1
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Tsukui D, Kimura Y, Kono H. GM-CSF receptor/SYK/JNK/FOXO1/CD11c signaling promotes atherosclerosis. iScience 2023; 26:107293. [PMID: 37520709 PMCID: PMC10382675 DOI: 10.1016/j.isci.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Atherosclerosis complicates chronic inflammatory diseases, such as rheumatoid arthritis and systemic lupus erythematosus, suggesting that a shared physiological pathway regulates inflammatory responses in these diseases wherein spleen tyrosine kinase (SYK) is involved. We aimed to identify a shared therapeutic target for atherosclerosis and inflammatory diseases. We used Syk-knockout atherosclerosis-prone mice to determine whether SYK is involved in atherosclerosis via the inflammatory response and elucidate the mechanism of SYK signaling. The Syk-knockout mice showed reduced atherosclerosis in vivo, and macrophages derived from this strain showed ameliorated cell migration in vitro. CD11c expression decreased on Syk-knockout monocytes and macrophages; it was upregulated by forkhead box protein O1 (FOXO1) after stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF), and c-Jun amino-terminal kinase (JNK) mediated SYK signaling to FOXO1. Furthermore, FOXO1 inhibitor treatment mitigated atherosclerosis in mice. Thus, GM-CSF receptor/SYK/JNK/FOXO1/CD11c signaling in monocytes and macrophages and FOXO1 could be therapeutic targets for atherosclerosis and inflammatory diseases.
Collapse
Affiliation(s)
- Daisuke Tsukui
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Yoshitaka Kimura
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
3
|
Th2 Cytokines (Interleukin-5 and -9) Polymorphism Affects the Response to Anti-TNF Treatment in Polish Patients with Ankylosing Spondylitis. Int J Mol Sci 2022; 23:ijms232113177. [PMID: 36361964 PMCID: PMC9657232 DOI: 10.3390/ijms232113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease that belongs to the spondyloarthritis family. IL-5 and IL-9 belong to the group of Th2 cytokines of anti-inflammatory nature. Polymorphisms in their coding genes have been so far associated with various inflammatory diseases, but there are no reports regarding their involvement in AS pathogenesis to date. The purpose of the study was to investigate relationships between IL5 and IL9 genetic variants with AS susceptibility, clinical parameters as well as response to therapy with TNF inhibitors. In total 170 patients receiving anti-TNF therapy and 218 healthy controls were enrolled in the study. The genotyping of IL5 rs2069812 (A > G) and IL9 rs2069885 (G > A) single nucleotide polymorphisms was performed using the Real-Time PCR method based on LightSNiP kits assays. The present study demonstrated significant relationships between IL5 rs2069812 and IL9 rs2069885 polymorphisms and response to anti-TNF therapy. Presence of the IL5 rs2069812 A allele in patients positively correlated with better response to treatment (p = 0.022). With regard to IL9 rs2069885, patients carrying the A allele displayed better outcomes in anti-TNF therapy (p = 0.046). In addition, IL5 rs2069812 A and IL9 rs2069885 A alleles were associated with lower CRP and VAS values. The obtained results may indicate a significant role for IL-5 and IL-9 in the course of AS and response to anti-TNF therapy.
Collapse
|
4
|
Bayar Muluk N, Arikan OK, Atasoy P, Kiliç R, Tuna Yalçinozan E. The Role of CD68 (+) Histiocytic Macrophages in Nasal Polyp Development. J Neurol Surg B Skull Base 2021; 82:700-708. [PMID: 34745840 DOI: 10.1055/s-0040-1715593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/11/2020] [Indexed: 10/23/2022] Open
Abstract
Objectives The aim of this study was to investigate the role of CD68 (+) histiocytic macrophages (H-M) in the nasal polyp pathogenesis. Materials and Methods The study group consisted of 24 adult patients with nasal polyposis. The control group consisted of 11 adult patients without nasal polyps. A total of 36 nasal polyp samples (10-nasal cavity, 10-maxillary sinus, and 16-ethmoid sinus) from the study group and 11 inferior turbinate samples from the control group were analyzed by immunohistochemical staining, with monoclonal antibodies against CD68 (+) H-M. Results CD68 positivity was significantly higher than the control group in the subepithelial (SE) layer of the ethmoid sinus, and deep layers of nasal cavity, maxillary, and ethmoid sinuses. In SE and deep layers of ethmoid and maxillary sinuses, CD68 positivity was significantly higher than that of the epithelial layer. In the deep layer, histiocytic macrophages tended to gather around eosinophils. Conclusion The high numbers of CD68 (+) histiocytic macrophages mainly located in deep layer of lamina propria may be responsible for the phagocytosis of eosinophils within the polyp tissue. Therefore, it may be concluded that increased macrophages in nasal polyps do not trigger the growth of nasal polyps. Instead, they may serve to reduce the number of eosinophils in already-developed nasal polyps.
Collapse
Affiliation(s)
- Nuray Bayar Muluk
- Department of Ear, Nose, and Throat, Kirikkale University, Faculty of Medicine, Kirikkale, Turkey
| | - Osman Kürşat Arikan
- Department of Ear, Nose and Throat, Private Adana Ortadoğu Hospital, Adana, Turkey
| | - Pınar Atasoy
- Department of Pathology, Koç University Hospital, Istanbul, Turkey
| | - Rahmi Kiliç
- Ear, Nose, and Throat Clinics, Ankara Training and Research Hospital, Ankara, Turkey
| | - Eda Tuna Yalçinozan
- Department of Otorhinolaryngology-Head and Neck Surgery, Near East University School of Medicine, Nicosia, Cyprus
| |
Collapse
|
5
|
Arvind V, Huang AH. Reparative and Maladaptive Inflammation in Tendon Healing. Front Bioeng Biotechnol 2021; 9:719047. [PMID: 34350166 PMCID: PMC8327090 DOI: 10.3389/fbioe.2021.719047] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Tendon injuries are common and debilitating, with non-regenerative healing often resulting in chronic disease. While there has been considerable progress in identifying the cellular and molecular regulators of tendon healing, the role of inflammation in tendon healing is less well understood. While inflammation underlies chronic tendinopathy, it also aids debris clearance and signals tissue repair. Here, we highlight recent findings in this area, focusing on the cells and cytokines involved in reparative inflammation. We also discuss findings from other model systems when research in tendon is minimal, and explore recent studies in the treatment of human tendinopathy to glean further insights into the immunobiology of tendon healing.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alice H. Huang
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Šteňová E, Tarabčáková L, Babál P, Kašperová S. Hypereosinophilic syndrome-a rare adverse event of anti-cytokine treatment in rheumatoid arthritis resolved after Janus kinase inhibitor therapy. Clin Rheumatol 2020; 39:3507-3510. [PMID: 32495227 DOI: 10.1007/s10067-020-05134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Eosinophilia is uncommon in early rheumatoid arthritis (RA). The most frequent causes of hypereosinophilia during RA treatment are atopic eczema, allergy, helminth infection, haematological malignancy and drug-associated complications. The pathogenesis of this abnormality associated with anti-cytokine therapy is still unknown. We report the case of a young woman with RA and eosinophilia accompanied by systemic symptoms such as dyspnoea, fluid retention and eosinophilic vasculitis. An interesting observation was the persistence of eosinophilia during treatment with various biologics and its normalization after switching to the Janus kinase inhibitor baricitinib.
