1
|
Yamamoto R, Xu Y, Ikeda S, Sumida K, Tanaka H, Hozumi K, Takaori-Kondo A, Minato N. Thymic Development of a Unique Bone Marrow–Resident Innate-like T Cell Subset with a Potent Innate Immune Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:167-177. [DOI: 10.4049/jimmunol.1900111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/17/2019] [Indexed: 12/27/2022]
|
2
|
Han Y, Li X, Gao S, Liu X, Kang L, Li X, Lang Y, Li X, Sun M, Gai Z, Yu S. Interleukin 17 is an important pathogenicity gene in pediatric sepsis. J Cell Biochem 2018; 120:3664-3671. [PMID: 30216518 DOI: 10.1002/jcb.27644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yujie Han
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Xiaoying Li
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Shasha Gao
- Neonatal Department Children's Hospital of Soochow University Suzhou Jiangsu China
| | - Xianghong Liu
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Lili Kang
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Xiaomei Li
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Yujie Lang
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Xiao Li
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Mingying Sun
- Neonatal Department Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Shenglin Yu
- Neonatal Department Children's Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
3
|
The Influence of Interleukin 17A and IL17F Polymorphisms on Chronic Periodontitis Disease in Brazilian Patients. Mediators Inflamm 2015; 2015:147056. [PMID: 26339129 PMCID: PMC4539172 DOI: 10.1155/2015/147056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022] Open
Abstract
A case-control study was conducted on patients with chronic periodontitis (CP) and healthy controls with the aim of evaluating possible association between interleukin 17A (IL17A) G197A (rs2275913) and IL17F T7488C (rs763780) polymorphisms and periodontitis. Genotypes were determined by PCR-RFLP method. Statistical analyses were conducted using the OpenEpi and SNPStas software to calculate Chi-square with Yates correction or Fisher's exact tests, odds ratios (OR), and 95% confidence intervals (CIs). SNPStas software was used to calculate Hardy-Weinberg equilibrium. IL17A AA genotype was more frequent in patients with chronic periodontitis (CP) in the codominant and recessive models (P = 0.09; OR = 2.53 and P = 0.03; OR = 2.46, resp.), the females with CP (P = 0.01, OR = 4.34), Caucasoid patients with CP (P = 0.01, OR = 3.45), and nonsmoking Caucasian patients with CP (P = 0.04, OR = 3.51). The IL17A A allele was also more frequent in Caucasians with CP (P = 0.04, OR = 1.59). IL17F T7488C polymorphism was not associated with chronic periodontitis. In these patients from Southern Brazil, the IL17A rs2275913 polymorphisms, IL17A AA genotype, and the A allele were associated with a susceptibility to chronic periodontitis.
Collapse
|
4
|
Mensikova M, Stepanova H, Faldyna M. Interleukin-17 in veterinary animal species and its role in various diseases: A review. Cytokine 2013; 64:11-7. [DOI: 10.1016/j.cyto.2013.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
5
|
Li N, Wang JC, Liang TH, Zhu MH, Wang JY, Fu XL, Zhou JR, Zheng SG, Chan P, Han J. Pathologic finding of increased expression of interleukin-17 in the synovial tissue of rheumatoid arthritis patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1375-1379. [PMID: 23826419 PMCID: PMC3693203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease of chronic systemic inflammatory disorder that will affect multiple tissues and organs such as skin, heart or lungs; but it principally attacks the joints, producing a nonsuppurative inflammatory and proliferative synovitis that often progresses to major damaging of articular cartilage and joint ankylosis. Although the definite etiology is still unknown, recent studies suggest that T-helper cells (Th17) may play a pivotal role in the pathogenesis of RA. And interleukin-17 (IL-17), which is a cytokine of Th17 cells, may be a key factor in the occurrence of RA. The binding of IL-17 to specific receptor results in the expression of fibroblasts, endothelial and epithelial cells and also synthesis of several major factors such as tumor necrosis factor alpha (TNF-α), IL-1β that result in the structural damage of RA joints. Though some previous studies have shown that IL-17 exists in the synovium of RA, few has definite proof quantitatively by pathology about its existence in synovial membrane. This study comprised of 30 RA patients and 10 healthy control, pathologic study of the synovial membrane showed increased expression of IL-17 in the synovial tissue of RA patients, the intensity is compatible with clinical severity of disease as validated by DAS28 score and disease duration. Northern blot study also confirmed the increased expression of IL-17 in the synovial tissues. This study sheds further light that IL-17 may be a key factor in the pathogenesis of RA and a determinant of disease severity.
Collapse
Affiliation(s)
- Ning Li
- Department of Rheumatology, Shanghai East Hospital, Tongji UniversityShanghai, China
| | - Jun C Wang
- Department of Pathology, Shanghai East Hospital, Tongji UniversityShanghai, China
| | - Toong H Liang
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Taipei City Hospital-Heping Fuyoo BranchTaipei, Taiwan
| | - Ming H Zhu
- Department of Pathology, Shanghai Chang Hai Hospital, The Second Army Medical CollegeShanghai, China
| | - Jia Y Wang
- Department of Rheumatology, Shanghai East Hospital, Tongji UniversityShanghai, China
| | - Xue L Fu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Taipei City Hospital-Heping Fuyoo BranchTaipei, Taiwan
| | - Jie R Zhou
- Department of Rheumatology, Shanghai East Hospital, Tongji UniversityShanghai, China
| | - Song G Zheng
- Division of Rheumatology & Immunology, Department of Medicine, University of Southern CaliforniaCalifornia, USA
| | - Paul Chan
- Department of Medicine, Wan Fang Hospital, Taipei Medical UniversityTaipei City, Taiwan
| | - Jie Han
- Department of Rheumatology, Shanghai East Hospital, Tongji UniversityShanghai, China
| |
Collapse
|
6
|
Amdekar S, Singh V, Kumar A, Sharma P, Singh R. Lactobacillus caseiandLactobacillus acidophilusRegulate Inflammatory Pathway and Improve Antioxidant Status in Collagen-Induced Arthritic Rats. J Interferon Cytokine Res 2013; 33:1-8. [PMID: 23030670 DOI: 10.1089/jir.2012.0034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sarika Amdekar
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Vinod Singh
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Avnish Kumar
- Department of Biotechnology, Dr. B. R. Ambedkar University, Agra, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Zoology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Rambir Singh
- Institute of Biomedical Sciences, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
7
|
Dobritsa SV, Kuok IT, Nguyen H, Webster JC, Spragg AM, Morley T, Carr GJ. Development of a High-Throughput Cell-Based Assay for Identification of IL-17 Inhibitors. ACTA ACUST UNITED AC 2012; 18:75-84. [DOI: 10.1177/1087057112459350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human interleukin 17 (IL-17) is a proinflammatory cytokine derived mainly from activated T cells. Extensive evidence points to a significant role of IL-17 in many autoimmune and infectious diseases, as well as tumorigenesis and transplant rejection, and suggests that targeting IL-17 could be a promising therapeutic strategy. Robust cell-based assays would thus be essential for lead identification and the optimization of therapeutic candidates. Herein, we report a well-characterized two-step assay, consisting of (a) in vitro activation and stimulation of CD4+ T lymphocytes by a defined complex of antibodies and cytokines, leading to T helper 17 (Th17) cell differentiation and IL-17 production, and (b) IL-17 quantification in cell supernatants using a homogeneous time-resolved fluorescence (HTRF) assay. The system was optimized for and shown to be reliable in high-throughput compatible 96- and 384-well plate formats. The assay is robust (Z′ > 0.5) and simple to perform, yields a stable response, and allows for sufficient discrimination of positive (IL-17–producing cells) and negative controls (uninduced cells). The assay was validated by performing dose-response testing of rapamycin and cyclosporine A, which had previously been reported to inhibit IL-17, and determining, for the first time, their in vitro potencies (IC50s of 80 ± 23 pM and 223 ± 52 nM, respectively). Also, IKK 16, a selective small-molecule inhibitor of IκB kinase, was found to inhibit IL-17 production, with an IC50 of 315 ± 79 nM.
