B140, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
30
|
Weishaupt A, Kreiss M, Gold R, Herrmann T. Modulation of experimental autoimmune encephalomyelitis by administration of cells expressing antigenic peptide covalently linked to MHC class II. J Neuroimmunol 2004; 152:11-9. [PMID: 15223233 DOI: 10.1016/j.jneuroim.2004.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
The MHC class II molecule RT1Bl covalently linked with gpMBP-71-90 was expressed in P80 cells (mouse mastocytoma P815 expressing rat-CD80) and i.v. injection ameleriorated active and adoptive transfer (AT) experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Spinal cord of animals with AT-EAE showed significant increase of apoptotic T-cells at maximum of disease after injection of P80-RT1Bl-MBP-71-90 but not of P80RT1Bl or P80 cells. The data demonstrate a possible therapeutic effect on EAE by provision of T-cell receptor (TCR) and costimulatory signals by genetically engineered antigen presenting cells (APC) and suggest induction of T-cell apoptosis as important mechanism of action.
Collapse
Affiliation(s)
- Andreas Weishaupt
- Department of Neurology, Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Julius-Maximilians Universität, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany
| | | | | | | |
Collapse
|
31
|
Caligiuri G. Rôle de l’immunité dans l’athérosclérose et dans les syndromes coronariens aigus. Med Sci (Paris) 2004; 20:175-81. [PMID: 14997437 DOI: 10.1051/medsci/2004202175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases represent one of the most important causes of death in the world. The underlying pathogenetic process is atherosclerosis which leads to the progressive reduction of the arterial lumen and therefore to the ischemia of the perfused organs. Atherogenesis results from the interaction between the biology of the arterial wall and the various stress stimuli present in the circulating blood. The first steps of atherogenesis occur very early, already during the fetal life. Those arterial segments that are subjected to the initiating causes (including hemodynamic stress) show altered endothelial permeability and allow the infiltration of macromolecules, like lipoproteins, in the subintimal space. At the same time, the smooth muscle cells that are subjected to the same local factors produce proteoglycans able to bind lipoproteins and to promote their oxidation. Oxidized lipoproteins induce the expression of chemokines and adhesion molecules on the luminal surface of the endothelium, which then allow the local recruitment of monocytes-macrophages and T lymphocytes. This is a local inflammatory process that, in theory, should contribute to reestablish the homeostasis of the vascular wall by promoting the elimination of injured tissue and its repair. Unfortunately, for unknown reasons, the immuno-inflammatory reaction persists and autoamplifies, the various components of the immune response finally contributing to the pathogenesis of atherosclerosis as well as of atherosclerotic complications.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Inserm EMI 00-16, Faculté de médecine Necker-Enfants Malades, 156, rue de Vaugirard, 75015 Paris, France.
| |
Collapse
|
32
|
Fuse K, Kodama M, Ito M, Okura Y, Kato K, Hanawa H, Aoki S, Aizawa Y. Polarity of helper T cell subsets represents disease nature and clinical course of experimental autoimmune myocarditis in rats. Clin Exp Immunol 2004; 134:403-8. [PMID: 14632744 PMCID: PMC1808899 DOI: 10.1111/j.1365-2249.2003.02312.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mechanisms of progression, remission and relapse of myocarditis remain unclear. To clarify these mechanisms, we focused on T helper-1 (Th1)/T helper-2 (Th2) subsets balance of peripheral lymphocytes and serum cytokine levels during disease progression in rats with experimental autoimmune myocarditis (EAM). Lewis rats were immunized with cardiac myosin on day 0. Blood samples were collected on days 0, 7, 15, 18, 21, 28, 35, 42, 49 and 56 following immunization. We examined percentages of interferon (IFN)-gamma and/or interleukin (IL)-4 producing cells in stimulated peripheral CD4-positive lymphocytes using flow cytometry analysis. Serum IFN-gamma, IL-2, IL-6 and IL-10 levels were measured by enzyme-linked immunosorbent assay (ELISA). The percentage of Th1/Th2 subsets in EAM on days 0, 15, 28 and 56 were 2.5 +/- 0.5/0.5 +/- 0.1%, 19.4 +/- 3.2/1.6 +/- 0.3%, 2.0 +/- 0.5/22.1 +/- 5.7% and 3.0 +/- 0.4/1.7 +/- 0.3%, respectively. Serum levels of Th1 cytokines, IFN-gamma and IL-2 significantly increased in the acute phase (from day 15-18) and immediately decreased in the early recovery phase. On the other hand, serum levels of Th2 cytokine, IL-10 significantly increased in the early recovery phase (from day 24-30). These results suggest that induction of acute myocarditis might be associated with systemic Th1 dominance, while recovery is related to systemic Th2 polarity. Thus, analysis of Th1/Th2 balance in peripheral T cells may be useful in disease monitoring in patients with myocarditis and postmyocarditic dilated cardiomyopathy.
