1
|
Darzi M, Shokrollahi-Barough M, Nazeri E, Majidzadeh-A K, Esmaeili R. Gene co-expression network analysis reveals relationship between leukocyte fraction and genomic instability in dedifferentiated liposarcoma. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:203-218. [PMID: 40321702 PMCID: PMC12046367 DOI: 10.22099/mbrc.2025.51329.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Dedifferentiated Liposarcoma (DDLPS) is one of the common subtypes of liposarcoma that is considered a highly malignant category. This study aims to investigate DDLPS through a system biology approach. The gene expression profiles and clinical traits of the DDLPS were acquired from The Cancer Genome Atlas (TCGA). The identification of co-expressed modules was conducted using the weighted gene co-expression network analysis. The immune cell-related gene function was studied by a web-based tool, TIMER, and, the survival analysis was performed at both the module and single-gene levels through Cox Regression analysis. Gene enrichment analysis was also conducted using the DAVID tool. One of the nine co-expressed DDLPS modules was significantly correlated with leukocyte fraction, hyper/hypo methylation, tumor purity, and chromosome instability (CIN). Based on the biological processes used to classify genes, the hub genes in a particular module play important roles in DNA repair, microtubule organizing clusters, mitotic checkpoint dysregulation, and cell proliferation signaling pathways. After screening the genes based on intra-module connectivity, module membership, and gene significance RAD54L was selected as one of the important hub genes. RAD54L showed poor prognosis to the overall survival (OS) analysis (HR=1.6, 95% CI=1.1-2.4, p=0.02). No co-expressed modules had relationship with OS. Through DDLPS traits, CIN and hyper/hypo methylation had significant negative relationship with OS. Our achievement confirmed the inverse association between tumor purity for DDLPS gene profiles and leukocyte fraction and negative leukocyte fraction (LF) gene significance in some genes was justified according to the sub-population analyses of immune cells in TIMER.
Collapse
Affiliation(s)
- Mohammad Darzi
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Medical Informatics Research Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdieh Shokrollahi-Barough
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Sepúlveda-Yáñez JH, Alvarez Saravia D, Pilzecker B, van Schouwenburg PA, van den Burg M, Veelken H, Navarrete MA, Jacobs H, Koning MT. Tandem Substitutions in Somatic Hypermutation. Front Immunol 2022; 12:807015. [PMID: 35069591 PMCID: PMC8781386 DOI: 10.3389/fimmu.2021.807015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.
Collapse
Affiliation(s)
- Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, University of Magallanes, Punta Arenas, Chile
| | | | - Bas Pilzecker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mirjam van den Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Immunomodulatory Roles of PARP-1 and PARP-2: Impact on PARP-Centered Cancer Therapies. Cancers (Basel) 2020; 12:cancers12020392. [PMID: 32046278 PMCID: PMC7072203 DOI: 10.3390/cancers12020392] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/11/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 are enzymes which post-translationally modify proteins through poly(ADP-ribosyl)ation (PARylation)—the transfer of ADP-ribose chains onto amino acid residues—with a resultant modulation of protein function. Many targets of PARP-1/2-dependent PARylation are involved in the DNA damage response and hence, the loss of these proteins disrupts a wide range of biological processes, from DNA repair and epigenetics to telomere and centromere regulation. The central role of these PARPs in DNA metabolism in cancer cells has led to the development of PARP inhibitors as new cancer therapeutics, both as adjuvant treatment potentiating chemo-, radio-, and immuno-therapies and as monotherapy exploiting cancer-specific defects in DNA repair. However, a cancer is not just made up of cancer cells and the tumor microenvironment also includes multiple other cell types, particularly stromal and immune cells. Interactions between these cells—cancerous and non-cancerous—are known to either favor or limit tumorigenesis. In recent years, an important role of PARP-1 and PARP-2 has been demonstrated in different aspects of the immune response, modulating both the innate and adaptive immune system. It is now emerging that PARP-1 and PARP-2 may not only impact cancer cell biology, but also modulate the anti-tumor immune response. Understanding the immunomodulatory roles of PARP-1 and PARP-2 may provide invaluable clues to the rational development of more selective PARP-centered therapies which target both the cancer and its microenvironment.
Collapse
|
4
|
Tepper S, Mortusewicz O, Członka E, Bello A, Schmidt A, Jeschke J, Fischbach A, Pfeil I, Petersen-Mahrt SK, Mangerich A, Helleday T, Leonhardt H, Jungnickel B. Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Res 2019; 47:7418-7429. [PMID: 31127309 PMCID: PMC6698665 DOI: 10.1093/nar/gkz466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Affinity maturation of the humoral immune response depends on somatic hypermutation (SHM) of immunoglobulin (Ig) genes, which is initiated by targeted lesion introduction by activation-induced deaminase (AID), followed by error-prone DNA repair. Stringent regulation of this process is essential to prevent genetic instability, but no negative feedback control has been identified to date. Here we show that poly(ADP-ribose) polymerase-1 (PARP-1) is a key factor restricting AID activity during somatic hypermutation. Poly(ADP-ribose) (PAR) chains formed at DNA breaks trigger AID-PAR association, thus preventing excessive DNA damage induction at sites of AID action. Accordingly, AID activity and somatic hypermutation at the Ig variable region is decreased by PARP-1 activity. In addition, PARP-1 regulates DNA lesion processing by affecting strand biased A:T mutagenesis. Our study establishes a novel function of the ancestral genome maintenance factor PARP-1 as a critical local feedback regulator of both AID activity and DNA repair during Ig gene diversification.