Collapse
Affiliation(s)
| | | | - Hai Nguyen
- AMRI, Bothell Research Center, Bothell, WA, USA
| | | | - Andrew Mearns Spragg
- Aquapharm Biodiscovery Limited, European Centre for Marine Biotechnology, Oban, UK
| | - Timothy Morley
- Aquapharm Biodiscovery Limited, European Centre for Marine Biotechnology, Oban, UK
| | | |
Collapse
|
8
|
Eimeria tenella heat shock protein 70 enhances protection of recombinant microneme protein MIC2 subunit antigen vaccination against E. tenella challenge. Vet Parasitol 2012; 188:239-46. [PMID: 22494937 DOI: 10.1016/j.vetpar.2012.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/20/2022]
Abstract
Heat shock proteins have been reported to stimulate the immune system via innate receptors. Our study found that the novel immunopotentiator, Eimeria tenella (E. tenella) heat shock protein 70 (HSP70), enhanced protective immunity elicited by E. tenella antigen microneme protein 2 (EtMIC2) against avian coccidiosis. It demonstrated that the expression of TLR2 and TLR4 were strongly upregulated in EtHSP70 and EtMIC2 plus EtHSP70 stimulated chicken embryo fibroblasts (CEF) compared with untreated controls and EtMIC2 alone. In addition, the same treatment induced high levels of interleukin (IL)-12 and interferon (IFN)-γ that are critical cytokines of innate immunity. In vivo experiments involved using broiler chickens subcutaneously immunized with EtMIC2 alone or EtMIC2 plus EtHSP70 at 7 and 14 days post-hatch, which were then orally challenged with live E. tenella at 7 days following secondary immunization. Body weight gains, cecal lesion scores, fecal oocyst shedding, serum antibody responses against MIC2, and intestinal cytokine transcript levels were assessed as measures of protective immunity. Chickens immunized with EtMIC2 plus EtHSP70 showed increased body weight gains, decreased oocyst shedding, increased serum antibody responses, and high levels of IL-12, IFN-γ, and IL-17 compared with the EtMIC2 only or control groups. Moreover, chickens immunized with EtHSP70 alone showed significantly protective effect against E. tenella infection. In summary, this study provides the first evidence of the immunoenhancing activities of EtHSP70 in poultry.
Collapse
|
9
|
Zhang F, Tanaka H, Kawato T, Kitami S, Nakai K, Motohashi M, Suzuki N, Wang CL, Ochiai K, Isokawa K. Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie 2011; 93:296-305. [DOI: 10.1016/j.biochi.2010.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 10/01/2010] [Indexed: 11/26/2022]
|
10
|
Lee SH, Lillehoj HS, Jang SI, Lee KW, Yancey RJ, Dominowski P. The effects of a novel adjuvant complex/Eimeria profilin vaccine on the intestinal host immune response against live E. acervulina challenge infection. Vaccine 2010; 28:6498-504. [PMID: 20637765 PMCID: PMC7127425 DOI: 10.1016/j.vaccine.2010.06.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/12/2010] [Accepted: 06/30/2010] [Indexed: 12/01/2022]
Abstract
The effects of a novel adjuvant composed of Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) on protective immunity against avian coccidiosis following immunization with an Eimeria recombinant protein were determined. Broiler chickens were subcutaneously immunized with isotonic saline (control), Eimeria recombinant profilin alone, or profilin emulsified with QCDC at 1 and 7 days post-hatch, and orally challenged with live Eimeria acervulina at 7 days following the last immunization. Body weight gains, gut lesion scores, fecal oocyst outputs, profilin serum antibody titers, lymphocyte proliferation, and intestinal cytokine transcript levels were assessed as measures of protective immunity. Chickens immunized with profilin plus QCDC showed increased body weight gains and decreased intestinal lesion scores compared with the profilin only or control groups. However, no differences were found in fecal oocyst shedding among the three groups. Profilin serum antibody titers and antigen-induced peripheral blood lymphocyte proliferation in the profilin/QCDC group were higher compared with the profilin only and control groups. Finally, while immunization with profilin alone or profilin plus QCDC uniformly increased the levels of intestinal transcripts encoding all cytokines examined (IL-1β, IL-10, IL-12, IL-15, IL-17F, and IFN-γ) compared with the control group, transcripts for IL-10 and IL-17F were further increased in the profilin/QCDC group compared with the profilin only group. In summary, this study provides the first evidence of the immunoenhancing activities of QCDC adjuvant in poultry.
Collapse
Affiliation(s)
- Sung-Hyen Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|
11
|
Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, Kotake S. IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem 2010; 108:947-55. [PMID: 19728295 DOI: 10.1002/jcb.22326] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-17 is a proinflammatory cytokine crucial for osteoclastic bone resorption in the presence of osteoblasts or synoviocytes in rheumatoid arthritis. However, the role of IL-17 in osteoclastogenesis from human monocytes alone remains unclear. Here, we investigated the role of IL-17 in osteoclastogenesis from human monocytes alone and the direct effect of infliximab on the osteoclastogenesis induced by IL-17. Human peripheral blood mononuclear cells (PBMC) were cultured for 3 days with M-CSF. After non-adherent cells were removed, IL-17 was added with either infliximab or osteoprotegerin (OPG). Seven days later, adherent cells were stained for vitronectin receptor. On the other hand, CD11b-positive monocytes purified from PBMC were also cultured and stained as described above. CD11b-positive cells were cultured with TNF-alpha and receptor activator of NF-kappaB ligand (RANKL). In the cultures of both adherent cells and CD11b-positive cells, IL-17 dose-dependently induced osteoclastogenesis in the absence of soluble-RANKL. OPG or infliximab inhibited IL-17-induced osteoclastogenesis. Interestingly, in the culture of CD11b-positive cells, the osteoclastogenesis was more potently inhibited by infliximab than by OPG. TNF-alpha and RANKL synergistically induced osteoclastogenesis. The present study clearly demonstrated the novel mechanism by which IL-17 directly induces osteoclastogenesis from human monocytes alone. In addition, infliximab potently inhibits the osteoclastogenesis directly induced by IL-17.
Collapse
Affiliation(s)
- Toru Yago
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Low-grade inflammation, a minor elevation in the baseline concentration of inflammatory markers such as C-reactive protein (CRP), is nowadays recognized as an important underlying condition in many common diseases. Concentrations of CRP under 10 mg/1 are called low-grade inflammation and values above that are considered as clinically significant inflammatory states. Epidemiological studies have revealed demographic and socioeconomic factors that associate with CRP concentration; these include age, sex, birth weight, ethnicity, socioeconomic status, body mass index (BMI), fiber consumption, alcohol intake, and dietary fatty acids. At the molecular level, production of CRP is induced by proinflammatory cytokines IL-1, IL-6, and IL-17 in the liver, although extra hepatic production most likely contributes to systemic concentrations. The cytokines are produced in response to, for example, steroid hormones, thrombin, C5a, bradykinin, other cytokines, UV-light, neuropeptides and bacterial components, such as lipopolysaccharide. Cytokines exert their biological effects on CRP by signaling through their receptors on hepatic cells and activating different kinases and phosphatases leading to translocation of various transcription factors on CRP gene promoter and production of CRP protein. Genetic polymorphisms in the interleukin genes as well as in CRP gene have been associated with minor elevation in CRP. As minor elevation in CRP is associated with both inflammatory and noninflammatory conditions, it should be noticed that the elevation might just reflect distressed or injured cells homeostasis maintenance in everyday life, rather than inflammation with classical symptoms of redness, swelling, heat, and pain.
Collapse
Affiliation(s)
- Carita M Eklund
- Department of Microbiology and Immunology, University of Tampere, Medical School, 33520 Tampere, Finland.
| |
Collapse
|
13
|
Veldhoen M. The role of T helper subsets in autoimmunity and allergy. Curr Opin Immunol 2009; 21:606-11. [PMID: 19683910 DOI: 10.1016/j.coi.2009.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 12/19/2022]
Abstract
The classification of T helper (T(H)) cells in subsets has progressively expanded and more effector subsets, besides T(H)1 and T(H)2, have been documented. These include follicular helper T cells (T(FH)), and the more recent T(H)17, 'T(H)9', and 'T(H)22'. In addition, T(H) are no longer thought of as terminally committed effector cells, with plasticity now recognized. Identification of the molecular mechanisms that drive differentiation of T(H) cells has established a link between environmental factors and T(H) subsets, with regard to both the initiation and severity of immune disorders. The role of T(H) in autoimmune-disorders and allergic-disorders is now re-evaluated, with current data suggesting a central role for T(H)17 in orchestrating adaptive-immune responses, while T(FH) are instrumental in coordinating B cell immunity.
