1
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
2
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Zhao Z, Tang R, Wang R. Matrix stability and bifurcation analysis by a network-based approach. Theory Biosci 2023; 142:401-410. [PMID: 37755615 DOI: 10.1007/s12064-023-00405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
In this paper, we develop a network-based methodology to investigate the problems related to matrix stability and bifurcations in nonlinear dynamical systems. By matching a matrix with a network, i.e., interaction graph, we propose a new network-based matrix analysis method by proving a theorem about matrix determinant under which matrix stability can be considered in terms of feedback loops. Especially, the approach can tell us how a node, a path, or a feedback loop in the interaction graph affects matrix stability. In addition, the roles played by a node, a path, or a feedback loop in determining bifurcations in nonlinear dynamical systems can also be revealed. Therefore, the approach can help us to screen optimal node or node combinations. By perturbing them, unstable matrices can be stabilized more efficiently or bifurcations can be induced more easily to realize desired state transitions. To illustrate feasibility and efficiency of the approach, some simple matrices are used to show how single or combinatorial perturbations affect matrix stability and induce bifurcations. In addition, the main idea is also illustrated through a biological problem related to T cell development with three nodes: TCF-1, GATA3, and PU.1, which can be considered to be a three-variable nonlinear dynamical system. The approach is especially helpful in understanding crucial roles of single or molecule combinations in biomolecular networks. The approach presented here can be expected to analyze other biological networks related to cell fate transitions and systematic perturbation strategy selection.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
5
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
6
|
Al-Khreisat MJ, Hussain FA, Abdelfattah AM, Almotiri A, Al-Sanabra OM, Johan MF. The Role of NOTCH1, GATA3, and c-MYC in T Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:cancers14112799. [PMID: 35681778 PMCID: PMC9179380 DOI: 10.3390/cancers14112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous malignant tumours of white blood cells characterised by the aberrant proliferation of mature lymphoid cells or their precursors. Lymphomas are classified into main types depending on the histopathologic evidence of biopsy taken from an enlarged lymph node, progress stages, treatment strategies, and outcomes: Hodgkin and non-Hodgkin lymphoma (NHL). Moreover, lymphomas can be further divided into subtypes depending on the cell origin, and immunophenotypic and genetic aberrations. Many factors play vital roles in the progression, pathogenicity, incidence, and mortality rate of lymphomas. Among NHLs, peripheral T cell lymphomas (PTCLs) are rare lymphoid malignancies, that have various cellular morphology and genetic mutations. The clinical presentations are usually observed at the advanced stage of the disease. Many recent studies have reported that the expressions of NOTCH1, GATA3, and c-MYC are associated with poorer prognosis in PTCL and are involved in downstream activities. However, questions have been raised about the pathological relationship between these factors in PTCLs. Therefore, in this review, we investigate the role and relationship of the NOTCH1 pathway, transcriptional factor GATA3 and proto-oncogene c-MYC in normal T cell development and malignant PTCL subtypes.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ali Mahmoud Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences—Dawadmi, Shaqra University, Dawadmi 17464, Saudi Arabia;
| | - Ola Mohammed Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-97-67-62-00
| |
Collapse
|
7
|
Zhou W, Gao F, Romero-Wolf M, Jo S, Rothenberg EV. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Sci Immunol 2022; 7:eabm1920. [PMID: 35594339 PMCID: PMC9273332 DOI: 10.1126/sciimmunol.abm1920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As early T cell precursors transition from multipotentiality to T lineage commitment, they change expression of multiple transcription factors. It is unclear whether individual transcription factors directly control choices between T cell identity and some alternative fate or whether these factors mostly affect proliferation or survival during the normal commitment process. Here, we unraveled the impacts of deleting individual transcription factors at two stages in early T cell development, using synchronized in vitro differentiation systems, single-cell RNA-seq with batch indexing, and controlled gene-disruption strategies. First, using a customized method for single-cell CRISPR disruption, we defined how the early-acting transcription factors Bcl11a, Erg, Spi1 (PU.1), Gata3, and Tcf7 (TCF1) function before commitment. The results revealed a kinetic tug of war within individual cells between T cell factors Tcf7 and Gata3 and progenitor factors Spi1 and Bcl11a, with an unexpected guidance role for Erg. Second, we tested how activation of transcription factor Bcl11b during commitment altered ongoing cellular programs. In knockout cells where Bcl11b expression was prevented, the cells did not undergo developmental arrest, instead following an alternative path as T lineage commitment was blocked. A stepwise, time-dependent regulatory cascade began with immediate-early transcription factor activation and E protein inhibition, finally leading Bcl11b knockout cells toward exit from the T cell pathway. Last, gene regulatory networks of transcription factor cross-regulation were extracted from the single-cell transcriptome results, characterizing the specification network operating before T lineage commitment and revealing its links to both the Bcl11b knockout alternative network and the network consolidating T cell identity during commitment.
Collapse
Affiliation(s)
- Wen Zhou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology
- Current address: BillionToOne, Menlo Park, CA
| | - Fan Gao
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Caltech Bioinformatics Resource Center, Beckman Institute of Caltech
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Center for Stem Cell Biology and Regenerative Medicine, University of Southern California
| | - Suin Jo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Washington University of St. Louis
| | - Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
8
|
Damani-Yokota P, Zhang F, Gillespie A, Park H, Burnside A, Telfer JC, Baldwin CL. Transcriptional programming and gene regulation in WC1 + γδ T cell subpopulations. Mol Immunol 2021; 142:50-62. [PMID: 34959072 DOI: 10.1016/j.molimm.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haeree Park
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Amy Burnside
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Janice C Telfer
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
9
|
Astori A, Tingvall-Gustafsson J, Kuruvilla J, Coyaud E, Laurent EMN, Sunnerhagen M, Åhsberg J, Ungerbäck J, Strid T, Sigvardsson M, Raught B, Somasundaram R. ARID1a Associates with Lymphoid-Restricted Transcription Factors and Has an Essential Role in T Cell Development. THE JOURNAL OF IMMUNOLOGY 2020; 205:1419-1432. [PMID: 32747500 DOI: 10.4049/jimmunol.1900959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
Maturation of lymphoid cells is controlled by the action of stage and lineage-restricted transcription factors working in concert with the general transcription and chromatin remodeling machinery to regulate gene expression. To better understand this functional interplay, we used Biotin Identification in human embryonic kidney cells to identify proximity interaction partners for GATA3, TCF7 (TCF1), SPI1, HLF, IKZF1, PAX5, ID1, and ID2. The proximity interaction partners shared among the lineage-restricted transcription factors included ARID1a, a BRG1-associated factor complex component. CUT&RUN analysis revealed that ARID1a shared binding with TCF7 and GATA3 at a substantial number of putative regulatory elements in mouse T cell progenitors. In support of an important function for ARID1a in lymphocyte development, deletion of Arid1a in early lymphoid progenitors in mice resulted in a pronounced developmental arrest in early T cell development with a reduction of CD4+CD8+ cells and a 20-fold reduction in thymic cellularity. Exploring gene expression patterns in DN3 cells from Wt and Arid1a-deficient mice suggested that the developmental block resided in the DN3a to DN3b transition, indicating a deficiency in β-selection. Our work highlights the critical importance of functional interactions between stage and lineage-restricted factors and the basic transcription machinery during lymphocyte differentiation.