Collapse
Affiliation(s)
- K Fuse
- Division of Cardiology and Division of Haematology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Atherosclerosis is an inflammatory disease. T lymphocytes, occurring concomitantly with macrophages, are found in atherosclerotic lesions with substantial numbers in all stages. Most of the T cells in the lesions are CD4(+) T cells. The finding of activated T cells and macrophages in lesions and cloning of T cells specific for modified low-density lipoproteins from lesions suggest that a cell-mediated immune reaction is taking place in atherosclerosis. This review provides an overview of our current understanding of the roles of CD4(+) T cell subpopulations in atherosclerosis.
Collapse
Affiliation(s)
- Xinghua Zhou
- Center for Molecular Medicine L8:03 and Department of Medicine, Karolinska Hospital, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
34
|
Buch T, Uthoff-Hachenberg C, Waisman A. Protection from autoimmune brain inflammation in mice lacking IFN-regulatory factor-1 is associated with Th2-type cytokines. Int Immunol 2003; 15:855-9. [PMID: 12807824 DOI: 10.1093/intimm/dxg086] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IFN-regulatory factor-1 (IRF-1) is a transcription factor that regulates the expression of IFN-induced genes and type I IFN. It has previously been demonstrated that IRF-1-deficient mice show reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by a peptide from myelin basic protein. To further study the role of IRF-1 in brain inflammation, we analyzed EAE induced by immunization with a myelin oligodendrocyte glycoprotein-derived peptide in 129/Sv mice lacking IRF-1. We found that these mice were almost completely resistant to EAE induction and that this unresponsiveness was intrinsically related to the IRF-1 deficiency of the T cells, but not with any other cell type. Furthermore, we show that the amelioration of EAE was associated with increased production of T(h)2-type and decreased production of T(h)1-type cytokines. These results demonstrate that absence of IRF-1 in myelin-specific T cells results in protection from severe EAE and is associated with a skewing of the T cell response towards T(h)2.
Collapse
Affiliation(s)
- Thorsten Buch
- Laboratory of Molecular Immunology, Institute for Genetics, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | | | | |
Collapse
|
35
|
Bettelli E, Nicholson LB, Kuchroo VK. IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J Autoimmun 2003; 20:265-7. [PMID: 12791309 DOI: 10.1016/s0896-8411(03)00048-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Estelle Bettelli
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, HIM Room 706, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Hill NJ, Van Gunst K, Sarvetnick N. Th1 and Th2 pancreatic inflammation differentially affects homing of islet-reactive CD4 cells in nonobese diabetic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1649-58. [PMID: 12574327 DOI: 10.4049/jimmunol.170.4.1649] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The control of lymphocyte recruitment to the site of inflammation is an important component determining the pathogenicity of an autoimmune response. Progression from insulitis to diabetes in the nonobese diabetic mouse is typically associated with Th1 pancreatic inflammation, whereas Th2 inflammation can seemingly be controlled indefinitely. We show that a Th1 (IFN-gamma) pancreatic environment greatly accelerates the recruitment of adoptively transferred islet-specific CD4 T cells to the islets and also accelerates the onset of diabetes. The increased number of islet-reactive T cells in the pancreas does not result from increased proliferation or a decreased rate of apoptosis; instead, it appears to be caused by a greatly facilitated rate of entry to the pancreas. In contrast, a Th2 (IL-4) pancreatic environment does act to enhance Ag-specific proliferation and decrease the rate of apoptosis in islet-specific CD4 T cells. Nonpathogenic/regulatory cells are not preferentially expanded by the presence of IL-4. Increased recruitment to the islets was also observed in the presence of IL-4, but to a lesser extent than in the presence of IFN-gamma, and this lesser increase in the rate of recruitment did not accelerate diabetes onset within the time period examined. Therefore, the production of Th1 cytokines by initial islet-infiltrating cells may cause a greater increase than Th2 cytokines in the rate of recruitment of activated T cells. This difference in rate of recruitment may be critical in determining whether the initial infiltrate proceeds to diabetes or whether a steady state insulitis develops that can be maintained.