Collapse
Affiliation(s)
- Marc Veldhoen
- Division of Molecular Immunology, The MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
14
|
Lyakh L, Trinchieri G, Provezza L, Carra G, Gerosa F. Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans. Immunol Rev 2009; 226:112-31. [PMID: 19161420 DOI: 10.1111/j.1600-065x.2008.00700.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin-12 (IL-12) and IL-23 share a common chain. Yet, their production in response to pathogens is differentially regulated, and their functions are distinct and often antithetic. IL-12 is involved in the induction or amplification of the T-helper (Th) type 1 response, whereas IL-23 has been associated with the generation of the Th17 response and IL-17 production. Mycobacterium tuberculosis and yeast zymosan induce IL-23, but in the absence of other stimuli, no IL-12 is induced in human dendritic cells (DCs). The stimulation of IL-23 by M. tuberculosis was mostly explained by the triggering of Toll-like receptor (TLR2) and the cytoplasmic receptor nucleotide oligomerization domain (NOD)-containing protein 2, whereas zymosan induces IL-23 primarily by stimulating the beta-glucan receptor dectin-1 alone or in combination with TLR2. IL-23, IL-6, transforming growth factor (TGF-beta1), and IL-1beta in supernatants from activated human DCs induce human naive CD4(+) T cells to produce IL-17. These data are consistent with various recent reports that TGF-beta is an inducer of IL-17 production both in human and in mouse cells. However, IL-1 is necessary in combination with some or all of the other cytokines to induce IL-17 production in human T cells. The ability of various stimuli to induce Th17 cells depends not only on their induction of IL-23, IL-6, and TGF-beta production in DCs but also on their ability to activate directly or indirectly the inflammasome and to induce IL-1beta.
Collapse
Affiliation(s)
- Lyudmila Lyakh
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
15
|
Ivanov S, Lindén A. Interleukin-17 as a drug target in human disease. Trends Pharmacol Sci 2009; 30:95-103. [PMID: 19162337 DOI: 10.1016/j.tips.2008.11.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/04/2008] [Accepted: 11/10/2008] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-17 (now synonymous with IL-17A) is an archetype molecule for an entire family of IL-17 cytokines. Currently believed to be produced mainly by a specific subset of CD4 cells, named Th-17 cells, IL-17 is functionally located at the interface of innate and acquired immunity. Specifically, it induces the release of chemokines and growth factors from mesenchymal cells and is now emerging as an important local orchestrator of neutrophil accumulation in several mammalian organs. Furthermore, there is growing evidence that targeting IL-17 signaling might prove useful in a variety of diseases including asthma, Crohn's disease, multiple sclerosis, psoriatric disease and rheumatoid arthritis. Here, we summarize the key aspects of the biology of IL-17 in mammals and scrutinize the potential pharmacological use of targeting IL-17 in humans.
Collapse
|
16
|
Satpute SR, Durai M, Moudgil KD. Antigen-specific tolerogenic and immunomodulatory strategies for the treatment of autoimmune arthritis. Semin Arthritis Rheum 2008; 38:195-207. [PMID: 18177689 PMCID: PMC2723747 DOI: 10.1016/j.semarthrit.2007.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/18/2007] [Accepted: 10/21/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To review various antigen-specific tolerogenic and immunomodulatory approaches for arthritis in animal models and patients in regard to their efficacy, mechanisms of action, and limitations. METHODS We reviewed the published literature in Medline (PubMed) on the induction of antigen-specific tolerance and its effect on autoimmune arthritis, as well as the recent work on B-cell-mediated tolerance from our laboratory. The prominent key words used in different combinations included arthritis, autoimmunity, immunotherapy, innate immunity, tolerance, treatment, and rheumatoid arthritis (RA). Although this search spanned the years 1975 to 2007, the majority of the short-listed articles belonged to the period 1990 to 2007. The relevant primary as well as cross-referenced articles were then collected from links within PubMed and reviewed. RESULTS Antigen-specific tolerance has been successful in the prevention and/or treatment of arthritis in animal models. The administration of soluble native antigen or an altered peptide ligand intravenously, orally, or nasally, and the delivery of the DNA encoding a particular antigen by gene therapy have been the mainstay of immunomodulation. Recently, the methods for in vitro expansion of CD4+CD25+ regulatory T-cells have been optimized. Furthermore, interleukin-17 has emerged as a promising new therapeutic target in arthritis. However, in RA patients, non-antigen-specific therapeutic approaches have been much more successful than antigen-specific tolerogenic regimens. CONCLUSION An antigen-specific treatment against autoimmune arthritis is still elusive. However, insights into newly emerging mechanisms of disease pathogenesis provide hope for the development of effective and safe immunotherapeutic strategies in the near future.
Collapse
Affiliation(s)
- Shailesh R. Satpute
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malarvizhi Durai
- Johns Hopkins Medical Institutions, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Hong YH, Lillehoj HS, Park DW, Lee SH, Han JY, Shin JH, Park MS, Kim JK. Cloning and functional characterization of chicken interleukin-17D. Vet Immunol Immunopathol 2008; 126:1-8. [DOI: 10.1016/j.vetimm.2008.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 05/20/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
18
|
Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, Kotake S. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 2008; 9:R96. [PMID: 17888176 PMCID: PMC2212562 DOI: 10.1186/ar2297] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 09/12/2007] [Accepted: 09/23/2007] [Indexed: 01/02/2023] Open
Abstract
This study demonstrates that IL-23 stimulates the differentiation of human osteoclasts from peripheral blood mononuclear cells (PBMC). Furthermore, in vivo blockade of endogenous IL-23 activity by treatment with anti-IL-23 antibody attenuates collagen-induced arthritis in rats by preventing both inflammation and bone destruction. IL-23 induced human osteoclastogenesis in cultures of PBMC in the absence of osteoblasts or exogenous soluble-receptor activator of NF-kappaB ligand (RANKL). This IL-23-induced osteoclastogenesis was inhibited by osteoprotegerin, anti-IL-17 antibody, and etanercept, suggesting that RANKL, IL-17, and TNF-alpha are involved. In addition, we found the ratio of production levels of IL-17 to those of IFN-gamma from activated human T cells was elevated at 1 to 10 ng/ml IL-23. The inductive effect of IL-17 and the inhibitory effect of IFN-gamma on osteoclastogenesis indicate that the balance of these two cytokines is particularly important. We also demonstrated that IL-23 administered at a later stage significantly reduced paw volume in rats with collagen-induced arthritis, in a dose-dependent manner. Furthermore, anti-IL-23 antibody reduced synovial tissue inflammation and bone destruction in these rats. These findings suggest that IL-23 is important in human osteoclastogenesis and that neutralizing IL-23 after onset of collagen-induced arthritis has therapeutic potential. Thus, controlling IL-23 production and function could be a strategy for preventing inflammation and bone destruction in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Toru Yago
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Yuki Nanke
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Manabu Kawamoto
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Takefumi Furuya
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Tsuyoshi Kobashigawa
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Naoyuki Kamatani
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Shigeru Kotake
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| |
Collapse
|
19
|
Alexandrakis MG, Pappa CA, Miyakis S, Sfiridaki A, Kafousi M, Alegakis A, Stathopoulos EN. Serum interleukin-17 and its relationship to angiogenic factors in multiple myeloma. Eur J Intern Med 2006; 17:412-6. [PMID: 16962948 DOI: 10.1016/j.ejim.2006.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/12/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Interleukin-17 (IL-17) is a CD4 T-cell-derived mediator of angiogenesis that stimulates vascular endothelial cell migration and regulates the production of a variety of proangiogenic factors, such as tumor necrosis factor-alpha (TNF-alpha) and vascular endothelial cell growth factor (VEGF). Angiogenesis is implicated in the progression of multiple myeloma (MM). METHODS We measured serum levels of IL-17, TNF-alpha, and VEGF, as well as microvessel density (MVD) in 40 untreated MM patients. RESULTS Levels of IL-17 in the sera of patients with MM were higher than those in matched controls; however, the difference did not reach statistical significance. Serum levels of both TNF-alpha and VEGF in MM patients were significantly higher than those in controls (p<0.001 in both instances). Levels of IL-17 in MM patients, both stage II and stage III, were significantly higher than those of stage I patients (p=0.001 and p<0.001, respectively). Similarly, higher values of VEGF (p<0.001), TNF-alpha (p<0.001), and MVD (p<0.035) were associated with advanced disease stage. Serum values of IL-17 in MM patients correlated positively not only with VEGF (Spearman's rho=0.606) and TNF-alpha (r=0.552; p<0.001 in both instances), but also with MVD (r=0.385, p=0.014). In addition, a positive correlation was found between serum values of VEGF and TNF-alpha (r=0.657, p<0.001), MVD and VEGF (r=0.353, p=0.026), and between MVD and TNF-alpha (r=0.506, p=0.001) in MM patients. CONCLUSION These results suggest that IL-17 plays a role in the promotion of angiogenesis and associated disease progression in MM.