Collapse
Affiliation(s)
- Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | - Jacob Kuruvilla
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden; and
| | - Josefine Åhsberg
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| | - Tobias Strid
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden; .,Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 3K1, Canada
| | - Rajesh Somasundaram
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
10
|
Logical modeling of cell fate specification—Application to T cell commitment. Curr Top Dev Biol 2020; 139:205-238. [DOI: 10.1016/bs.ctdb.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Bigas A, Guillén Y, Schoch L, Arambilet D. Revisiting β-Catenin Signaling in T-Cell Development and T-Cell Acute Lymphoblastic Leukemia. Bioessays 2019; 42:e1900099. [PMID: 31854474 DOI: 10.1002/bies.201900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/28/2019] [Indexed: 12/25/2022]
Abstract
β-Catenin/CTNNB1 is critical for leukemia initiation or the stem cell capacity of several hematological malignancies. This review focuses on a general evaluation of β-catenin function in normal T-cell development and T-cell acute lymphoblastic leukemia (T-ALL). The integration of the existing literature offers a state-of-the-art dissection of the complexity of β-catenin function in leukemia initiation and maintenance in both Notch-dependent and independent contexts. In addition, β-catenin mutations are screened for in T-ALL primary samples, and it is found that they are rare and with little clinical relevance. Transcriptional analysis of Wnt family members (Ctnnb1, Axin2, Tcf7, and Lef1) and Myc in different publicly available T-ALL cohorts indicates that the expression of these genes may correlate with T-ALL subtypes and/or therapy outcomes.
Collapse
Affiliation(s)
- Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Leonie Schoch
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - David Arambilet
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
12
|
Abstract
Specification of multipotent blood precursor cells in postnatal mice to become committed T-cell precursors involves a gene regulatory network of several interacting but functionally distinct modules. Many links of this network have been defined by perturbation tests and by functional genomics. However, using the network model to predict real-life kinetics of the commitment process is still difficult, partly due to the tenacity of repressive chromatin states, and to the ability of transcription factors to affect each other's binding site choices through competitive recruitment to alternative sites ("coregulator theft"). To predict kinetics, future models will need to incorporate mechanistic information about chromatin state change dynamics and more sophisticated understanding of the proteomics and cooperative DNA site choices of transcription factor complexes.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Abstract
In this review, Rothenburg discusses the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors in the primary establishment of T-cell identity. T-cell development in mammals is a model for lineage choice and differentiation from multipotent stem cells. Although T-cell fate choice is promoted by signaling in the thymus through one dominant pathway, the Notch pathway, it entails a complex set of gene regulatory network and chromatin state changes even before the cells begin to express their signature feature, the clonal-specific T-cell receptors (TCRs) for antigen. This review distinguishes three developmental modules for T-cell development, which correspond to cell type specification, TCR expression and selection, and the assignment of cells to different effector types. The first is based on transcriptional regulatory network events, the second is dominated by somatic gene rearrangement and mutation and cell selection, and the third corresponds to establishing a poised state of latent regulator priming through an unknown mechanism. Interestingly, in different lineages, the third module can be deployed at variable times relative to the completion of the first two modules. This review focuses on the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors TCF1, GATA3, PU.1, Bcl11b, Runx1, and E proteins in the primary establishment of T-cell identity.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Belver L, Yang AY, Albero R, Herranz D, Brundu FG, Quinn SA, Pérez-Durán P, Álvarez S, Gianni F, Rashkovan M, Gurung D, Rocha PP, Raviram R, Reglero C, Cortés JR, Cooke AJ, Wendorff AA, Cordó V, Meijerink JP, Rabadan R, Ferrando AA. GATA3-Controlled Nucleosome Eviction Drives MYC Enhancer Activity in T-cell Development and Leukemia. Cancer Discov 2019; 9:1774-1791. [PMID: 31519704 DOI: 10.1158/2159-8290.cd-19-0471] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
Long-range enhancers govern the temporal and spatial control of gene expression; however, the mechanisms that regulate enhancer activity during normal and malignant development remain poorly understood. Here, we demonstrate a role for aberrant chromatin accessibility in the regulation of MYC expression in T-cell lymphoblastic leukemia (T-ALL). Central to this process, the NOTCH1-MYC enhancer (N-Me), a long-range T cell-specific MYC enhancer, shows dynamic changes in chromatin accessibility during T-cell specification and maturation and an aberrant high degree of chromatin accessibility in mouse and human T-ALL cells. Mechanistically, we demonstrate that GATA3-driven nucleosome eviction dynamically modulates N-Me enhancer activity and is strictly required for NOTCH1-induced T-ALL initiation and maintenance. These results directly implicate aberrant regulation of chromatin accessibility at oncogenic enhancers as a mechanism of leukemic transformation. SIGNIFICANCE: MYC is a major effector of NOTCH1 oncogenic programs in T-ALL. Here, we show a major role for GATA3-mediated enhancer nucleosome eviction as a driver of MYC expression and leukemic transformation. These results support the role of aberrant chromatin accessibility and consequent oncogenic MYC enhancer activation in NOTCH1-induced T-ALL.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
Affiliation(s)
- Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Alexander Y Yang
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | | | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Pablo Pérez-Durán
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Silvia Álvarez
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Francesca Gianni
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Marissa Rashkovan
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Devya Gurung
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Pedro P Rocha
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, La Jolla, California.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Jose R Cortés
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Anisha J Cooke
- Institute for Cancer Genetics, Columbia University, New York, New York
| | | | - Valentina Cordó
- Department of Pediatric Oncology/Hematology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jules P Meijerink
- Department of Pediatric Oncology/Hematology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Raúl Rabadan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.,Department of Biomedical Informatics, Columbia University, New York, New York
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York. .,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.,Department of Pediatrics, Columbia University Medical Center, New York, New York.,Department of Pathology, Columbia University Medical Center, New York, New York
| |
Collapse
|
15
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
16
|
Xing S, Li F, Zeng Z, Zhao Y, Yu S, Shan Q, Li Y, Phillips FC, Maina PK, Qi HH, Liu C, Zhu J, Pope RM, Musselman CA, Zeng C, Peng W, Xue HH. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity. Nat Immunol 2016; 17:695-703. [PMID: 27111144 PMCID: PMC4873337 DOI: 10.1038/ni.3456] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
The CD4+ and CD8+ T cell dichotomy is essential for effective cellular immunity. How the individual T cell identity is established remains poorly understood. Here we show that the high mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4+ lineage-associated genes including Cd4, Foxp3 and Rorc in CD8+ T cells. Tcf1- and Lef1-deficient CD8+ T cells exhibit histone hyperacetylation, which is ascribed to an unexpected intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutating five conserved amino acids in the Tcf1 HDAC domain diminishes the HDAC activity and the ability to suppress CD4+ lineage genes in CD8+ T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes.