Collapse
Affiliation(s)
- Sandra Tepper
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Oliver Mortusewicz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany.,Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ewelina Członka
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Amanda Bello
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Angelika Schmidt
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Julia Jeschke
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ines Pfeil
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
5
|
IJspeert H, van Schouwenburg PA, Pico-Knijnenburg I, Loeffen J, Brugieres L, Driessen GJ, Blattmann C, Suerink M, Januszkiewicz-Lewandowska D, Azizi AA, Seidel MG, Jacobs H, van der Burg M. Repertoire Sequencing of B Cells Elucidates the Role of UNG and Mismatch Repair Proteins in Somatic Hypermutation in Humans. Front Immunol 2019; 10:1913. [PMID: 31507588 PMCID: PMC6718458 DOI: 10.3389/fimmu.2019.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023] Open
Abstract
The generation of high-affinity antibodies depends on somatic hypermutation (SHM). SHM is initiated by the activation-induced cytidine deaminase (AID), which generates uracil (U) lesions in the B-cell receptor (BCR) encoding genes. Error-prone processing of U lesions creates a typical spectrum of point mutations during SHM. The aim of this study was to determine the molecular mechanism of SHM in humans; currently available knowledge is limited by the number of mutations analyzed per patient. We collected a unique cohort of 10 well-defined patients with bi-allelic mutations in genes involved in base excision repair (BER) (UNG) or mismatch repair (MMR) (MSH2, MSH6, or PMS2) and are the first to present next-generation sequencing (NGS) data of the BCR, allowing us to study SHM extensively in humans. Analysis using ARGalaxy revealed selective skewing of SHM mutation patterns specific for each genetic defect, which are in line with the five-pathway model of SHM that was recently proposed based on mice data. However, trans-species comparison revealed differences in the role of PMS2 and MSH2 in strand targeting between mice and man. In conclusion, our results indicate a role for UNG, MSH2, MSH6, and PMS2 in the generation of SHM in humans comparable to their function in mice. However, we observed differences in strand targeting between humans and mice, emphasizing the importance of studying molecular mechanisms in a human setting. The here developed method combining NGS and ARGalaxy analysis of BCR mutation data forms the basis for efficient SHM analyses of other immune deficiencies.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline A van Schouwenburg
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gertjan J Driessen
- Department of Paediatrics, Juliana Children's Hospital, Haga Teaching Hospital, The Hague, Netherlands
| | - Claudia Blattmann
- Department of Pediatric Hematology and Oncology, Palliative Care, Olgahospital Klinikum Stuttgart, Stuttgart, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Marcus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Thientosapol ES, Sharbeen G, Lau KKE, Bosnjak D, Durack T, Stevanovski I, Weninger W, Jolly CJ. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2. Nucleic Acids Res 2017; 45:3146-3157. [PMID: 28039326 PMCID: PMC5389528 DOI: 10.1093/nar/gkw1300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites.
Collapse
Affiliation(s)
- Eddy Sanchai Thientosapol
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - George Sharbeen
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - K K Edwin Lau
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Daniel Bosnjak
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Timothy Durack
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Igor Stevanovski
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Wolfgang Weninger
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Christopher J Jolly
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
7
|
Ramachandran S, Haddad D, Li C, Le MX, Ling AK, So CC, Nepal RM, Gommerman JL, Yu K, Ketela T, Moffat J, Martin A. The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated γH2AX Formation. Cell Rep 2016; 15:1554-1565. [PMID: 27160905 DOI: 10.1016/j.celrep.2016.04.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 01/06/2023] Open
Abstract
Class switch recombination (CSR) requires activation-induced deaminase (AID) to instigate double-stranded DNA breaks at the immunoglobulin locus. DNA breaks activate the DNA damage response (DDR) by inducing phosphorylation of histone H2AX followed by non-homologous end joining (NHEJ) repair. We carried out a genome-wide screen to identify CSR factors. We found that Usp22, Eny2, and Atxn7, members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitination module, are required for deubiquitination of H2BK120ub following DNA damage, are critical for CSR, and function downstream of AID. The SAGA deubiquitinase activity was required for optimal irradiation-induced γH2AX formation, and failure to remove H2BK120ub inhibits ATM- and DNAPK-induced γH2AX formation. Consistent with this effect, these proteins were found to function upstream of various double-stranded DNA repair pathways. This report demonstrates that deubiquitination of histone H2B impacts the early stages of the DDR and is required for the DNA repair phase of CSR.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Dania Haddad
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Michael X Le
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Alexanda K Ling
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Clare C So
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Rajeev M Nepal
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Jennifer L Gommerman
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Troy Ketela
- Princess Margaret Genomics Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jason Moffat
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
8
|
Parp3 negatively regulates immunoglobulin class switch recombination. PLoS Genet 2015; 11:e1005240. [PMID: 26000965 PMCID: PMC4441492 DOI: 10.1371/journal.pgen.1005240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Sμ) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR. During infections, B cells diversify the antibodies they produce by two mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM mutates the regions encoding the antigen-binding site, generating high-affinity antibodies. CSR allows B cells to switch the class of antibody they produce (from IgM to IgA, IgG or IgE), providing novel effector functions. Together, SHM and CSR establish highly specific and pathogen-adapted antibody responses. SHM and CSR are initiated by the recruitment of the activation-induced cytidine deaminase (AID) enzyme to antibody genes. Once recruited, AID induces DNA lesions that are processed into mutations during SHM or chromosomal DNA breaks during CSR. These breaks activate multiple DNA repair proteins and are resolved by replacing the IgM gene segments by those encoding IgA, IgG or IgE. AID carries a significant oncogenic potential that needs to be controlled to preserve genome integrity. Nevertheless, the underlying mechanisms remain poorly understood. Here we show that Poly(ADP)ribose polymerase 3 (Parp3), an enzyme recently implicated in DNA repair, contributes to antibody diversification by negatively regulating CSR without affecting SHM. We show that Parp3 facilitates the repair of AID-induced DNA damage and controls AID levels on chromatin. We propose that Parp3 protects antibody genes from sustained AID-dependent DNA damage.