Collapse
Affiliation(s)
- Michael G Alexandrakis
- Department of Haematology, University Hospital of Heraklion, P.O. Box 1352, Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
20
|
Miyoshi N, Oubrahim H, Chock PB, Stadtman ER. Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci U S A 2006; 103:1727-31. [PMID: 16443681 PMCID: PMC1413652 DOI: 10.1073/pnas.0510346103] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cell death plays a pivotal role in the body to maintain homeostasis during aging. Studies have shown that damaged cells, which must be removed from the body, accumulate during aging. Decay of the capacity and/or control of cell death during aging is widely considered to be involved in some age-dependent diseases. We investigated the accumulation of protein carbonyls and the role of cell death induced by hydrogen peroxide in human fibroblasts from individuals of various ages (17-80 years). The results showed that levels of oxidatively modified proteins increased with age, not only in whole-cell lysates but also in mitochondrial fractions, and this change correlates with a decline in the intracellular ATP level. Exposure of fibroblasts to hydrogen peroxide led to cell death by apoptosis and necrosis. Younger (<60 years old) cells were more resistant to necrosis induced by hydrogen peroxide than were older cells (>60 years old), which contained lower levels of free ATP than did younger cells. Treatment of cells of all ages with inhibitors of ATP synthesis (oligomycin, 2,4-dinitrophenol, or 2-deoxyglucose) made them more susceptible to cell death but also led to a switch in the death mode from apoptosis to necrosis. Furthermore, hydrogen peroxide treatment led to a greater accumulation of several inflammatory cytokines (IL-6, IL-7, IL-16, and IL-17) and increased necrosis in older cells. These results suggest that age-related decline in the ATP level reduces the capacity to induce apoptosis and promotes necrotic inflammation. This switch may trigger a number of age-dependent disorders.
Collapse
Affiliation(s)
- Noriyuki Miyoshi
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012
| | - Hammou Oubrahim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012
| | - P. Boon Chock
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012
| | - Earl R. Stadtman
- *To whom correspondence should be addressed at:
Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 2140, 50 South Drive, MSC-8012, Bethesda, MD 20892-8012. E-mail:
| |
Collapse
|
21
|
Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 2005; 237:123-30. [PMID: 16386239 DOI: 10.1016/j.cellimm.2005.11.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 10/19/2005] [Accepted: 11/08/2005] [Indexed: 11/29/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is widely regarded as an animal model of the human disease multiple sclerosis. A multitude of studies has investigated the neuroantigen-specific T-cell mediated cytokine pattern present in animals with EAE. In particular, the role of the so-called Th1- and Th2-cytokines has been addressed. In a recent study, it has been demonstrated that IL-23 rather than IL-12 is critical for modulating the character of the developing immune response towards a proinflammatory response and leading to EAE. IL-17 is a crucial effector cytokine, whose production is specifically triggered by IL-23, and it has been shown to be an essential inflammatory mediator in other autoimmune diseases and inflammatory conditions. This led us to investigate the role of IL-17 in EAE. Strong antigen-specific production of IL-17 was demonstrated both in peripheral immune organs and in the CNS in acute and chronic EAE, as demonstrated by ELISPOT and RT-PCR analysis. Therapeutic neutralization of IL-17 with IL-17-receptor-Fc-protein in acute EAE ameliorated clinical symptoms. Neutralization of IL-17 with a monoclonal antibody also ameliorated the disease course. We conclude that IL-17 is crucially involved in the cytokine network as an effector cytokine in EAE.
Collapse
Affiliation(s)
- Harald H Hofstetter
- Clinical Research Group for Multiple Sclerosis, Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Stamp LK, James MJ, Cleland LG. Interleukin-17: the missing link between T-cell accumulation and effector cell actions in rheumatoid arthritis? Immunol Cell Biol 2004; 82:1-9. [PMID: 14984588 DOI: 10.1111/j.1440-1711.2004.01212.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The prominence of T cells and monocyte/macrophages in rheumatoid synovium suggests T cells may localize and amplify the effector functions of monocyte/macrophages in rheumatoid disease. However, while T cells are abundant in rheumatoid joints, classic T-cell derived cytokines are scarce, especially when compared to the levels of monokines IL-1 beta and TNF-alpha. For this reason, it has been speculated that monocyte/macrophages may act independently of T cells in rheumatoid disease and that the role of T cells may be more or less irrelevant to core disease mechanisms. The question of T-cell influence requires re-evaluation in light of the characterization of IL-17, a T-cell derived cytokine that is abundant in rheumatoid synovium and synovial fluid. IL-17 has a number of pro-inflammatory effects, both directly and through amplification of the effects of IL-1 beta and TNF-alpha. IL-17 is able to induce expression of pro-inflammatory cytokines and stimulate release of eicosanoids by monocytes and synoviocytes. Furthermore, IL-17 has been implicated in the pathogenesis of inflammatory bone and joint damage through induction of matrix metalloproteinases and osteoclasts, as well as inhibition of proteoglycan synthesis. In animal models of arthritis, intra-articular injection of IL-17 results in joint inflammation and damage. The recognition of IL-17 as a pro-inflammatory T cell derived cytokine, and its abundance within rheumatoid joints, provides the strongest candidate mechanism to date through which T cells can capture and localize macrophage effector functions in rheumatoid arthritis. As such, IL-17 warrants consideration for its potential as a therapeutic target in rheumatoid arthritis.
Collapse
Affiliation(s)
- Lisa K Stamp
- Rheumatology Unit, Eleanor Harrald Building, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|
23
|
Abstract
Interleukin-17 (IL-17) is a proinflammatory T cell cytokine presumably involved in physiological responses to infection, but also in immunopathology of autoimmune disorders such as rheumatoid arthritis. The proinflammatory action of IL-17 depends considerably on its ability to trigger the expression of inducible nitric oxide (NO) synthase (iNOS), an enzyme responsible for the generation of cytotoxic and immunoregulatory free radical NO. Here we discuss the role of IL-17 in the cytokine network controlling iNOS expression, and analyze signaling pathways employed by IL-17 for the initiation of iNOS gene transcription. We also propose biological consequences of IL-17-mediated NO release that could be relevant for the mechanisms or therapy of autoimmune and inflammatory disorders.
Collapse
|
24
|
Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y. Catalog of 680 variations among eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes in the Japanese population. J Hum Genet 2003; 48:249-270. [PMID: 12721789 DOI: 10.1007/s10038-003-0021-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 03/06/2003] [Indexed: 11/25/2022]
Abstract
We screened DNAs from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes by directly sequencing the relevant genomic regions in their entirety except for repetitive elements. This approach identified 607 SNPs and 73 insertion/deletion polymorphisms among the 19 genes examined. Of the 607 SNPs, 284 were identified in CYP genes, 302 in esterase genes, and 21 in the other two genes ( GGT1, and TGM1); overall, 37 SNPs were located in 5' flanking regions, 496 in introns, 55 in exons, and 19 in 3' flanking regions. These variants should contribute to studies designed to investigate possible correlations between genotypes and phenotypes of disease susceptibility or responsiveness to drug therapy.
Collapse
Affiliation(s)
- Susumu Saito
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Aritoshi Iida
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akihiro Sekine
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Saori Kawauchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shoko Higuchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Ogawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Nakamura
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
25
|
Abstract
Interleukin-17 (IL-17) is a pro-inflammatory cytokine secreted by activated T-cells. Recently discovered related molecules are forming a family of cytokines, the IL-17 family. The prototype member of the family has been designated IL-17A. Due to recent advances in the human genome sequencing and proteomics five additional members have been identified and cloned: IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. The cognate receptors for the IL-17 family identified thus far are: IL-17R, IL-17RH1, IL-17RL (receptor like), IL-17RD and IL-17RE. However, the ligand specificities of many of these receptors have not been established. The IL-17 signaling system is operative in disparate tissues such as articular cartilage, bone, meniscus, brain, hematopoietic tissue, kidney, lung, skin and intestine. Thus, the evolving IL-17 family of ligands and receptors may play an important role in the homeostasis of tissues in health and disease beyond the immune system. This survey reviews the biological actions of IL-17 signaling in cancers, musculoskeletal tissues, the immune system and other tissues.
Collapse
Affiliation(s)
- T A Moseley
- Department of Orthopaedic Surgery, Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
26
|
Starnes T, Broxmeyer HE, Robertson MJ, Hromas R. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:642-6. [PMID: 12097364 DOI: 10.4049/jimmunol.169.2.642] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel cytokine termed IL-17D was cloned using nested RACE PCR. It is a secreted cytokine with homology to the IL-17 family of proteins. IL-17D is preferentially expressed in skeletal muscle, brain, adipose tissue, heart, lung, and pancreas. Treatment of endothelial cells with purified rIL-17D protein stimulated the production of IL-6, IL-8, and GM-CSF. The increased expression of IL-8 was found to be NF-kappa B-dependent. rIL-17D also demonstrated an inhibitory effect on hemopoiesis of myeloid progenitor cells in colony formation assays.