Collapse
Affiliation(s)
- Shaojun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Fengyin Li
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zhouhao Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Yunjie Zhao
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Shan
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yalan Li
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Farrah C Phillips
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| | - Peterson K Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chengyu Liu
- Transgenic Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - R Marshall Pope
- Proteomics Facility, University of Iowa, Iowa City, Iowa, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Rothenberg EV, Ungerbäck J, Champhekar A. Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control. Adv Immunol 2015; 129:109-74. [PMID: 26791859 DOI: 10.1016/bs.ai.2015.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
18
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Osteoprotegerin (OPG) is a key regulator of bone remodeling. Mutations in OPG are involved in a variety of human diseases. We have shown that cochlear spiral ganglion cells secrete OPG at high levels and lack of OPG causes sensorineural hearing loss in addition to the previously described conductive hearing loss. In order to study the regulation of OPG expression, we conducted a database search on regulatory elements in the promoter region of the OPG gene, and identified two potential GATA-3 binding sites. Using luciferase assays and site directed mutagenesis, we demonstrate that these two elements are GATA-3 responsive and support GATA-3 transactivation in human HEK and HeLa cells. The expression of wild type GATA-3 activated OPG mRNA and protein expression, while the expression of a dominant negative mutant of GATA-3 or a GATA-3 shRNA construct reduced OPG mRNA and protein levels. GATA-3 deficient cells generated by expressing a GATA-3 shRNA construct were sensitive to apoptosis induced by etoposide and TNF-α. This apoptotic effect could be partly prevented by the co-treatment with exogenous OPG. Our results suggest new approaches to rescue diseases due to GATA-3 deficiency – such as in hypoparathyroidism, sensorineural deafness, and renal (HDR) syndrome – by OPG therapy.
Collapse
Affiliation(s)
- Shyan-Yuan Kao
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary
| | - Konstantina M Stankovic
- 1] Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary [2] Department of Otology and Laryngology, and Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
21
|
Scripture-Adams DD, Damle SS, Li L, Elihu KJ, Qin S, Arias AM, Butler RR, Champhekar A, Zhang JA, Rothenberg EV. GATA-3 dose-dependent checkpoints in early T cell commitment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3470-91. [PMID: 25172496 PMCID: PMC4170028 DOI: 10.4049/jimmunol.1301663] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GATA-3 expression is crucial for T cell development and peaks during commitment to the T cell lineage, midway through the CD4(-)CD8(-) (double-negative [DN]) stages 1-3. We used RNA interference and conditional deletion to reduce GATA-3 protein acutely at specific points during T cell differentiation in vitro. Even moderate GATA-3 reduction killed DN1 cells, delayed progression to the DN2 stage, skewed DN2 gene regulation, and blocked appearance of the DN3 phenotype. Although a Bcl-2 transgene rescued DN1 survival and improved DN2 cell generation, it did not restore DN3 differentiation. Gene expression analyses (quantitative PCR, RNA sequencing) showed that GATA-3-deficient DN2 cells quickly upregulated genes, including Spi1 (PU.1) and Bcl11a, and downregulated genes, including Cpa3, Ets1, Zfpm1, Bcl11b, Il9r, and Il17rb with gene-specific kinetics and dose dependencies. These targets could mediate two distinct roles played by GATA-3 in lineage commitment, as revealed by removing wild-type or GATA-3-deficient early T lineage cells from environmental Notch signals. GATA-3 worked as a potent repressor of B cell potential even at low expression levels, so that only full deletion of GATA-3 enabled pro-T cells to reveal B cell potential. The ability of GATA-3 to block B cell development did not require T lineage commitment factor Bcl11b. In prethymic multipotent precursors, however, titration of GATA-3 activity using tamoxifen-inducible GATA-3 showed that GATA-3 inhibits B and myeloid developmental alternatives at different threshold doses. Furthermore, differential impacts of a GATA-3 obligate repressor construct imply that B and myeloid development are inhibited through distinct transcriptional mechanisms. Thus, the pattern of GATA-3 expression sequentially produces B lineage exclusion, T lineage progression, and myeloid-lineage exclusion for commitment.
Collapse
Affiliation(s)
- Deirdre D Scripture-Adams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Sagar S Damle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Long Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Koorosh J Elihu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shuyang Qin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexandra M Arias
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Robert R Butler
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Ameya Champhekar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jingli A Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
22
|
Keerthivasan S, Aghajani K, Dose M, Molinero L, Khan MW, Venkateswaran V, Weber C, Emmanuel AO, Sun T, Bentrem DJ, Mulcahy M, Keshavarzian A, Ramos EM, Blatner N, Khazaie K, Gounari F. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci Transl Med 2014; 6:225ra28. [PMID: 24574339 DOI: 10.1126/scitranslmed.3007607] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.
