1
|
Altadill M, Álvarez I, Ataya M, Heredia G, Alari‐Pahissa E, Muntasell A, Llano M, Fuchs J, Vilches C, Hengel H, Halenius A, López‐Botet M. Human Cytomegalovirus Antigen Presentation by HLA-G in Infected Cells. HLA 2025; 105:e70089. [PMID: 40347012 PMCID: PMC12065092 DOI: 10.1111/tan.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 05/12/2025]
Abstract
HLA-E and -G class Ib molecules were considered unrelated to viral antigen presentation. HLA-E binds nonamers from the leader sequences of other HLA-I molecules and the human cytomegalovirus (HCMV) UL40 protein, interacting with CD94/NKG2 NK cell receptors. Yet, evidence that HLA-E may present some pathogen-derived peptides to CD8+ T lymphocytes has been reported. By contrast, HLA-G binds a broad spectrum of endogenous sequences but its role in antigen presentation is unknown. An experimental approach was set up to search for HCMV antigens displayed by HLA-G in infected cells. Among the analysed peptidome, 22 sequences corresponding to 16 HCMV molecules were identified; 17 peptides were confirmed to interact in vitro with HLA-G of which 10 displayed characteristic anchor residues. As compared to the response in short-term (6 h) assays to immunodominant IE-1 and pp65 antigens, none of the HLA-G-binding peptides stimulated cytokine production by CD8+ T cells from HCMV-seropositive blood donors (n = 15). Following a 14-day peptide stimulation of PBMC and expansion with IL-2, CD8+ T cells specifically responding to a subset of these viral antigens were detected in some individuals, yet were not restricted by HLA-G in functional assays. A subset of viral peptides did bind to both HLA-G and -E but were not recognised by CD94/NKG2 NK cell receptors. Our results provide the first evidence that HLA-G may display potentially immunogenic viral peptides in HCMV-infected cells, yet do not support their ability to promote HLA-G-restricted CD8+ T cell responses nor to modulate NK cell functions.
Collapse
Affiliation(s)
- Mireia Altadill
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Iñaki Álvarez
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
| | - Michelle Ataya
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Gemma Heredia
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | | | - Aura Muntasell
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Manuel Llano
- Biological Sciences DepartmentThe University of Texas at El PasoEl PasoUSA
| | - Jonas Fuchs
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carlos Vilches
- Immunogenetics and Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
- Organización Nacional de Trasplantes, Ministerio de SanidadMadridSpain
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Miguel López‐Botet
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| |
Collapse
|
2
|
Hodges A, Dubuque R, Chen SH, Pan PY. The LILRB family in hematologic malignancies: prognostic associations, mechanistic considerations, and therapeutic implications. Biomark Res 2024; 12:159. [PMID: 39696628 DOI: 10.1186/s40364-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The leukocyte immunoglobulin-like receptor B (LILRB) proteins, characterized by their transmembrane nature and canonical immunoreceptor tyrosine-based inhibitory motifs (ITIM) signaling, play a pivotal role in maintaining immune homeostasis and are implicated in the pathogenesis of various disease states. This comprehensive review will focus on the intricate involvement of the LILRB family in hematologic malignancies. These receptors have emerged as valuable diagnostic and prognostic biomarkers in leukemia, lymphoma, and myeloma. Beyond their prognostic implications, LILRBs actively shape the immune microenvironment and directly influence the disease pathogenesis of hematologic malignancies. Furthermore, their identification as potential therapeutic targets offer a promising avenue for precision medicine strategies in the treatment of these disorders. Currently, multiple LILRB directed therapies are in the preclinical and clinical trial pipelines. This review underscores the multifaceted role of the LILRB family in hematologic malignancies, highlighting their significance from diagnostic and prognostic perspectives to their broader impact on disease pathophysiology and as valuable therapeutic targets.
Collapse
Affiliation(s)
- Alan Hodges
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA
| | - Rachel Dubuque
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA.
| | - Ping-Ying Pan
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
3
|
Liang Y, Chen X, Zhang X, Guo C, Zhang Y. Virus-driven dysregulation of the BCR pathway: a potential mechanism for the high prevalence of HIV related B-cell lymphoma. Ann Hematol 2024; 103:4839-4849. [PMID: 39196379 DOI: 10.1007/s00277-024-05959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
In people living with HIV (PLWH), the susceptibility to malignancies is notably augmented, with lymphoma emerging as a predominant malignancy. Even in the antiretroviral therapy (ART) era, aggressive B-cell lymphoma stands out as a paramount concern. Yet, the pathogenesis of HIV related lymphoma (HRL) largely remains an enigma. Recent insights underscore the pivotal role of the dysregulated B cell receptor (BCR) signaling cascade, evidencing its oncogenic potential across a spectrum of lymphomas. Intricate interplays between HIV and BCR structural-functional integrity have been identified in PLWH. In this review, we elucidated the mechanism by which the BCR signaling pathway is involved in HRL, mainly including the following aspects: HIV can reshape BCR structure by modulating of activation-induced cytidine deaminase (AID) and recombination-activating gene (RAG) dynamics; HIV can act as a chronic antigen to activate the BCR signaling pathway, such as upregulating PI3K and MAPK signaling pathway and reducing the expression of CD300a; HIV co-infection with other oncogenic viruses may also influence tumor formation mediated by the BCR signaling pathway. This review aims to elucidate the intricate regulation of the BCR signaling pathway by HIV in B cell lymphoma, providing a novel perspective on the pathogenesis of lymphoma in HIV-affected environments.
Collapse
Affiliation(s)
- Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiping Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing100069, China.
| |
Collapse
|
4
|
Karczmarczyk A, Chojnacki M, Paziewska M, Karp M, Skórka K, Zaleska J, Purkot J, Własiuk P, Giannopoulos K. HLA-G can be transfered via trogocytosis from leukemic cells to T cells in chronic lymphocytic leukemia. Hum Immunol 2024; 85:111178. [PMID: 39541623 DOI: 10.1016/j.humimm.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
In chronic lymphocytic leukemia (CLL) immune escape mechanism allows leukemia cells to proliferate and expand and it might also be responsible for disease progression. Some molecules involved in the regulation of an immune system might represent prognostic value for CLL patients. Among numerous immune escape mechanisms it was shown that the expression of human leukocyte antigen G (HLA-G) might represent one of the agents damaging cellular immune response. In the present study, the expression of the HLA-G molecule and ILT-2 receptor on the surface of leukemic cells, as well as a plasma concentration of soluble HLA-G (sHLA-G) was evaluated. Also, we investigated whether HLA-G could be transferred from leukemic cells to T cells by the mechanism of trogocytosis. We showed higher proportion of leukemic cells expressing HLA-G and increased levels of sHLA-G in CLL patients compared to that of B-cells in healthy volunteers (HVs). Results of our work showed a time-dependent increase in HLA-G expression on CD4+ T cells co-incubated with HLA-G-positive CD19+ cells. Longer coincubation times did significantly increase these proportions (p < 0.001). We have shown that a higher proportion of HLA-G-expressing CD4+ T cells correlated with the clinical stage of the disease according to the Rai classification. Interestingly, we found a higher CD4+HLA-G+ percentage in the group with unmutated immunoglobulin heavy chain variable region (IGHV) genes compared to the group with mutated IGHV gene after 48 h co-culture. In summary, increasing evidence has revealed that, in addition to HLA-G expressed on tumor cells, intercellular transfer of HLA-G among cancer cells and immune cells through trogocytosis plays important roles in mechanism of immune escape, disease progression and poor clinical outcome.
Collapse
MESH Headings
- Humans
- HLA-G Antigens/genetics
- HLA-G Antigens/immunology
- HLA-G Antigens/metabolism
- HLA-G Antigens/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Male
- Middle Aged
- Aged
- Female
- Tumor Escape
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Coculture Techniques
- Antigens, CD19/metabolism
- Antigens, CD19/immunology
- Adult
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Leukocyte Immunoglobulin-like Receptor B1/metabolism
- Aged, 80 and over
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Antigens, CD
Collapse
Affiliation(s)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Lublin, Poland
| | - Magdalena Paziewska
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Marta Karp
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Joanna Purkot
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Paulina Własiuk
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
5
|
Malouli D, Taher H, Mansouri M, Iyer RF, Reed J, Papen C, Schell JB, Beechwood T, Martinson T, Morrow D, Hughes CM, Gilbride RM, Randall K, Ford JC, Belica K, Ojha S, Sacha JB, Bimber BN, Hansen SG, Picker LJ, Früh K. Human cytomegalovirus UL18 prevents priming of MHC-E- and MHC-II-restricted CD8 + T cells. Sci Immunol 2024; 9:eadp5216. [PMID: 39392895 PMCID: PMC11797217 DOI: 10.1126/sciimmunol.adp5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
Rhesus cytomegalovirus (RhCMV) vectors elicit major histocompatibility complex (MHC)-E-restricted CD8+ T cells that stringently control simian immunodeficiency virus (SIV) in rhesus macaques. These responses require deletion of eight RhCMV chemokine-like open reading frames (ORFs) that are conserved in human cytomegalovirus (HCMV). To determine whether HCMV encodes additional, nonconserved inhibitors of unconventional T cell priming, we inserted 41 HCMV-specific ORFs into a chemokine-deficient strain (68-1 RhCMV). Monitoring of epitope recognition revealed that HCMV UL18 prevented unconventional T cell priming, resulting in MHC-Ia-targeted responses. UL18 is homologous to MHC-I but does not engage T cell receptors and, instead, binds with high affinity to inhibitory leukocyte immunoglobulin-like receptor-1 (LIR-1). UL18 lacking LIR-1 binding no longer interfered with MHC-E-restricted T cell stimulation by RhCMV-infected cells or the induction of unconventionally restricted T cells. Thus, LIR-1 binding needs to be deleted from UL18 of HCMV/HIV vaccines to allow for the induction of protective MHC-E-restricted T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
6
|
Li Y, Hirayasu K, Hasegawa G, Tomita Y, Hashikawa Y, Hiwa R, Arase H, Hanayama R. Fibrinogen induces inflammatory responses via the immune activating receptor LILRA2. Front Immunol 2024; 15:1435236. [PMID: 39376567 PMCID: PMC11456740 DOI: 10.3389/fimmu.2024.1435236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024] Open
Abstract
The leukocyte immunoglobulin-like receptor (LILR) family, a group of primate-specific immunoreceptors, is widely expressed on most immune cells and regulates immune responses through interactions with various ligands. The inhibitory type, LILRB, has been extensively studied, and many ligands, such as HLA class I, have been identified. However, the activating type, LILRA, is less understood. We have previously identified microbially cleaved immunoglobulin as a non-self-ligand for LILRA2. In this study, we identified fibrinogen as an endogenous ligand for LILRA2 using mass spectrometry. Although human plasma contains fibrinogen in abundance in its soluble form, LILRA2 only recognizes solid-phase fibrinogen. In addition to the activating LILRA2, fibrinogen was also recognized by the inhibitory LILRB2 and by soluble LILRA3. In contrast, fibrin was recognized by LILRB2 and LILRA3, but not by LILRA2. Moreover, LILRA3 bound more strongly to fibrin than to fibrinogen and blocked the LILRB2-fibrinogen/fibrin interaction. These results suggest that morphological changes in fibrinogen determine whether activating or inhibitory immune responses are induced. Upon recognizing solid-phase fibrinogen, LILRA2 activated human primary monocytes and promoted the expression of various inflammation-related genes, such as chemokines, as revealed by RNA-seq analysis. A blocking antibody against LILRA2 inhibited the fibrinogen-induced inflammatory responses, indicating that LILRA2 is the primary receptor of fibrinogen. Taken together, our findings suggest that solid-phase fibrinogen is an inflammation-inducing endogenous ligand for LILRA2, and this interaction may represent a novel therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yifan Li