Collapse
Affiliation(s)
- Emőke Šteňová
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Staré Mesto, Mickiewiczova 13, 813 69, Bratislava, Slovakia.
| | - Lenka Tarabčáková
- Department of Rheumatology, Saint Michael's Hospital, Bratislava, Slovakia
| | - Pavel Babál
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Bratislava, Slovakia
| | - Stela Kašperová
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Staré Mesto, Mickiewiczova 13, 813 69, Bratislava, Slovakia
| |
Collapse
|
7
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
8
|
Nguyen TNY, Padungros P, Wongsrisupphakul P, Sa-Ard-Iam N, Mahanonda R, Matangkasombut O, Choo MK, Ritprajak P. Cell wall mannan of Candida krusei mediates dendritic cell apoptosis and orchestrates Th17 polarization via TLR-2/MyD88-dependent pathway. Sci Rep 2018; 8:17123. [PMID: 30459422 PMCID: PMC6244250 DOI: 10.1038/s41598-018-35101-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) abundantly express diverse receptors to recognize mannans in the outer surface of Candida cell wall, and these interactions dictate the host immune responses that determine disease outcomes. C. krusei prevalence in candidiasis worldwide has increased since this pathogen has developed multidrug resistance. However, little is known how the immune system responds to C. krusei. Particularly, the molecular mechanisms of the interplay between C. krusei mannan and DCs remain to be elucidated. We investigated how C. krusei mannan affected DC responses in comparison to C. albicans, C. tropicalis and C. glabrata mannan. Our results showed that only C. krusei mannan induced massive cytokine responses in DCs, and led to apoptosis. Although C. krusei mannan-activated DCs underwent apoptosis, they were still capable of initiating Th17 response. C. krusei mannan-mediated DC apoptosis was obligated to the TLR2 and MyD88 pathway. These pathways also controlled Th1/Th17 switching possibly by virtue of the production of the polarizing cytokines IL-12 and IL-6 by the C. krusei mannan activated-DCs. Our study suggests that TLR2 and MyD88 pathway in DCs are dominant for C. krusei mannan recognition, which differs from the previous reports showing a crucial role of C-type lectin receptors in Candida mannan sensing.
Collapse
Affiliation(s)
- Thu Ngoc Yen Nguyen
- Graduate program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panuwat Padungros
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Panachai Wongsrisupphakul
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rangsini Mahanonda
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Oranart Matangkasombut
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Patcharee Ritprajak
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Alhazmi A. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection. J Innate Immun 2018; 10:255-263. [PMID: 29925062 DOI: 10.1159/000489863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase which associates directly with extracellular receptors, and is critically involved in signal transduction pathways in a variety of cell types for the regulation of cellular responses. SYK is expressed ubiquitously in immune and nonimmune cells, and has a much wider biological role than previously recognized. Several studies have highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic gram-negative pathogen, which is responsible for systemic infections in immunocompromised individuals, accounting for a major cause of severe chronic lung infection in cystic fibrosis patients and subsequently resulting in a progressive deterioration of lung function. Inhibition of SYK activity has been explored as a therapeutic option in several allergic disorders, autoimmune diseases, and hematological malignancies. This review focuses on SYK as a therapeutic target, and describes the possibility of how current knowledge could be translated for therapeutic purposes to regulate the immune response to the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Alaa Alhazmi
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.,Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Yan Y, Bao HP, Li CL, Shi Q, Kong YH, Yao T, Li YL. Wentong decoction cures allergic bronchial asthma by regulating the apoptosis imbalance of EOS. Chin Med 2018; 13:21. [PMID: 29713367 PMCID: PMC5907368 DOI: 10.1186/s13020-018-0180-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Eosinophils (EOS) is one of the most important cells involved in the pathogenesis of chronic airway inflammation in asthma, and its apoptosis is part of the mechanisms of asthma. Therefore, this study aimed to observe the effect of Chinese medicine Wentong decoction (WTD) in EOS apoptosis in asthmatic rats. This work also explored the mechanism of WTD regulation in EOS apoptosis and provided a new target for clinical treatment of asthma. Methods Asthmatic rats induced by ovalbumin were treated with WTD. Lung function of rats in each group was detected, and lung tissue pathology, EOS counts in blood and bronchoalveolar lavage fluid were observed. The degree of the EOS apoptosis in rats was detected. The expression content of interleukin (IL)-5, IL-10, chemokine (C-C motif) ligand 5 (CCL5), granulocyte-macrophage colony-stimulating factor (GM-CSF), transforming growth factor beta 1 (TGF-β1), interferon (IFN)-γ, and other cytokines in rat serum and the genes of Eotaxin mRNA, Fas mRNA, FasL mRNA, Fas/FasL and Bcl-2 mRNA in the lung tissues were determined. Results WTD can reduced airway resistance in rat models and improved airway compliance. The pathological changes of lung tissue in WTD group were significantly alleviated, at the same time, WTD could reduce the EOS count in the blood and BALF smears of the asthmatic model rats. Compared with the model group, the apoptosis degree of EOS significantly increased in rats in the WTD group. The expression of IL-5, CCL5, and GM-CSF in the serum and the expression of Eotaxin mRNA, Bcl-2 mRNA in the lung tissues in rats in the WTD group rats decreased. Moreover, the expression of IL-10, TGF-β1, and IFN-γ in the serum and the expression of Fas mRNA, FasL mRNA in the lung tissues in rats in the WTD group rats increased compared with that in rats in the model group. Conclusions Wentong decoction may accelerate EOS apoptosis, reduce asthma inflammation, and alleviate the disease through regulating and controlling the factors related to the anti-apoptosis and pro-apoptosis.
Collapse
Affiliation(s)
- Yue Yan
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Hai-Peng Bao
- 2Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Chun-Lei Li
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Qi Shi
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Yan-Hua Kong
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - Ting Yao
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| | - You-Lin Li
- 1The 2nd Department of Pulmonary Disease in TCM, The Key Unit of SATCM Pneumonopathy Chronic Cough and Dyspnea, Beijing Key Laboratory of Prevention and Treatment of Allergic Diseases With TCM (No. BZ0321), Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, 100029 China
| |
Collapse
|
11
|
Esnault S, Kelly EA. Essential Mechanisms of Differential Activation of Eosinophils by IL-3 Compared to GM-CSF and IL-5. Crit Rev Immunol 2018; 36:429-444. [PMID: 28605348 DOI: 10.1615/critrevimmunol.2017020172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Compelling evidence has demonstrated that the eosinophils bring negative biological outcomes in several diseases, including eosinophilic asthma and hypereosinophilic syndromes. Eosinophils produce and store a broad range of toxic proteins and other mediators that enhance the inflammatory response and lead to tissue damage. For instance, in asthma, a close relationship has been demonstrated between increased lung eosinophilia, asthma exacerbation, and loss of lung function. The use of an anti-IL-5 therapy in severe eosinophilic asthmatic patients is efficient to reduce exacerbations. However, anti-IL-5-treated patients still display a relatively high amount of functional lung tissue eosinophils, indicating that supplemental therapies are required to damper the eosinophil functions. Our recent published works suggest that compared to IL-5, IL-3 can more strongly and differentially affect eosinophil functions. In this review, we summarize our and other investigations that have compared the effects of the three β-chain receptor cytokines (IL-5, GM-CSF and IL-3) on eosinophil biology. We focus on how IL-3 differentially activates eosinophils compared to IL-5 or GM-CSF.
Collapse
Affiliation(s)
- Stephane Esnault
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, 600 Highland Avenue, CSC K4/928, Madison, WI 53792-9988
| | - Elizabeth A Kelly
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, 600 Highland Avenue, CSC K4/928, Madison, WI 53792-9988
| |
Collapse
|
12
|
Chang HC, Huang DY, Wu MS, Chu CL, Tzeng SJ, Lin WW. Spleen tyrosine kinase mediates the actions of EPO and GM-CSF and coordinates with TGF-β in erythropoiesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:687-696. [DOI: 10.1016/j.bbamcr.2017.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
13
|
Nixon J, Newbold P, Mustelin T, Anderson GP, Kolbeck R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol Ther 2016; 169:57-77. [PMID: 27773786 DOI: 10.1016/j.pharmthera.2016.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eosinophils have been linked with asthma for more than a century, but their role has been unclear. This review discusses the roles of eosinophils in asthma and chronic obstructive pulmonary disease (COPD) and describes therapeutic antibodies that affect eosinophilia. The aims of pharmacologic treatments for pulmonary conditions are to reduce symptoms, slow decline or improve lung function, and reduce the frequency and severity of exacerbations. Inhaled corticosteroids (ICS) are important in managing symptoms and exacerbations in asthma and COPD. However, control with these agents is often suboptimal, especially for patients with severe disease. Recently, new biologics that target eosinophilic inflammation, used as adjunctive therapy to corticosteroids, have proven beneficial and support a pivotal role for eosinophils in the pathology of asthma. Nucala® (mepolizumab; anti-interleukin [IL]-5) and Cinquair® (reslizumab; anti-IL-5), the second and third biologics approved, respectively, for the treatment of asthma, exemplifies these new treatment options. Emerging evidence suggests that eosinophils may contribute to exacerbations and possibly to lung function decline for a subset of patients with COPD. Here we describe the pharmacology of therapeutic antibodies inhibiting IL-5 or targeting the IL-5 receptor, as well as other cytokines contributing to eosinophilic inflammation. We discuss their roles as adjuncts to conventional therapeutic approaches, especially ICS therapy, when disease is suboptimally controlled. These agents have achieved a place in the therapeutic armamentarium for asthma and COPD and will deepen our understanding of the pathogenic role of eosinophils.