Collapse
Affiliation(s)
- Shilpa Keerthivasan
- Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Steinke FC, Yu S, Zhou X, He B, Yang W, Zhou B, Kawamoto H, Zhu J, Tan K, Xue HH. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells. Nat Immunol 2014; 15:646-656. [PMID: 24836425 PMCID: PMC4064003 DOI: 10.1038/ni.2897] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
The transcription factors TCF-1 and LEF-1 are essential for early T cell development, but their roles beyond the CD4(+)CD8(+) double-positive (DP) stage are unknown. By specific ablation of these factors in DP thymocytes, we demonstrated that deficiency in TCF-1 and LEF-1 diminished the output of CD4(+) T cells and redirected CD4(+) T cells to a CD8(+) T cell fate. The role of TCF-1 and LEF-1 in the CD4-versus-CD8 lineage 'choice' was mediated in part by direct positive regulation of the transcription factor Th-POK. Furthermore, loss of TCF-1 and LEF-1 unexpectedly caused derepression of CD4 expression in T cells committed to the CD8(+) lineage without affecting the expression of Runx transcription factors. Instead, TCF-1 physically interacted with Runx3 to cooperatively silence Cd4. Thus, TCF-1 and LEF-1 adopted distinct genetic 'wiring' to promote the CD4(+) T cell fate and establish CD8(+) T cell identity.
Collapse
Affiliation(s)
- Farrah C. Steinke
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Immunology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China 100193
| | - Xinyuan Zhou
- Insitute of Immunology, Third Military Medical University, Chongqing, P. R. China 400038
| | - Bing He
- Interdisciplinary Graduate Program in Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Wenjing Yang
- Development Biology Center, NHLBI, NIH, Bethesda, MD 20892
| | - Bo Zhou
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan 606-8507
| | - Jun Zhu
- Development Biology Center, NHLBI, NIH, Bethesda, MD 20892
| | - Kai Tan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Immunology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
24
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
25
|
Abstract
T, B, and NK lymphocytes are generated from pluripotent hematopoietic stem cells through a successive series of lineage restriction processes. Many regulatory components, such as transcription factors, cytokines/cytokine receptors, and signal transduction molecules orchestrate cell fate specification and determination. In particular, transcription factors play a key role in regulating lineage-associated gene programs. Recent findings suggest the involvement of epigenetic factors in the maintenance of cell fate. Here, we review the early developmental events during lymphocyte lineage determination, focusing on the transcriptional networks and epigenetic regulation. Finally, we also discuss the developmental relationship between acquired and innate lymphoid cells.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan,
| |
Collapse
|
26
|
Qaseem AS, Sonar S, Mahajan L, Madan T, Sorensen GL, Shamji MH, Kishore U. Linking surfactant protein SP-D and IL-13: Implications in asthma and allergy. Mol Immunol 2013. [DOI: 10.10.1016/j.molimm.2012.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Qaseem AS, Sonar S, Mahajan L, Madan T, Sorensen GL, Shamji MH, Kishore U. Linking surfactant protein SP-D and IL-13: implications in asthma and allergy. Mol Immunol 2012; 54:98-107. [PMID: 23220073 DOI: 10.1016/j.molimm.2012.10.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/28/2012] [Indexed: 01/13/2023]
Abstract
Surfactant protein D (SP-D) is an innate immune molecule that plays a protective role against lung infection, allergy, asthma and inflammation. In vivo experiments with murine models have shown that SP-D can protect against allergic challenge via a range of mechanisms including inhibition of allergen-IgE interaction, histamine release by sensitised mast cells, downregulation of specific IgE production, suppression of pulmonary and peripheral eosinophilia, inhibition of mechanisms that cause airway remodelling, and induction of apoptosis in sensitised eosinophils. SP-D can also shift helper T cell polarisation following in vivo allergenic challenge, from pathogenic Th2 to a protective Th1 cytokine response. Interestingly, SP-D gene deficient (-/-) mice show an IL-13 over-expressing phenotype. IL-13 has been shown to be involved in the development of asthma. Transgenic mice over-expressing IL-13 in the lung develop several characteristics of asthma such as pulmonary eosinophilia, airway epithelial hyperplasia, mucus cell metaplasia, sub-epithelial fibrosis, charcot-Leyden-Like crystals, airways obstruction, and non-specific airways hyper-responsiveness to cholinergic stimulation. Although both IL-4 and IL-13 are capable of inducing asthma like phenotype, the effector activity of IL-13 appears to be greater than that of IL-4. SP-D -/- mice seem to express considerably higher levels of IL-13, which is consistent with increased sensitivity and exaggerated immune response of the mice to allergenic challenge. Allergenic exposure also induces elevation in SP-D protein levels in an IL-4/IL-13-dependent manner, which prevents further activation of sensitised T cells. This negative feedback loop seems essential in protecting the airways from inflammatory damage after allergen inhalation. Here, we examine this link between IL-13 and SP-D, and its implications in the progression/regulation of asthma and allergy.
Collapse
Affiliation(s)
- Asif S Qaseem
- Centre for Infection, Immunity and Disease Mechanisms, School of Health Sciences and Social Care, Brunel University, London, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
HEB in the spotlight: Transcriptional regulation of T-cell specification, commitment, and developmental plasticity. Clin Dev Immunol 2012; 2012:678705. [PMID: 22577461 PMCID: PMC3346973 DOI: 10.1155/2012/678705] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022]
Abstract
The development of T cells from multipotent progenitors in the thymus occurs by cascades of interactions between signaling molecules and transcription factors, resulting in the loss of alternative lineage potential and the acquisition of the T-cell functional identity. These processes require Notch signaling and the activity of GATA3, TCF1, Bcl11b, and the E-proteins HEB and E2A. We have shown that HEB factors are required to inhibit the thymic NK cell fate and that HEBAlt allows the passage of T-cell precursors from the DN to DP stage but is insufficient for suppression of the NK cell lineage choice. HEB factors are also required to enforce the death of cells that have not rearranged their TCR genes. The synergistic interactions between Notch1, HEBAlt, HEBCan, GATA3, and TCF1 are presented in a gene network model, and the influence of thymic stromal architecture on lineage choice in the thymus is discussed.