Collapse
|
9
|
The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA Damage Repair in B Cell Diversification. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Franchini DM, Incorvaia E, Rangam G, Coker HA, Petersen-Mahrt SK. Simultaneous in vitro characterisation of DNA deaminase function and associated DNA repair pathways. PLoS One 2013; 8:e82097. [PMID: 24349193 PMCID: PMC3857227 DOI: 10.1371/journal.pone.0082097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/25/2013] [Indexed: 02/02/2023] Open
Abstract
During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Elisabetta Incorvaia
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Gopinath Rangam
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Heather A. Coker
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Svend K. Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Affiliation(s)
- Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
12
|
Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: preserving genome integrity and modulating physiological events. Mol Aspects Med 2013; 34:1138-52. [PMID: 23454615 DOI: 10.1016/j.mam.2013.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
To cope with the devastating insults constantly inflicted to their genome by intrinsic and extrinsic DNA damaging sources, cells have evolved a sophisticated network of interconnected DNA caretaking mechanisms that will detect, signal and repair the lesions. Among the underlying molecular mechanisms that regulate these events, PARylation catalyzed by Poly(ADP-ribose) polymerases (PARPs), appears as one of the earliest post-translational modification at the site of the lesion that is known to elicit recruitment and regulation of many DNA damage response proteins. In this review we discuss how the complex PAR molecule operates in stress-induced DNA damage signaling and genome maintenance but also in various physiological settings initiated by developmentally programmed DNA breakage. To illustrate the latter, particular emphasis will be placed on the emerging contribution of PARPs to B cell receptor assembly and diversification.
Collapse
Affiliation(s)
- Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), Centre National de Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
13
|
An insertion mutation that distorts antibody binding site architecture enhances function of a human antibody. mBio 2011; 2:e00345-10. [PMID: 21304166 PMCID: PMC3037006 DOI: 10.1128/mbio.00345-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The structural and functional significance of somatic insertions and deletions in antibody chains is unclear. Here, we demonstrate that a naturally occurring three-amino-acid insertion within the influenza virus-specific human monoclonal antibody 2D1 heavy-chain variable region reconfigures the antibody-combining site and contributes to its high potency against the 1918 and 2009 pandemic H1N1 influenza viruses. The insertion arose through a series of events, including a somatic point mutation in a predicted hot-spot motif, introduction of a new hot-spot motif, a molecular duplication due to polymerase slippage, a deletion due to misalignment, and additional somatic point mutations. Atomic resolution structures of the wild-type antibody and a variant in which the insertion was removed revealed that the three-amino-acid insertion near the base of heavy-chain complementarity-determining region (CDR) H2 resulted in a bulge in that loop. This enlarged CDR H2 loop impinges on adjacent regions, causing distortion of the CDR H1 architecture and its displacement away from the antigen-combining site. Removal of the insertion restores the canonical structure of CDR H1 and CDR H2, but binding, neutralization activity, and in vivo activity were reduced markedly because of steric conflict of CDR H1 with the hemagglutinin antigen. Antibody diversification through VDJ gene recombination, junctional variation, and somatic hypermutation has clear importance for the generation of mature, high-affinity antibodies. Between 1.3 and 6.5% of antibody variable gene sequences have been reported to contain insertions or deletions, but their structural and functional significance remains less well defined. The pandemic influenza virus hemagglutinin antibody 2D1 data suggest that somatic insertions and deletions in antibody genes contribute important structural and functional features. We predict that such features can be critical for affinity and functional maturation of the human antibody repertoire.