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kouyuki Hirayasu
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Gen Hasegawa
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosei Tomita
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuko Hashikawa
- Department of Evolutionary Immunology, Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ryosuke Hiwa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
7
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
8
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Kheyrandish S, Safdari SM, Amiri Samani F, Sohani M, Jaafarian AS, Damirchiloo F, Izadpanah A, Parkhideh S, Mikanik F, Roshandel E, Hajifathali A, Gharehbaghian A. Harnessing natural killer cells for refractory/relapsed non-Hodgkin lymphoma: biological roles, clinical trials, and future prospective. Biomark Res 2024; 12:66. [PMID: 39020411 PMCID: PMC11253502 DOI: 10.1186/s40364-024-00610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are heterogeneous and are among the most common hematological malignancies worldwide. Despite the advances in the treatment of patients with NHLs, relapse or resistance to treatment is anticipated in several patients. Therefore, novel therapeutic approaches are needed. Recently, natural killer (NK) cell-based immunotherapy alone or in combination with monoclonal antibodies, chimeric antigen receptors, or bispecific killer engagers have been applied in many investigations for NHL treatment. The functional defects of NK cells and the ability of cancerous cells to escape NK cell-mediated cytotoxicity within the tumor microenvironment of NHLs, as well as the beneficial results from previous studies in the context of NK cell-based immunotherapy in NHLs, direct our attention to this therapeutic strategy. This review aims to summarize clinical studies focusing on the applications of NK cells in the immunotherapy of patients with NHL.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri Samani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mahsa Sohani
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sadat Jaafarian
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Damirchiloo
- Departments of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Laboratory Hematology and Blood Bank Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Tsuneyoshi N, Hosoya T, Takeno Y, Saitoh K, Murai H, Amimoto N, Tatsumi R, Watanabe S, Hasegawa Y, Kikkawa E, Goto K, Nishigaki F, Tamura K, Kimura H. Hypoimmunogenic human iPSCs expressing HLA-G, PD-L1, and PD-L2 evade innate and adaptive immunity. Stem Cell Res Ther 2024; 15:193. [PMID: 38956724 PMCID: PMC11218117 DOI: 10.1186/s13287-024-03810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The human induced pluripotent stem cells (hiPSCs) can generate all the cells composing the human body, theoretically. Therefore, hiPSCs are thought to be a candidate source of stem cells for regenerative medicine. The major challenge of allogeneic hiPSC-derived cell products is their immunogenicity. The hypoimmunogenic cell strategy is allogenic cell therapy without using immune suppressants. Advances in gene engineering technology now permit the generation of hypoimmunogenic cells to avoid allogeneic immune rejection. In this study, we generated a hypoimmunogenic hiPSC (HyPSC) clone that had diminished expression of human leukocyte antigen (HLA) class Ia and class II and expressed immune checkpoint molecules and a safety switch. METHODS First, we generated HLA class Ia and class II double knockout (HLA class Ia/II DKO) hiPSCs. Then, a HyPSC clone was generated by introducing exogenous β-2-microglobulin (B2M), HLA-G, PD-L1, and PD-L2 genes, and the Rapamycin-activated Caspase 9 (RapaCasp9)-based suicide gene as a safety switch into the HLA class Ia/II DKO hiPSCs. The characteristics and immunogenicity of the HyPSCs and their derivatives were analyzed. RESULTS We found that the expression of HLA-G on the cell surface can be enhanced by introducing the exogenous HLA-G gene along with B2M gene into HLA class Ia/II DKO hiPSCs. The HyPSCs retained a normal karyotype and had the characteristics of pluripotent stem cells. Moreover, the HyPSCs could differentiate into cells of all three germ layer lineages including CD45+ hematopoietic progenitor cells (HPCs), functional endothelial cells, and hepatocytes. The HyPSCs-derived HPCs exhibited the ability to evade innate and adaptive immunity. Further, we demonstrated that RapaCasp9 could be used as a safety switch in vitro and in vivo. CONCLUSION The HLA class Ia/II DKO hiPSCs armed with HLA-G, PD-L1, PD-L2, and RapaCasp9 molecules are a potential source of stem cells for allogeneic transplantation.
Collapse
Affiliation(s)
- Norihiro Tsuneyoshi
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Tomonori Hosoya
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuriko Takeno
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Kodai Saitoh
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Hidetaka Murai
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Naoki Amimoto
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Rie Tatsumi
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Sono Watanabe
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yudai Hasegawa
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Eri Kikkawa
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Kumiko Goto
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Fusako Nishigaki
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Kouichi Tamura
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| | - Hironobu Kimura
- HEALIOS K.K. Kobe Research Institute, Kobe KIMEC Center Bldg. 3F, 1-5-2 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
10
|
Schoufour TA, van der Plas - van Duijn A, Derksen I, Melgers M, van Veenendaal JM, Lensen C, Heemskerk MH, Neefjes J, Wijdeven RH, Scheeren FA. CRISPR-Cas9 screening reveals a distinct class of MHC-I binders with precise HLA-peptide recognition. iScience 2024; 27:110120. [PMID: 38939106 PMCID: PMC11209011 DOI: 10.1016/j.isci.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Human leukocyte antigen (HLA) class-I molecules present fragments of the cellular proteome to the T cell receptor (TCR) of cytotoxic T cells to control infectious diseases and cancer. The large number of combinations of HLA class-I allotypes and peptides allows for highly specific and dedicated low-affinity interactions to a diverse array of TCRs and natural killer (NK) cell receptors. Whether the divergent HLA class-I peptide complex is exclusive for interactions with these proteins is unknown. Using genome-wide CRISPR-Cas9 activation and knockout screens, we identified peptide-specific HLA-C∗07 combinations that can interact with the surface molecules CD55 and heparan sulfate. These interactions closely resemble the HLA class-I interaction with the TCR regarding both the affinity range and the specificity of the peptide and HLA allele. These findings indicate that various proteins can specifically bind HLA class-I peptide complexes due to their polymorphic nature, which suggests there are more interactions like the ones we describe here.
Collapse
Affiliation(s)
- Tom A.W. Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Anneloes van der Plas - van Duijn
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ian Derksen
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Marije Melgers
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | | | - Claire Lensen
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ruud H.M. Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Medical Center, 1007 MB Amsterdam, Noord-Holland, the Netherlands
| | - Ferenc A. Scheeren
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
11
|
Hu Z, Zhang Q, He Z, Jia X, Zhang W, Cao X. MHC1/LILRB1 axis as an innate immune checkpoint for cancer therapy. Front Immunol 2024; 15:1421092. [PMID: 38911856 PMCID: PMC11190085 DOI: 10.3389/fimmu.2024.1421092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy through unleashing anti-tumor adaptive immunity. Despite that, they are usually effective only in a small subset of patients and relapse can occur in patients who initially respond to the treatment. Recent breakthroughs in this field have identified innate immune checkpoints harnessed by cancer cells to escape immunosurveillance from innate immunity. MHC1 appears to be such a molecule expressed on cancer cells which can transmit a negative signal to innate immune cells through interaction with leukocyte immunoglobulin like receptor B1 (LILRB1). The review aims to summarize the current understanding of MHC1/LILRB1 axis on mediating cancer immune evasion with an emphasis on the therapeutic potential to block this axis for cancer therapy. Nevertheless, one should note that this field is still in its infancy and more studies are warranted to further verify the effectiveness and safety in clinical as well as the potential to combine with existing immune checkpoints.
Collapse
Affiliation(s)
- Ziyi Hu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaodong Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Zehua He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, China
| | - Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Hirayasu K, Khor SS, Kawai Y, Shimada M, Omae Y, Hasegawa G, Hashikawa Y, Tanimoto H, Ohashi J, Hosomichi K, Tajima A, Nakamura H, Nakamura M, Tokunaga K, Hanayama R, Nagasaki M. Identification of the hybrid gene LILRB5-3 by long-read sequencing and implication of its novel signaling function. Front Immunol 2024; 15:1398935. [PMID: 38807600 PMCID: PMC11130398 DOI: 10.3389/fimmu.2024.1398935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Leukocyte immunoglobulin (Ig)-like receptors (LILRs) on human chromosome 19q13.4 encode 11 immunoglobulin superfamily receptors, exhibiting genetic diversity within and between human populations. Among the LILR genes, the genomic region surrounding LILRB3 and LILRA6 has yet to be fully characterized due to their significant sequence homology, which makes it difficult to differentiate between them. To examine the LILRB3 and LILRA6 genomic region, a tool named JoGo-LILR CN Caller, which can call copy number from short-read whole genome sequencing (srWGS) data, was applied to an extensive international srWGS dataset comprising 2,504 samples. During this process, a previously unreported loss of both LILRB3 and LILRA6 was detected in three samples. Using long-read sequencing of these samples, we have discovered a novel large deletion (33,692 bp) in the LILRB3 and LILRA6 genomic regions in the Japanese population. This deletion spanned three genes, LILRB3, LILRA6, and LILRB5, resulting in LILRB3 exons 12-13 being located immediately downstream of LILRB5 exons 1-12 with the loss of LILRA6, suggesting the potential expression of a hybrid gene between LILRB5 and LILRB3 (LILRB5-3). Transcription and subsequent translation of the LILRB5-3 hybrid gene were also verified. The hybrid junction was located within the intracellular domain, resulting in an LILRB5 extracellular domain fused to a partial LILRB3 intracellular domain with three immunoreceptor tyrosine-based inhibitory motifs (ITIMs), suggesting that LILRB5-3 acquired a novel signaling function. Further application of the JoGo-LILR tool to srWGS samples suggested the presence of the LILRB5-3 hybrid gene in the CEU population. Our findings provide insight into the genetic and functional diversity of the LILR family.
Collapse
Affiliation(s)
- Kouyuki Hirayasu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
- Department of Evolutionary Immunology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Immunology, School of Medical and Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mihoko Shimada
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Gen Hasegawa
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuko Hashikawa
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiromu Tanimoto
- Department of Immunology, School of Medical and Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
- Headquarters of Primary Biliary Cholangitis (PBC) Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Rikinari Hanayama
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Immunology, School of Medical and Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Tian J, Ashique AM, Weeks S, Lan T, Yang H, Chen HIH, Song C, Koyano K, Mondal K, Tsai D, Cheung I, Moshrefi M, Kekatpure A, Fan B, Li B, Qurashi S, Rocha L, Aguayo J, Rodgers C, Meza M, Heeke D, Medfisch SM, Chu C, Starck S, Basak NP, Sankaran S, Malhotra M, Crawley S, Tran TT, Duey DY, Ho C, Mikaelian I, Liu W, Rivera LB, Huang J, Paavola KJ, O'Hollaren K, Blum LK, Lin VY, Chen P, Iyer A, He S, Roda JM, Wang Y, Sissons J, Kutach AK, Kaplan DD, Stone GW. ILT2 and ILT4 Drive Myeloid Suppression via Both Overlapping and Distinct Mechanisms. Cancer Immunol Res 2024; 12:592-613. [PMID: 38393969 DOI: 10.1158/2326-6066.cir-23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.