Collapse
|
29
|
GATA-3 regulates contact hyperresponsiveness in a murine model of allergic dermatitis. Immunobiology 2012; 217:446-54. [DOI: 10.1016/j.imbio.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/18/2011] [Indexed: 11/20/2022]
|
30
|
Dynamic HoxB4-regulatory network during embryonic stem cell differentiation to hematopoietic cells. Blood 2012; 119:e139-47. [PMID: 22438249 DOI: 10.1182/blood-2011-12-396754] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient in vitro generation of hematopoietic stem cells (HSCs) from embryonic stem cells (ESCs) holds great promise for cell-based therapies to treat hematologic diseases. To date, HoxB4 remains the most effective transcription factor (TF) the overexpression of which in ESCs confers long-term repopulating ability to ESC-derived HSCs. Despite its importance, the components and dynamics of the HoxB4 transcriptional regulatory network is poorly understood, hindering efforts to develop more efficient protocols for in vitro derivation of HSCs. In the present study, we performed global gene-expression profiling and ChIP coupled with deep sequencing at 4 stages of the HoxB4-mediated ESC differentiation toward HSCs. Joint analyses of ChIP/deep sequencing and gene-expression profiling unveiled several global features of the HoxB4 regulatory network. First, it is highly dynamic and gradually expands during the differentiation process. Second, HoxB4 functions as a master regulator of hematopoiesis by regulating multiple hematopoietic TFs and chromatin-modification enzymes. Third, HoxB4 acts in different combinations with 4 other hematopoietic TFs (Fli1, Meis1, Runx1, and Scl) to regulate distinct sets of pathways. Finally, the results of our study suggest that down-regulation of mitochondria and lysosomal genes by HoxB4 plays a role in the impaired lymphoid lineage development from ESC-derived HSCs.
Collapse
|
31
|
Rothenberg EV. Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 2012; 24:132-8. [PMID: 22264928 DOI: 10.1016/j.coi.2011.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/31/2011] [Indexed: 11/28/2022]
Abstract
The T-cell development program is specifically triggered by Notch-Delta signaling, but most transcription factors needed to establish T-cell lineage identity also have crossover roles in other hematopoietic lineages. This factor sharing complicates full definition of the core gene regulatory circuits required for T-cell specification. But new advances illuminate the roles of three of the most T-cell specific transcription factors. Commitment to the T-cell lineage is now shown to depend on Bcl11b, while initiation of the T-cell differentiation program begins earlier with the induction of TCF-1 (Tcf7 gene product) and GATA-3. Several reports now reveal how TCF-1 and GATA-3 are mobilized in early T cells and the pathways for their T-lineage specific effects.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity 2011; 35:299-311. [PMID: 21867929 DOI: 10.1016/j.immuni.2011.08.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/14/2011] [Accepted: 08/05/2011] [Indexed: 12/22/2022]
Abstract
The transcription factor GATA3 plays an essential role during T cell development and T helper 2 (Th2) cell differentiation. To understand GATA3-mediated gene regulation, we identified genome-wide GATA3 binding sites in ten well-defined developmental and effector T lymphocyte lineages. In the thymus, GATA3 directly regulated many critical factors, including Th-POK, Notch1, and T cell receptor subunits. In the periphery, GATA3 induced a large number of Th2 cell-specific as well as Th2 cell-nonspecific genes, including several transcription factors. Our data also indicate that GATA3 regulates both active and repressive histone modifications of many target genes at their regulatory elements near GATA3 binding sites. Overall, although GATA3 binding exhibited both shared and cell-specific patterns among various T cell lineages, many genes were either positively or negatively regulated by GATA3 in a cell type-specific manner, suggesting that GATA3-mediated gene regulation depends strongly on cofactors existing in different T cells.
Collapse
|
33
|
Abstract
T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
34
|
Abstract
T cells originate from hematopoietic stem cells (HSCs) in the bone marrow but complete their development in the thymus. HSCs give rise to a variety of non-renewing hematopoietic progenitors, among which a rare subset migrates to the thymus via the bloodstream. The earliest T-cell progenitors identified in the thymus are not T-lineage restricted but possess the ability to give rise to cells of many different lineages. Alternative lineage potentials are gradually lost as progenitors progress toward later developmental stages. Here, we review the early developmental events that might be involved in T-cell lineage fate determination, including the properties of possible thymus-settling progenitors, their homing into the thymus, and their T-cell lineage specification and commitment.
Collapse
Affiliation(s)
- Qi Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
35
|
Gimferrer I, Hu T, Simmons A, Wang C, Souabni A, Busslinger M, Bender TP, Hernandez-Hoyos G, Alberola-Ila J. Regulation of GATA-3 expression during CD4 lineage differentiation. THE JOURNAL OF IMMUNOLOGY 2011; 186:3892-8. [PMID: 21357543 DOI: 10.4049/jimmunol.1003505] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
GATA-3 is necessary for the development of MHC class II-restricted CD4 T cells, and its expression is increased during positive selection of these cells. TCR signals drive this upregulation, but the signaling pathways that control this process are not well understood. Using genetic and pharmacological approaches, we show that GATA-3 upregulation during thymocyte-positive selection is the result of additive inputs from the Ras/MAPK and calcineurin pathways. This upregulation requires the presence of the transcription factor c-Myb. Furthermore, we show that TH-POK can also upregulate GATA-3 in double-positive thymocytes, suggesting the existence of a positive feedback loop that contributes to lock in the initial commitment to the CD4 lineage during differentiation.
Collapse
Affiliation(s)
- Idoia Gimferrer
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements. Mol Cell Biol 2011; 31:1512-27. [PMID: 21262765 DOI: 10.1128/mcb.00920-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes.
Collapse
|
37
|
Hosoya T, Maillard I, Engel JD. From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 2010; 238:110-25. [PMID: 20969588 PMCID: PMC2965564 DOI: 10.1111/j.1600-065x.2010.00954.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GATA family transcription factors play multiple vital roles in hematopoiesis in many cell lineages, and in particular, T cells require GATA-3 for execution of several developmental steps. Transcriptional activation of the Gata3 gene is observed throughout T-cell development and differentiation in a stage-specific fashion. GATA-3 has been described as a master regulator of T-helper 2 (Th2) cell differentiation in mature CD4(+) T cells. During T-cell development in the thymus, its roles in the CD4 versus CD8 lineage choice and at the β-selection checkpoint are the best characterized. In contrast, its importance prior to β-selection has been obscured both by the developmental heterogeneity of double negative (DN) 1 thymocytes and the paucity of early T-lineage progenitors (ETPs), a subpopulation of DN1 cells that contains the most immature thymic progenitors that retain potent T-lineage developmental potential. By examining multiple lines of in vivo evidence procured through the analysis of Gata3 mutant mice, we have recently demonstrated that GATA-3 is additionally required at the earliest stage of thymopoiesis for the development of the ETP population. Here, we review the characterized functions of GATA-3 at each stage of T-cell development and discuss hypothetical molecular pathways that mediate these functions.