Collapse
Affiliation(s)
- Trevor Starnes
- Department of Medicine, Walther Oncology Center, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
27
|
Haudenschild D, Moseley T, Rose L, Reddi AH. Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 2002; 277:4309-16. [PMID: 11706037 DOI: 10.1074/jbc.m109372200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the interleukin-17 cytokine family are present in a variety of tissues (1-3), although the founding member, interleukin-17, is expressed exclusively in T cells and B cells (4-8). The cloning and characterization of a novel single-pass transmembrane protein with limited homology to the interleukin-17 receptor is reported. High mRNA levels were detected in prostate, cartilage, kidney, liver, heart, and muscle, whereas transcripts were barely detected in thymus and leukocytes. At least 11 RNA splice variants were found, transcribed from 19 exons on human chromosome 3p25.3-3p24.1. Differential exon usage was found in different tissues by quantitative reverse transcriptase-PCR. Predicted proteins range from 186 to 720 amino acids. Soluble secreted proteins lacking transmembrane and intracellular domains are predicted from several splice isoforms and may function as extracellular antagonists to cytokine signaling by functioning as soluble decoy receptors. Using antibodies directed at the cytoplasmic and extracellular domains of this protein, we investigated its localization and found that it was expressed in a variety of normal human tissues including prostate and in prostate cancer.
Collapse
Affiliation(s)
- Dominik Haudenschild
- Center for Tissue Regeneration and Repair and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Sudeepta Aggarwal
- Department of Molecular Biology, Genentech Inc., South San Francisco, California
| | - Austin L. Gurney
- Department of Molecular Biology, Genentech Inc., South San Francisco, California
| |
Collapse
|
29
|
Udagawa N, Kotake S, Kamatani N, Takahashi N, Suda T. The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. ARTHRITIS RESEARCH 2002; 4:281-9. [PMID: 12223101 PMCID: PMC128939 DOI: 10.1186/ar431] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 03/14/2002] [Accepted: 03/14/2002] [Indexed: 02/04/2023]
Abstract
Bone-resorbing osteoclasts are formed from hemopoietic cells of the monocyte-macrophage lineage under the control of bone-forming osteoblasts. We have cloned an osteoblast-derived factor essential for osteoclastogenesis, the receptor activator of NF-kappaB ligand (RANKL). Synovial fibroblasts and activated T lymphocytes from patients with rheumatoid arthritis also express RANKL, which appears to trigger bone destruction in rheumatoid arthritis as well. Recent studies have shown that T lymphocytes produce cytokines other than RANKL such as IL-17, granulocyte-macrophage colony-stimulating factor and IFN-gamma, which have powerful regulatory effects on osteoclastogenesis. The possible roles of RANKL and other cytokines produced by T lymphocytes in bone destruction are described.
Collapse
Affiliation(s)
- Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan.
| | | | | | | | | |
Collapse
|
30
|
Starnes T, Robertson MJ, Sledge G, Kelich S, Nakshatri H, Broxmeyer HE, Hromas R. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4137-40. [PMID: 11591732 DOI: 10.4049/jimmunol.167.8.4137] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel secreted cytokine, termed IL-17F, was cloned using nested RACE PCR. This cytokine bears homology to IL-17. IL-17F was expressed only in activated CD4(+) T cells and activated monocytes. Recombinant human IL-17F did not stimulate the proliferation of hematopoietic progenitors or the migration of mature leukocytes. However, it markedly inhibited the angiogenesis of human endothelial cells and induced endothelial cells to produce IL-2, TGF-beta, and monocyte chemoattractant protein-1.
Collapse
Affiliation(s)
- T Starnes
- Department of Medicine and Biochemistry, Walther Oncology Center, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts: a possible role as a "fine-tuning cytokine" in inflammation processes. ARTHRITIS AND RHEUMATISM 2001; 44:2176-84. [PMID: 11592383 DOI: 10.1002/1529-0131(200109)44:9<2176::aid-art371>3.0.co;2-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To compare the singular and combined effects of tumor necrosis factor alpha (TNFalpha), interleukin-1beta (IL-1beta), and IL-17 on messenger RNA (mRNA) expression, translation, and secretion of IL-6, IL-8, and IL-1beta in fibroblasts. METHODS Fibroblasts were stimulated with the relevant cytokine(s), pulse labeled with 35S-methionine, and the newly synthesized proteins were immunoprecipitated and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gene expression was determined by Northern blot analysis. Secreted proteins were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS IL-17 alone was a weaker stimulator of the transcription, translation, and secretion of other interleukins than was TNFalpha or IL-1beta. IL-17 (10 ng/ml) stimulated the expression of IL-6 mRNA by 1.3-fold, while TNFalpha (1 ng/ml) increased it by 3.7-fold, and IL-1beta (0.1 ng/ml) increased it by >30-fold. Unlike TNFalpha and IL-1beta, IL-17 hardly affected the expression of IL-8 and IL-1beta mRNA. Translation of IL-6 was 6.2 times greater with IL-17, but TNFalpha and IL-1beta stimulated it 28.9- and 174-fold, respectively. ELISA-measured secretion of IL-6 and IL-8 increased by 6.7 and 5.8 times, respectively, with IL-17, compared with 52 and 269 times with TNFalpha stimulation and 1,356 and 1,084 times with IL-1beta stimulation. Yet, when IL-17 was combined with other cytokines, these activities were stimulated much beyond the sum of the individual effects. The combination of IL-17 and TNFalpha induced the expression of IL-6 or IL-1beta mRNA 7 times more than their additive stimulation, and that of IL-8 mRNA 3.8 times more. Likewise, the secretion of IL-6 and IL-8 was 20 times and 5 times higher, respectively, than expected. This synergism started after 4 hours of combined treatment, and decayed after 24-48 hours regardless of cytokine presence. It could be blocked with anti-IL-17 but not with anti-IL-1. CONCLUSION Our findings suggest that the primary role of IL-17 is to synergize with TNFalpha and to fine-tune the inflammation process. Therefore, IL-17 may be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Y Katz
- Institute of Allergy and Immunology, Assaf Harofeh Medical Center, Zerifin, Israel
| | | | | |
Collapse
|
32
|
Broxmeyer HE, Youn BS, Kim C, Hangoc G, Cooper S, Mantel C. Chemokine regulation of hematopoiesis and the involvement of pertussis toxin-sensitive G alpha i proteins. Ann N Y Acad Sci 2001; 938:117-27; discussion 127-8. [PMID: 11458498 DOI: 10.1111/j.1749-6632.2001.tb03580.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemokines have been implicated in regulation of various aspects of hematopoiesis, including negative regulation of the proliferation of immature subsets of myeloid progenitor cells (MPCs), chemotaxis of MPCs, and survival enhancement of MPCs after delayed growth factor addition. Since chemokine receptors are seven-transmembrane-spanning G-protein-linked receptors and the chemotactic effect in vitro of the CXC chemokine SDF-1 is pertussis toxin (PT)-sensitive, implying the involvement of G alpha i proteins as mediators of SDF-1-induced chemotaxis, we evaluated the effects of PT on other chemokine actions influencing MPCs. While the in vitro survival-enhancing effects of SDF-1 on GM-CSF and steel factor-dependent mouse bone marrow granulocyte macrophage progenitors (CFU-GM) were pertussis toxin-sensitive, the suppressive effects of the CC chemokine MIP-1 alpha and the CXC chemokine IL-8 on colony formation by GM-CSF and steel factor-sensitive CFU-GM were insensitive to pertussis toxin. These results suggest that not all chemokine-mediated effects on MPCs are necessarily mediated through pertussis toxin-sensitive G alpha i proteins.
Collapse
Affiliation(s)
- H E Broxmeyer
- Departments of Microbiology and Immunology, and Medicine (Hematology/Oncology), the Walther Oncology Center, Indiana University School of Medicine, and the Walther Cancer Institute, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Cooper SH, Broxmeyer HE. Measurement of Interleukin 3 and Other Hematopoietic Cytokines, such as
GM
‐
CSF
,
G
‐
CSF
,
M
‐
CSF
, Erythropoietin, Steel Factor, and Flt‐3 Ligand. ACTA ACUST UNITED AC 2001; Chapter 6:Unit 6.4. [DOI: 10.1002/0471142735.im0604s37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Luzza F, Parrello T, Monteleone G, Sebkova L, Romano M, Zarrilli R, Imeneo M, Pallone F. Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori-infected human gastric mucosa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5332-7. [PMID: 11046068 DOI: 10.4049/jimmunol.165.9.5332] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori (HP)-associated gastritis is characterized by an increased number of acute and chronic inflammatory cells secreting cytokines that contribute to maintain and expand the local inflammation. Locally induced IL-8 is believed to play a major role in the HP-associated acute inflammatory response. Factors/mechanisms that regulate IL-8 induction are, however, not fully understood. In the present study we investigated whether HP infection is associated with an increased production of IL-17, a T cell-derived cytokine capable of modulating IL-8 gene expression. We showed that both IL-17 RNA transcripts and protein were expressed at a higher level in the whole gastric mucosal and lamina propria mononuclear cell samples from HP-infected patients than in those from uninfected subjects. HP: eradication was associated with a marked down-regulation of IL-17 expression. The addition of a neutralizing anti-IL-17 Ab to the gastric lamina propria mononuclear cell cultures resulted in a significant inhibition of IL-8 secretion, indicating that IL-17 contributes to enhance IL-8 in the HP-colonized gastric mucosa. Consistently, stimulation of MKN 28 cells, a gastric epithelial cell line, with IL-17 increased IL-8 secretion. Finally, conditioned medium from the IL-17-stimulated MKN 28 cell cultures promoted the in vitro polymorphonuclear leukocyte migration. This effect was inhibitable by a neutralizing IL-8 but not IL-17 Ab. Together, these data indicate that biologically active IL-17 production is increased during HP: infection, suggesting the possibility that this cytokine may play an important role in the inflammatory response to the HP colonization.