Collapse
Affiliation(s)
- Jane Tian
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sabrina Weeks
- NGM Biopharmaceuticals, South San Francisco, California
| | - Tian Lan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Hong Yang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Kikuye Koyano
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Daniel Tsai
- NGM Biopharmaceuticals, South San Francisco, California
| | - Isla Cheung
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Bin Fan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Betty Li
- NGM Biopharmaceuticals, South San Francisco, California
| | - Samir Qurashi
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lauren Rocha
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Col Rodgers
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Darren Heeke
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Chun Chu
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | | | | | | | - Dana Y Duey
- NGM Biopharmaceuticals, South San Francisco, California
| | - Carmence Ho
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Wenhui Liu
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lee B Rivera
- NGM Biopharmaceuticals, South San Francisco, California
| | - Jiawei Huang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Lisa K Blum
- NGM Biopharmaceuticals, South San Francisco, California
| | - Vicky Y Lin
- NGM Biopharmaceuticals, South San Francisco, California
| | - Peirong Chen
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sisi He
- NGM Biopharmaceuticals, South San Francisco, California
| | - Julie M Roda
- NGM Biopharmaceuticals, South San Francisco, California
| | - Yan Wang
- NGM Biopharmaceuticals, South San Francisco, California
| | - James Sissons
- NGM Biopharmaceuticals, South San Francisco, California
| | - Alan K Kutach
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | |
Collapse
|
14
|
Sánchez-Ramón S, Fuentes-Antrás J, Rider NL, Pérez-Segura P, de la Fuente-Muñoz E, Fernández-Arquero M, Neves E, Pérez de Diego R, Ocaña A, Guevara-Hoyer K. Exploring gastric cancer genetics: A turning point in common variable immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100203. [PMID: 38283086 PMCID: PMC10818086 DOI: 10.1016/j.jacig.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 01/30/2024]
Abstract
Background Gastric cancer (GC) stands as a prominent cause of cancer-related mortality and ranks second among the most frequently diagnosed malignancies in individuals with common variable immunodeficiency (CVID). Objective We sought to conduct a comprehensive, large-scale genetic analysis to explore the CVID-associated germline variant landscape within gastric adenocarcinoma samples and to seek to delineate the transcriptomic similarities between GC and CVID. Methods We investigated the presence of CVID-associated germline variants in 1591 GC samples and assessed their impact on tumor mutational load. The progression of GC was evaluated in patients with and without these variants. Transcriptomic similarities were explored by matching differentially expressed genes in GC to healthy gastric tissue with a CVID transcriptomic signature. Results CVID-associated germline variants were found in 60% of GC samples. Our analysis revealed a significant association between the presence of CVID-related genetic variants and higher tumor mutational load in GC (P < .0001); high GC mutational load seems to be linked to immunotherapy response and worse prognosis. Transcriptomic similarities unveiled key genes and pathways implicated in innate immune responses and tumorigenesis. We identified upregulated genes related to oncogene drivers, inflammation, tumor suppression, DNA repair, and downregulated immunomodulatory genes shared between GC and CVID. Conclusions Our findings contribute to a deeper understanding of potential molecular modulators of GC and shed light on the intricate interplay between immunodeficiency and cancer. This study underscores the clinical relevance of CVID-related variants in influencing GC progression and opens avenues for further exploration into novel therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Department of Medical Oncology, IdSSC, San Carlos University Hospital, and CIBERONC, Madrid, Spain
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nicholas L. Rider
- Division of Clinical Informatics, Pediatrics, Allergy and Immunology, Liberty University College of Osteopathic Medicine and Collaborative Health Partners, Lynchburg, Va
| | - Pedro Pérez-Segura
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Alberto Ocaña
- Department of Medical Oncology, IdSSC, San Carlos University Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Department of Medical Oncology, IdSSC, San Carlos University Hospital, and CIBERONC, Madrid, Spain
| | - Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immune-Mediated Diseases Research Unit, San Carlos Health Research Institute (IdSSC), Department of Clinical Immunology, San Carlos University Hospital, Madrid, Spain
- Department of Clinical Immunology, Instituto de médicina de laboratorio (IML) and IdSSC, San Carlos University Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
15
|
Wang S, Wang J, Gong W, Zhang F, Chen X, Xu H, Han Y, Fu X, Wang L, Li J, Gao A, Sun Y. ILT4 facilitates angiogenesis in non-small cell lung cancer. Cancer Sci 2024; 115:1459-1475. [PMID: 38433526 DOI: 10.1111/cas.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Antiangiogenic therapy targeting VEGF-A has become the standard of first-line therapy for non-small cell lung cancer (NSCLC). However, its clinical response rate is still less than 50%, and most patients eventually develop resistance, even when using combination therapy with chemotherapy. The major cause of resistance is the activation of complex bypass signals that induce angiogenesis and tumor progression. Therefore, exploring novel proangiogenic mechanisms and developing promising targets for combination therapy are crucial for improving the efficacy of antiangiogenic therapy. Immunoglobulin-like transcript (ILT) 4 is a classic immunosuppressive molecule that inhibits myeloid cell activation. Recent studies have shown that tumor cell-derived ILT4 drives tumor progression via the induction of malignant biologies and creation of an immunosuppressive microenvironment. However, whether and how ILT4 participates in NSCLC angiogenesis remain elusive. Herein, we found that enriched ILT4 in NSCLC is positively correlated with high microvessel density, advanced disease, and poor overall survival. Tumor cell-derived ILT4 induced angiogenesis both in vitro and in vivo and tumor progression and metastasis in vivo. Mechanistically, ILT4 was upregulated by its ligand angiopoietin-like protein 2 (ANGPTL2). Their interaction subsequently activated the ERK1/2 signaling pathway to increase the secretion of the proangiogenic factors VEGF-A and MMP-9, which are responsible for NSCLC angiogenesis. Our study explored a novel mechanism for ILT4-induced tumor progression and provided a potential target for antiangiogenic therapy in NSCLC.
Collapse
Affiliation(s)
- Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jing Wang
- Medical Research & Laboratory Diagnostic Center, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjing Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong, China
| | - Fang Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaozheng Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huijun Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yali Han
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuebing Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leirong Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
16
|
Lin M, Lei S, Chai Y, Xu J, Wang Y, Wu C, Jiang H, Yuan S, Wang J, Lyu J, Lu M, Deng J. Immunosuppressive microvesicles-mimetic derived from tolerant dendritic cells to target T-lymphocytes for inflammation diseases therapy. J Nanobiotechnology 2024; 22:201. [PMID: 38659058 PMCID: PMC11040880 DOI: 10.1186/s12951-024-02470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.
Collapse
Affiliation(s)
- Minghao Lin
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Wenzhou Traditional Chinese Medicine Hospital, Wenzhou, 325000, China
| | - Siyun Lei
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Yingqian Chai
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jianghua Xu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Youchao Wang
- Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, PSL University, CNRS, Paris, 75005, France
| | - Chenghu Wu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Hongyi Jiang
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Shanshan Yuan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jie Lyu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Mingqin Lu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
17
|
Xie W, Chen S, Luo H, Kong C, Wang D. Critical gene signature and immunological characterization in peripheral vascular atherosclerosis: novel insights from mendelian randomization and transcriptomics. Front Genet 2024; 15:1361445. [PMID: 38660678 PMCID: PMC11039871 DOI: 10.3389/fgene.2024.1361445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Peripheral vascular atherosclerosis (PVA) is a chronic inflammatory disease characterized by lipid accumulation in blood vessel walls, leading to vessel narrowing and inadequate blood supply. However, the molecular mechanisms underlying PVA remain poorly understood. In this study, we employed a combination of Mendelian randomization (MR) analysis and integrated transcriptomics to identify the critical gene signature associated with PVA. Methods This study utilized three public datasets (GSE43292, GSE100927 and GSE28829) related to peripheral vascular atherosclerosis obtained from the Gene Expression Omnibus database. Instrumental variables (IVs) were identified through expression quantitative trait loci (eQTL) analysis, and two-sample MR analysis was performed using publicly available summary statistics. Disease critical genes were identified based on odds ratios and intersected with differentially expressed genes in the disease dataset. GSE28829 dataset was used to validate the screened disease critical genes. Functional enrichment analysis, GSEA analysis, and immune cell infiltration analysis were performed to further characterize the role of these genes in peripheral vascular atherosclerosis. Results A total of 26,152 gene-related SNPs were identified as IVs, and 242 disease-associated genes were identified through MR analysis. Ten disease critical genes (ARHGAP25, HCLS1, HVCN1, RBM47, LILRB1, PLAU, IFI44L, IL1B, IFI6, and CFL2) were significantly associated with peripheral vascular atherosclerosis. Functional enrichment analysis using KEGG pathways revealed enrichment in the NF-kappa B signaling pathway and osteoclast differentiation. Gene set enrichment analysis further demonstrated functional enrichment of these genes in processes related to vascular functions and immune system activation. Additionally, immune cell infiltration analysis showed differential ratios of B cells and mast cells between the disease and control groups. The correlations analysis highlights the intricate interplay between disease critical genes and immune cells associated with PVA. Conclusion In conclusion, this study provides new insights into the molecular mechanisms underlying PVA by identifying ten disease critical genes associated with the disease. These findings, supported by differential expression, functional enrichment, and immune system involvement, emphasize the role of these genes in vascular function and immune cell interactions in the context of PVA. These findings contribute to a better understanding of PVA pathogenesis and offer potential targets for further mechanistic exploration and therapeutic interventions.
Collapse
Affiliation(s)
- Wei Xie
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Shumin Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hanqing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Chuiyu Kong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Hou J, Chen Y, Cai Z, Heo GS, Yuede CM, Wang Z, Lin K, Saadi F, Trsan T, Nguyen AT, Constantopoulos E, Larsen RA, Zhu Y, Wagner N, McLaughlin N, Kuang XC, Barrow AD, Li D, Zhou Y, Wang S, Gilfillan S, Gross M, Brioschi S, Liu Y, Holtzman DM, Colonna M. Antibody-mediated targeting of human microglial leukocyte Ig-like receptor B4 attenuates amyloid pathology in a mouse model. Sci Transl Med 2024; 16:eadj9052. [PMID: 38569016 PMCID: PMC11977387 DOI: 10.1126/scitranslmed.adj9052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-β (Aβ) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aβ and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aβ plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aβ load, mitigated some Aβ-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Carla M. Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zuoxu Wang
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kent Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Fareeha Saadi
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel A. Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yiyang Zhu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nicole Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nolan McLaughlin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xinyi Cynthia Kuang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alexander D. Barrow
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shoutang Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
21
|
Alyami A, AlJurayyan A, Alosaimi B, Alkadi H, Alkhulaifi F, Al-Jurayb H, Osman A, Christmas S, Alomar S, Al-Bayati Z. The correlation between soluble human leukocyte antigen (sHLA-G) levels and +3010 polymorphism. Int J Immunogenet 2024; 51:39-46. [PMID: 38087909 DOI: 10.1111/iji.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Human leukocyte antigen-G (HLA-G) is classified as non-classical HLA, located in the short arm of chromosome 6 and composed of seven introns and eight exons. The HLA-G gene has a lower frequency polymorphism in the coding area and higher variability at the regulatory 5'- and 3'-untranslated regions linked to HLA-G microRNA regulation. HLA-G molecule is known to have an immunomodulatory and tolerogenic features role. In 199 Saudi individuals, we examined the association between plasma soluble HLA-G (sHLA-G) levels and eight polymorphic different sites, including 14 bp ins/del/+3003T-C/+3010C-G/+3027C-A/+3035C-T/+3142C-G/+3187A-G/+3196C-G single nucleotide polymorphisms (SNPs) in exon 8 in the HLA-G gene. Our results revealed higher frequency for rs17179101C (97%), rs1707T (92%) and rs9380142A (73%) alleles. Greater frequencies for the tested genotypes were observed in 3027C/C (rs17179101) (93%), 14 bp (rs1704) ins/del (92%), +3003T/T (rs1707) (85%) and +3035C/T (rs17179108) (79%) SNP genotypes. Moreover, we observed a significant association of sHLA-G with +3010G/C (rs1710) SNP. In conclusion, we showed a significant association between 3010G/C (rs1710) SNP and the sHLA-G level among our sample for Saudi populations. Our findings demonstrated that specific SNP within the HLA-G gene is linked to sHLA-G molecule secretion, suggesting sHLA-G levels may be regulated genetically.