Collapse
Affiliation(s)
- Tomonori Hosoya
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ivan Maillard
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Klein Wolterink RGJ, García-Ojeda ME, Vosshenrich CAJ, Hendriks RW, Di Santo JP. The intrathymic crossroads of T and NK cell differentiation. Immunol Rev 2010; 238:126-37. [DOI: 10.1111/j.1600-065x.2010.00960.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Osada M, Jardine L, Misir R, Andl T, Millar SE, Pezzano M. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLoS One 2010; 5:e9062. [PMID: 20161711 PMCID: PMC2817005 DOI: 10.1371/journal.pone.0009062] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/07/2010] [Indexed: 11/24/2022] Open
Abstract
Background Thymic epithelial cell (TEC) microenvironments are essential for the
recruitment of T cell precursors from the bone marrow, as well as the
subsequent expansion and selection of thymocytes resulting in a mature
self-tolerant T cell repertoire. The molecular mechanisms, which control
both the initial development and subsequent maintenance of these critical
microenvironments, are poorly defined. Wnt signaling has been shown to be
important to the development of several epithelial tissues and organs.
Regulation of Wnt signaling has also been shown to impact both early
thymocyte and thymic epithelial development. However, early blocks in thymic
organogenesis or death of the mice have prevented analysis of a role of
canonical Wnt signaling in the maintenance of TECs in the postnatal
thymus. Methodology/Principal Findings Here we demonstrate that tetracycline-regulated expression of the canonical
Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult
mice, results in rapid thymic degeneration characterized by a loss of
ΔNP63+ Foxn1+ and
Aire+ TECs, loss of K5K8DP TECs thought to represent
or contain an immature TEC progenitor, decreased TEC proliferation and the
development of cystic structures, similar to an aged thymus. Removal of DKK1
from DKK1-involuted mice results in full recovery, suggesting that canonical
Wnt signaling is required for the differentiation or proliferation of TEC
populations needed for maintenance of properly organized adult thymic
epithelial microenvironments. Conclusions/Significance Taken together, the results of this study demonstrate that canonical Wnt
signaling within TECs is required for the maintenance of epithelial
microenvironments in the postnatal thymus, possibly through effects on TEC
progenitor/stem cell populations. Downstream targets of Wnt signaling, which
are responsible for maintenance of these TEC progenitors may provide useful
targets for therapies aimed at counteracting age associated thymic
involution or the premature thymic degeneration associated with cancer
therapy and bone marrow transplants.
Collapse
Affiliation(s)
- Masako Osada
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Logan Jardine
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Ruth Misir
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Thomas Andl
- Vanderbilt University Medical Center, Nashville, Tennessee, United States
of America
| | - Sarah E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University
of Pennsylvania, Philadelphia, Pennsylvania, United States of
America
| | - Mark Pezzano
- Department of Biology, The City College of New York, New York, New York,
United States of America
- * E-mail:
| |
Collapse
|
40
|
Hosoya T, Kuroha T, Moriguchi T, Cummings D, Maillard I, Lim KC, Engel JD. GATA-3 is required for early T lineage progenitor development. ACTA ACUST UNITED AC 2009; 206:2987-3000. [PMID: 19934022 PMCID: PMC2806453 DOI: 10.1084/jem.20090934] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most T lymphocytes appear to arise from very rare early T lineage progenitors (ETPs) in the thymus, but the transcriptional programs that specify ETP generation are not completely known. The transcription factor GATA-3 is required for the development of T lymphocytes at multiple late differentiation steps as well as for the development of thymic natural killer cells. However, a role for GATA-3 before the double-negative (DN) 3 stage of T cell development has to date been obscured both by the developmental heterogeneity of DN1 thymocytes and the paucity of ETPs. We provide multiple lines of in vivo evidence through the analysis of T cell development in Gata3 hypomorphic mutant embryos, in irradiated mice reconstituted with Gata3 mutant hematopoietic cells, and in mice conditionally ablated for the Gata3 gene to show that GATA-3 is required for ETP generation. We further show that Gata3 loss does not affect hematopoietic stem cells or multipotent hematopoietic progenitors. Finally, we demonstrate that Gata3 mutant lymphoid progenitors exhibit neither increased apoptosis nor diminished cell-cycle progression. Thus, GATA-3 is required for the cell-autonomous development of the earliest characterized thymic T cell progenitors.
Collapse
Affiliation(s)
- Tomonori Hosoya
- Department of Cell and Developmental Biology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hanson ML, Brundage KM, Schafer R, Tou JC, Barnett JB. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development. Toxicol Appl Pharmacol 2009; 242:136-45. [PMID: 19818801 DOI: 10.1016/j.taap.2009.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/19/2022]
Abstract
Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4(+) cells and a subpopulation of double-negative cells (DN; CD4(-)CD8(-)), DN4 (CD44(-)CD25(-)). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.
Collapse
Affiliation(s)
- Miranda L Hanson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, PO Box 9177, West Virginia University, Morgantown, WV 26506-9177, USA
| | | | | | | | | |
Collapse
|
42
|
Masuda K, Germeraad WTV, Satoh R, Itoi M, Ikawa T, Minato N, Katsura Y, van Ewijk W, Kawamoto H. Notch activation in thymic epithelial cells induces development of thymic microenvironments. Mol Immunol 2009; 46:1756-67. [PMID: 19250680 DOI: 10.1016/j.molimm.2009.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/25/2009] [Indexed: 01/18/2023]
Abstract
The development and maintenance of thymic microenvironments depends on sustained crosstalk signals derived from developing thymocytes. However, the molecular basis for the initial phase in the lymphoid dependent development of thymic epithelial cells (TECs) remains unclear. Here we show that similarly to regular thymocytes, developing B cells enforced to express the Notch ligand Delta-like-1 (DLL1) efficiently induce the non-polarized, three-dimensional (3D) meshwork architecture of cortical TECs in fetal thymic organ culture. Moreover, the DLL1-overexpressing B cells induce well-developed distinct medullae. Such medullae also arose in lobes reconstituted with Rag2(-/-) thymocytes overexpressing DLL1. Our present findings thus strongly suggest that Notch signaling from thymocytes to TECs induces TEC development at an early phase of thymic organogenesis. The present approach using non-T lineage cells for the in vitro construction of thymic environments may also provide a novel tool for thymus regeneration and T cell production in immunocompromised individuals.