Collapse
Affiliation(s)
- F Luzza
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, Maslinski W. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2832-8. [PMID: 10679127 DOI: 10.4049/jimmunol.164.5.2832] [Citation(s) in RCA: 449] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data suggest that IL-15 plays an important role in the pathogenesis of rheumatoid arthritis. In the present study, we hypothesized that elevated in the joints of rheumatoid arthritis, but not osteoarthritis, patients, IL-15 may exert its proinflammatory properties via the induction of IL-17, a cytokine known to stimulate synoviocytes to release several mediators of inflammation including IL-6, IL-8, GM-CSF and PGE2. To test this hypothesis, we first measured the levels of IL-17 and IL-15 using specific ELISA and found that synovial fluids of patients with rheumatoid arthritis, but not with osteoarthritis, contain high levels of these cytokines. A strong correlation between IL-15 and IL-17 levels in synovial fluids was observed. Among tested factors, LPS and TNF-alpha failed, IL-15 and IL-2 were equipotent, and PMA + ionomycin was far more efficient in the induction of IL-17 secretion by PBMCs isolated from healthy blood donors. Interestingly, synovial fluid cells, in contrast to PBMCs isolated from patients with rheumatoid arthritis, but not osteoarthritis, respond to PMA + ionomycin with much lower, comparable to IL-15-triggered IL-17 secretion. Moreover, PMA + ionomycin-triggered IL-17 secretion is completely or partially blocked in the presence of low doses of cyclosporin A or high doses of methylprednisolone, respectively. IL-15-triggered IL-17 secretion by PBMCs was completely inhibited by these drugs. Thus, our results suggest for the first time that IL-15 may represent a physiological trigger that via cyclosporin A and steroid sensitive pathways leads to the overproduction of IL-17 in the joints of rheumatoid arthritis patients.
Collapse
Affiliation(s)
- M Ziolkowska
- Departments ofPathophysiology and Immunology, Rehabilitation, and Connective Tissue Disease, Institute of Rheumatology, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
36
|
Li H, Chen J, Huang A, Stinson J, Heldens S, Foster J, Dowd P, Gurney AL, Wood WI. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc Natl Acad Sci U S A 2000; 97:773-8. [PMID: 10639155 PMCID: PMC15406 DOI: 10.1073/pnas.97.2.773] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IL-17 is a T cell-derived cytokine that may play an important role in the initiation or maintenance of the proinflammatory response. Whereas expression of IL-17 is restricted to activated T cells, the IL-17 receptor is found to be widely expressed, a finding consistent with the pleiotropic activities of IL-17. We have cloned and expressed two novel human cytokines, IL-17B and IL-17C, that are related to IL-17 ( approximately 27% amino acid identity). IL-17B mRNA is expressed in adult pancreas, small intestine, and stomach, whereas IL-17C mRNA is not detected by RNA blot hybridization of several adult tissues. No expression of IL-17B or IL-17C mRNA is found in activated T cells. In a survey of cytokine induction, IL-17B and IL-17C stimulate the release of tumor necrosis factor alpha and IL-1beta from the monocytic cell line, THP-1, whereas IL-17 has only a weak effect in this system. No induction of IL-1alpha, IL-6, IFN-gamma, or granulocyte colony-stimulating factor is found in THP-1 cells. Fluorescence-activated cell sorter analysis shows that IL-17B and IL-17C bind to THP-1 cells. Conversely, IL-17B and IL-17C are not active in an IL-17 assay or the stimulation of IL-6 release from human fibroblasts and do not bind to the human IL-17 receptor extracellular domain. These data show that there is a family of IL-17-related cytokines differing in patterns of expression and proinflammatory responses that may be transduced through a cognate set of cell surface receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 5/genetics
- Cloning, Molecular
- Cricetinae
- Cytokines/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression
- Humans
- Interleukin-1/metabolism
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-17/pharmacology
- Male
- Molecular Sequence Data
- Monocytes/drug effects
- Monocytes/metabolism
- Protein Binding
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Isoforms/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-17
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- H Li
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Martel-Pelletier J, Mineau F, Jovanovic D, Di Battista JA, Pelletier JP. Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated proten kinase (MAPKAPK). ARTHRITIS AND RHEUMATISM 1999; 42:2399-409. [PMID: 10555036 DOI: 10.1002/1529-0131(199911)42:11<2399::aid-anr19>3.0.co;2-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the signaling pathways by which the proinflammatory cytokine interleukin-17 (IL-17) may contribute to cartilage catabolism in osteoarthritis (OA) by inducing inducible nitric oxide synthase (iNOS) expression in chondrocytes. METHODS We examined the IL-17-induced NO production in human OA chondrocytes, in combination with the proinflammatory cytokines IL-1beta, tumor necrosis factor alpha (TNF alpha), and leukemia inhibitory factor (LIF); the antiinflammatory cytokines IL-4, IL-10, and IL-13; and IL-1 receptor antagonist (IL-1Ra). Further, we explored the major intracellular signaling pathways through which IL-17 induced iNOS expression and NO production. RESULTS Treatment with IL-17 induced a dose-dependent increase in the level of NO. When IL-17 was combined with the above factors, it resulted in a synergistic effect with TNF alpha, an additive effect with LIF, and no further effect than when used alone with IL-1beta. IL-4, IL-10, IL-13, and IL-1Ra had no true effect on IL-17-induced NO production. The cAMP mimetics, 3-isobutyl-1-methyl xanthine plus forskolin, completely blocked IL-17-induced NO production. KT-5720, genistein, and Calphostin C, inhibitors of protein kinase A (PKA), tyrosine kinase, and protein kinase C, respectively, reduced the IL-17-induced NO production by 72%, 56%, and 42%, respectively. Within minutes, IL-17 induced the phosphorylation of mitogen-activated protein kinase kinase-1/2 (MEK-1/2), -3/6 (MKK-3/6), p44/42, p38, and inhibitor of nuclear factor kappaB (I kappaB)-alpha, as well as the activation of mitogen-activated protein kinase-activated protein kinase-1 and -2 (MAPKAPK-1 and -2). Interestingly, IL-17 induced phosphorylation of the stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) (p54/46) only when PKA was inhibited. Specific protein kinase inhibitors for MEK-1/2 (PD98059), p38 (SB202190), and nuclear factor kappaB (NF-kappaB) (pyrrolidine dithiocarbamate) each markedly decreased the IL-17-increased iNOS level and NO production. Inhibiting MAPK, including MEK-1/2 and p38, had no effect on the IL-17-induced activation of IkappaB-alpha, but reversed the IL-17 activation of MAPKAPK-1 and -2, respectively. CONCLUSION These findings show that the stimulation of NO production by IL-17 is mediated mainly by a complex activation of kinases, especially PKA, NF-kappaB, and MAPK. NF-kappaB appears to require MAPK activation, with downstream activation of MAPKAPK probably acting as a transactivating factor, to induce iNOS expression.
Collapse
Affiliation(s)
- J Martel-Pelletier
- Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Quebec, Canada
| | | | | | | | | |
Collapse
|
38
|
Abstract
Interleukin-17 (IL-17) is a recently cloned cytokine that is exclusively produced by activated T cells, but its receptor has been found on several cells and tissues. Like other proinflammatory cytokines produced by activated T cells, IL-17 may affect osteoclastic resorption and thereby mediate bone destruction accompanying some inflammatory diseases. In the present study, we investigated whether osteogenic cells possess the receptor for IL-17 (IL-17R) and whether IL-17 affects osteoclastic resorption. We found that IL-17R mRNA is expressed both in mouse MC3T3-E1 osteoblastic cells and fetal mouse long bones, suggesting that osteogenic cells may be responsive to IL-17. In fetal mouse long bones, IL-17 had no effect on basal and IL-1beta-stimulated osteoclastic bone resorption, but when given together with tumor necrosis factor-alpha (TNF-alpha) it increased bone resorption dose dependently in serum-free conditions. In addition, IL-17 increased TNF-alpha-induced IL-1alpha, IL-1beta, and IL-6 mRNA expression in fetal mouse metatarsals and IL-1alpha and IL-6 mRNA expression in MC3T3-E1 cells. In conclusion, IL-17R mRNA was expressed by mouse osteoblastic cells and fetal mouse long bones, and IL-17 in combination with TNF-alpha, but not IL-1beta, increased osteoclastic resorption in vitro. IL-17 may therefore affect bone metabolism in pathological conditions characterized by the presence of activated T cells and TNF-alpha production such as rheumatoid arthritis and loosening of bone implants.