Collapse
Affiliation(s)
- Natasha J Hill
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Mannie MD, Fraser DJ, McConnell TJ. IL-4 responsive CD4+ T cells specific for myelin basic protein: IL-2 confers a prolonged postactivation refractory phase. Immunol Cell Biol 2003; 81:8-19. [PMID: 12534941 DOI: 10.1046/j.1440-1711.2003.01131.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study compared myelin basic protein-specific T cells from Lewis rats that were derived in the presence of either rat IL-4 or IL-2. Interleukin-4 was a maintenance factor that enabled derivation of long-term T cell lines. When activated, IL-4 dependent lines were lacking in IL-2 production capacity but maintained high levels of responsiveness to IL-2 and recognized IL-2 as a dominant growth factor. Activated IL-4 dependent T cells rapidly reverted to a quiescent phenotype in the presence of IL-4 and rapidly regained myelin basic protein reactivity. In contrast, activated IL-2 dependent T cells that were propagated in IL-2 had a more persistent blastogenic phenotype and a prolonged refractory phase. Interleukin-4 dependent lines that were propagated in IL-2 up-regulated the capacity to produce IL-2 and also acquired prolonged postactivation refractoriness. Thus, IL-2 was a dominant growth factor that conferred prolonged activation-dependent non-responsiveness. The coupling of dominant growth factor activity with prolonged postactivation refractoriness may be associated with the requisite role of IL-2 in homeostatic self-tolerance.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858, USA
| | | | | |
Collapse
|
38
|
Macé G, Jaume M, Blanpied C, Stephan L, Coudert JD, Druet P, Dietrich G. Anti-mu-opioid-receptor IgG antibodies are commonly present in serum from healthy blood donors: evidence for a role in apoptotic immune cell death. Blood 2002; 100:3261-8. [PMID: 12384426 DOI: 10.1182/blood-2002-01-0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously observed the presence of anti-human mu-opioid-receptor (anti-hMOR) autoantibodies in IgG pools prepared from several thousand healthy blood donors. These autoantibodies behaved agonistically because of their ability to bind to the first and third extracellular loops of the receptor. In this study, we found that each healthy donor's serum contained anti-hMOR IgG autoantibodies with a specific activity against both the first and the third extracellular loops of the receptor. Because of the inability of IgG to cross the blood-brain barrier, we investigated the effects of the expression of anti-hMOR autoantibodies on immune cells. In analogy to studies of the effects of morphine, we investigated the ability of antibodies to sensitize splenocytes to Fas (CD95)-mediated apoptosis. We took advantage of the high sequence homology between murine MOR and hMOR extracellular loops to estimate the effect on murine splenocytes of anti-hMOR antibodies raised by immunizing mice. Splenocytes from mice injected with Chinese hamster ovary (CHO) cells expressing MOR were sensitized to Fas-mediated apoptosis, whereas those from mice injected with CHO cells or phosphate-buffered saline were not. Similar sensitization to Fas-mediated apoptosis was observed in splenocytes from mice undergoing passive transfer either with IgG from mice previously immunized against CHO cells expressing MOR or with IgG directed against the first and third extracellular loops of the receptor. Together, our data show that anti-MOR autoantibodies are commonly expressed in healthy humans and could participate in the control of lymphocyte homeostasis by promoting Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U563, Department of Oncogenesis and Signaling in Haematopoietic Cells, Institut Claude de Préval, IFR 30, Hôpital Purpan, Faculté de Médecine Purpan, 31059 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol 2002; 3:944-50. [PMID: 12244307 DOI: 10.1038/ni833] [Citation(s) in RCA: 1265] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Accepted: 07/29/2002] [Indexed: 12/14/2022]
Abstract
To assess the importance of B cell control of T cell differentiation, we analyzed the course of the T helper type 1 (T(H)1)-driven disease experimental autoimmune encephalomyelitis in mice with an altered B cell compartment. We found that recovery was dependent on the presence of autoantigen-reactive B cells. B cells from recovered mice produced interleukin 10 (IL-10) in response to autoantigen. With a bone marrow chimeric system, we generated mice in which IL-10 deficiency was restricted to B cells but not T cells. In the absence of IL-10 production by B cells, the pro-inflammatory type 1 immune response persisted and mice did not recover. These data show that B cell-derived IL-10 plays a key role in controlling autoimmunity.