Collapse
Affiliation(s)
- Kyoko Masuda
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
David-Fung ES, Butler R, Buzi G, Yui MA, Diamond RA, Anderson MK, Rowen L, Rothenberg EV. Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Dev Biol 2008; 325:444-67. [PMID: 19013443 DOI: 10.1016/j.ydbio.2008.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 12/15/2022]
Abstract
Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between alphabeta and gammadelta T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification.
Collapse
|
44
|
Hebenstreit D, Giaisi M, Treiber MK, Zhang XB, Mi HF, Horejs-Hoeck J, Andersen KG, Krammer PH, Duschl A, Li-Weber M. LEF-1 negatively controls interleukin-4 expression through a proximal promoter regulatory element. J Biol Chem 2008; 283:22490-7. [PMID: 18579517 DOI: 10.1074/jbc.m804096200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lymphoid enhancer-binding factor 1 (LEF-1) and T cell factor (TCF-1) are downstream effectors of the Wnt signaling pathway and are involved in the regulation of T cell development in the thymus. LEF-1 and TCF-1 are also expressed in mature peripheral primary T cells, but their expression is down-regulated following T cell activation. Although the decisive roles of LEF-1 and TCF-1 in the early stages of T cell development are well documented, the functions of these factors in mature peripheral T cells are largely unknown. Recently, LEF-1 was shown to suppress Th2 cytokines interleukin-4 (IL-4), -5, and -13 expression from the developing Th2 cells that overexpress LEF-1 through retrovirus gene transduction. In this study, we further investigated the expression and functions of LEF-1 and TCF-1 in peripheral CD4+ T cells and revealed that LEF-1 is dominantly expressed in Th1 but not in Th2 cells. We identified a high affinity LEF-1-binding site in the negative regulatory element of the IL-4 promoter. Knockdown LEF-1 expression by LEF-1-specific small interfering RNA resulted in an increase in the IL-4 mRNA expression. This study further confirms a negative regulatory role of LEF-1 in mature peripheral T cells. Furthermore, we found that IL-4 stimulation possesses a negative effect on the expressions of LEF-1 and TCF-1 in primary T cells, suggesting a positive feedback effect of IL-4 on IL4 gene expression.
Collapse
Affiliation(s)
- Daniel Hebenstreit
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hossain MB, Hosokawa H, Hasegawa A, Watarai H, Taniguchi M, Yamashita M, Nakayama T. Lymphoid enhancer factor interacts with GATA-3 and controls its function in T helper type 2 cells. Immunology 2008; 125:377-86. [PMID: 18445004 DOI: 10.1111/j.1365-2567.2008.02854.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
GATA-3 is the master transcription factor for T helper 2 (Th2) cell differentiation and is critical for the expression of Th2 cytokines. Little is known, however, about the nature of the functional molecular complexes of GATA-3. We identified a high-mobility group (HMG)-box type transcription factor, lymphoid enhancer factor 1 (LEF-1), in the GATA-3 complex present in Th2 cells using a Flag-calmodulin-binding peptide (CBP)-tag based proteomics method. The interaction between GATA-3 and LEF-1 was confirmed by co-immunoprecipitation experiments using LEF-1-introduced T-cell lineage TG40 cells. The HMG-box domain of LEF-1 and two zinc finger domains of GATA-3 were found to be important for the physical association. The introduction of LEF-1 into developing Th2 cells resulted in the suppression of Th2 cytokine production. The suppression was significantly lower in the cells into which a HMG-box-deleted LEF-1 mutant was introduced. Moreover, LEF-1 inhibited the binding activity of GATA-3 to the interleukin (IL)-5 promoter. These results suggest that LEF-1 is involved in the GATA-3 complex, while also regulating the GATA-3 function, such as the induction of Th2 cytokine expression via the inhibition of the DNA-binding activity of GATA-3.
Collapse
Affiliation(s)
- Mohammad B Hossain
- Department of Immunology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Itoi M, Tsukamoto N, Yoshida H, Amagai T. Mesenchymal cells are required for functional development of thymic epithelial cells. Int Immunol 2007; 19:953-64. [PMID: 17625108 DOI: 10.1093/intimm/dxm060] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epithelial-mesenchymal interactions have essential roles in thymus organogenesis. Mesenchymal cells are known to be required for epithelial cell proliferation. However, the contribution of mesenchymal cells to thymic epithelial cell differentiation is still unclear. In the present study, we have investigated the roles of mesenchymal cells in functional development of epithelial cells in the thymus anlage in patch (ph) mutant mice, which have a primarily defect in mesenchymal cells caused by the absence of platelet-derived growth factor receptor alpha expression. In the ph/ph thymus anlage, T cell progenitors migrate normally among the epithelial cells, however, they are severely impaired to proliferate and differentiate to CD25-positive cells. Epithelial cells of the ph/ph thymus anlage show severely impaired proliferation and expression of functional molecules, such as SCF, Delta-like 4 and MHC class II, which have crucial roles in T cell development. Moreover, the cultured ph/ph thymus anlage fails to develop into a mature organ supporting full T cell development. Addition of intact thymic mesenchymal cells to organ culture induces development of the ph/ph thymus anlage. In the cultured lobes, added mesenchymal cells contribute to form not only the capsule but also the meshwork structure mingled with epithelial cells. Our present results strongly suggest the roles of mesenchymal cells in functional development of epithelial cells in thymus organogenesis. In addition, our data suggest that mesenchymal cells are required to create the thymic microenvironment and to maintain epithelial architecture and function.