Collapse
Affiliation(s)
| | | | | | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
14
|
Lindau A, Härdtner C, Hergeth SP, Blanz KD, Dufner B, Hoppe N, Anto-Michel N, Kornemann J, Zou J, Gerhardt LMS, Heidt T, Willecke F, Geis S, Stachon P, Wolf D, Libby P, Swirski FK, Robbins CS, McPheat W, Hawley S, Braddock M, Gilsbach R, Hein L, von zur Mühlen C, Bode C, Zirlik A, Hilgendorf I. Atheroprotection through SYK inhibition fails in established disease when local macrophage proliferation dominates lesion progression. Basic Res Cardiol 2016; 111:20. [PMID: 26891724 PMCID: PMC4759214 DOI: 10.1007/s00395-016-0535-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/21/2016] [Indexed: 01/09/2023]
Abstract
Macrophages in the arterial intima sustain chronic inflammation during atherogenesis. Under hypercholesterolemic conditions murine Ly6Chigh monocytes surge in the blood and spleen, infiltrate nascent atherosclerotic plaques, and differentiate into macrophages that proliferate locally as disease progresses. Spleen tyrosine kinase (SYK) may participate in downstream signaling of various receptors that mediate these processes. We tested the effect of the SYK inhibitor fostamatinib on hypercholesterolemia-associated myelopoiesis and plaque formation in Apoe−/− mice during early and established atherosclerosis. Mice consuming a high cholesterol diet supplemented with fostamatinib for 8 weeks developed less atherosclerosis. Histologic and flow cytometric analysis of aortic tissue showed that fostamatinib reduced the content of Ly6Chigh monocytes and macrophages. SYK inhibition limited Ly6Chigh monocytosis through interference with GM-CSF/IL-3 stimulated myelopoiesis, attenuated cell adhesion to the intimal surface, and blocked M-CSF stimulated monocyte to macrophage differentiation. In Apoe−/− mice with established atherosclerosis, however, fostamatinib treatment did not limit macrophage accumulation or lesion progression despite a significant reduction in blood monocyte counts, as lesional macrophages continued to proliferate. Thus, inhibition of hypercholesterolemia-associated monocytosis, monocyte infiltration, and differentiation by SYK antagonism attenuates early atherogenesis but not established disease when local macrophage proliferation dominates lesion progression.
Collapse
Affiliation(s)
- Alexandra Lindau
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Carmen Härdtner
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Sonja P Hergeth
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Kelly Daryll Blanz
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bianca Dufner
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Nathaly Anto-Michel
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jan Kornemann
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jiadai Zou
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Louisa M S Gerhardt
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Florian Willecke
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Serjosha Geis
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Shaun Hawley
- AstraZeneca R&D, Alderley Park, Macclesfield, UK
| | | | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Constantin von zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
15
|
Eosinophil-specific deletion of IκBα in mice reveals a critical role of NF-κB-induced Bcl-xL for inhibition of apoptosis. Blood 2015; 125:3896-904. [PMID: 25862560 DOI: 10.1182/blood-2014-10-607788] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/04/2015] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are associated with type 2 immune responses to allergens and helminths. They release various proinflammatory mediators and toxic proteins on activation and are therefore considered proinflammatory effector cells. Eosinophilia is promoted by the cytokines interleukin (IL)-3, IL-5, and granulocyte macrophage-colony-stimulating factor (GM-CSF) and can result from enhanced de novo production or reduced apoptosis. In this study, we show that only IL-5 induces differentiation of eosinophils from bone marrow precursors, whereas IL-5, GM-CSF, and to a lesser extent IL-3 promote survival of mature eosinophils. The receptors for these cytokines use the common β chain, which serves as the main signaling unit linked to signal transducer and activator of transcription 5, p38 mitogen-activated protein kinase, and nuclear factor (NF)-κB pathways. Inhibition of NF-κB induced apoptosis of in vitro cultured eosinophils. Selective deletion of IκBα in vivo resulted in enhanced expression of Bcl-xL and reduced apoptosis during helminth infection. Retroviral overexpression of Bcl-xL promoted survival, whereas pharmacologic inhibition of Bcl-xL in murine or human eosinophils induced rapid apoptosis. These results suggest that therapeutic strategies targeting Bcl-xL in eosinophils could improve health conditions in allergic inflammatory diseases.
Collapse
|
16
|
Sprissler C, Belenki D, Maurer H, Aumann K, Pfeifer D, Klein C, Müller TA, Kissel S, Hülsdünker J, Alexandrovski J, Brummer T, Jumaa H, Duyster J, Dierks C. Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J 2014; 4:e240. [PMID: 25148222 PMCID: PMC4219468 DOI: 10.1038/bcj.2014.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022] Open
Abstract
The spleen tyrosine kinase (SYK) was identified as an oncogenic driver in a broad spectrum of hematologic malignancies. The in vivo comparison of three SYK containing oncogenes, SYK(wt), TEL-SYK and IL-2-inducible T-cell kinase (ITK)-SYK revealed a general myeloexpansion and the establishment of three different hematologic (pre)diseases. SYK(wt) enhanced the myeloid and T-cell compartment, without leukemia/lymphoma development. ITK-SYK caused lethal T-cell lymphomas and the cytoplasmic TEL-SYK fusion induced an acute panmyelosis with myelofibrosis-type acute myeloid leukemia (AML) with up to 50% immature megakaryoblasts infiltrating bone marrow, spleen and liver, additional MPN features (myelofibrosis and granulocyte expansion) and MDS stigmata with megakaryocytic and erythroid dysplasia. LKS cells were reduced and all subsets (LT/ST/MPP) showed reduced proliferation rates. SYK inhibitor treatment (R788) of diseased TEL-SYK mice reduced leukocytosis, spleen and liver infiltration, enhanced the hematocrit and prolonged survival time, but could not significantly reduce myelofibrosis. Stat5 was identified as a major downstream mediator of TEL-SYK in vitro as well as in vivo. Consequently, targeted deletion of Stat5 in vivo completely abrogated TEL-SYK-induced AML and myelofibrosis development, proving Stat5 as a major driver of SYK-induced transformation. Our experiments highlight the important role of SYK in AML and myelofibrosis and prove SYK and STAT5 inhibitors as potent treatment options for those diseases.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Deletion
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/prevention & control
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Primary Myelofibrosis/prevention & control
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Syk Kinase
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- C Sprissler
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | - D Belenki
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - H Maurer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - K Aumann
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - D Pfeifer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Klein
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T A Müller
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - S Kissel
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Hülsdünker
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Alexandrovski
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T Brummer
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - H Jumaa
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - J Duyster
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Dierks
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| |
Collapse
|
17
|
Larose MC, Turcotte C, Chouinard F, Ferland C, Martin C, Provost V, Laviolette M, Flamand N. Mechanisms of human eosinophil migration induced by the combination of IL-5 and the endocannabinoid 2-arachidonoyl-glycerol. J Allergy Clin Immunol 2014; 133:1480-2, 1482.e1-3. [PMID: 24530098 DOI: 10.1016/j.jaci.2013.12.1081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/20/2013] [Accepted: 12/20/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Marie-Chantal Larose
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Caroline Turcotte
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - François Chouinard
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Claudine Ferland
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Cyril Martin
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Véronique Provost
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Michel Laviolette
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Nicolas Flamand
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5.
| |
Collapse
|
18
|
Ilmarinen P, Moilanen E, Kankaanranta H. Regulation of spontaneous eosinophil apoptosis-a neglected area of importance. J Cell Death 2014; 7:1-9. [PMID: 25278781 PMCID: PMC4167313 DOI: 10.4137/jcd.s13588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 01/05/2013] [Indexed: 12/30/2022] Open
Abstract
Asthma is characterized by the accumulation of eosinophils in the airways in most phenotypes. Eosinophils are inflammatory cells that require an external survival-prolonging stimulus such as granulocyte macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-5, or IL-3 for survival. In their absence, eosinophils are programmed to die by spontaneous apoptosis in a few days. Eosinophil apoptosis can be accelerated by Fas ligation or by pharmacological agents such as glucocorticoids. Evidence exists for the relevance of these survival-prolonging and pro-apoptotic agents in the regulation of eosinophilic inflammation in inflamed airways. Much less is known about the physiological significance and mechanisms of spontaneous eosinophil apoptosis even though it forms the basis of regulation of eosinophil longevity by pathophysiological factors and pharmacological agents. This review concentrates on discussing the mechanisms of spontaneous eosinophil apoptosis compared to those of glucocorticoid- and Fas-induced apoptosis. We aim to answer the question whether the external apoptotic stimuli only augment the ongoing pathway of spontaneous apoptosis or truly activate a specific pathway.