Collapse
|
14
|
Abstract
In response to an assault by foreign organisms, peripheral B cells can change their antibody affinity and isotype by somatically mutating their genomic DNA. The ability of a cell to modify its DNA is exceptional in light of the potential consequences of genetic alterations to cause human disease and cancer. Thus, as expected, this mechanism of antibody diversity is tightly regulated and coordinated through one protein, activation-induced deaminase (AID). AID produces diversity by converting cytosine to uracil within the immunoglobulin loci. The deoxyuracil residue is mutagenic when paired with deoxyguanosine, since it mimics thymidine during DNA replication. Additionally, B cells can manipulate the DNA repair pathways so that deoxyuracils are not faithfully repaired. Therefore, an intricate balance exists which is regulated at multiple stages to promote mutation of immunoglobulin genes, while retaining integrity of the rest of the genome. Here we discuss and summarize the current understanding of how AID functions to cause somatic hypermutation.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Paddock MN, Buelow BD, Takeda S, Scharenberg AM. The BRCT domain of PARP-1 is required for immunoglobulin gene conversion. PLoS Biol 2010; 8:e1000428. [PMID: 20652015 PMCID: PMC2907289 DOI: 10.1371/journal.pbio.1000428] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 06/08/2010] [Indexed: 11/18/2022] Open
Abstract
During affinity maturation, genomic integrity is maintained through specific targeting of DNA mutations. The DNA damage sensor PARP-1 helps determine whether a DNA lesion results in faithful or mutagenic repair. Genetic variation at immunoglobulin (Ig) gene variable regions in B-cells is created through a multi-step process involving deamination of cytosine bases by activation-induced cytidine deaminase (AID) and their subsequent mutagenic repair. To protect the genome from dangerous, potentially oncogenic effects of off-target mutations, both AID activity and mutagenic repair are targeted specifically to the Ig genes. However, the mechanisms of targeting are unknown and recent data have highlighted the role of regulating mutagenic repair to limit the accumulation of somatic mutations resulting from the more widely distributed AID-induced lesions to the Ig genes. Here we investigated the role of the DNA damage sensor poly-(ADPribose)-polymerase-1 (PARP-1) in the repair of AID-induced DNA lesions. We show through sequencing of the diversifying Ig genes in PARP-1−/− DT40 B-cells that PARP-1 deficiency results in a marked reduction in gene conversion events and enhanced high-fidelity repair of AID-induced lesions at both Ig heavy and light chains. To further characterize the role of PARP-1 in the mutagenic repair of AID-induced lesions, we performed functional analyses comparing the role of engineered PARP-1 variants in high-fidelity repair of DNA damage induced by methyl methane sulfonate (MMS) and the mutagenic repair of lesions at the Ig genes induced by AID. This revealed a requirement for the previously uncharacterized BRCT domain of PARP-1 to reconstitute both gene conversion and a normal rate of somatic mutation at Ig genes, while being dispensable for the high-fidelity base excision repair. From these data we conclude that the BRCT domain of PARP-1 is required to initiate a significant proportion of the mutagenic repair specific to diversifying antibody genes. This role is distinct from the known roles of PARP-1 in high-fidelity DNA repair, suggesting that the PARP-1 BRCT domain has a specialized role in assembling mutagenic DNA repair complexes involved in antibody diversification. To produce a limitless diversity of antibodies within the constraints of a finite genome, activated B cells introduce random mutations into antibody genes through a process of targeted DNA damage and subsequent mutagenic repair. At the same time, the rest of the genome must be protected from mutagenesis to prevent off-target mutations which can lead to the development of lymphoma or leukemia. How antibody genes are specifically targeted is still largely unknown. A potential player in this process is the DNA-damage-sensing enzyme PARP-1, which recruits DNA repair enzymes to sites of damage. Using a chicken B cell lymphoma cell line because it has only a single PARP isoform and constitutively mutates its antibody genes, we compared the types of mutations accumulated in PARP-1−/− cells to wild type. We found that in cells lacking PARP-1, the major pathway of mutagenic repair was disrupted and fewer mutations than normal were introduced into their antibody genes. To identify what might be important for mutagenesis, we tested different factors for their ability to rescue this mutagenic deficiency and found a role for the BRCT (BRCA1 C-terminal) domain of PARP-1, a consensus protein domain known to be involved in directing protein-protein interactions. Our evidence suggests that PARP-1 may be interacting with another hypothetical protein via its BRCT domain that is required for the mutagenic rather than faithful repair of DNA lesions in the antibody genes.
Collapse
Affiliation(s)
- Marcia N. Paddock
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Immunity and Immunotherapies, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Ben D. Buelow
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Immunity and Immunotherapies, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Shunichi Takeda
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Andrew M. Scharenberg
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Immunity and Immunotherapies, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Roa S, Li Z, Peled JU, Zhao C, Edelmann W, Scharff MD. MSH2/MSH6 complex promotes error-free repair of AID-induced dU:G mispairs as well as error-prone hypermutation of A:T sites. PLoS One 2010; 5:e11182. [PMID: 20567595 PMCID: PMC2887398 DOI: 10.1371/journal.pone.0011182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/21/2010] [Indexed: 12/05/2022] Open
Abstract
Mismatch repair of AID-generated dU:G mispairs is critical for class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The generation of a previously unavailable Msh2(-/-)Msh6(-/-) mouse has for the first time allowed us to examine the impact of the complete loss of MutSalpha on lymphomagenesis, CSR and SHM. The onset of T cell lymphomas and the survival of Msh2(-/-)Msh6(-/-) and Msh2(-/-)Msh6(-/-)Msh3(-/-) mice are indistinguishable from Msh2(-/-) mice, suggesting that MSH2 plays the critical role in protecting T cells from malignant transformation, presumably because it is essential for the formation of stable MutSalpha heterodimers that maintain genomic stability. The similar defects on switching in Msh2(-/-), Msh2(-/-)Msh6(-/-) and Msh2(-/-)Msh6(-/-)Msh3(-/-) mice confirm that MutSalpha but not MutSbeta plays an important role in CSR. Analysis of SHM in Msh2(-/-)Msh6(-/-) mice not only confirmed the error-prone role of MutSalpha in the generation of strand biased mutations at A:T bases, but also revealed an error-free role of MutSalpha when repairing some of the dU:G mispairs generated by AID on both DNA strands. We propose a model for the role of MutSalpha at the immunoglobulin locus where the local balance of error-free and error-prone repair has an impact in the spectrum of mutations introduced during Phase 2 of SHM.