Collapse
Affiliation(s)
- Manami Itoi
- Department of Immunology and Microbiology, Meiji University of Oriental Medicine, Hiyoshi-cho, Nantan, Kyoto 629-0392, Japan.
| | | | | | | |
Collapse
|
47
|
Osada M, Ito E, Fermin HA, Vazquez-Cintron E, Venkatesh T, Friedel RH, Pezzano M. The Wnt signaling antagonist Kremen1 is required for development of thymic architecture. Clin Dev Immunol 2007; 13:299-319. [PMID: 17162372 PMCID: PMC2270768 DOI: 10.1080/17402520600935097] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wnt signaling has been reported to regulate thymocyte proliferation and selection at several stages during T cell ontogeny, as well as the expression of FoxN1 in thymic epithelial cells (TECs). Kremen1 (Krm1) is a negative regulator of the canonical Wnt signaling pathway, and functions together with the secreted Wnt inhibitor Dickkopf (Dkk) by competing for the lipoprotein receptor-related protein (LRP)-6 co-receptor for Wnts. Here krm1 knockout mice were used to examine krm1 expression in the thymus and its function in thymocyte and TEC development. krm1 expression was detected in both cortical and medullary TEC subsets, as well as in immature thymocyte subsets, beginning at the CD25+CD44+ (DN2) stage and continuing until the CD4+CD8+(DP) stage. Neonatal mice show elevated expression of krm1 in all TEC subsets. krm1− / − mice exhibit a severe defect in thymic cortical architecture, including large epithelial free regions. Much of the epithelial component remains at an immature Keratin 5+ (K5) Keratin 8+(K8) stage, with a loss of defined cortical and medullary regions. A TOPFlash assay revealed a 2-fold increase in canonical Wnt signaling in TEC lines derived from krm1− / − mice, when compared with krm1+ / + derived TEC lines. Fluorescence activated cell sorting (FACS) analysis of dissociated thymus revealed a reduced frequency of both cortical (BP1+EpCAM+) and medullary (UEA-1+ EpCAMhi) epithelial subsets, within the krm1− / − thymus. Surprisingly, no change in thymus size, total thymocyte number or the frequency of thymocyte subsets was detected in krm1− / − mice. However, our data suggest that a loss of Krm1 leads to a severe defect in thymic architecture. Taken together, this study revealed a new role for Krm1 in proper development of thymic epithelium.
Collapse
Affiliation(s)
- Masako Osada
- Department of Biology, The City College of the City University of New York, RCMI Center for the Study of the Cellular and Molecular Basis of Development, 138th Street and Convent Avenue, New York, NY 10031, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Xu W, Kee BL. Growth factor independent 1B (Gfi1b) is an E2A target gene that modulates Gata3 in T-cell lymphomas. Blood 2007; 109:4406-14. [PMID: 17272506 DOI: 10.1182/blood-2006-08-043331] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The E2A transcription factors are required for normal T lymphopoiesis and to prevent T-lymphocyte progenitor transformation. Ectopic expression of E2A proteins in E2A-deficient lymphomas results in growth arrest and apoptosis, indicating that these cells remain responsive to the targets of E2A. Here we identify the transcriptional repressor growth factor independent 1B (Gfi1b) as a target of E2A that promotes growth arrest and apoptosis in lymphomas. Gfi1b expression in primary T-lymphocyte progenitors is dependent on E2A and excess Gfi1b prevents the outgrowth of T lymphocyte progenitors in vitro. Gfi1b represses expression of Gata3, a transcription factor whose appropriate regulation is required for survival of lymphomas and T-lymphocyte progenitors. We also show that ectopic expression of Gata3 in lymphomas promotes expression of Gfi1b, indicating that these proteins may function in an autoregulatory loop that maintains appropriate levels of Gata3. Therefore, we propose that E2A proteins prevent lymphoma cell expansion, at least in part through regulation of Gfi1b and modulation of Gata3 expression.
Collapse
Affiliation(s)
- Wei Xu
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
49
|
Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J, Lindeman GJ, Visvader JE. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2006; 9:201-9. [PMID: 17187062 DOI: 10.1038/ncb1530] [Citation(s) in RCA: 634] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/12/2006] [Indexed: 12/16/2022]
Abstract
The transcription factor Gata-3 is a defining marker of the 'luminal' subtypes of breast cancer. To gain insight into the role of Gata-3 in breast epithelial development and oncogenesis, we have explored its normal function within the mammary gland by conditionally deleting Gata-3 at different stages of development. We report that Gata-3 has essential roles in the morphogenesis of the mammary gland in both the embryo and adult. Through the discovery of a novel marker (beta3-integrin) of luminal progenitor cells and their purification, we demonstrate that Gata-3 deficiency leads to an expansion of luminal progenitors and a concomitant block in differentiation. Remarkably, introduction of Gata-3 into a stem cell-enriched population induced maturation along the alveolar luminal lineage. These studies provide evidence for the existence of an epithelial hierarchy within the mammary gland and establish Gata-3 as a critical regulator of luminal differentiation.
Collapse
Affiliation(s)
- Marie-Liesse Asselin-Labat
- VBCRC Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shinnakasu R, Yamashita M, Shinoda K, Endo Y, Hosokawa H, Hasegawa A, Ikemizu S, Nakayama T. Critical YxKxHxxxRP motif in the C-terminal region of GATA3 for its DNA binding and function. THE JOURNAL OF IMMUNOLOGY 2006; 177:5801-10. [PMID: 17056504 DOI: 10.4049/jimmunol.177.9.5801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A zinc finger transcription factor, GATA3, plays an essential role in the development of T cells and the functional differentiation into type 2 Th cells. Two transactivation domains and two zinc finger regions are known to be important for the GATA3 function, whereas the role for other regions remains unclear. In this study we demonstrated that a conserved YxKxHxxxRP motif (aa 345-354) adjacent to the C-terminal zinc finger domain of GATA3 plays a critical in its DNA binding and functions, including transcriptional activity, the ability to induce chromatin remodeling of the Th2 cytokine gene loci, and Th2 cell differentiation. A single point mutation of the key amino acid (Y, K, H, R, and P) in the motif abrogated GATA3 functions. A computer simulation analysis based on the solution structure of the chicken GATA1/DNA complex supported the importance of this motif in GATA3 DNA binding. Thus, we identified a novel conserved YxKxHxxxRP motif adjacent to the C-terminal zinc finger domain of GATA3 that is indispensable for GATA3 DNA binding and functions.
Collapse
Affiliation(s)
- Ryo Shinnakasu
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|