Collapse
Affiliation(s)
- Pinja Ilmarinen
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, School of Medicine University of Tampere and Tampere University Hospital, Tampere, Finland. ; Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland and University of Tampere, Tampere, Finland
| |
Collapse
|
19
|
Lee EJ, Lee SJ, Kim S, Cho SC, Choi YH, Kim WJ, Moon SK. Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: involvement of the p21WAF1 expression. Cell Signal 2013; 25:2025-38. [PMID: 23770289 DOI: 10.1016/j.cellsig.2013.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Inflammatory cytokines may be a critical component of epithelial cancer progression. We examined the role of interleukin (IL)-5 in the migration of bladder cancer cells. The expression of IL-5 and its receptor IL-5Rα was enhanced in patients with muscle invasive bladder cancers (MIBC), and then it was detected in bladder cancer cell lines 5637 and T-24. IL-5 increased migration and MMP-9 expression via activation of transcription factors NF-κB and AP-1, and induced activation of ERK1/2 and Jak-Stat signaling in both cells. Treatment with ERK1/2 inhibitor U0126 significantly inhibited induction of migration, MMP-9 expression, and activation of NF-κB and AP-1 in IL-5-treated cells. However, none of the Jak inhibitors affected the IL-5-induced migration of bladder cancer cells. Moreover, gene knockdown for IL-5Rα, using siRNA transfection, suppressed migration, ERK1/2 activation, MMP-9 expression, as well as the binding activation of NF-κB and AP-1 in IL-5-treated bladder cancer cells. Similar results were observed in βc siRNA (si-βc) transfected cells. Unexpectedly, IL-5 treatment resulted in significant induction of p21WAF1 in both cell lines. The p21WAF1-specific small interfering RNA inhibited IL-5-induced cell migration, ERK activity, MMP-9 expression, and activation of NF-κB and AP-1 in bladder cancer cells. The effects of IL-5-induced cell responses were confirmed by transfection of IL-5 gene, which demonstrated that p21WAF1 participates in the induction of cell migration, leading to an increase in ERK1/2-mediated MMP-9 expression through activation of NF-κB and AP-1 in IL-5-treated bladder cancer cells. These unexpected results provide a theoretical basis for the therapeutic targeting of IL-5 in bladder cancer.
Collapse
Affiliation(s)
- Eo-Jin Lee
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Javadi M, Richmond TD, Huang K, Barber DL. CBL linker region and RING finger mutations lead to enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling via elevated levels of JAK2 and LYN. J Biol Chem 2013; 288:19459-70. [PMID: 23696637 DOI: 10.1074/jbc.m113.475087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways.
Collapse
Affiliation(s)
- Mojib Javadi
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | |
Collapse
|
21
|
Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD, Luo H, Zellner KR, Protheroe CA, Willetts L, Lesuer WE, Colbert DC, Helmers RA, Lacy P, Moqbel R, Lee NA. Human versus mouse eosinophils: "that which we call an eosinophil, by any other name would stain as red". J Allergy Clin Immunol 2012; 130:572-84. [PMID: 22935586 DOI: 10.1016/j.jaci.2012.07.025] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients.
Collapse
Affiliation(s)
- James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee SJ, Lee EJ, Kim SK, Jeong P, Cho YH, Yun SJ, Kim S, Kim GY, Choi YH, Cha EJ, Kim WJ, Moon SK. Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; the roles of IL-5, IL-20, and IL-28A. PLoS One 2012; 7:e40267. [PMID: 22962576 PMCID: PMC3433484 DOI: 10.1371/journal.pone.0040267] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/04/2012] [Indexed: 12/21/2022] Open
Abstract
We used gene expression profiling to identify inflammatory cytokines that correlate with bladder cancer development. Gene expression profiles of the tissue samples were investigated using cDNA microarrays that contained 103 non-muscle invasive bladder cancers (NMIBC), 62 muscle invasive bladder cancers (MIBC), 58 samples of histologically normal-looking surrounding tissues, and 10 normal, healthy subjects who served as the control cohort for comparison. We grouped the data-sets according to biological characterizations and focused on immune response genes with at least 2-fold differential expression in MIBC vs. controls. The experimental data-set identified 36 immune-related genes that were significantly altered in MIBC samples. In addition, 10 genes were up-regulated and 26 genes were down-regulated in MIBC samples compared with the normal tissues. Among the 10 up-regulated molecules examined, the capacity for both wound-healing migration and invasion was enhanced in response to IL-5, IL-20, and IL-28A in bladder cancer cell lines (253J and EJ cells), compared with untreated cells. The expression levels of IL-5, IL-20, and IL-28A were increased in patients with MIBC. All 3 cytokines and their receptors were produced in bladder cancer cell lines, as determined by real-time PCR, immunoblot analysis and confocal immunofluorescence. Up-regulation of MMP-2 and MMP-9 was found after IL-5, IL-20, and IL-28A stimulation in both cell types. Moreover, an EMSA assay showed that treatment with IL-5, IL-20, and IL-28A induced activation of the transcription factors NF-κB and AP-1 that regulate the MMP-9 promoter. Finally, activation of MAPK and Jak-Stat signaling was observed after the addition of IL-5, IL-20, and IL-28A to bladder cancer cells. This study suggests the presence of specific inflammatory cytokine (IL-5, IL-20, and IL-28A)-mediated association in bladder cancer development. All 3 cytokines may be important new molecular targets for the modulation of migration and invasion in bladder cancer.
Collapse
Affiliation(s)
- Se-Jung Lee
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk, South Korea
- Department of Food Science and Technology, Chung-Ang University, Ansung, Korea
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Eo-Jin Lee
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk, South Korea
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Seon-Kyu Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Pildu Jeong
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Young-Hwa Cho
- Juseong Gene Therapy R&D Center, Juseong University, Chungbuk, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Sangtae Kim
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk, South Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, South Korea
| | - Eun-Jong Cha
- Department of Biomedical Engineering, Chungbuk National University, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Sung-Kwon Moon
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk, South Korea
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| |
Collapse
|
23
|
The potential use of tyrosine kinase inhibitors in severe asthma. Curr Opin Allergy Clin Immunol 2012; 12:68-75. [PMID: 22157153 DOI: 10.1097/aci.0b013e32834ecb4f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW Severe asthma comprises heterogeneous phenotypes that share in common a poor response to traditional therapies. Recent and ongoing work with tyrosine kinase inhibitors suggests a potential beneficial role in treatment of severe asthma. RECENT FINDINGS Various receptor and nonreceptor tyrosine kinase pathways contribute to aspects of airway inflammation, airway hyperresponsiveness, and remodeling of asthma. Selective and nonselective tyrosine kinase inhibitors may be useful to block pathways that are pathologically overactive or overexpressed in severe asthma. Recent in-vivo studies have demonstrated the utility of inhibitors against specific tyrosine kinases (epidermal growth factor receptor, c-kit/platelet derived growth factor receptor, vascular endothelial growth factor receptor, spleen tyrosine kinase, and janus kinase) in altering key aspects of severe asthma. SUMMARY Asthma and even severe asthma does not consist of a single phenotype. Targeting key inflammatory and remodeling pathways engaged across subphenotypes with tyrosine kinase inhibitors appears to hold promise.