Collapse
Affiliation(s)
- Ahmed Alyami
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Abdullah AlJurayyan
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Haitham Alkadi
- Research Center, King Fahad Medical City Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Fadwa Alkhulaifi
- College of Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Haya Al-Jurayb
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Awad Osman
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Steve Christmas
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Suliman Alomar
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zaid Al-Bayati
- Department of Genetic Study, Azadi Teaching Hospital, Kirkuk, Iraq
| |
Collapse
|
22
|
Gravina A, Tediashvili G, Zheng Y, Iwabuchi KA, Peyrot SM, Roodsari SZ, Gargiulo L, Kaneko S, Osawa M, Schrepfer S, Deuse T. Synthetic immune checkpoint engagers protect HLA-deficient iPSCs and derivatives from innate immune cell cytotoxicity. Cell Stem Cell 2023; 30:1538-1548.e4. [PMID: 37922880 DOI: 10.1016/j.stem.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Immune rejection of allogeneic cell therapeutics remains a major problem for immuno-oncology and regenerative medicine. Allogeneic cell products so far have inferior persistence and efficacy when compared with autologous alternatives. Engineering of hypoimmune cells may greatly improve their therapeutic benefit. We present a new class of agonistic immune checkpoint engagers that protect human leukocyte antigen (HLA)-depleted induced pluripotent stem cell-derived endothelial cells (iECs) from innate immune cells. Engagers with agonistic functionality to their inhibitory receptors TIM3 and SIRPα effectively protect engineered iECs from natural killer (NK) cell and macrophage killing. The SIRPα engager can be combined with truncated CD64 to generate fully immune evasive iECs capable of escaping allogeneic cellular and immunoglobulin G (IgG) antibody-mediated rejection. Synthetic immune checkpoint engagers have high target specificity and lack retrograde signaling in the engineered cells. This modular design allows for the exploitation of more inhibitory immune pathways for immune evasion and could contribute to the advancement of allogeneic cell therapeutics.
Collapse
Affiliation(s)
- Alessia Gravina
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Yueting Zheng
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Kumiko A Iwabuchi
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Sara M Peyrot
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Susan Z Roodsari
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Lauren Gargiulo
- Shinobi Therapeutics, 2 Tower Place, South San Francisco, CA 94080, USA
| | - Shin Kaneko
- Laboratory of Regenerative Immunotherapy, Department of Cell Growth and Differentiation, Center for iPS cell Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsujiro Osawa
- Shinobi Therapeutics, Med-Pharm Collaboration Building 46-29, Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, Japan
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Tobias Deuse
- Transplant and Stem Cell Immunobiology (TSI)-Lab, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Zeller T, Münnich IA, Windisch R, Hilger P, Schewe DM, Humpe A, Kellner C. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front Immunol 2023; 14:1240275. [PMID: 37781391 PMCID: PMC10533923 DOI: 10.3389/fimmu.2023.1240275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Denis M. Schewe
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Cross-Najafi AA, Farag K, Isidan A, Li W, Zhang W, Lin Z, Walsh JR, Lopez K, Park Y, Higgins NG, Cooper DK, Ekser B, Li P. Co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells attenuates human NK cell-mediated degranulation. Front Immunol 2023; 14:1217809. [PMID: 37529053 PMCID: PMC10387534 DOI: 10.3389/fimmu.2023.1217809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Natural killer (NK) cells play an important role in immune rejection in solid organ transplantation. To mitigate human NK cell activation in xenotransplantation, introducing inhibitory ligands on xenografts via genetic engineering of pigs may protect the graft from human NK cell-mediated cytotoxicity and ultimately improve xenograft survival. In this study, non-classical HLA class I molecules HLA-E and HLA-G were introduced in an immortalized porcine liver endothelial cell line with disruption of five genes (GGTA1, CMAH, β4galNT2, SLA-I α chain, and β-2 microglobulin) encoding three major carbohydrate xenoantigens (αGal, Neu5Gc, and Sda) and swine leukocyte antigen class I (SLA-I) molecules. Expression of HLA-E and/or HLA-G on pig cells were confirmed by flow cytometry. Endogenous HLA-G molecules as well as exogenous HLA-G VL9 peptide could dramatically enhance HLA-E expression on transfected pig cells. We found that co-expression of HLA-E and HLA-G on porcine cells led to a significant reduction in human NK cell activation compared to the cells expressing HLA-E or HLA-G alone and the parental cell line. NK cell activation was assessed by analysis of CD107a expression in CD3-CD56+ population gated from human peripheral blood mononuclear cells. CD107a is a sensitive marker of NK cell activation and correlates with NK cell degranulation and cytotoxicity. HLA-E and/or HLA-G on pig cells did not show reactivity to human sera IgG and IgM antibodies. This in vitro study demonstrated that co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells provided a superior inhibition in human xenoreactive NK cells, which may guide further genetic engineering of pigs to prevent human NK cell mediated rejection.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kristine Farag
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zhansong Lin
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Julia R. Walsh
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nancy G. Higgins
- Transplant Immunology, Indiana University Health, Indianapolis, IN, United States
| | - David K.C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Cambridge, MA, United States
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
25
|
Lima K, Ribas GT, Riella LV, Borges TJ. Inhibitory innate receptors and their potential role in transplantation. Transplant Rev (Orlando) 2023; 37:100776. [PMID: 37451057 DOI: 10.1016/j.trre.2023.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The regulatory arm of the immune system plays a crucial role in maintaining immune tolerance and preventing excessive immune responses. Immune regulation comprises various regulatory cells and molecules that work together to suppress or regulate immune responses. The programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are examples of inhibitory receptors that counteract activating signals and fine-tune immune responses. While most of the discoveries of immune regulation have been related to T cells and the adaptive immune system, the innate arm of the immune system also has a range of inhibitory receptors that can counteract activating signals and suppress the effector immune responses. Targeting these innate inhibitory receptors may provide a complementary therapeutic approach in several immune-related conditions, including transplantation. In this review, we will explore the potential role of innate inhibitory receptors in controlling alloimmunity during solid organ transplantation.
Collapse
Affiliation(s)
- Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme T Ribas
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Passeri L, Andolfi G, Bassi V, Russo F, Giacomini G, Laudisa C, Marrocco I, Cesana L, Di Stefano M, Fanti L, Sgaramella P, Vitale S, Ziparo C, Auricchio R, Barera G, Di Nardo G, Troncone R, Gianfrani C, Annoni A, Passerini L, Gregori S. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases. J Autoimmun 2023; 138:103051. [PMID: 37224733 DOI: 10.1016/j.jaut.2023.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Tolerogenic dendritic cells play a critical role in promoting antigen-specific tolerance via dampening of T cell responses, induction of pathogenic T cell exhaustion and antigen-specific regulatory T cells. Here we efficiently generate tolerogenic dendritic cells by genetic engineering of monocytes with lentiviral vectors co-encoding for immunodominant antigen-derived peptides and IL-10. These transduced dendritic cells (designated DCIL-10/Ag) secrete IL-10 and efficiently downregulate antigen-specific CD4+ and CD8+ T cell responses from healthy subjects and celiac disease patients in vitro. In addition, DCIL-10/Ag induce antigen-specific CD49b+LAG-3+ T cells, which display the T regulatory type 1 (Tr1) cell gene signature. Administration of DCIL-10/Ag resulted in the induction of antigen-specific Tr1 cells in chimeric transplanted mice and the prevention of type 1 diabetes in pre-clinical disease models. Subsequent transfer of these antigen-specific T cells completely prevented type 1 diabetes development. Collectively these data indicate that DCIL-10/Ag represent a platform to induce stable antigen-specific tolerance to control T-cell mediated diseases.
Collapse
Affiliation(s)
- Laura Passeri
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Grazia Andolfi
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Virginia Bassi
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy; University of Rome Tor Vergata, Via Cracovia 50, 00133, Rome, Italy
| | - Fabio Russo
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giorgia Giacomini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Cecilia Laudisa
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Ilaria Marrocco
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Luca Cesana
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Marina Di Stefano
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Lorella Fanti
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Paola Sgaramella
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, CNR, via P.Castellino 11, 80131, Naples, Italy
| | - Chiara Ziparo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Renata Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, 80131, University Federico II, Naples, Italy
| | - Graziano Barera
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giovanni Di Nardo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, 80131, University Federico II, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, CNR, via P.Castellino 11, 80131, Naples, Italy
| | - Andrea Annoni
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
27
|
Pizzato HA, Alonso-Guallart P, Woods J, Johannesson B, Connelly JP, Fehniger TA, Atkinson JP, Pruett-Miller SM, Monsma FJ, Bhattacharya D. Engineering Human Pluripotent Stem Cell Lines to Evade Xenogeneic Transplantation Barriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546594. [PMID: 37425790 PMCID: PMC10326974 DOI: 10.1101/2023.06.27.546594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Allogeneic human pluripotent stem cell (hPSC)-derived cells and tissues for therapeutic transplantation must necessarily overcome immunological rejection by the recipient. To define these barriers and to create cells capable of evading rejection for preclinical testing in immunocompetent mouse models, we genetically ablated β2m, Tap1, Ciita, Cd74, Mica, and Micb to limit expression of HLA-I, HLA-II, and natural killer cell activating ligands in hPSCs. Though these and even unedited hPSCs readily formed teratomas in cord blood-humanized immunodeficient mice, grafts were rapidly rejected by immunocompetent wild-type mice. Transplantation of these cells that also expressed covalent single chain trimers of Qa1 and H2-Kb to inhibit natural killer cells and CD55, Crry, and CD59 to inhibit complement deposition led to persistent teratomas in wild-type mice. Expression of additional inhibitory factors such as CD24, CD47, and/or PD-L1 had no discernible impact on teratoma growth or persistence. Transplantation of HLA-deficient hPSCs into mice genetically deficient in complement and depleted of natural killer cells also led to persistent teratomas. Thus, T cell, NK cell, and complement evasion are necessary to prevent immunological rejection of hPSCs and their progeny. These cells and versions expressing human orthologs of immune evasion factors can be used to refine tissue- and cell type-specific immune barriers, and to conduct preclinical testing in immunocompetent mouse models.