Collapse
Affiliation(s)
- Simon Fillatreau
- University of Edinburgh, Institute of Cell, Animal and Population Biology, King's Buildings West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | | | |
Collapse
|
40
|
Shirota H, Sano K, Hirasawa N, Terui T, Ohuchi K, Hattori T, Tamura G. B cells capturing antigen conjugated with CpG oligodeoxynucleotides induce Th1 cells by elaborating IL-12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:787-94. [PMID: 12097381 DOI: 10.4049/jimmunol.169.2.787] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
APCs initiate T cell-mediated immune responses against foreign Ags. Dendritic cells are professional APCs that play unique roles, including Ag-nonspecific capture, priming of naive T cells, and Th1 induction, whereas B cells generally lack these functions. In this study we uncovered novel aspects of murine B cells as APCs using CpG oligodeoxynucleotides (CpG) conjugated with an Ag. B cells served as efficient APCs independently of surface Igs. This characteristic was underlaid by the CpG-mediated Ag uptake and presentation, which were functional only when CpG were covalently conjugated to Ag. The B cells cultured with CpG-conjugated Ag not only enhanced IFN-gamma formation by Th1 cells, but also induced Th1 differentiation from unprimed T cells. These effects paralleled with the increase in the expression of CD40, CD86, and class II molecules on B cells and the coordinated production of IL-12 by the cells. To our knowledge this is the first report revealing that B cells share with dendritic cells common intrinsic characteristics, such as the Ag-nonspecific capture and presentation, and the induction of Th1 differentiation from unprimed T cells.
Collapse
Affiliation(s)
- Hidekazu Shirota
- Department of Respiratory and Infectious Diseases, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002. [PMID: 11901183 PMCID: PMC150903 DOI: 10.1172/jci07272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis is characterized by vascular inflammation and associated with systemic and local immune responses to oxidized LDL (oxLDL) and other antigens. Since immunization with oxLDL reduces atherosclerosis, we hypothesized that the disease might be associated with development of protective immunity. Here we show that spleen-associated immune activity protects against atherosclerosis. Splenectomy dramatically aggravated atherosclerosis in hypercholesterolemic apoE knockout (apoE degrees ) mice. Transfer of spleen cells from atherosclerotic apoE degrees mice significantly reduced disease development in young apoE degrees mice. To identify the protective subset, donor spleen cells were divided into B and T cells by immunomagnetic separation before transfer. Protection was conferred by B cells, which reduced disease in splenectomized apoE degrees mice to one-fourth of that in splenectomized apoE degrees controls. Protection could also be demonstrated in intact, nonsplenectomized mice and was associated with an increase in antibody titers to oxLDL. Fewer CD4(+) T cells were found in lesions of protected mice, suggesting a role for T-B cell cooperation. These results demonstrate that B cell-associated protective immunity develops during atherosclerosis and reduces disease progression.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Center for Molecular Medicine and Department of Medicine, Karolinska Institute, Stockholm, SwedenInstitut National de la Santé et de la Recherche Médicale U430, Hôpital Broussais, Paris, France
| | - Antonino Nicoletti
- Center for Molecular Medicine and Department of Medicine, Karolinska Institute, Stockholm, SwedenInstitut National de la Santé et de la Recherche Médicale U430, Hôpital Broussais, Paris, France
| | - Bruno Poirier
- Center for Molecular Medicine and Department of Medicine, Karolinska Institute, Stockholm, SwedenInstitut National de la Santé et de la Recherche Médicale U430, Hôpital Broussais, Paris, France
| | - Göran K. Hansson
- Center for Molecular Medicine and Department of Medicine, Karolinska Institute, Stockholm, SwedenInstitut National de la Santé et de la Recherche Médicale U430, Hôpital Broussais, Paris, France
| |
Collapse
|
42
|
Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002; 109:745-53. [PMID: 11901183 PMCID: PMC150903 DOI: 10.1172/jci7272] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is characterized by vascular inflammation and associated with systemic and local immune responses to oxidized LDL (oxLDL) and other antigens. Since immunization with oxLDL reduces atherosclerosis, we hypothesized that the disease might be associated with development of protective immunity. Here we show that spleen-associated immune activity protects against atherosclerosis. Splenectomy dramatically aggravated atherosclerosis in hypercholesterolemic apoE knockout (apoE degrees ) mice. Transfer of spleen cells from atherosclerotic apoE degrees mice significantly reduced disease development in young apoE degrees mice. To identify the protective subset, donor spleen cells were divided into B and T cells by immunomagnetic separation before transfer. Protection was conferred by B cells, which reduced disease in splenectomized apoE degrees mice to one-fourth of that in splenectomized apoE degrees controls. Protection could also be demonstrated in intact, nonsplenectomized mice and was associated with an increase in antibody titers to oxLDL. Fewer CD4(+) T cells were found in lesions of protected mice, suggesting a role for T-B cell cooperation. These results demonstrate that B cell-associated protective immunity develops during atherosclerosis and reduces disease progression.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Center for Molecular Medicine and Department of Medicine, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
43
|
Papassavas AC, Barnardo MCNM, Bunce M, Welsh KI. Is there MHC Class II restriction of the response to MHC Class I in transplant patients? Transplantation 2002; 73:642-51. [PMID: 11889447 DOI: 10.1097/00007890-200202270-00030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In this study, we evaluated distinct HLA-DRB1 alleles to determine class II restriction of the production of HLA-A2-specific antibodies in renal transplant patients. METHODS Data from 217 renal transplant patients who received an HLA-A2-mismatched renal graft were analyzed with regard to HLA-A2 humoral responsiveness. High-resolution DNA typing of class II HLA-DR alleles was performed by polymerase chain reaction-sequence-specific primer. Patients who had one of the following eight HLA-DRB1 alleles were included in the study: -*0101, -*0301, -*0401, -*0701, -*1101, -*1301, -*1401, and -*1501. Serum samples were screened posttransplantation with the standard complement-dependent cytotoxicity procedure. In addition, recombinant HLA-A2 monomers (the "MonoLISA" assay) were used as a target for the detection of HLA-A2 group-specific antibodies. The following HLA-A2 amino acid positions (termed "epitopes") that are responsible for the induction of an antibody response were defined: 74H, 65-66GK, 62G, 114H, 142-145TTKH, and 107W-127K. The definition of the "HLA-DR permittors" of anti-HLA-A2 response was based on a "class II restriction table" designed for this purpose. Prediction of immunogenic and/or nonimmunogenic HLA-A2 peptides was based on an MHC database. RESULTS The HLA-DRB1-*0101 and -*1401 alleles had a trend toward a positive correlation with the production of HLA class I-specific antibodies against the HLA-A2 shared (public) epitopes 65-66GK and -62G, respectively. Only the DRB1-*1501 allele had higher trend toward a positive correlation with the production of antibodies against the HLA-A2 private (74H) epitope. In 42 patients with the HLA-DRB1-*1501 allele, 11 (26%) patients produced HLA-specific antibodies against the HLA-A2 group of epitope(s). Moreover, in these patients, spreading of the alloreactivity against "other" HLA antigens was detected. Many of these other HLA antigens did not belong to HLA-A2 group but had newly defined shared epitopes with this group. Furthermore, the epitope prediction, based on an MHC database, revealed differences in the ligation strength (score) to the HLA allele (class I and II) for a specific HLA-A2 peptide in the 42 patients (responders and nonresponders). CONCLUSIONS The data presented in this paper suggest that the HLA class II allele and the type of the bound allopeptide may influence the humoral and cellular response. The immunogenicity of these allopeptides could be predicted with an MHC database (high-scored peptide=activating peptide and low-scored peptide=suppressor peptide). In the future, production of synthetic peptide analogues, on the basis of these predictions, could be used for induction of T-cell anergy and/or tolerance. In the short term, algorithms, on the basis of our approach, could be tested for influence on graft survival and allosensitization in current high-quality data sets.