Collapse
|
24
|
Wang X, Mychajlowycz M, Lau C, Gutierrez C, Scott JA, Chow CW. Spleen tyrosine kinase mediates BEAS-2B cell migration and proliferation and human rhinovirus-induced expression of vascular endothelial growth factor and interleukin-8. J Pharmacol Exp Ther 2012; 340:277-85. [PMID: 22031919 DOI: 10.1124/jpet.111.186429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is an immunoregulatory tyrosine kinase that was identified originally in leukocytes. It is a key regulator of innate immunity as well as hematopoietic cell differentiation and proliferation. A role for Syk in regulating normal cellular functions in nonhematopoietic cells is increasingly recognized. We have shown previously robust Syk expression in airway epithelium, where it regulates the early inflammatory response to human rhinovirus (HRV) infections, and HRV cell entry by clathrin-mediated endocytosis. To test the hypothesis that Syk plays a role in modulating airway epithelial cell proliferation, migration, and production of vascular endothelial growth factor and interleukin-8, we studied the BEAS-2B human bronchial epithelial cell line and primary human airway epithelia from normal and asthmatic donors using Syk-specific pharmacologic inhibitors and small interfering RNA. Using an in vitro "wounding" model, we demonstrated significant impairment of "wound" closure after treatment with the Syk inhibitors N4-(2,2-dimethyl-3-oxo-4H-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (R406) and 2-[7-(3,4-dimethoxyphenyl)-imidazo[1,2-c]pyrimidin-5-ylamino]-nicotinamide dihydrochloride (BAY61-3606), overexpression of the kinase-inactive Syk(K396R) mutant, and Syk knockdown by small interfering RNA. HRV infection also impaired wound healing, an effect that was partly Syk-dependent because wound healing was impaired further when HRV infection occurred in the presence of Syk inhibition. Further investigation of potential regulatory mechanisms revealed that inhibition of Syk suppressed HRV-induced vascular endothelial growth factor expression while promoting the activation of caspase-3, a mediator of epithelial cell apoptosis. Together, these results indicate that Syk plays a role in promoting epithelial cell proliferation and migration, while mitigating the effects of apoptosis.
Collapse
Affiliation(s)
- Xiaomin Wang
- Division of Respirology and Multi-Organ Transplantation Programme, University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Ma P, Vemula S, Munugalavadla V, Chen J, Sims E, Borneo J, Kondo T, Ramdas B, Mali RS, Li S, Hashino E, Takemoto C, Kapur R. Balanced interactions between Lyn, the p85alpha regulatory subunit of class I(A) phosphatidylinositol-3-kinase, and SHIP are essential for mast cell growth and maturation. Mol Cell Biol 2011; 31:4052-62. [PMID: 21791602 PMCID: PMC3187372 DOI: 10.1128/mcb.05750-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/28/2011] [Accepted: 07/09/2011] [Indexed: 01/01/2023] Open
Abstract
The growth and maturation of bone marrow-derived mast cells (BMMCs) from precursors are regulated by coordinated signals from multiple cytokine receptors, including KIT. While studies conducted using mutant forms of these receptors lacking the binding sites for Src family kinases (SFKs) and phosphatidylinositol-3-kinase (PI3K) suggest a role for these signaling molecules in regulating growth and survival, how complete loss of these molecules in early BMMC progenitors (MCps) impacts maturation and growth during all phases of mast cell development is not fully understood. We show that the Lyn SFK and the p85α subunit of class I(A) PI3K play opposing roles in regulating the growth and maturation of BMMCs in part by regulating the level of PI3K. Loss of Lyn in BMMCs results in elevated PI3K activity and hyperactivation of AKT, which accelerates the rate of BMMC maturation due in part to impaired binding and phosphorylation of SHIP via Lyn's unique domain. In the absence of Lyn's unique domain, BMMCs behave in a manner similar to that of Lyn- or SHIP-deficient BMMCs. Importantly, loss of p85α in Lyn-deficient BMMCs not only represses the hyperproliferation associated with the loss of Lyn but also represses their accelerated maturation. The accelerated maturation of BMMCs due to loss of Lyn is associated with increased expression of microphthalmia-associated transcription factor (Mitf), which is repressed in MCps deficient in the expression of both Lyn and p85α relative to controls. Our results demonstrate a crucial interplay of Lyn, SHIP, and p85α in regulating the normal growth and maturation of BMMCs, in part by regulating the activation of AKT and the expression of Mitf.
Collapse
Affiliation(s)
- Peilin Ma
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Papazoglou E, Huang ZY, Sunkari C, Uitto J. The role of Syk kinase in ultraviolet-mediated skin damage. Br J Dermatol 2011; 165:69-77. [PMID: 21410673 DOI: 10.1111/j.1365-2133.2011.10309.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation is the main cause of skin photodamage; the resulting modulation of matrix metalloproteinases (MMPs) leads to collagen degradation. There is no easily accessible molecular indicator of early skin UV damage. OBJECTIVES In this study, we investigated the effects of Syk kinase on MMP expression and evaluated the sensitivity and usefulness of Syk as an early indicator of skin UV damage. METHODS Human dermal fibroblasts (HDFs) were transfected with Syk cDNA to overexpress Syk. MMP-1 expression and Syk activity were determined by Western blot after UV exposure. The effect of Syk on MMP-1 expression in HDFs was further explored by either Syk siRNA or a selective Syk inhibitor. Possible downstream molecules of Syk were also evaluated in HDFs upon UV exposure. The relationship between Syk and collagenase was further explored in vivo (MMP-13, hairless mice). RESULTS Our studies in HDFs demonstrated that both a Syk inhibitor and Syk siRNA were able to inhibit MMP-1 expression in HDFs exposed to UV and that overexpression of Syk increased MMP-1 expression and the activity of JNK kinase, but not p38 or Erk1/2 MAP kinase. UV exposure enhanced both expression and activity of Syk in HDFs. Experiments with hairless mice suggested that Syk expression is an earlier indicator of UV exposure than MMP-13 expression. CONCLUSIONS Our results demonstrate that Syk expression correlates well with increase of MMPs (MMP-1 in humans and MMP-13 in mice) in response to UV exposure. The findings suggest that Syk may be a novel target for the prevention and treatment of skin photodamage by modulating MMPs.
Collapse
Affiliation(s)
- E Papazoglou
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
27
|
Xie Q, Shen ZJ, Oh J, Chu H, Malter JS. Transforming Growth Factor- β1 Antagonizes Interleukin-5 Pro-Survival Signaling by Activating Calpain-1 in Primary Human Eosinophils. ACTA ACUST UNITED AC 2011; Suppl 1. [PMID: 24244891 DOI: 10.4172/2155-9899.s1-003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Eosinophils rapidly undergo apoptosis unless exposed to prosurvival cytokines such as interleukin 5 (IL-5) or granulocyte-macrophage colony stimulating factor (GM-CSF). In vivo, eosinophils are exposed to TGF-β 1 which can induce apoptosis suggesting it may function to counteract the effects of IL-5 or GM-CSF and limit, in vivo tissue eosinophilia. OBJECTIVE The objective of this study was to investigate the proapoptotic effects of TGF-β alone and in combination with IL-5 on eosinophils. METHODS Peripheral blood eosinophil (PBEos) viability was assessed using flow cytometry after exposure to TGF-β1 and IL-5. Calpain-1 activation was determined in cell extracts by western blot analysis of endogenous substrates and with a fluorogenic α-spectrin substrate. Molecular interactions between calpain1 and calpastatin were assessed by immunoprecipitation and western blotting. RESULTS Physiologic concentrations of TGF-β1 significantly antagonized the prosurvival effects of IL-5. TGF-β1-induced apoptosis was suppressed by inhibitors of calpain, or its downstream target, caspase 3. TGF-β1 signaling through Smad3 was unaffected by IL-5 and was required for the pro-apoptotic effects of TGF-β1. However, IL-5 induced Akt phosphorylation was inhibited by TGF-β1 and was associated with accelerated calpain cleavage and eosinophil death. CONCLUSION TGF-β1 induces calpain-1 activation through antagonism of Akt which induces caspase activation and eosinophil apoptosis.