Collapse
Affiliation(s)
- Sergio Roa
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Ziqiang Li
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Jonathan U. Peled
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Chunfang Zhao
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Matthew D. Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| |
Collapse
|
17
|
Saribasak H, Rajagopal D, Maul RW, Gearhart PJ. Hijacked DNA repair proteins and unchained DNA polymerases. Philos Trans R Soc Lond B Biol Sci 2009; 364:605-11. [PMID: 19008198 DOI: 10.1098/rstb.2008.0188] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic hypermutation of immunoglobulin (Ig) genes occurs at a frequency that is a million times greater than the mutation in other genes. Mutations occur in variable genes to increase antibody affinity, and in switch regions before constant genes to cause switching from IgM to IgG. Hypermutation is initiated in activated B cells when the activation-induced deaminase protein deaminates cytosine in DNA to uracil. Uracils can be processed by either a mutagenic pathway to produce mutations or a non-mutagenic pathway to remove mutations. In the mutagenic pathway, we first studied the role of mismatch repair proteins, MSH2, MSH3, MSH6, PMS2 and MLH1, since they would recognize mismatches. The MSH2-MSH6 heterodimer is involved in hypermutation by binding to U:G and other mismatches generated during repair synthesis, but the other proteins are not necessary. Second, we analysed the role of low-fidelity DNA polymerases eta, iota and theta in synthesizing mutations, and conclude that polymerase eta is the dominant participant by generating mutations at A:T base pairs. In the non-mutagenic pathway, we examined the role of the Cockayne syndrome B protein that interacts with other repair proteins. Mice deficient in this protein had normal hypermutation and class switch recombination, showing that it is not involved.
Collapse
Affiliation(s)
- Huseyin Saribasak
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
18
|
Langerak P, Krijger PHL, Heideman MR, van den Berk PCM, Jacobs H. Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice. Philos Trans R Soc Lond B Biol Sci 2009; 364:621-9. [PMID: 19008189 PMCID: PMC2660925 DOI: 10.1098/rstb.2008.0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations—a phenotype similar to Polη and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Polη probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK164 modification.
Collapse
Affiliation(s)
- Petra Langerak
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Ambrose HE, Willimott S, Beswick RW, Dantzer F, de Murcia JM, Yelamos J, Wagner SD. Poly(ADP-ribose) polymerase-1 (Parp-1)-deficient mice demonstrate abnormal antibody responses. Immunology 2008; 127:178-86. [PMID: 18778284 DOI: 10.1111/j.1365-2567.2008.02921.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly(ADP-ribosylation) of acceptor proteins is an epigenetic modification involved in DNA strand break repair, recombination and transcription. Here we provide evidence for the involvement of poly(ADP-ribose) polymerase-1 (Parp-1) in antibody responses. Parp-1(-/-) mice had increased numbers of T cells and normal numbers of total B cells. Marginal zone B cells were mildly reduced in number, and numbers of follicular B cells were preserved. There were abnormal levels of basal immunoglobulins, with reduced levels of immunoglobulin G2a (IgG2a) and increased levels of IgA and IgG2b. Analysis of specific antibody responses showed that T cell-independent responses were normal but T cell-dependent responses were markedly reduced. Germinal centres were normal in size and number. In vitro purified B cells from Parp-1(-/-) mice proliferated normally and showed normal IgM secretion, decreased switching to IgG2a but increased IgA secretion. Collectively our results demonstrate that Parp-1 has essential roles in normal T cell-dependent antibody responses and the regulation of isotype expression. We speculate that Parp-1 forms a component of the protein complex involved in resolving the DNA double-strand breaks that occur during class switch recombination.
Collapse
|
20
|
Chappell CP, Jacob J. Germinal Center-Derived B Cell Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 590:139-48. [PMID: 17191383 DOI: 10.1007/978-0-387-34814-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Craig P Chappell
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA
| | | |
Collapse
|
21
|
Brar SS, Sacho EJ, Tessmer I, Croteau DL, Erie DA, Diaz M. Activation-induced deaminase, AID, is catalytically active as a monomer on single-stranded DNA. DNA Repair (Amst) 2007; 7:77-87. [PMID: 17889624 PMCID: PMC2693009 DOI: 10.1016/j.dnarep.2007.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 11/18/2022]
Abstract
Hypermutation and class switch recombination of immunoglobulin genes are antigen-activated mechanisms triggered by AID, a cytidine deaminase. AID deaminates cytidine residues in the DNA of the variable and the switch regions of the immunoglobulin locus. The resulting uracil induces error-prone DNA synthesis in the case of hypermutation or DNA breaks that activate non-homologous recombination in the case of class switch recombination. In vitro studies have demonstrated that AID deaminates single-stranded but not double-stranded substrates unless AID is in a complex with RPA and the substrate is actively undergoing transcription. However, it is not clear whether AID deaminates its substrates primarily as a monomer or as a higher order oligomer. To examine the oligomerization state of AID alone and in the presence of single-stranded DNA substrates of various structures, including loops embedded in double-stranded DNA, we used atomic force microscopy (AFM) to visualize AID protein alone or in complex with DNA. Surprisingly, AFM results indicate that most AID molecules exist as a monomer and that it binds single-stranded DNA substrates as a monomer at concentrations where efficient deamination of single-stranded DNA substrates occur. The rate of deamination, under conditions of excess and limiting protein, also imply that AID can deaminate single-stranded substrates as a monomer. These results imply that non-phosphorylated AID is catalytically active as a monomer on single-stranded DNA in vitro, including single-stranded DNA found in loops similar to those transiently formed in the immunoglobulin switch regions during transcription.