Collapse
Affiliation(s)
- Hannah A. Pizzato
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - James Woods
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | - Jon P. Connelly
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Fortunato M, Amodio G, Gregori S. IL-10-Engineered Dendritic Cells Modulate Allogeneic CD8 + T Cell Responses. Int J Mol Sci 2023; 24:9128. [PMID: 37298076 PMCID: PMC10252493 DOI: 10.3390/ijms24119128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Tolerogenic dendritic cells (tolDC) play a central role in regulating immune homeostasis and in promoting peripheral tolerance. These features render tolDC a promising tool for cell-based approaches aimed at inducing tolerance in T-cell mediated diseases and in allogeneic transplantation. We developed a protocol to generate genetically engineered human tolDC overexpressing IL-10 (DCIL-10) by means of a bidirectional lentiviral vector (LV) encoding for IL-10. DCIL-10 promote allo-specific T regulatory type 1 (Tr1) cells, modulate allogeneic CD4+ T cell responses in vitro and in vivo, and are stable in a pro-inflammatory milieu. In the present study, we investigated the ability of DCIL-10 to modulate cytotoxic CD8+ T cell responses. We demonstrate that DCIL-10 reduces allogeneic CD8+ T cell proliferation and activation in primary mixed lymphocyte reactions (MLR). Moreover, long-term stimulation with DCIL-10 induces allo-specific anergic CD8+ T cells without signs of exhaustion. DCIL-10-primed CD8+ T cells display limited cytotoxic activity. These findings indicate that stable over-expression of IL-10 in human DC leads to a population of cells able to modulate cytotoxic allogeneic CD8+ T cell responses, overall indicating that DCIL-10 represent a promising cellular product for clinical applications aimed at inducing tolerance after transplantation.
Collapse
Affiliation(s)
- Marta Fortunato
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.F.); (G.A.)
- PhD Course in Molecular Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Giada Amodio
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.F.); (G.A.)
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (M.F.); (G.A.)
| |
Collapse
|
29
|
Hoffmann O, Wormland S, Bittner AK, Hölzenbein J, Schwich E, Schramm S, Rohn H, Horn PA, Kimmig R, Kasimir-Bauer S, Rebmann V. Elevated sHLA-G plasma levels post chemotherapy combined with ILT-2 rs10416697C allele status of the sHLA-G-related receptor predict poorest disease outcome in early triple-negative breast cancer patients. Front Immunol 2023; 14:1188030. [PMID: 37283737 PMCID: PMC10239857 DOI: 10.3389/fimmu.2023.1188030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Triple negative breast cancer (TNBC) shows an aggressive growing and spreading behavior and has limited treatment options, often leading to inferior disease outcome. Therefore, surrogate markers are urgently needed to identify patients at high risk of recurrence and more importantly, to identify additional therapeutic targets enabling further treatment options. Based on the key role of the non-classical human leukocyte antigen G (HLA-G) and its related receptor immunoglobulin-like transcript receptor-2 (ILT-2) in immune evasion mechanisms of tumors, members of this ligand-receptor axis appear to be promising tool for both, defining risk groups and potential therapeutic targets. Materials and methods To follow this, sHLA-G levels before and after chemotherapy (CT), HLA-G 3' UTR haplotypes, and allele variations rs10416697 at the distal gene promoter region of ILT-2 were defined in healthy female controls and early TNBC patients. The results obtained were associated with clinical status, presence of circulating tumor cell (CTC) subtypes, and disease outcome of patients in terms of progression-free or overall survival. Results sHLA-G plasma levels were increased in TNBC patients post-CT compared to levels of patients pre-CT or controls. High post-CT sHLA-G levels were associated with the development of distant metastases, the presence of ERCC1 or PIK3CA-CTC subtypes post-CT, and poorer disease outcome in uni- or multivariate analysis. HLA-G 3' UTR genotypes did not influence disease outcome but ILT-2 rs10416697C allele was associated with AURKA-positive CTC and with adverse disease outcome by uni- and multivariate analysis. The prognostic value of the combined risk factors (high sHLA-G levels post-CT and ILT-2 rs10416697C allele carrier status) was an even better independent indicator for disease outcome in TNBC than the lymph nodal status pre-CT. This combination allowed the identification of patients with high risk of early progression/death with positive nodal status pre-CT or with non-pathological complete therapy response. Conclusion The results of this study highlight for the first time that the combination of high levels of sHLA-G post-CT with ILT-2 rs10416697C allele receptor status is a promising tool for the risk assessment of TNBC patients and support the concept to use HLA-G/ILT-2 ligand-receptor axis as therapeutic targets.
Collapse
Affiliation(s)
- Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Sebastian Wormland
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Julian Hölzenbein
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Sabine Schramm
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Hana Rohn
- Department of Infection Diseases, West German Centre of Infection Diseases, University Hospital of Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
30
|
Zou R, Zhong X, Liang K, Zhi C, Chen D, Xu Z, Zhang J, Liao D, Lai M, Weng Y, Peng H, Pang X, Ji Y, Ke Y, Zhang H, Wang Z, Wang Y. Elevated LILRB1 expression predicts poor prognosis and is associated with tumor immune infiltration in patients with glioma. BMC Cancer 2023; 23:403. [PMID: 37142967 PMCID: PMC10161664 DOI: 10.1186/s12885-023-10906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is regarded as an inhibitory molecule. However, the importance of LILRB1 expression in glioma has not yet been determined. This investigation examined the immunological signature, clinicopathological importance and prognostic value of LILRB1 expression in glioma. METHODS We used data from the UCSC XENA database, the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, the STRING database, the MEXPRESS database and our clinical glioma samples to perform bioinformatic analysis and used vitro experiments to examine the predictive value and potential biological roles of LILRB1 in glioma. RESULTS Higher LILRB1 expression was considerably present in the higher WHO grade glioma group and was linked to a poorer prognosis in patients with glioma. Gene set enrichment analysis (GSEA) revealed that LILRB1 was positively correlated with the JAK/STAT signaling pathway. LILRB1 combined with tumor mutational burden (TMB) and microsatellite instability (MSI) may be a promising indicator for the effectiveness of immunotherapy in patients with glioma. Increased LILRB1 expression was positively linked with the hypomethylation, M2 macrophage infiltration, immune checkpoints (ICPs) and M2 macrophage makers. Univariate and multivariate Cox regression analyses determined that increased LILRB1 expression was a standalone causal factor for glioma. Vitro experiments determined that LILRB1 positively enhanced the proliferation, migration and invasion in glioma cells. MRI images demonstrated that higher LILRB1 expression was related with larger tumor volume in patients with glioma. CONCLUSION Dysregulation of LILRB1 in glioma is correlated with immune infiltration and is a standalone causal factor for glioma.
Collapse
Affiliation(s)
- Renheng Zou
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xunlong Zhong
- Science and Technology Innovation Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Cheng Zhi
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhichao Xu
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jingbai Zhang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Degui Liao
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Miaoling Lai
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuhao Weng
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huaidong Peng
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanbin Ke
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongri Zhang
- Department of Neurosurgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
31
|
Cho J, Kim E, Yoon SE, Kim SJ, Kim WS. TET2 and LILRB1 mutations are frequent in Epstein-Barr virus-positive diffuse large B-cell lymphoma especially in elderly patients. Cancer 2023; 129:1502-1512. [PMID: 36812290 DOI: 10.1002/cncr.34698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) harboring Epstein-Barr virus (EBV) primarily occurs in patients who have underlying immunodeficiency or in elderly patients but is also reported in young, immunocompetent patients. The authors investigated the pathologic differences in EBV-positive DLBCL in these three groups of patients. METHODS In total, 57 patients with EBV-positive DLBCL were included in the study; of these, 16 patients had associated immunodeficiency, 10 were young (younger than 50 years), and 31 were elderly (aged 50 years or older). Immunostaining for CD8, CD68, PD-L1, and EBV nuclear antigen 2, and panel-based next-generation sequencing was performed on formalin-fixed, paraffin-embedded blocks. RESULTS Immunohistochemistry revealed EBV nuclear antigen 2 positivity in 21 of the 49 patients. The degree of CD8-positive and CD68-positive immune cell infiltration and PD-L1 expression did not differ significantly in each group. Extranodal site involvement was more common in young patients (p = .021). In mutational analysis, the genes with the highest mutation frequency were PCLO (n = 14), TET2 (n = 10), and LILRB1 (n = 10). For the TET2 gene, all 10 mutations were found in elderly patients (p = .007). Compared with a validation cohort, both TET2 and LILRB1 showed a higher mutation frequency in EBV-positive patients than in EBV-negative patients. CONCLUSIONS EBV-positive DLBCL occurring in three different age and immune status groups showed similar pathologic characteristics. Notably, a high frequency of TET2 and LILRB1 mutations was characteristic of this disease in elderly patients. Further studies are needed to determine the role of TET2 and LILRB1 mutations in the development of EBV-positive DLBCL along with immune senescence. PLAIN LANGUAGE SUMMARY Epstein-Barr virus-positive diffuse large B-cell lymphoma occurring in three different groups (immunodeficiency-associated, young, and elderly) showed similar pathologic characteristics. The frequency of TET2 and LILRB1 mutations was high in elderly patients with Epstein-Barr virus-positive diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eojin Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Meazza R, Ruggeri L, Guolo F, Minetto P, Canevali P, Loiacono F, Ciardelli S, Bo A, Luchetti S, Serio A, Zannoni L, Retière C, Colomar-Carando N, Parisi S, Curti A, Lemoli RM, Pende D. Donor selection for adoptive immunotherapy with NK cells in AML patients: Comparison between analysis of lytic NK cell clones and phenotypical identification of alloreactive NK cell repertoire. Front Immunol 2023; 14:1111419. [PMID: 36865545 PMCID: PMC9971917 DOI: 10.3389/fimmu.2023.1111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Natural killer (NK) cell-based adoptive immunotherapy in leukemia patients is an emerging field of interest based on clinical evidence of efficacy and safety. Elderly acute myeloid leukemia (AML) patients have been successfully treated with NK cells from HLA-haploidentical donors, especially when high amounts of alloreactive NK cells were infused. The aim of this study was comparing two approaches to define the size of alloreactive NK cells in haploidentical donors for AML patients recruited in two clinical trials with the acronym "NK-AML" (NCT03955848), and "MRD-NK". The standard methodology was based on the frequency of NK cell clones capable of lysing the related patient-derived cells. The alternative approach consisted of the phenotypic identification of freshly derived NK cells expressing, as inhibitory receptors, only the inhibitory KIR(s) specific for the mismatched KIR-Ligand(s) (HLA-C1, HLA-C2, HLA-Bw4). However, in KIR2DS2+ donors and HLA-C1+ patients, the unavailability of reagents staining only the inhibitory counterpart (KIR2DL2/L3) may lead to an underestimated identification of the alloreactive NK cell subset. Conversely, in the case of HLA-C1 mismatch, the alloreactive NK cell subset could be overestimated due to the ability of KIR2DL2/L3 to recognize with low-affinity also HLA-C2. Especially in this context, the additional exclusion of LIR1-expressing cells might be relevant to refine the size of the alloreactive NK cell subset. We could also associate degranulation assays, using as effector cells IL-2 activated donor peripheral blood mononuclear cells (PBMC) or NK cells upon co-culture with the related patient target cells. The donor alloreactive NK cell subset always displayed the highest functional activity, confirming its identification accuracy by flow cytometry. Despite the phenotypic limitations and considering the proposed corrective actions, a good correlation was shown by the comparison of the two investigated approaches. In addition, the characterization of receptor expression on a fraction of NK cell clones revealed expected but also few unexpected patterns. Thus, in most instances, the quantification of phenotypically defined alloreactive NK cells from PBMC can provide data similar to the analysis of lytic clones, with several advantages, such as a shorter time to achieve the results and, perhaps, higher reproducibility/feasibility in many laboratories.