Collapse
Affiliation(s)
- Qifa Xie
- Department of Pathology, UT Southwestern Medical Center, Dallas, USA
| | | | | | | | | |
Collapse
|
28
|
Zhu Y, Bertics PJ. Chemoattractant-induced signaling via the Ras-ERK and PI3K-Akt networks, along with leukotriene C4 release, is dependent on the tyrosine kinase Lyn in IL-5- and IL-3-primed human blood eosinophils. THE JOURNAL OF IMMUNOLOGY 2010; 186:516-26. [PMID: 21106848 DOI: 10.4049/jimmunol.1000955] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human blood eosinophils exhibit a hyperactive phenotype in response to chemotactic factors after cell "priming" with IL-5 family cytokines. Earlier work has identified ERK1/2 as molecular markers for IL-5 priming, and in this article, we show that IL-3, a member of the IL-5 family, also augments fMLP-stimulated ERK1/2 phosphorylation in primary eosinophils. Besides ERK1/2, we also observed an enhancement of chemotactic factor-induced Akt phosphorylation after IL-5 priming of human blood eosinophils. Administration of a peptide antagonist that targets the Src family member Lyn before cytokine (IL-5/IL-3) priming of blood eosinophils inhibited the synergistic increase of fMLP-induced activation of Ras, ERK1/2 and Akt, as well as the release of the proinflammatory factor leukotriene C(4). In this study, we also examined a human eosinophil-like cell line HL-60 clone-15 and observed that these cells exhibited significant surface expression of IL-3Rs and GM-CSFRs, as well as ERK1/2 phosphorylation in response to the addition of IL-5 family cytokines or the chemotactic factors fMLP, CCL5, and CCL11. Consistent with the surface profile of IL-5 family receptors, HL-60 clone-15 recapitulated the enhanced fMLP-induced ERK1/2 phosphorylation observed in primary blood eosinophils after priming with IL-3/GM-CSF, and small interfering RNA-mediated knockdown of Lyn expression completely abolished the synergistic effects of IL-3 priming on fMLP-induced ERK1/2 phosphorylation. Altogether, our data demonstrate a central role for Lyn in the mechanisms of IL-5 family priming and suggest that Lyn contributes to the upregulation of the Ras-ERK1/2 and PI3K-Akt cascades, as well as the increased leukotriene C(4) release observed in response to fMLP in "primed" eosinophils.
Collapse
Affiliation(s)
- Yiming Zhu
- Molecular and Cellular Pharmacology Program, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
29
|
Syk is a novel target of arsenic trioxide (ATO) and is involved in the toxic effect of ATO in human neutrophils. Toxicol In Vitro 2010; 24:936-41. [DOI: 10.1016/j.tiv.2009.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/15/2009] [Accepted: 11/09/2009] [Indexed: 11/23/2022]
|
30
|
Carlens J, Wahl B, Ballmaier M, Bulfone-Paus S, Förster R, Pabst O. Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine small intestine. THE JOURNAL OF IMMUNOLOGY 2009; 183:5600-7. [PMID: 19843944 DOI: 10.4049/jimmunol.0801581] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophils are potent effector cells that are recruited to sites of inflammation. However, in some tissues, in particular in the gastrointestinal tract, eosinophils constitute an abundant leukocyte population also under homeostatic conditions. The lack of suitable isolation protocols restricted the analysis of these cells to histological assessment of cell numbers while important aspects of their phenotype, turnover, and functions remain unresolved. In this study, we report a protocol that allows the quantitative isolation of intestinal eosinophils. We characterized small intestinal eosinophils by flow cytometry as SSC(high)CD11b(+)CD11c(+)CCR3(+)Siglec-F(+) cells. Intestinal eosinophils resembled eosinophils isolated from thymus and uterus but differed from eosinophils isolated from lung or blood. Eosinophils in intestine, thymus, and uterus showed in vivo a markedly higher life time compared with eosinophils present in lung and blood measured by incorporation of BrdU. This indicates that under steady-state conditions homeostasis of eosinophils is controlled by regulation of cell survival. Intestinal eosinophils are severely reduced in the intestines of Rag-2/common gamma-chain double-deficient mice but not Rag-2-deficient mice, correlating with differential expression of GM-CSF and CCL11 in both mouse strains. Moreover, under steady-state conditions, intestinal eosinophils constitutively express high levels of the common gamma-chain transcripts compared with lung eosinophils as well as eosinophils present under inflammatory conditions. These observations reveal a hitherto unrecognized diversity in phenotypic and functional properties of eosinophils and suggest that tissue-specific common gamma-chain-dependent signals might profoundly affect eosinophil function and homeostasis.
Collapse
Affiliation(s)
- Julia Carlens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Ennaciri J, Girard D. IL-4Rα, a New Member that Associates with Syk Kinase: Implication in IL-4-Induced Human Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2009; 183:5261-9. [DOI: 10.4049/jimmunol.0900109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev 2009; 228:23-40. [PMID: 19290919 DOI: 10.1111/j.1600-065x.2008.00758.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | | | | | |
Collapse
|
33
|
Proviral integration site for Moloney murine leukemia virus 1, but not phosphatidylinositol-3 kinase, is essential in the antiapoptotic signaling cascade initiated by IL-5 in eosinophils. J Allergy Clin Immunol 2009; 123:603-11. [DOI: 10.1016/j.jaci.2008.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 12/27/2022]
|
34
|
The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation. Nat Immunol 2009; 10:257-65. [PMID: 19182807 PMCID: PMC2847832 DOI: 10.1038/ni.1697] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 12/12/2008] [Indexed: 01/03/2023]
Abstract
The mechanisms through which cytokine signals prevent the activation and mitochondrial targeting of the pro-apoptotic Bcl-2-associated X protein (Bax) are unclear. Here we showed, using primary human eosinophils, that in the absence of the pro-survival cytokines granulocyte macrophage-colony stimulating factor (GM-CSF) or interleukin 5, Bax spontaneously undergoes activation and initiates mitochondrial disruption. Bax inhibition reduced eosinophil apoptosis, even in the absence of cytokines. GM-CSF induced activation of Erk1/2, which phosphorylated Thr167 of Bax, which facilitated de novo interaction of Bax with the prolyl isomerase Pin1. Pin1 blockade led to Bax cleavage, mitochondrial translocation and caspase activation, irrespective of the presence of cytokines. Our findings indicate that Pin1 is a key mediator of pro-survival signaling and a regulator of Bax function.
Collapse
|
35
|
|
36
|
Fc receptor gamma-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat Immunol 2008; 10:214-22. [PMID: 19098920 DOI: 10.1038/ni.1686] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/31/2008] [Indexed: 01/05/2023]
Abstract
The Fc receptor common gamma-chain (FcRgamma) is a widely expressed adaptor bearing an immunoreceptor tyrosine-based activation motif (ITAM) that transduces activation signals from various immunoreceptors. We show here that basophils lacking FcRgamma developed normally and proliferated efficiently in response to interleukin 3 (IL-3) but were very impaired in IL-3-induced production of IL-4 and in supporting T helper type 2 differentiation. Through its transmembrane portion, FcRgamma associated constitutively with the common beta-chain of the IL-3 receptor and signaled by recruiting the kinase Syk. Retrovirus-mediated complementation demonstrated the essential function of the ITAM of FcRgamma in IL-3 signal transduction. Our results identify a previously unknown mechanism whereby FcRgamma functions to 'route' selective cytokine-triggered signals into the ITAM-mediated IL-4 production pathway.
Collapse
|
37
|
Smagur J, Guzik K, Magiera L, Bzowska M, Gruca M, Thøgersen IB, Enghild JJ, Potempa J. A new pathway of staphylococcal pathogenesis: apoptosis-like death induced by Staphopain B in human neutrophils and monocytes. J Innate Immun 2008; 1:98-108. [PMID: 20375568 DOI: 10.1159/000181014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022] Open
Abstract
Circulating neutrophils and monocytes form the first line of cellular defense against invading bacteria. Here, we describe a novel and specific mechanism of disabling and eliminating phagocytes by Staphylococcus aureus. Staphopain B (SspB) selectively cleaved CD11b on phagocytes, which rapidly acquired features of cell death. SspB-treated phagocytes expressed phosphatidylserine as well as annexin I and became permeable to propidium iodide, thus demonstrating distinctive features of both apoptosis and necrosis, respectively. The cell death observed was caspase and Syk tyrosine kinase independent, whilst cytochalasin D efficiently inhibited the staphopain-induced neutrophil killing. Neutrophil and monocyte cell death was not affected by integrin clustering ligands (ICAM-1 or fibrin) and was prevented, and even reversed, by IgG. This protective effect was dependent on the Fc fragment, collectively suggesting cooperation of the CD16 receptor and integrin Mac-1 (CD11b/CD18). We conclude that SspB, particularly in the presence of staphylococcal protein A, may reduce the number of functional phagocytes at infection sites, thus facilitating colonization and dissemination of S. aureus.