Collapse
Affiliation(s)
- Sukhdev S. Brar
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health, Sciences/National Institutes of Health 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Elizabeth J. Sacho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ingrid Tessmer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah L. Croteau
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health, Sciences/National Institutes of Health 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Dorothy A. Erie
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Applied and Material Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Corresponding authors information: Dr. Marilyn Diaz, Tel. 919-541-4740, Fax, 919-541-7593, E-mail: or Dr. Dorothy Erie, Tel. 919-962-6370, Fax, 919-962-2388, E-mail:
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health, Sciences/National Institutes of Health 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
- Corresponding authors information: Dr. Marilyn Diaz, Tel. 919-541-4740, Fax, 919-541-7593, E-mail: or Dr. Dorothy Erie, Tel. 919-962-6370, Fax, 919-962-2388, E-mail:
| |
Collapse
|
22
|
Longerich S, Meira L, Shah D, Samson LD, Storb U. Alkyladenine DNA glycosylase (Aag) in somatic hypermutation and class switch recombination. DNA Repair (Amst) 2007; 6:1764-73. [PMID: 17681497 PMCID: PMC2196218 DOI: 10.1016/j.dnarep.2007.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 05/29/2007] [Accepted: 06/26/2007] [Indexed: 12/17/2022]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.
Collapse
Affiliation(s)
- Simonne Longerich
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Lisiane Meira
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02138
| | - Dharini Shah
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02138
| | - Leona D. Samson
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02138
| | - Ursula Storb
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- *Corresponding author. Tel.: 773-702-4440; fax: 773-702-3172;
| |
Collapse
|
23
|
Langerak P, Nygren AOH, Krijger PHL, van den Berk PCM, Jacobs H. A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification. ACTA ACUST UNITED AC 2007; 204:1989-98. [PMID: 17664295 PMCID: PMC2118671 DOI: 10.1084/jem.20070902] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
B cells use translesion DNA synthesis (TLS) to introduce somatic mutations around genetic lesions caused by activation-induced cytidine deaminase. Monoubiquitination at lysine164 of proliferating cell nuclear antigen (PCNAK164) stimulates TLS. To determine the role of PCNAK164 modifications in somatic hypermutation, PCNAK164R knock-in mice were generated. PCNAK164R/K164R mutants are born at a sub-Mendelian frequency. Although PCNAK164R/K164R B cells proliferate and class switch normally, the mutation spectrum of hypermutated immunoglobulin (Ig) genes alters dramatically. A strong reduction of mutations at template A/T is associated with a compensatory increase at G/C, which is a phenotype similar to polymerase η (Polη) and mismatch repair–deficient B cells. Mismatch recognition, monoubiquitinated PCNA, and Polη likely cooperate in establishing mutations at template A/T during replication of Ig genes.
Collapse
Affiliation(s)
- Petra Langerak
- The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Alrefai RH, Winter DB, Bohr VA, Gearhart PJ. Nucleotide excision repair in an immunoglobulin variable gene is less efficient than in a housekeeping gene. Mol Immunol 2007; 44:2800-5. [PMID: 17336386 PMCID: PMC1925044 DOI: 10.1016/j.molimm.2007.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/19/2007] [Accepted: 01/20/2007] [Indexed: 11/28/2022]
Abstract
Immunoglobulin variable genes undergo several unusual genetic modifications to generate diversity, such as gene rearrangement, gene conversion, somatic hypermutation, and heavy chain class switch recombination. In view of these specialized processes, we examined the possibility that variable genes have intrinsic characteristics that allow them to be processed differently in the course of basic DNA transactions as well. This hypothesis was studied in an experimental system to gauge the relative efficiency of a DNA repair pathway, nucleotide excision repair, on a variable gene and a housekeeping gene. DNA damage was induced by ultraviolet light in murine hybridoma B cells, and repair was measured over time by an alkaline Southern blot technique, which detected removal of cyclobutane pyrimidine dimers. The rate of DNA repair in a rearranged variable gene, V(H)S107, was compared to that in the dihydrofolate reductase gene. Although both genes were actively transcribed, the V(H)S107 gene was repaired less efficiently than the dihydrofolate reductase gene. These results suggest that variable genes have inherent properties that affect the efficiency of nucleotide excision repair.