Collapse
Affiliation(s)
- Raffaella Meazza
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy,*Correspondence: Raffaella Meazza, ; Daniela Pende,
| | - Loredana Ruggeri
- Divisione di Ematologia e Immunologia Clinica, Dipartimento di Medicina, Ospedale Santa Maria della Misericordia, Università di Perugia, Perugia, Italy
| | - Fabio Guolo
- Clinica di Ematologia, Dipartimento di Medicina Interna (DiMI), Università degli studi di Genova, Genova, Italy,Dipartimento di Ematologia e Oncologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Minetto
- Dipartimento di Ematologia e Oncologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Canevali
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabrizio Loiacono
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Ciardelli
- Divisione di Ematologia e Immunologia Clinica, Dipartimento di Medicina, Ospedale Santa Maria della Misericordia, Università di Perugia, Perugia, Italy
| | - Alessandra Bo
- Laboratorio Centro Cellule Staminali e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Luchetti
- Laboratorio Centro Cellule Staminali e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alberto Serio
- Laboratorio Centro Cellule Staminali e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Letizia Zannoni
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Christelle Retière
- Université de Nantes, Etablissement Français du Sang (EFS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancé rologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
| | | | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Roberto M. Lemoli
- Clinica di Ematologia, Dipartimento di Medicina Interna (DiMI), Università degli studi di Genova, Genova, Italy,Dipartimento di Ematologia e Oncologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Pende
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy,*Correspondence: Raffaella Meazza, ; Daniela Pende,
| |
Collapse
|
33
|
Grille-Cancela Z, Barge-Caballero E, Suárez-Fuentetaja N, Domenech-García N, Paniagua-Martín MJ, Barge-Caballero G, Couto-Mallón D, Enríquez-Vázquez D, Blanco-Canosa P, Pombo-Otero J, Vázquez-Rodríguez JM, Crespo-Leiro MG. Soluble HLA-G levels in heart transplant recipients: Dynamics and correlation with clinical outcomes. Transpl Immunol 2023; 76:101771. [PMID: 36473577 DOI: 10.1016/j.trim.2022.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To describe the evolution of the serum levels of soluble HLA-G (s-HLA-G) during the first 12 months after heart transplantation (HT) and to correlate it with clinical outcomes. METHODS Observational study based in a single-center cohort of 59 patients who underwent HT between December-2003 and March-2010. Soluble HLA-G levels were measured from serum samples extracted before HT, and 1, 3, 6 and 12 months after HT. The cumulative burden of s-HLA-G expression during the first post-transplant year was assessed by means of the area under the curve (AUC) of s-HLA-G levels over time and correlated with the acute rejection burden -as assessed by a rejection score-, the presence of coronary allograft vasculopathy (CAV) grade ≥ 1 and infections during the first post-transplant year; as well as with long-term patient and graft survival. Mean follow-up was 12.4 years. RESULTS Soluble HLA-G levels decreased over the first post-transplant year (p = 0.020). The AUC of s-HLA-G levels during the first post-transplant year was higher among patients with infections vs. those without infections (p = 0.006). No association was found between the AUC of s-HLA-G levels and the burden of acute rejection or the development of CAV. Overall long-term survival, long-term survival free of late graft failure and cancer-free survival were not significantly different in patients with an AUC of s-HLA-G levels higher or lower than the median of the study population. CONCLUSIONS Soluble HLA-G levels decreased over the first year after HT. Higher HLA-G expression was associated with a higher frequency of infections, but not with the burden of acute rejection or the development of CAV, neither with long-term patient or graft survival.
Collapse
Affiliation(s)
- Zulaika Grille-Cancela
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Barge-Caballero
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Natalia Suárez-Fuentetaja
- Servicio de Análisis Clínicos, Complejo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Nieves Domenech-García
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Paniagua-Martín
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Gonzalo Barge-Caballero
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - David Couto-Mallón
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Enríquez-Vázquez
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Blanco-Canosa
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jorge Pombo-Otero
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - José M Vázquez-Rodríguez
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - María G Crespo-Leiro
- Servicio de Cardiología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Grupo de Investigación Cardiovascular (GRINCAR), Universidad de A Coruña (UDC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Wang J, Zhao SJ, Wang LL, Lin XX, Mor G, Liao AH. Leukocyte immunoglobulin-like receptor subfamily B: A novel immune checkpoint molecule at the maternal-fetal interface. J Reprod Immunol 2023; 155:103764. [PMID: 36434938 DOI: 10.1016/j.jri.2022.103764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Due to their crucial roles in embryo implantation, maternal-fetal tolerance induction, and pregnancy progression, immune checkpoint molecules (ICMs), such as programmed cell death-1, cytotoxic T-lymphocyte antigen 4, and T cell immunoglobulin mucin 3, are considered potential targets for clinical intervention in pregnancy complications. Despite the considerable progress on these molecules, our understanding of ICMs at the maternal-fetal interface is still limited. Identification of alternative and novel ICMs and the combination of multiple ICMs is urgently needed for deeply understanding the mechanism of maternal-fetal tolerance and to discover the causes of pregnancy complications. Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a novel class of ICMs with strong negative regulatory effects on the immune response. Recent studies have revealed that LILRB is enriched in decidual immune cells and stromal cells at the maternal-fetal interface, which can modulate the biological behavior of immune cells and promote immune tolerance. In this review, we introduce the structural features, expression profiles, ligands, and orthologs of LILRB. In addition, the potential mechanisms and functions mediated by LILRB for sustaining the maternal-fetal tolerance microenvironment, remodeling the uterine spiral artery, and induction of pregnancy immune memory are summarized. We have also provided new suggestions for further understanding the roles of LILRB and potential therapeutic strategies for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
35
|
Morse JW, Rios M, Ye J, Rios A, Zhang CC, Daver NG, DiNardo CD, Zhang N, An Z. Antibody therapies for the treatment of acute myeloid leukemia: exploring current and emerging therapeutic targets. Expert Opin Investig Drugs 2023; 32:107-125. [PMID: 36762937 PMCID: PMC10031751 DOI: 10.1080/13543784.2023.2179482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most common and deadly type of leukemia affecting adults. It is typically managed with rounds of non-targeted chemotherapy followed by hematopoietic stem cell transplants, but this is only possible in patients who can tolerate these harsh treatments and many are elderly and frail. With the identification of novel tumor-specific cell surface receptors, there is great conviction that targeted antibody therapies will soon become available for these patients. AREAS COVERED In this review, we describe the current landscape of known target receptors for monospecific and bispecific antibody-based therapeutics for AML. Here, we characterize each of the receptors and targeted antibody-based therapeutics in development, illustrating the rational design behind each therapeutic compound. We then discuss the bispecific antibodies in development and how they improve immune surveillance of AML. For each therapeutic, we also summarize the available pre-clinical and clinical data, including data from discontinued trials. EXPERT OPINION One antibody-based therapeutic has already been approved for AML treatment, the CD33-targeting antibody-drug conjugate, gemtuzumab ozogamicin. Many more are currently in pre-clinical and clinical studies. These antibody-based therapeutics can perform tumor-specific, elaborate cytotoxic functions and there is growing confidence they will soon lead to personalized, safe AML treatment options that induce durable remissions.
Collapse
Affiliation(s)
- Joshua W Morse
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Margarita Rios
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - John Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Adan Rios
- Division of Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
36
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Distinct frequency patterns of LILRB3 and LILRA6 allelic variants in Europeans. Immunogenetics 2022; 75:263-267. [DOI: 10.1007/s00251-022-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Abstract
The leukocyte immunoglobulin–like receptor (LILR)B3 and LILRA6 genes encode homologous myeloid inhibitory and activating orphan receptors, respectively. Both genes exhibit a strikingly high level of polymorphism at the amino acid level and LILRA6 (but not LILRB3) displays copy number variation (CNV). Although multiple alleles have been reported for both genes, limited data is available on frequencies of these alleles among humans. We have sequenced LILRB3/A6 exons encoding signal peptides and ectodomains in 91 healthy blood donors of European descent who carry one or two copies of LILRA6 per diploid genome. Analysis of haplotypes among individuals with two LILRA6 copies, representing the majority in this cohort (N = 86), shows that common LILRB3 and LILRA6 alleles encode some distinct amino acid sequences in homologous regions of the receptors, which could potentially impact their respective functions differentially. Comparison of sequences in individuals with one vs. two copies of LILRA6 supports non-allelic homologous recombination between LILRB3 and LILRA6 as a mechanism for generating LILRA6 CNV and LILRB3 diversity. These data characterize LILRB3/LILRA6 genetic variation in more detail than previously described and underscore the need to determine their ligands.
Collapse
|
38
|
Zeller T, Lutz S, Münnich IA, Windisch R, Hilger P, Herold T, Tahiri N, Banck JC, Weigert O, Moosmann A, von Bergwelt-Baildon M, Flamann C, Bruns H, Wichmann C, Baumann N, Valerius T, Schewe DM, Peipp M, Rösner T, Humpe A, Kellner C. Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages. Front Immunol 2022; 13:929339. [PMID: 36389667 PMCID: PMC9647079 DOI: 10.3389/fimmu.2022.929339] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by ‘Don´t Eat Me!’ signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Lutz
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natyra Tahiri
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jan C. Banck
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Moosmann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Flamann
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Denis M. Schewe
- Department of Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
- *Correspondence: Christian Kellner,
| |
Collapse
|
39
|
Shojaei Z, Jafarpour R, Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Motallebnezhad M. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: A comprehensive review and update. Pathol Res Pract 2022; 238:154062. [PMID: 35987030 DOI: 10.1016/j.prp.2022.154062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
During pregnancy, complicated connections are formed between a mother and a fetus. In a successful pregnancy, the maternal-fetal interface is affected by dynamic changes, and the fetus is protected against the mother's immune system. Natural killer (NK) cells are one of the immune system cells in the female reproductive system that play an essential role in the physiology of pregnancy. NK cells not only exist in peripheral blood (PB) but also can exist in the decidua. Studies have suggested multiple roles for these cells, including decidualization, control of trophoblast growth and invasion, embryo acceptance and maintenance by the mother, and facilitation of placental development during pregnancy. Natural killer T (NKT) cells are another group of NK cells that play a crucial role in the maintenance of pregnancy and regulation of the immune system during pregnancy. Studies show that NK and NKT cells are not only effective in maintaining pregnancy but also can be involved in infertility-related diseases. This review focuses on NK and NKT cells biology and provides a detailed description of the functions of these cells in implantation, placentation, and immune tolerance during pregnancy and their role in pregnancy complications.