Collapse
Affiliation(s)
- Jan Smagur
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008; 14:949-53. [PMID: 18690244 DOI: 10.1038/nm.1855] [Citation(s) in RCA: 725] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 07/01/2008] [Indexed: 12/12/2022]
Abstract
Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.
Collapse
Affiliation(s)
- Shida Yousefi
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Asthma is a chronic inflammatory disease that affects about 300 million people worldwide, a total that is expected to rise to about 400 million over the next 15-20 years. Most asthmatic individuals respond well to the currently available treatments of inhaled corticosteroids and beta-adrenergic agonists; however, 5-10% have severe disease that responds poorly. Improved knowledge of asthma mechanisms has led to the recognition of different asthma phenotypes that might reflect distinct types of inflammation, explaining the effectiveness of anti-leucotrienes and the anti-IgE monoclonal antibody omalizumab in some patients. However, more knowledge of the inflammatory mechanisms within the airways is required. Improvements in available therapies-such as the development of fast-onset, once-a-day combination drugs with better safety profiles-will occur. Other drugs, such as inhaled p38 MAPK inhibitors and anti-oxidants, that target specific pathways or mediators could prove useful as monotherapies, but could also, in combination with corticosteroids, reduce the corticosteroid insensitivity often seen in severe asthma. Biological agents directed against the interleukin-13 pathway and new immunoregulatory agents that modulate functions of T-regulatory and T-helper-17 cells are likely to be successful. Patient-specific treatments will depend on the development of discriminatory handprints of distinct asthma subtypes and are probably over the horizon. Although a cure is unlikely to be developed in the near future, a greater understanding of disease mechanisms could bring such a situation nearer to reality.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
40
|
Abstract
The contribution of basophils in allergic disease and other Th2-type immune responses depends on their persistence at sites of inflammation, but the ligands and molecular pathways supporting basophil survival are largely unknown. The comparison of rates of apoptosis and of the expression of antiapoptotic proteins in different human granulocyte types revealed that basophils have a considerably longer spontaneous life span than neutrophils and eosinophils consistent with high levels of constitutive Bcl-2 expression. Interleukin-3 (IL-3) is the only ligand that efficiently protects basophils from apoptosis as evidenced by screening a large number of stimuli. IL-3 up-regulates the expression of the antiapoptotic proteins cIAP2, Mcl-1, and Bcl-X(L) and induces a rapid and sustained de novo expression of the serine/threonine kinase Pim1 that closely correlates with cytokine-enhanced survival. Inhibitor studies and protein transduction of primary basophils using wild-type and kinase-dead Pim1-Tat fusion-proteins demonstrate the functional importance of Pim1 induction in the IL-3-enhanced survival. Our data further indicate that the antiapoptotic Pim1-mediated pathway operates independently of PI3-kinase but involves the activation of p38 MAPK. The induction of Pim1 leading to PI3-kinase-independent survival as described here for basophils may also be a relevant antiapoptotic mechanism in other terminally differentiated leukocyte types.
Collapse
|
41
|
Ulanova M, Asfaha S, Stenton G, Lint A, Gilbertson D, Schreiber A, Befus D. Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages. ACTA ACUST UNITED AC 2007; 13:117-25. [PMID: 17621553 DOI: 10.1177/0968051907079125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Syk kinase is best known as a critical component of immunoreceptor signaling in leukocytes. Activation of Syk following cross-linking of Fcgamma and Fcepsilon receptors on macrophages, mast cells, and other cells induces various inflammatory events. We hypothesized that Syk is involved in inflammatory responses induced by the lipopolysaccharide (LPS). We studied the role of Syk using its inhibition by antisense oligonucleotides, or small interfering RNA. Our data demonstrated that in vivo inhibition of Syk caused down-regulation of LPS-induced responses in rat alveolar macrophages. In in vitro experiments, inhibition of Syk in rat peritoneal macrophages, as well as in human myelomonocyte cell line THP-1 also caused a decrease in LPS-induced cytokine release. Our data support the hypothesis that, in macrophages, Syk is involved in LPS-induced intracellular signaling pathways leading to the release of pro-inflammatory mediators. Understanding the role of Syk in LPS-induced signaling may help in developing new therapeutic tools for inflammatory disorders.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cytokines/immunology
- Cytokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Humans
- Inflammation Mediators/metabolism
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Lipopolysaccharides/immunology
- Lipopolysaccharides/metabolism
- Liposomes
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Monocytes/immunology
- Monocytes/metabolism
- Nitric Oxide/metabolism
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Syk Kinase
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Marina Ulanova
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tortorella C, Simone O, Piazzolla G, Stella I, Antonaci S. Age-related impairment of GM-CSF-induced signalling in neutrophils: role of SHP-1 and SOCS proteins. Ageing Res Rev 2007; 6:81-93. [PMID: 17142110 DOI: 10.1016/j.arr.2006.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/20/2006] [Accepted: 10/28/2006] [Indexed: 11/23/2022]
Abstract
Functional activities of mature human neutrophils are strongly influenced by the pro-inflammatory cytokine granulocyte macrophage-colony stimulating factor (GM-CSF). Accordingly, a defective response to GM-CSF might have dramatic consequences for neutrophil functions and the host defence against infections. Such an event is most likely to occur in senescence. A number of studies have, in fact, reported an impairment of the GM-CSF capacity to prime and/or to activate respiratory burst, as well as to delay apoptotic events, in neutrophils from elderly individuals. In the last 2 decades many efforts have been made to explore at molecular levels the mechanism underlying these defects. Recent studies let us depict a scenario in which an increased activity of inhibitory molecules, such as Src homology domain-containing protein tyrosine phosphatase-1 (SHP-1) and suppressors of cytokine signalling (SOCS), is responsible for the age-related failure of GM-CSF to stimulate neutrophil functions via inhibition of Lyn-, phosphoinositide 3-kinase (PI3-K)/extracellular signal-regulated kinase (ERK)- and signal transducers and activators of transcription (STAT)-dependent pathways. The control of SHP-1 and/or SOCS activity might therefore be an important therapeutic target for the restoration of normal immune responses during senescence.
Collapse
Affiliation(s)
- Cosimo Tortorella
- Department of Internal Medicine, Immunology and Infectious Diseases, University of Bari Medical School, Policlinico, 70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
43
|
Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol 2007; 119:1303-10; quiz 1311-2. [PMID: 17481712 DOI: 10.1016/j.jaci.2007.03.048] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 02/08/2023]
Abstract
Blood eosinophilia and tissue eosinophilia are characteristic features of allergic inflammation and asthma, conditions associated with prominent production of T(H)2 cytokines IL-4, IL-5, and IL-13. In this review, we will consider recent advances in our understanding of the molecular mechanisms that promote expansion and differentiation of eosinophil progenitors in bone marrow, eosinophil recruitment in response to chemokine receptor 3 agonists eosinophil transit mediated by specific ligand-receptor interactions, and prolonged survival of eosinophils in peripheral tissues. Novel rational therapies including antiselectin and antichemokine receptor modalities designed to block eosinophil development and trafficking are discussed, together with the implications of recent clinical studies that have evaluated the efficacy of humanized anti-IL-5 mAb therapy.
Collapse
Affiliation(s)
- Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
44
|
Hsieh CW, Lan JL, Meng Q, Cheng YW, Huang HM, Tsai JJ. Eosinophil apoptosis induced by fungal immunomodulatory peptide-fve via reducing IL-5alpha receptor. J Formos Med Assoc 2007; 106:36-43. [PMID: 17282969 DOI: 10.1016/s0929-6646(09)60214-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND/PURPOSE Eosinophils are important effector cells in the pathogenesis of allergic bronchial asthma. Enhancement of eosinophil apoptosis has been considered to have therapeutic effect on allergic disease. Fungal immunomodulatory peptide (FIP)-fve has been reported to possess immunoprophylactic activities for allergic diseases. The purpose of this study was to investigate the modulation of FIP-fve on human eosinophil survival derived from allergic asthmatic patients. METHODS Eosinophils were obtained from allergic asthmatic patients and purified with the use of density gradients and immunomagnetic beads negative selection. Apoptosis was assessed by annexin V and propidium iodide. The apoptotic signal protein, CD95 and IL-5 receptor expression were assessed by Western blot and flow cytometric analysis. RESULTS When the eosinophils were treated with FIP-fve in the presence of IL-5, IL-5-enhanced eosinophil survival diminished. FIP-fve could reduce IL-5-mediated survival of eosinophils and decrease IL-5Ralpha expression. In the presence of FIP-fve, CD95 expression was upregulated and Bcl-xL and pro-caspase 3 expression were downregulated in cultured eosinophils. CONCLUSION The results suggest that FIP-fve can inhibit IL-5-mediated survival of eosinophils through the modulation of cytokine receptor expression and apoptotic signal protein production. The modulatory effect of FIP-fve on eosinophil apoptosis in vitro indicates that it may have some therapeutic effect on eosinophil-related allergic inflammation in vivo.