Collapse
Affiliation(s)
| | | | | | - Patricia J. Gearhart
- * Corresponding author. Tel.:+1 410 558 8561; fax: +1 410 558 8157. E-mail address: (P.J. Gearhart)
| |
Collapse
|
25
|
Xiao Z, Ray M, Jiang C, Clark AB, Rogozin IB, Diaz M. Known components of the immunoglobulin A:T mutational machinery are intact in Burkitt lymphoma cell lines with G:C bias. Mol Immunol 2007; 44:2659-66. [PMID: 17240451 PMCID: PMC1868521 DOI: 10.1016/j.molimm.2006.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/10/2006] [Indexed: 12/14/2022]
Abstract
The basis for mutations at A:T base pairs in immunoglobulin hypermutation and defining how AID interacts with the DNA of the immunoglobulin locus are major aspects of the immunoglobulin mutator mechanism where questions remain unanswered. Here, we examined the pattern of mutations generated in mice deficient in various DNA repair proteins implicated in A:T mutation and found a previously unappreciated bias at G:C base pairs in spectra from mice simultaneously deficient in DNA mismatch repair and uracil DNA glycosylase. This suggests a strand-biased DNA transaction for AID delivery which is then masked by the mechanism that introduces A:T mutations. Additionally, we asked if any of the known components of the A:T mutation machinery underscore the basis for the paucity of A:T mutations in the Burkitt lymphoma cell lines, Ramos and BL2. Ramos and BL2 cells were proficient in MSH2/MSH6-mediated mismatch repair, and express high levels of wild-type, full-length DNA polymerase eta. In addition, Ramos cells have high levels of uracil DNA glycosylase protein and are proficient in base excision repair. These results suggest that Burkitt lymphoma cell lines may be deficient in an unidentified factor that recruits the machinery necessary for A:T mutation or that AID-mediated cytosine deamination in these cells may be processed by conventional base excision repair truncating somatic hypermutation at the G:C phase. Either scenario suggests that cytosine deamination by AID is not enough to trigger A:T mutation, and that additional unidentified factors are required for full spectrum hypermutation in vivo.
Collapse
Affiliation(s)
- Zheng Xiao
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Madhumita Ray
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Chuancang Jiang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Alan B. Clark
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Libray of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, D3-01, 111 TW Alexander Drive, Research Triangle Park NC 27709
- * Corresponding author: , Phone Number: 919-541-4740, Fax: 919-541-7593
| |
Collapse
|
26
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Shen HM, Tanaka A, Bozek G, Nicolae D, Storb U. Somatic Hypermutation and Class Switch Recombination in Msh6−/−Ung−/−Double-Knockout Mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:5386-92. [PMID: 17015724 DOI: 10.4049/jimmunol.177.8.5386] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytosine deaminase (AID). The uracil, and potentially neighboring bases, are processed by error-prone base excision repair and mismatch repair. Deficiencies in Ung, Msh2, or Msh6 affect SHM and CSR. To determine whether Msh2/Msh6 complexes which recognize single-base mismatches and loops were the only mismatch-recognition complexes required for SHM and CSR, we analyzed these processes in Msh6(-/-)Ung(-/-) mice. SHM and CSR were affected in the same degree and fashion as in Msh2(-/-)Ung(-/-) mice; mutations were mostly C,G transitions and CSR was greatly reduced, making Msh2/Msh3 contributions unlikely. Inactivating Ung alone reduced mutations from A and T, suggesting that, depending on the DNA sequence, varying proportions of A,T mutations arise by error-prone long-patch base excision repair. Further, in Msh6(-/-)Ung(-/-) mice the 5' end and the 3' region of Ig genes was spared from mutations as in wild-type mice, confirming that AID does not act in these regions. Finally, because in the absence of both Ung and Msh6, transition mutations from C and G likely are "footprints" of AID, the data show that the activity of AID is restricted drastically in vivo compared with AID in cell-free assays.
Collapse
Affiliation(s)
- Hong Ming Shen
- Department of Molecular Genetic and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Brugmans L, Kanaar R, Essers J. Analysis of DNA double-strand break repair pathways in mice. Mutat Res 2006; 614:95-108. [PMID: 16797606 DOI: 10.1016/j.mrfmmm.2006.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.
Collapse
Affiliation(s)
- Linda Brugmans
- Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE, The Netherlands
| | | | | |
Collapse
|
29
|
Chappell CP, Jacob J. Identification of memory B cells using a novel transgenic mouse model. THE JOURNAL OF IMMUNOLOGY 2006; 176:4706-15. [PMID: 16585564 DOI: 10.4049/jimmunol.176.8.4706] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory B cells help to protect the host from invading pathogens by maintaining persistent levels of Ag-specific serum Ab and generating rapid Ab responses upon re-exposure to Ag. Unambiguous identification of memory B cells has been a major obstacle to furthering our knowledge concerning both the development of B cell memory and secondary Ab responses due to an absence of specific cell surface markers. Germinal centers (GCs) are thought to be the major site of Ig hypermutation and Ag-driven selection of memory B cells. To develop a model that would identify GC-derived memory B cells, we generated transgenic mice that expressed cre recombinase in a GC-specific fashion. Interbreeding these mice with the cre-reporter strain, ROSA26R, produced progeny in which beta-galactosidase (beta-gal) was permanently expressed in B cells of the GC-memory pathway. Analysis following immunization with (4-hydroxy-3-nitrophenyl)acetyl coupled to chicken gamma globulin showed that long-lived beta-gal+ B cells exclusively contained somatically mutated lambda1 V regions and were capable of producing Ag-specific Ab-forming cell (AFC) responses that were >100-fold higher than those afforded by beta-gal- B cells following adoptive transfer to naive hosts. Secondary challenge of immune mice showed that only approximately 20% of secondary AFCs expressed beta-gal. Interestingly, we found that somatic hypermutation of rearranged lambda1 V regions within secondary AFCs showed a strong correlation with beta-gal expression, suggesting that nonmutated B cells contribute significantly to secondary Ab responses. This model should provide useful insights into memory B cell development, maintenance, and differentiation following immunization or pathogenic infection.