Collapse
Affiliation(s)
- Andreas C Papassavas
- Transplantation Immunology, Oxford Transplant Centre, Churchill Hospital, Oxford Radcliffe Hospitals Trust, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Abstract
Astrocytes are the major glial cell within the central nervous system (CNS) and have a number of important physiological properties related to CNS homeostasis. The aspect of astrocyte biology addressed in this review article is the astrocyte as an immunocompetent cell within the brain. The capacity of astrocytes to express class II major histocompatibility complex (MHC) antigens and costimulatory molecules (B7 and CD40) that are critical for antigen presentation and T-cell activation are discussed. The functional role of astrocytes as immune effector cells and how this may influence aspects of inflammation and immune reactivity within the brain follows, emphasizing the involvement of astrocytes in promoting Th2 responses. The ability of astrocytes to produce a wide array of chemokines and cytokines is discussed, with an emphasis on the immunological properties of these mediators. The significance of astrocytic antigen presentation and chemokine/cytokine production to neurological diseases with an immunological component is described.
Collapse
Affiliation(s)
- Y Dong
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
45
|
Lunde E, Rasmussen IB, Eidem JK, Gregers TF, Western KH, Bogen B, Sandlie I. 'Troy-bodies': antibodies as vector proteins for T cell epitopes. BIOMOLECULAR ENGINEERING 2001; 18:109-16. [PMID: 11566602 DOI: 10.1016/s1389-0344(01)00091-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major objective in vaccine development is the design of reagents that give a strong, specific T cell response. Targeting of antigens to antigen presenting cells (APC) results in enhanced antigen presentation and T cell activation. In this paper, we describe a novel targeting reagent denoted 'Troy-bodies', namely recombinant antibodies with APC-specificity and with T cell epitopes integrated in their C regions. We have made such antibodies with V regions specific for either IgD or MHC class II, and five different T cell epitopes have been tested. All epitopes could be introduced into loops of C domains without disrupting immunoglobulin (Ig) folding. Four have been tested in T cell activation studies, and all could be released and presented by APC. Furthermore, whether IgD- or MHC-specific, the molecules tested enhanced T cell stimulation compared to non-specific control antibodies in vitro as well as in vivo. Using this technology, specific reagents can be designed that target selected antigenic peptides to an APC of choice. Troy-bodies may therefore be useful for manipulation of immune responses, and in particular for vaccination purposes.
Collapse
Affiliation(s)
- E Lunde
- Institute of Immunology, The National Hospital, N-0027, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
46
|
Lund E, Rasmussen IB, Western KH, Eidem JK, Sandlie I, Bogen B. "Troy-bodies": recombinant antibodies that target T cell epitopes to antigen presenting cells. Int Rev Immunol 2001; 20:647-73. [PMID: 11890617 DOI: 10.3109/08830180109045583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeting of antigens to antigen presenting cells (APC) results in enhanced antigen presentation and T cell activation. In this paper, we describe a novel targeting reagent denoted "Troy-bodies", namely recombinant antibodies with APC-specific V regions and C regions with integrated T cell epitopes. We have made such antibodies with V regions specific for either IgD or MHC class II, and four different T cell epitopes have been tested. All four epitopes could be introduced into loops of C domains without disrupting Ig folding, and they could be released and presented by APC. Furthermore, whether IgD- or MHC-specific, the molecules enhanced T cell stimulation compared to non-specific control antibodies in vitro as well as in vivo. Using this technology, specific reagents can be designed that target selected antigenic peptides to an APC of choice. Troy-bodies may therefore be useful for manipulation of immune responses, and in particular for vaccination purposes.