Collapse
Affiliation(s)
- Chia-Wei Hsieh
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
von Gunten S, Vogel M, Schaub A, Stadler BM, Miescher S, Crocker PR, Simon HU. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J Allergy Clin Immunol 2007; 119:1005-11. [PMID: 17337295 DOI: 10.1016/j.jaci.2007.01.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 12/22/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human intravenous immunoglobulin (IVIg) preparations are used for the treatment of autoimmune and allergic diseases. Natural autoantibodies are believed to contribute to IVIg-mediated anti-inflammatory effects. OBJECTIVE To address the question of whether IVIg preparations contain anti-sialic acid-binding Ig-like lectin-8 (anti-Siglec-8) autoantibodies. METHODS The presence of possible anti-Siglec-8 autoantibodies in IVIg preparations was first examined by functional eosinophil death and apoptosis assays. Specificity of IVIg effects was shown by depleting anti-Siglec-8 autoantibodies from IVIg. Binding of purified anti-Siglec-8 autoantibodies to recombinant Siglec-8 was demonstrated by an immunodot assay. RESULTS IVIg exerts cytotoxic effects on purified human blood eosinophils. Both potency and efficacy of the IVIg-mediated eosinophil killing effect was enhanced by IL-5, granulocyte/macrophage colony-stimulating factor, IFN-gamma, TNF-alpha, and leptin. Similarly, inflammatory eosinophils obtained from patients suffering from the hypereosinophilic syndrome (HES) demonstrated increased Siglec-8 cytotoxic responses when compared with normal blood eosinophils. Pharmacologic blocking experiments indicated that the IVIg-mediated additional eosinophil death in the presence of cytokines is largely caspase-independent, but it depends on reactive oxygen species. Anti-Siglec-8 autoantibody-depleted IVIg failed to induce caspase-independent eosinophil death. CONCLUSION IVIg preparations contain natural anti-Siglec-8 autoantibodies. CLINICAL IMPLICATIONS Anti-Siglec-8 autoantibodies present in IVIg preparations may have therapeutic relevance in autoimmune and allergic diseases, respectively, such as Churg-Strauss syndrome.
Collapse
|
46
|
Ulanova M, Duta F, Puttagunta L, Schreiber AD, Befus AD. Spleen tyrosine kinase (Syk) as a novel target for allergic asthma and rhinitis. Expert Opin Ther Targets 2007; 9:901-21. [PMID: 16185147 DOI: 10.1517/14728222.9.5.901] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Allergic asthma and rhinitis are prevalent diseases in the modern world, both marked by inflammation of the airways. The spleen tyrosine kinase (Syk) plays a critical role in the regulation of such immune and inflammatory responses. Although Syk is best known as a key component of immunoreceptor signalling complexes in leukocytes, recent studies demonstrated Syk expression in cells outside the haematopoietic lineage. Moreover, in recent years, it has been established that Syk is involved in various signalling cascades including those originating from integrin and cytokine receptors. Thus, Syk likely has a much wider biological role than previously recognised. Specific inhibition of Syk using aerosolised antisense oligonucleotides in liposome complexes significantly decreased lung inflammatory responses in experimental asthma and acute lung injury models. In addition, pharmacological inhibitors of Syk have been recently developed with potential for use as therapeutics. However, in the development and the rational delivery of drugs targeting Syk, it is important to consider the multiple cell types that express this kinase and the potential effects of its inhibition on various physiological functions. This review focuses on the recent data and the emerging ideas about Syk as a therapeutic target.
Collapse
Affiliation(s)
- Marina Ulanova
- University of Alberta, Department of Medicine, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
47
|
Hamajima Y, Fujieda S, Sunaga H, Yamada T, Moribe K, Watanabe N, Murakami S. Expression of Syk is associated with nasal polyp in patients with allergic rhinitis. Auris Nasus Larynx 2006; 34:49-56. [PMID: 17141440 DOI: 10.1016/j.anl.2006.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 07/18/2006] [Accepted: 09/15/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Numerous signalings are involved in allergic inflammation. The non-receptor protein tyrosine kinase, Syk, is widely expressed in immune-potentiated cells and plays critical roles in initiating signal transduction in response to the activation of cytokine, chemokine and other types of receptors. It has been hypothesized that Syk expression in allergic nasal mucosa and polyps with allergy is different from non-allergic mucosa, and that changes in Syk expression contribute to the activation of allergic reactions. METHODS We examined whether the expression of Syk is found in allergic nasal mucosa and polyps. We investigated the expression of Syk in 46 nasal mucosa and polyps (14 samples from patients with allergic rhinitis and 32 samples with non-allergic chronic sinusitis) using an immunohistochemical technique. RESULTS Allergic polyps had more Syk positive cells than non-allergic polyps. Syk positive cells were determined to mainly be eosinophils. There was no difference in Syk expression in the lamina propria and nasal gland between allergic mucosa and non-allergic mucosa. CONCLUSION Eosinophils in allergic polyps receive an intracellular signal, although the signal is not able to determine the function in the present state. Syk appears to be a promising target molecule for anti-allergic inflammation in allergic rhinitis.
Collapse
Affiliation(s)
- Yuki Hamajima
- Department of Otorhinolaryngology, Nagoya City University, 1, Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.
Collapse
Affiliation(s)
- Keisuke Horikawa
- Division of Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
49
|
Wagelie-Steffen AL, Kavanaugh AF, Wasserman SI. Biologic therapies for the treatment of asthma. Clin Chest Med 2006; 27:133-47, vii. [PMID: 16543058 DOI: 10.1016/j.ccm.2005.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airway whose pathogenesis involves the complex interplay between many cell types and inflammatory mediators. The mainstays of therapy, inhaled bronchodilators and corticosteroids, do not target the asthmatic airway specifically and therefore are associated with untoward side effects. Anti-IgE (omalizumab) is the only biologic therapy to have transitioned completely from bench to bedside. Other candidate therapies, such as those that alter the T-helper 1/T-helper 2 cytokine balance, interfere with inflammatory cell trafficking, or modify normal intracellular signaling cascades involved in inflammatory gene transcription, have had only limited success in human clinical trials. This article describes several potential novel biologic therapies that have been or could be investigated.
Collapse
Affiliation(s)
- Amy L Wagelie-Steffen
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0637, USA
| | | | | |
Collapse
|
50
|
Abstract
The Lyn tyrosine kinase is a unique member of the Src family of non-receptor protein tyrosine kinases whose principal role is to regulate signals through inhibitory receptors thereby promoting signal attenuation. Lyn is renowned for its role in B cell antigen receptor and FcepsilonRI signaling; however, it is becoming increasingly apparent that Lyn also functions in signal transduction from growth factor receptors including the receptors for GM-CSF, IL-3, IL-5, SCF, erythropoietin, CSF-1, G-CSF, thrombopoietin and Flt3 ligand. Numerous studies have implicated Lyn in growth factor receptor signal amplification, while a number also suggest that Lyn participates in negative regulation of growth factor signaling. Indeed Lyn-deficient mice are hyper-responsive to myeloid growth factors and develop a myeloproliferative disorder that predisposes the mice to macrophage tumours, with loss of negative regulation through SHP-1 and SHIP-1 thought to be the major contributing factor to this phenotype. Developing a clear understanding of Lyn's role in establishing signaling thresholds in growth factor receptor signal amplification and signal inhibition may have important implications in the management of leukemias that may depend on Lyn activity.
Collapse
Affiliation(s)
- Margaret L Hibbs
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Vic., Australia. margaret.hibbs@
| | | |
Collapse
|