Collapse
Affiliation(s)
- Zeinab Shojaei
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Jafarpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Oliveira MLG, Castelli EC, Veiga‐Castelli LC, Pereira ALE, Marcorin L, Carratto TMT, Souza AS, Andrade HS, Simões AL, Donadi EA, Courtin D, Sabbagh A, Giuliatti S, Mendes‐Junior CT. Genetic diversity of the
LILRB1
and
LILRB2
coding regions in an admixed Brazilian population sample. HLA 2022; 100:325-348. [DOI: 10.1111/tan.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Affiliation(s)
| | - Erick C. Castelli
- Pathology Department, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Luciana C. Veiga‐Castelli
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Alison Luis E. Pereira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Letícia Marcorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Thássia M. T. Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Andreia S. Souza
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Heloisa S. Andrade
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Aguinaldo L. Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Eduardo A. Donadi
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | | | | | - Silvana Giuliatti
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Celso Teixeira Mendes‐Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
41
|
Mandel I, Haves Ziv D, Goldshtein I, Peretz T, Alishekevitz D, Fridman Dror A, Hakim M, Hashmueli S, Friedman I, Sapir Y, Greco R, Qu H, Nestle F, Wiederschain D, Pao L, Sharma S, Ben Moshe T. BND-22, a first-in-class humanized ILT2-blocking antibody, promotes antitumor immunity and tumor regression. J Immunother Cancer 2022; 10:jitc-2022-004859. [PMID: 36096532 PMCID: PMC9472153 DOI: 10.1136/jitc-2022-004859] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Cancer immunotherapy has revolutionized cancer treatment. However, considering the limited success of immunotherapy to only some cancer types and patient cohorts, there is an unmet need for developing new treatments that will result in higher response rates in patients with cancer. Immunoglobulin-like transcript 2 (ILT2), a LILRB family member, is an inhibitory receptor expressed on a variety of immune cells including T cells, natural killer (NK) cells and different myeloid cells. In the tumor microenvironment, binding of class I MHC (in particular HLA-G) to ILT2 on immune cells mediates a strong inhibitory effect, which manifests in inhibition of antitumor cytotoxicity of T and NK cells, and prevention of phagocytosis of the tumor cells by macrophages. METHODS We describe here the development and characteristics of BND-22, a novel, humanized monoclonal antibody that selectively binds to ILT2 and blocks its interaction with classical MHC I and HLA-G. BND-22 was evaluated for its binding and blocking characteristics as well as its ability to increase the antitumor activity of macrophages, T cells and NK cells in various in vitro, ex vivo and in vivo systems. RESULTS Collectively, our data suggest that BND-22 enhances activity of both innate and adaptive immune cells, thus generating robust and comprehensive antitumor immunity. In humanized mice models, blocking ILT2 with BND-22 decreased the growth of human tumors, hindered metastatic spread to the lungs, and prolonged survival of the tumor-bearing mice. In addition, BND-22 improved the antitumor immune response of approved therapies such as anti-PD-1 or anti-EGFR antibodies. CONCLUSIONS BND-22 is a first-in-human ILT2 blocking antibody which has demonstrated efficient antitumor activity in various preclinical models as well as a favorable safety profile. Clinical evaluation of BND-22 as a monotherapy or in combination with other therapeutics is under way in patients with cancer. TRIAL REGISTRATION NUMBER NCT04717375.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rita Greco
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | - Hongjing Qu
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | - Frank Nestle
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | | | - Lily Pao
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | - Sharad Sharma
- Oncology Reseach, Sanofi, Cambridge, Massachusetts, USA
| | | |
Collapse
|
42
|
Yang C, Blaize G, Marrocco R, Rouquié N, Bories C, Gador M, Mélique S, Joulia E, Benamar M, Dejean AS, Daniels-Treffandier H, Love PE, Fazilleau N, Saoudi A, Lesourne R. THEMIS enhances the magnitude of normal and neuroinflammatory type 1 immune responses by promoting TCR-independent signals. Sci Signal 2022; 15:eabl5343. [DOI: 10.1126/scisignal.abl5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Signals that determine the differentiation of naïve CD4
+
T helper (T
H
) cells into specific effector cell subsets are primarily stimulated by cytokines, but additional signals are required to adjust the magnitude of T
H
cell responses and set the balance between effective immunity and immunological tolerance. By inducing the post-thymic deletion of the T cell lineage signaling protein THEMIS, we showed that THEMIS promoted the development of optimal type 1 immune responses to foreign antigens but stimulated signals that favored encephalitogenic responses to self-neuroantigens. THEMIS was required to stimulate the expression of the gene encoding the transcriptional regulator T-BET and the production of the cytokine interferon-γ (IFN-γ), and it enhanced the ability of encephalitogenic CD4
+
T cells to migrate into the central nervous system. Consistently, analysis of THEMIS expression in polarized CD4
+
T cells showed that THEMIS was selectively increased in abundance in T
H
1 cells. The stimulation of predifferentiated effector CD4
+
T cells with antigen-presenting cells revealed a stimulatory function for THEMIS on type 1 cytokine responses, similar to those observed ex vivo after immunization. In contrast, THEMIS exerted opposing effects on naïve CD4
+
T cells in vitro by inhibiting the T cell receptor (TCR)–mediated signals that lead to T
H
1 cell responses. These data suggest that THEMIS exerts TCR-independent functions in effector T cells, which increase the magnitude of normal and pathogenic T
H
1 cell–mediated responses.
Collapse
Affiliation(s)
- Cui Yang
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Gaëtan Blaize
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Rémi Marrocco
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Cyrielle Bories
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Mylène Gador
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Suzanne Mélique
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Emeline Joulia
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Mehdi Benamar
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Anne S. Dejean
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Hélène Daniels-Treffandier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
- Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Renaud Lesourne
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| |
Collapse
|
43
|
Sakoguchi A, Arase H. Mechanisms for Host Immune Evasion Mediated by Plasmodium falciparum-Infected Erythrocyte Surface Antigens. Front Immunol 2022; 13:901864. [PMID: 35784341 PMCID: PMC9240312 DOI: 10.3389/fimmu.2022.901864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum infection causes the most severe form of malaria. It has been hypothesized that P. falciparum directly suppresses host immune responses because sufficient acquired immunity is often not induced even by repeated P. falciparum infections in malaria-endemic areas. It is known that many kinds of P. falciparum-derived proteins are expressed on the surface of P. falciparum-infected erythrocytes (IEs), and these proteins have long been thought to be a key to the elucidation of the host immune evasion mechanisms. Our recent studies have revealed that the P. falciparum-derived erythrocyte surface antigen, RIFIN, the largest multiple gene family protein in the P. falciparum genome, suppresses host immune cell activation through direct interaction with human inhibitory immune receptors. In this review, we will discuss the molecular mechanisms for host immune evasion by P. falciparum-infected erythrocyte surface antigens. In addition, we will discuss the recently identified host immune response to P. falciparum using specialized antibodies that target host-P. falciparum-derived molecule interactions.
Collapse
Affiliation(s)
- Akihito Sakoguchi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
- *Correspondence: Hisashi Arase,
| |
Collapse
|
44
|
Papúchová H, Saxtorph MH, Hallager T, Jepsen IE, Eriksen JO, Persson G, Funck T, Weisdorf I, Macklon NS, Larsen LG, Hviid TVF. Endometrial HLA-F expression is influenced by genotypes and correlates differently with immune cell infiltration in IVF and recurrent implantation failure patients. Hum Reprod 2022; 37:1816-1834. [PMID: 35689445 DOI: 10.1093/humrep/deac118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/01/2022] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Is human leukocyte antigen (HLA)-F protein expressed in mid-secretory endometrium, and are its expression levels influenced by HLA-F gene polymorphisms and correlated with the abundance of uterine natural killer (uNK) cells and anti-inflammatory M2 macrophages? SUMMARY ANSWER HLA-F protein is expressed in mid-secretory endometrium, and levels are correlated with immune cell infiltration, plasma progesterone concentrations and HLA-F single-nucleotide polymorphisms (SNPs), however, women experiencing recurrent implantation failure (RIF) show differences when compared to women attending their first IVF treatment. WHAT IS KNOWN ALREADY The immunomodulatory HLA class Ib molecules HLA-G and HLA-F are expressed on the extravillous trophoblast cells and interact with receptors on maternal immune cells. Little is known regarding HLA-F expression in endometrial stroma and HLA-F function; furthermore, HLA-F and HLA-G SNP genotypes and haplotypes have been correlated with differences in time-to-pregnancy. STUDY DESIGN, SIZE, DURATION Primary endometrial stromal cell (ESC) cultures (n = 5) were established from endometrial biopsies from women attending IVF treatment at a fertility clinic. Basic HLA-F and HLA-G protein expression by the ESCs were investigated. A prospective controlled cohort study was performed including 85 women with a history of RIF and 36 control women beginning their first fertility treatment and with no history of RIF. In some analyses, the RIF group was divided into unknown cause, male infertility, female infertility, and both female and male infertility. Endometrial biopsies and blood samples were obtained the day equivalent to embryo transfer in a hormone-substituted cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS HLA protein expression by ESCs was characterized using flow cytometry and western blot. In the cohort study, the specific immune markers HLA-F and HLA-G, CD56 and CD16 (NK cells), CD163 (M2 macrophages), FOXP3 (regulatory T cells) and CD138 (plasma cells) were analysed by immunohistochemistry and a digital image analysis system in endometrial biopsies. Endometrial receptivity was assessed by an endometrial receptivity array test (the ERA® test). Endometrial biopsies were examined according to modified Noyes' criteria. SNPs at the HLA-F gene and HLA-G haplotypes were determined. MAIN RESULTS AND THE ROLE OF CHANCE HLA-F protein is expressed in the endometrium at the time of implantation. Furthermore, the HLA-F protein levels were different according to the womeńs HLA-F SNP genotypes and diplotypes, which have previously been correlated with differences in time-to-pregnancy. Endometrial HLA-F was positively correlated with anti-inflammatory CD163+ M2 macrophage infiltration and CD56+ uNK cell abundance for the entire cohort. However, this was not the case for CD56+ in the female infertility RIF subgroup. HLA-F levels in the endometrial stroma were negatively correlated with plasma progesterone concentrations in the RIF subgroup with known female infertility. Conversely, HLA-F and progesterone were positively correlated in the RIF subgroup with infertility of the male partner and no infertility diagnosis of the woman indicating interconnections between progesterone, HLA-F and immune cell infiltration. Glandular sHLA-G expression was also positively correlated with uNK cell abundance in the RIF subgroup with no female infertility but negatively correlated in the RIF subgroup with a female infertility diagnosis. LARGE SCALE DATA Immunohistochemistry analyses of endometrial biopsies and DNA sequencing of HLA genes. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION The control group of women attending their first IVF treatment had an anticipated good prognosis but was not proven fertile. A significant age difference between the RIF group and the IVF group reflects the longer treatment period for women with a history of RIF. The standardization of hormonal endometrial preparation, which allowed consistent timing of endometrial and blood sampling, might be a strength because a more uniform hormonal background may more clearly show an influence on the immune marker profile and HLA class Ib levels in the endometrium by other factors, for example genetic polymorphisms. However, the immune marker profile might be different during a normal cycle. WIDER IMPLICATIONS OF THE FINDINGS The findings further highlight the importance of HLA-F and HLA-G at the implantation site and in early pregnancy for pregnancy success. Diagnostic measures and modulation of the complex interactions between HLA class Ib molecules, maternal immune cells and hormonal factors may have potential to improve fertility treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Region Zealand Health Sciences Research Foundation and the Zealand University Hospital through the ReproHealth Research Consortium ZUH. The authors declared there are no conflicts of interest.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Malene Hviid Saxtorph
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark
| | - Trine Hallager
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Ida E Jepsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark
| | - Jens O Eriksen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Tina Funck
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Iben Weisdorf
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Nicholas S Macklon
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark.,London Women's Clinic, London, UK
| | - Lise Grupe Larsen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| |
Collapse
|
45
|
Itoi S, Takahashi N, Saito H, Miyata Y, Su MT, Kezuka D, Itagaki F, Endo S, Fujii H, Harigae H, Sakamoto Y, Takai T. Myeloid immune checkpoint ILT3/LILRB4/gp49B can co-tether fibronectin with integrin on macrophages. Int Immunol 2022; 34:435-444. [PMID: 35689642 DOI: 10.1093/intimm/dxac023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/08/2022] [Indexed: 12/16/2022] Open
Abstract
LILRB4 (B4, also known as ILT3/CD85k) is an immune checkpoint of myeloid-lineage cells, albeit its mode of function remains obscure. Our recent identification of a common ligand for both human B4 and its murine ortholog gp49B as the fibronectin (FN) N-terminal 30-kDa domain poses the question of how B4/gp49B regulate cellular activity upon recognition of FN in the plasma and/or the extracellular matrix. Since FN in the extracellular matrix is tethered by FN-binding integrins, we hypothesized that B4/gp49B would tether FN in cooperation with integrins on the cell surface, thus they should be in close vicinity to integrins spatially. This scenario suggests a mode of function of B4/gp49B by which the FN-induced signal is regulated. FN pull-down complex was found to contain gp49B and integrin β1 in bone marrow-derived macrophages. The confocal fluorescent signals of the three molecules on the intrinsically FN-tethering macrophages were correlated to each other. When FN-poor macrophages adhered to culture plate, the gp49-integrin β1 signal correlation increased at the focal adhesion, supporting the notion that gp49B and integrin β1 become spatially closer to each other there. While adherence of RAW264.7 and THP-1 cells to immobilized FN induced phosphorylation of spleen tyrosine kinase, whose level was augmented under B4/gp49B deficiency. Thus, we concluded that B4/gp49B can co-tether fibronectin in cooperation with integrin in the cis configuration on the same cell, forming a B4/gp49B-FN-integrin triplet as a regulatory unit of focal adhesion-dependent proinflammatory signal in macrophages.