Collapse
Affiliation(s)
- E Lund
- Institute of Immunology, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
47
|
Savignac M, Badou A, Delmas C, Subra JF, De Cramer S, Paulet P, Cassar G, Druet P, Saoudi A, Pelletier L. Gold is a T cell polyclonal activator in BN and LEW rats but favors IL-4 expression only in autoimmune prone BN rats. Eur J Immunol 2001; 31:2266-76. [PMID: 11477538 DOI: 10.1002/1521-4141(200108)31:8<2266::aid-immu2266>3.0.co;2-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gold salts are beneficial in the treatment of rheumatoid arthritis but may induce immune-mediated disorders in predisposed patients. Gold salts induce Th2-dependent autoimmunity in Brown-Norway (BN) rats but not in Lewis (LEW) rats. The aim of this study was to define molecular targets of gold salts and to approach why LEW rats are resistant. Gold salts act on early steps of transduction in T cells from BN and LEW rats since they trigger tyrosine phosphorylation of numerous proteins including p56(lck) and a calcium signal which results in IL-4 and IFN-gamma expression by BN and LEW T cells. However, the IL-4 response was favored in BN spleen cells in vitro and in vivo. IFN-gamma, produced in part by CD8(+) cells, contributes to the resistance of LEW rats since gold salt-injected LEW rats receiving anti-CD8 or anti-IFN-gamma mAb displayed the parameters characteristics of gold salt-induced Th2 autoimmunity although to a lesser extent than in BN rats. Gold salts transduce a signal in BN and LEW spleen cells resulting in IL-4 and IFN-gamma gene transcription with a preferential IL-4 response in BN rats, a Th2-prone strain, while IFN-gamma contributes to the resistance of LEW rats.
Collapse
Affiliation(s)
- M Savignac
- INSERM U28, IFR 30 CHU Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Badou A, Savignac M, Moreau M, Leclerc C, Foucras G, Cassar G, Paulet P, Lagrange D, Druet P, Guéry JC, Pelletier L. Weak TCR stimulation induces a calcium signal that triggers IL-4 synthesis, stronger TCR stimulation induces MAP kinases that control IFN-gamma production. Eur J Immunol 2001; 31:2487-96. [PMID: 11500833 DOI: 10.1002/1521-4141(200108)31:8<2487::aid-immu2487>3.0.co;2-l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Th1 and Th2 cells produce different cytokines and have distinct functions. Th1/Th2 cell differentiation is influenced, among other factors, by the nature of TCR-MHC interactions. However, how the TCR transduces a signal resulting in IFN-gamma or IL-4 production is a matter of debate. For example, some authors reported a loss of calcium signaling pathway in Th2 cells. We used a T cell hybridoma producing IL-4 upon weak TCR stimulation and both IL-4 and IFN-gamma for strong TCR engagement as a model to study how TCR signaling pathways are differentially activated in both conditions of stimulation and how this influences the production of cytokines. We show that: (1) the calcium response is identical following weak and strong TCR stimulation; (2) mitogen-activated protein kinase(MAPK) activation is a gradual phenomenon depending upon the strength of TCR activation; (3) a calcium response, even weak, triggers IL-4 expression; (4) IFN-gamma synthesis requires not only a calcium response but also MAPK activation. The MAPK pathway is dispensable for IL-4 production, although it amplifies IL-4 synthesis upon strong TCR stimulation; (5) TCR-induced IL-4 production also depends on calcium signaling in Th2 cells, while IFN-gamma synthesis is dependent, in addition, on MAPK activation in Th1 cells.