Collapse
Affiliation(s)
- R L Van bezooijen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
39
|
Subramaniam SV, Cooper RS, Adunyah SE. Evidence for the involvement of JAK/STAT pathway in the signaling mechanism of interleukin-17. Biochem Biophys Res Commun 1999; 262:14-9. [PMID: 10448060 DOI: 10.1006/bbrc.1999.1156] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-17 is a T-cell-derived pro-inflammatory cytokine, exhibiting multiple biological activities in a variety of cells and believed to fine tune all general phases of hematopoietic response. However, the signaling mechanism of this novel cytokine remains unknown. Here, we report for the first time that the early signaling events triggered by interleukin-17 involve tyrosine phosphorylation of several members of the JAK and STAT proteins in human U937 monocytic leukemia cells. Immunoprecipitation with specific antibodies followed by Western blot analysis with antiphosphotyrosine antibody has shown that in U937 cells, interleukin-17 induces time-dependent stimulation of tyrosine phosphorylation of JAK 1, 2 and 3, Tyk 2 and STAT 1, 2, 3 and 4 within 0.5 to 30 min. Interleukin-17-mediated tyrosine phosphorylation of these proteins strongly suggests that the JAK/STAT signaling pathway may play a major role in transducing signals from interleukin-17 receptors to the nucleus.
Collapse
Affiliation(s)
- S V Subramaniam
- Department of Biochemistry, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | |
Collapse
|
40
|
Subramaniam SV, Pearson LL, Adunyah SE. Interleukin-17 induces rapid tyrosine phosphorylation and activation of raf-1 kinase in human monocytic progenitor cell line U937. Biochem Biophys Res Commun 1999; 259:172-7. [PMID: 10334935 DOI: 10.1006/bbrc.1999.0746] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-17 is a T cell derived pro-inflammatory cytokine exhibiting multiple biological activities in a variety of cells and believed to fine tune all general phases of hematopoietic response. However, the signaling mechanism of this novel cytokine remains unknown. The purpose of this study was to determine whether Interleukin-17 induces tyrosine phosphorylation of proteins and to find out whether the raf-1 kinase signaling pathway is involved in mediating its signaling. Using immunoblotting and immunocomplex kinase assays, we report that the early signaling events triggered by rhIL-17 involves rapid tyrosine phosphorylation of several cellular proteins including raf-1 within 0.5 to 30 min. Optimal stimulation of tyrosine phosphorylation was observed with 0.5 to 1.0 ng/ml of Interleukin-17. Further, Interleukin-17 stimulates rapid activation of raf-1 kinase. These findings provide the first evidence that the mechanism of IL-17 signaling involves rapid tyrosine phosphorylation and activation of raf-1 serine/threonine kinase.
Collapse
Affiliation(s)
- S V Subramaniam
- Department of Biochemistry and Comprehensive Sickle Cell Center, Meharry Medical College, Nashville, Tennessee, 37208, USA
| | | | | |
Collapse
|
41
|
Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103:1345-52. [PMID: 10225978 PMCID: PMC408356 DOI: 10.1172/jci5703] [Citation(s) in RCA: 1297] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IL-17 is a newly discovered T cell-derived cytokine whose role in osteoclast development has not been fully elucidated. Treatment of cocultures of mouse hemopoietic cells and primary osteoblasts with recombinant human IL-17 induced the formation of multinucleated cells, which satisfied major criteria of osteoclasts, including tartrate-resistant acid phosphatase activity, calcitonin receptors, and pit formation on dentine slices. Direct interaction between osteoclast progenitors and osteoblasts was required for IL-17-induced osteoclastogenesis, which was completely inhibited by adding indomethacin or NS398, a selective inhibitor of cyclooxgenase-2 (COX-2). Adding IL-17 increased prostaglandin E2 (PGE2) synthesis in cocultures of bone marrow cells and osteoblasts and in single cultures of osteoblasts, but not in single cultures of bone marrow cells. In addition, IL-17 dose-dependently induced expression of osteoclast differentiation factor (ODF) mRNA in osteoblasts. ODF is a membrane-associated protein that transduces an essential signal(s) to osteoclast progenitors for differentiation into osteoclasts. Osteoclastogenesis inhibitory factor (OCIF), a decoy receptor of ODF, completely inhibited IL-17-induced osteoclast differentiation in the cocultures. Levels of IL-17 in synovial fluids were significantly higher in rheumatoid arthritis (RA) patients than osteoarthritis (OA) patients. Anti-IL-17 antibody significantly inhibited osteoclast formation induced by culture media of RA synovial tissues. These findings suggest that IL-17 first acts on osteoblasts, which stimulates both COX-2-dependent PGE2 synthesis and ODF gene expression, which in turn induce differentiation of osteoclast progenitors into mature osteoclasts, and that IL-17 is a crucial cytokine for osteoclastic bone resorption in RA patients.
Collapse
Affiliation(s)
- S Kotake
- The Institute of Rheumatology, Tokyo Women's Medical University, Tokyo 162-0054, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schwarzenberger P, La Russa V, Miller A, Ye P, Huang W, Zieske A, Nelson S, Bagby GJ, Stoltz D, Mynatt RL, Spriggs M, Kolls JK. IL-17 Stimulates Granulopoiesis in Mice: Use of an Alternate, Novel Gene Therapy-Derived Method for In Vivo Evaluation of Cytokines. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.6383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
IL-17 is a novel cytokine secreted principally by CD4+ T cells. It has been shown to support the growth of hemopoietic progenitors in vitro; however, its in vivo effects are presently unknown. Adenovirus-mediated gene transfer of the murine IL-17 cDNA targeted to the liver (5 × 109 plaque-forming units (PFU) intravenous) resulted in a transiently transgenic phenotype, with dramatic effects on in vivo granulopoiesis. Initially, there was a significant increase (fivefold) in the peripheral white blood count (WBC), including a 10-fold rise in the absolute neutrophil count. This was associated with a doubling in the spleen size over 7–14 days after gene transfer, which returned to near baseline by day 21, although the white blood cell count remained elevated. There was a profound stimulation of splenic hemopoiesis as demonstrated by an increase in total cellularity by 50% 7 days after gene transfer and an increase in hemopoietic colony formation. A maximal increase in frequency of high proliferative potential colonies (HPPC) (11-fold) and CFU-granulocyte-macrophage (GM) and CFU-granulocyte-erythrocyte-megakaryocyte-monocyte (GEMM) (CFU) (6-fold) was seen on day 3 after IL-17 gene transfer. Both CFU and HPPC remained significantly elevated in the spleen throughout day 21, but at reduced levels compared with day 3. Bone marrow CFU and HPPC were elevated on day 3 only by 75% and 25%, respectively, without changes in total cellularity. Thus, murine IL-17 is a cytokine that can stimulate granulopoiesis in vivo. Since IL-17 is principally produced by CD4+ T cells, this cytokine could have therapeutic implications in AIDS-related bone marrow failure and opportunistic infections.
Collapse
Affiliation(s)
| | - Vincent La Russa
- ∥Bone Marrow Transplant Program, Tulane University, New Orleans, LA
| | - Allan Miller
- ∥Bone Marrow Transplant Program, Tulane University, New Orleans, LA
| | - Peng Ye
- *Gene Therapy Program,
- †Department of Medicine,
| | | | | | | | - Gregory J. Bagby
- ¶Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112
| | - David Stoltz
- *Gene Therapy Program,
- ¶Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112
| | | | | | - Jay K. Kolls
- *Gene Therapy Program,
- †Department of Medicine,
- ‡Department of Pediatrics,
| |
Collapse
|
43
|
Abstract
The particular interest of IL-17, a homodimeric cytokine of about 32 kDa, is the strict requirement for an activation signal to induce its expression from a rather restricted set of cells, human memory T cells or mouse alpha beta TCR+CD4-CD8- thymocytes. In contrast with the tightly controlled expression pattern of this gene, the IL-17 receptor, a novel cytokine receptor, is ubiquitously distributed but apparently more abundant in spleen and kidney. In addition to its capture by the T lymphotropic Herpesvirus Saimiri (HVS), this cytokine is inducing the secretion of IL-6, IL-8, PGE2, MCP-1 and G-CSF by adherent cells like fibroblasts, keratinocytes, epithelial and endothelial cells. IL-17 is also able to induce ICAM-1 surface expression, proliferation of T cells, and growth and differentiation of CD34+ human progenitors into neutrophils when cocultured in presence of irradiated fibroblasts. In vitro, IL-17 synergizes with other proinflammatory signals like TNF alpha for GM-CSF induction, and with CD40-ligand for IL-6, IL-8, RANTES and MCP-1 secretion from kidney epithelial cells. In vivo, injection of IL-17 induces a neutrophilia, except in IL-6-KO mice. The involvement of IL-17 in rejection of kidney graft has also been demonstrated. The role of this T cell secreted factor in various inflammatory processes is presently investigated.