Collapse
Affiliation(s)
- So Itoi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naoyuki Takahashi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Haruka Saito
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yusuke Miyata
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Dai Kezuka
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Fumika Itagaki
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yuzuru Sakamoto
- Department of Human Science, Faculty of Liberal Arts, Tohoku Gakuin University, Sendai 981-3193, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
46
|
Shi W, Zhang F, Chen X, Wang S, Zhang H, Yang Z, Wang G, Zheng Y, Han Y, Sun Y, Gao A. Tumor-derived immunoglobulin like transcript 5 induces suppressive immunocyte infiltration in colorectal cancer. Cancer Sci 2022; 113:1939-1954. [PMID: 35377522 PMCID: PMC9207357 DOI: 10.1111/cas.15360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022] Open
Abstract
Infiltration of immunosuppressive cells in the tumor microenvironment (TME) induced colorectal cancer (CRC) progression and its resistance to immunotherapy. Identification of tumor-specific factors to modulate inhibitory immunocyte infiltration would provide alternative and novel targets for CRC immunotherapy. Immunoglobulin-like transcript (ILT) 5 is a negative regulator of myeloid cell activation. However, its expression and functional role in solid tumors is still unknown. Using human CRC tissues and cell lines, we found that ILT5 was highly expressed in CRC cells compared with normal colorectal epithelial cells. Enriched ILT5 in tumor cells was correlated with advanced tumor stages and poor patient survival. Our subsequent in vitro and in vivo studies revealed that tumor-derived ILT5 inhibited the infiltration of T cells, especially that of CD8+ T cells in the TME, creating suppressive T-cell contexture. Furthermore, ILT5 directed M2-like polarization of tumor-associated macrophages (TAMs). Inhibition of tumor-derived ILT5 restored the immunosuppressive T-cell and TAM contexture, and restricted CRC progression. Our findings identified ILT5 expression in solid tumor cells for the first time and raised ILT5 as a potential immunotarget and prognostic predictor in CRC.
Collapse
Affiliation(s)
- Wenjing Shi
- Jinan Central HospitalShandong UniversityJinanShandongChina
| | - Fang Zhang
- Department of OncologyJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xiaozheng Chen
- Shandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| | - Shuyun Wang
- Phase I Clinical Research CenterShandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| | - Haiqin Zhang
- Department of OncologyJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Zijiang Yang
- Jinan Central HospitalShandong UniversityJinanShandongChina
| | | | - Yan Zheng
- Research Center of Translational MedicineJinan Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yali Han
- Department of Radiation OncologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yuping Sun
- Phase I Clinical Research CenterShandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| | - Aiqin Gao
- Department of Thoracic Radiation OncologyShandong Cancer Hospital and InstituteShandong Academy of Medical SciencesShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
47
|
Effect of HLA-G5 Immune Checkpoint Molecule on the Expression of ILT-2, CD27, and CD38 in Splenic B cells. J Immunol Res 2022; 2022:4829227. [PMID: 35600048 PMCID: PMC9119744 DOI: 10.1155/2022/4829227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022] Open
Abstract
The human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with a complex network of interactions with several inhibitory receptors. Although the effect of HLA-G on T cells and NK cells is well studied, the effect of HLA-G on B cells is still largely elusive. B cells are of particular interest in the context of the HLA-G-ILT-2 interaction because the ILT-2 receptor is constitutively expressed on most B cells, whereas it is only present on some subsets of T and NK cells. To characterize the effect of HLA-G5 molecules on B cells, we studied splenic B cells derived from cytomegalovirus (CMV) sero-positive donors after CMV stimulation with antigens in the presence and absence of soluble HLA-G5. In the presence of HLA-G5, increased expression of the ITIM-bearing Ig-like transcript (ILT-2) was observed on B cells, but its expression was not affected by stimulation with CMV antigens. Moreover, it became evident that HLA-G5 exposure resulted in a decreased expression of CD27 and CD38 and, accordingly, in lower proportions of CD19+CD27+CD38+ and higher proportions of CD19+CD27-CD38- B cells. Taken together, our in vitro findings demonstrate that soluble HLA-G5 suppresses markers of B cell activation, suggesting that HLA-G5 has an impact on splenic B cell differentiation and activation. Based on these results, further investigation regarding the role of HLA-G as a prognostic factor and a potential therapeutic agent with respect to B cell function appears reasonable.
Collapse
|
48
|
Manry D, Bolanos K, DiAndreth B, Mock JY, Kamb A. Robust In Vitro Pharmacology of Tmod, a Synthetic Dual-Signal Integrator for Cancer Cell Therapy. Front Immunol 2022; 13:826747. [PMID: 35359952 PMCID: PMC8960424 DOI: 10.3389/fimmu.2022.826747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Progress toward improved solid-tumor treatment has long been hindered by the lack of truly tumor-specific targets. We have developed an approach to T cell therapy based on a dual-receptor system called Tmod™ that addresses this problem. The Tmod system exploits one of the few common genetic differences between tumor and normal cells: loss of heterozygosity (LOH). It utilizes the basic mechanistic logic that evolved in early vertebrates to mediate self vs. non-self discrimination, where an activation stimulus is blocked by self-ligands. Tmod constructs employ a chimeric antigen receptor (CAR) or T cell receptor (TCR) as activator component and a modified LIR-1 inhibitory receptor (blocker) to achieve high selectivity based on expression of the blocker antigen (Ag). Here we explore the in vitro pharmacology of a blocker directed at the HLA-A*02 Ag paired with either a mesothelin CAR or an HLA-A*11-restricted KRAS peptide TCR. While more sensitive to receptor expression changes on effector cells, we show that Tmod response is well-buffered against variations in Ag levels on target cells. In addition, the data reveal at least two distinguishable pharmacologic mechanisms of Tmod blocker function: (1) reducing activator sensitivity and (2) decreasing activation magnitude.
Collapse
Affiliation(s)
- Diane Manry
- A2 Biotherapeutics, Inc., Agoura Hills, CA, United States
| | | | | | - Jee-Young Mock
- A2 Biotherapeutics, Inc., Agoura Hills, CA, United States
| | - Alexander Kamb
- A2 Biotherapeutics, Inc., Agoura Hills, CA, United States
| |
Collapse
|
49
|
Cadena-Mota S, Muñoz-Escalante JC, Martínez-Rodríguez LE, Bernal-Silva S, Tello-Martínez N, de la Torre-Rodríguez I, Hernández-Sánchez PG, Castillo-Martínez F, Escalante-Padrón F, Lima-Rogel V, González-Ortiz AM, Noyola DE. Incidence of congenital and postnatal cytomegalovirus infection during the first year of life in Mexican preterm infants. J Med Virol 2022; 94:3349-3358. [PMID: 35261048 DOI: 10.1002/jmv.27705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Cytomegalovirus infection occurs commonly during infancy. Postnatal infection in term infants is usually asymptomatic; however, infection in preterm infants can be associated with clinical manifestations during the neonatal period. Nevertheless, few studies to assess the frequency of cytomegalovirus infection in preterm infants have been performed outside of high-income countries. We analyzed the incidence of congenital and postnatal cytomegalovirus infection in a cohort of preterm infants. Cytomegalovirus infection was detected during the neonatal period in four of 178 infants; in three of them the virus was detected during the first three weeks of life and, therefore, congenital infection was confirmed (1.7% incidence). Postnatal infection was detected in 44 (36.4%) of 121 infants who were assessed after discharge from the neonatal intensive care unit. Cytomegalovirus infection was significantly associated to duration of breast feeding. In addition, we characterized cytomegalovirus strains detected in infants together with sequences available at GenBank, based on sequences of the UL18 gene. Cytomegalovirus UL18-sequences clustered in five distinct clades (A-E), and sequences obtained from infants in our study were distributed in four of the five clades; 44.4% of these sequences were included in clade E. Breastfeeding duration was shorter in average (5.6 months) in infants with sequences in clade E compared to infants with sequences in the other three clades (8.2 months; P=0.07). In conclusion, we provide information regarding the high incidence of cytomegalovirus infection in preterm infants. Further studies are warranted to assess if cytomegalovirus strain characteristics are associated with the risk of infection acquisition during infancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sandra Cadena-Mota
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Juan Carlos Muñoz-Escalante
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Luz E Martínez-Rodríguez
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Sofía Bernal-Silva
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Nallely Tello-Martínez
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Pedro G Hernández-Sánchez
- Viral and Human Genomics Laboratory, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Fernanda Castillo-Martínez
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Victoria Lima-Rogel
- Neonatology Department, Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosí, México
| | - Ana María González-Ortiz
- Pediatrics Department, Hospital del Niño y la Mujer "Dr. Alberto López Hermosa", San Luis Potosí, México
| | - Daniel E Noyola
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
50
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|