Collapse
Affiliation(s)
- A Badou
- INSERM U28, IFR30, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Porakishvili N, Mageed R, Jamin C, Pers JO, Kulikova N, Renaudineau Y, Lydyard PM, Youinou P. Recent progress in the understanding of B-cell functions in autoimmunity. Scand J Immunol 2001; 54:30-8. [PMID: 11439145 DOI: 10.1046/j.1365-3083.2001.00950.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our early concepts of the normal role of B cells in immunity focused on their ability to produce antibodies (Ab) and in the case of autoimmune diseases autoAbs, some of which were pathogenic. Over the past 10 years, it has became apparent that B cells display a variety of characteristics, other than Ab production, which could contribute to autoimmunity. They normally play a role in the development of lymphoid architecture, regulating T-cell subsets and dendritic cell (DC) function through cytokine production, and in activation of T cells. Receptors editing is also important in B cells which aids in immunity to infection and, possibly, prevention of autoimmunity. Transgenic animal models have now shown that B cells are necessary for many autoimmune diseases although their Ab products are not required in some cases. Negative signalling by CD5 and other molecules, such as CD22, in maintaining tolerance through recruitment of src-homology two domain-containing protein tyrosine phosphatase-1 has also been documented. In fact, we have now reached a new era whereby the B cell has returned as an important contributor to autoimmune disorders, so that the race is on to characterize signalling regulation via the B-cell receptor and coreceptors. Identification of such molecules and their potential defects should lead to effective ways of controlling the immune response and in particular preventing the development of autoimmune states. The classical view of B cells in the biology of immune responses to infectious and self-antigens (Ag) that they promote immunity primarily by producing Ab turns out to be rather naïve. Indeed, studies over the last few years indicate that this view is far from complete, and suggest that B lymphocytes have extraordinarily diverse functions within the immune system. Furthermore, it is becoming increasingly clear that the pathogenesis of autoimmune diseases cannot solely be accounted for by T cells, and intrinsic abnormalities of B cells have been described in such conditions. In this brief review we highlight some recent observations in the context of B lymphocyte in pathophysiology, and focus on their revival as pivotal players the pathophysiology in autoimmune diseases. Yet, it remains difficult to provide a model of how important B cells are in immunity and autoimmunity.
Collapse
Affiliation(s)
- N Porakishvili
- Department of Immunology and Molecular Pathology, Royal Free and University College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gonnella PA, Waldner HP, Weiner HL. B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4456-64. [PMID: 11254701 DOI: 10.4049/jimmunol.166.7.4456] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral immune tolerance following i.v. administration of Ag has been shown to occur in the absence of B cells. Because different mechanisms have been identified for i.v. vs low dose oral tolerance and B cells are a predominant component of the gut-associated lymphoid tissue (GALT) they may play a role in tolerance induction following oral Ag. To examine the role of B cells in oral tolerance we fed low doses of OVA or myelin oligodendrocyte glycoprotein to B cell-deficient ( microMT) and wild-type C57BL/6 mice. Results showed that the GALT of naive wild-type and microMT mice was characterized by major differences in the cytokine microenvironment. Feeding low doses of 0.5 mg OVA or 250 microg myelin oligodendrocyte glycoprotein resulted in up-regulation of IL-4, IL-10, and TGF-beta in the GALT of wild-type but not microMT mice. Upon stimulation of popliteal node cells, in vitro induction of regulatory cytokines TGF-beta and IL-10 was observed in wild-type but not microMT mice. Greater protection against experimental autoimmune encephalomyelitis was found in wild-type mice. Oral tolerance in microMT and wild-type mice was found to proceed by different mechanisms. Anergy was observed from 0.5 mg to 250 ng in microMT mice but not in wild-type mice. Increased Ag was detected in the lymph of microMT mice. No cytokine-mediated suppression was found following lower doses from 100 ng to 500 pg in either group. These results demonstrate the importance of the B cell for the induction of cytokine-mediated suppression associated with low doses of Ag.
Collapse
Affiliation(s)
- P A Gonnella
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|