Collapse
Affiliation(s)
- F Fossiez
- Schering-Plough, Laboratory for Immunological Research, Dardilly, France
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- R M Clancy
- Hospital for Joint Diseases/New York University Medical Center, New York 10003, USA
| | | | | |
Collapse
|
45
|
Cai XY, Gommoll CP, Justice L, Narula SK, Fine JS. Regulation of granulocyte colony-stimulating factor gene expression by interleukin-17. Immunol Lett 1998; 62:51-8. [PMID: 9672148 DOI: 10.1016/s0165-2478(98)00027-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-17 (IL-17) has been previously reported to induce stromal cells to produce a number of hematopoietic and proinflammatory cytokines, including granulocyte colony-stimulating factor (G-CSF). Here, we have evaluated the mechanisms responsible for the augmentation of G-CSF gene expression by IL-17, using the murine 3T3 fibroblast cell line. Treatment of 3T3 cells, but not primary bone marrow-derived macrophages or murine monocyte/macrophage cell lines, resulted in increased steady-state G-CSF mRNA levels within 2-4 h and augmented G-CSF protein production. The combination of IL-17 and LPS enhanced G-CSF expression in an additive fashion. Stability studies revealed that IL-17 stabilized G-CSF mRNA levels, with a t1/2 of 4 h, compared to a t1/2 of less than 2 h in medium or LPS-treated cells. Induction of G-CSF expression in 3T3 cells by IL-17 did not appear to require tyrosine kinase activation or de novo protein synthesis. These studies indicate that post-transcriptional mechanisms play an important role in IL-17-induced G-CSF expression in fibroblasts and suggest that IL-17 may be useful for further delineating mechanisms of G-CSF gene regulation.
Collapse
Affiliation(s)
- X Y Cai
- Schering-Plough Research Institute, Department of Immunology, Kenilworth, NJ 07033, USA
| | | | | | | | | |
Collapse
|
46
|
Cao X, Huang X, Wan T, Zhao Z. Construction and identification of retro viral vector expressing human interleukin-17 gene. Chin J Cancer Res 1997. [DOI: 10.1007/bf02974978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
47
|
Broxmeyer HE, Mantel CR, Aronica SM. Biology and mechanisms of action of synergistically stimulated myeloid progenitor cell proliferation and suppression by chemokines. Stem Cells 1997; 15 Suppl 1:69-77; discussion 78. [PMID: 9368327 DOI: 10.1002/stem.5530150811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of cytokines can act together to stimulate/enhance the proliferation of hematopoietic stem and progenitor cells in a greater than additive fashion. An example of this is the combination of a colony-stimulating factor with a potent costimulating molecule such as steel factor. Certain members of the chemokine family of cytokines can suppress this synergistically enhanced proliferation. This review focuses on cytokines involved in these stimulating/enhancing/suppressing effects with regard to biological activity and what is beginning to be learned about the intracellular signal transduction events that may be mediating these effects. Examples of intracellular mediators involved include, but are not limited to, the Raf-1/ MAP kinase pathway and cyclin-dependent kinase inhibitors p21cip-1 and p27kip-1 for cell proliferation, and eukaryotic initiation factor-4E and 4E binding protein 1 for protein synthesis.
Collapse
Affiliation(s)
- H E Broxmeyer
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, USA
| | | | | |
Collapse
|
48
|
Attur MG, Patel RN, Abramson SB, Amin AR. Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. ARTHRITIS AND RHEUMATISM 1997; 40:1050-3. [PMID: 9182915 DOI: 10.1002/art.1780400609] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine the effect of human interleukin-17 (IL-17) on nitric oxide (NO) production in human osteoarthritis (OA) cartilage under ex vivo conditions. METHODS OA cartilage from patients undergoing knee replacement surgery was used in explant assays to assess the effect of IL-17. NO production was measured by estimating the stable NO metabolite, nitrite, in conditioned medium. RESULTS IL-17 augmented the spontaneous production of nitric oxide. This augmentation was sensitive to cycloheximide and pyrrolidine dithiocarbamate, but not to dexamethasone or soluble IL-1 receptor. CONCLUSION IL-17 augments nitric oxide production in OA cartilage via nuclear factor kappaB activation, but independently of IL-1beta signaling.
Collapse
Affiliation(s)
- M G Attur
- Hospital for Joint Diseases, New York, New York 10003, USA
| | | | | | | |
Collapse
|
49
|
Tian M, Broxmeyer HE, Fan Y, Lai Z, Zhang S, Aronica S, Cooper S, Bigsby RM, Steinmetz R, Engle SJ, Mestek A, Pollock JD, Lehman MN, Jansen HT, Ying M, Stambrook PJ, Tischfield JA, Yu L. Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J Exp Med 1997; 185:1517-22. [PMID: 9126934 PMCID: PMC2196276 DOI: 10.1084/jem.185.8.1517] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Indexed: 02/04/2023] Open
Abstract
The mu opioid receptor is thought to be the cellular target of opioid narcotics such as morphine and heroin, mediating their effects in both pain relief and euphoria. Its involvement is also implicated in a range of diverse biological processes. Using a mouse model in which the receptor gene was disrupted by targeted homologous recombination, we explored the involvement of this receptor in a number of physiological functions. Mice homozygous for the disrupted gene developed normally, but their motor function was altered. Drug-naive homozygotes displayed reduced locomotor activity, and morphine did not induce changes in locomotor activity observed in wild-type mice. Unexpectedly, lack of a functional receptor resulted in changes in both the host defense system and the reproductive system. We observed increased proliferation of granulocyte-macrophage, erythroid, and multipotential progenitor cells in both bone marrow and spleen, indicating a link between hematopoiesis and the opioid system, both of which are stress-responsive systems. Unexpected changes in sexual function in male homozygotes were also observed, as shown by reduced mating activity, a decrease in sperm count and motility, and smaller litter size. Taken together, these results suggest a novel role of the mu opioid receptor in hematopoiesis and reproductive physiology, in addition to its known involvement in pain relief.
Collapse
Affiliation(s)
- M Tian
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW. Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med 1996; 184:1825-32. [PMID: 8920870 PMCID: PMC2192871 DOI: 10.1084/jem.184.5.1825] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expansion of mature neutrophils has been observed in mice lacking the murine interleukin (IL) 8 receptor homolog [mIL-8Rh(-/-)], and human (hu) IL-8 suppresses proliferation of primitive myeloid cells in vitro and in vivo. To evaluate involvement and relevance of murine IL-8 receptor homolog (mIL-8Rh) in negative regulation of myelopoiesis, we studied mIL-8Rh(-/-) and (+/+) mice raised in a normal or germ-free environment. Immature myeloid progenitors from mIL-8Rh(+/+) mice bred under normal or germ-free conditions were significantly suppressed in vitro by recombinant huIL-8, macrophage inflammatory protein (MIP)-1 alpha, platelet factor (PF) 4, interferon inducible protein (IP) 10, monocyte chemotactic peptide (MCP) 1, and H-ferritin. In contrast, progenitors from mIL-8Rh(-/-) mice were insensitive to inhibition by IL-8, but not to these other chemokines and H-ferritin. Mouse MIP-2, a ligand for mIL-8Rh, suppressed progenitors from normal but not mIL-8Rh(-/-) mice. Under normal environmental conditions, enhanced numbers of myeloid progenitors were found in femur, spleen, and blood of mIL-8Rh(-/-) compared with mIL-8Rh(+/+) mice. Numbers of myeloid progenitors were greatly decreased in mIL-8Rh(-/-)and (+/+) mice in germ-free conditions, and were either not significantly enhanced in mIL-8Rh(-/-) mice compared with (+/+) mice or were only moderately so. Differences in progenitors/organ between a germ-free and normal environment were greater for the mIL-8Rh(-/-) mice. These results document selective insensitivity of myeloid progenitor cells from mIL-8Rh(-/-) mice to inhibition by huIL-8 and mouse MIP-2 and a large expansion of myeloid progenitors in these mice, the latter effect being environmentally inducible. This provides strong support for a negative myeloid regulatory role played by the mIL-8Rh in vivo, whose active ligand may be MIP-2.
Collapse
Affiliation(s)
- H E Broxmeyer
- Department of Medicine (Hematology/Oncology), Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|