Collapse
Affiliation(s)
- Craig P Chappell
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30307, USA
| | | |
Collapse
|
30
|
Jansen JG, Langerak P, Tsaalbi-Shtylik A, van den Berk P, Jacobs H, de Wind N. Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. ACTA ACUST UNITED AC 2006; 203:319-23. [PMID: 16476771 PMCID: PMC2118202 DOI: 10.1084/jem.20052227] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Somatic hypermutation of Ig genes enables B cells of the germinal center to generate high-affinity immunoglobulin variants. Key intermediates in somatic hypermutation are deoxyuridine lesions, introduced by activation-induced cytidine deaminase. These lesions can be processed further to abasic sites by uracil DNA glycosylase. Mutagenic replication of deoxyuridine, or of its abasic derivative, by translesion synthesis polymerases is hypothesized to underlie somatic hypermutation. Rev1 is a translesion synthesis polymerase that in vitro incorporates uniquely deoxycytidine opposite deoxyuridine and abasic residues. To investigate a role of Rev1 in mammalian somatic hypermutation we have generated mice deficient for Rev1. Although Rev1−/− mice display transient growth retardation, proliferation of Rev1−/− LPS-stimulated B cells is indistinguishable from wild-type cells. In mutated Ig genes from Rev1−/− mice, C to G transversions were virtually absent in the nontranscribed (coding) strand and reduced in the transcribed strand. This defect is associated with an increase of A to T, C to A, and T to C substitutions. These results indicate that Rev1 incorporates deoxycytidine residues, most likely opposite abasic nucleotides, during somatic hypermutation. In addition, loss of Rev1 causes compensatory increase in mutagenesis by other translesion synthesis polymerases.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Three processes alter genomic sequence and structure at the immunoglobulin genes of B lymphocytes: gene conversion, somatic hypermutation, and class switch recombination. Though the molecular signatures of these processes differ, they occur by a shared pathway which is induced by targeted DNA deamination by a B cell-specific factor, activation induced cytidine deaminase (AID). Ubiquitous factors critical for DNA repair carry out all downstream steps, creating mutations and deletions in genomic DNA. This review focuses on the genetic and biochemical mechanisms of diversification of immunoglobulin genes.
Collapse
Affiliation(s)
- Nancy Maizels
- Department of Immunology, University of Washington Medical School, Seattle, Washington 98195-7650, USA.
| |
Collapse
|
32
|
Abstract
Helper T (Th) cell-regulated B cell immunity progresses in an ordered cascade of cellular development that culminates in the production of antigen-specific memory B cells. The recognition of peptide MHC class II complexes on activated antigen-presenting cells is critical for effective Th cell selection, clonal expansion, and effector Th cell function development (Phase I). Cognate effector Th cell-B cell interactions then promote the development of either short-lived plasma cells (PCs) or germinal centers (GCs) (Phase II). These GCs expand, diversify, and select high-affinity variants of antigen-specific B cells for entry into the long-lived memory B cell compartment (Phase III). Upon antigen rechallenge, memory B cells rapidly expand and differentiate into PCs under the cognate control of memory Th cells (Phase IV). We review the cellular and molecular regulators of this dynamic process with emphasis on the multiple memory B cell fates that develop in vivo.
Collapse
|
33
|
Wilson TM, Vaisman A, Martomo SA, Sullivan P, Lan L, Hanaoka F, Yasui A, Woodgate R, Gearhart PJ. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. ACTA ACUST UNITED AC 2005; 201:637-45. [PMID: 15710654 PMCID: PMC2213055 DOI: 10.1084/jem.20042066] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) η, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol η in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol η in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol η stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs.
Collapse
Affiliation(s)
- Teresa M Wilson
- Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A functional immune system is one of the prerequisites for the survival of a species. Humans have one of the most complicated immune systems, with the ability to learn from and adapt to pathogens. At first, a primary repertoire of antibodies is generated, which, upon antigen encounter, will diversify and adapt to produce a highly specific and potent secondary response, part of which is kept in memory to fight off future infections. In this review, the mechanism as well as the specificities of the key protein in the secondary immune response, activation-induced cytidine deaminase (AID), are highlighted, as well as its role in the DNA deamination model of immunoglobulin diversification. The review also highlights aspects of AID's regulation on both the transcriptional as well as post-translational level and its potential molecular mechanism and specificity. Furthermore, it expands outside the involvement of AID in somatic hypermutation, class switching, and gene conversion to discuss the implications of DNA deamination in epigenetic modifications of DNA (as a potential demethylase), the induction of mutations during oncogenesis, and includes an evolutionary comparison to the DNA deaminase family member APOBEC3G, a key protein in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Svend Petersen-Mahrt
- DNA Editing Laboratory, Cancer Research UK, Clare Hall Laboratories, South Mimms Hert, UK.
| |
Collapse
|
35
|
Jansen JG, Tsaalbi-Shtylik A, Langerak P, Calléja F, Meijers CM, Jacobs H, de Wind N. The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res 2005; 33:356-65. [PMID: 15653636 PMCID: PMC546167 DOI: 10.1093/nar/gki189] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rev1 is a deoxycytidyl transferase associated with DNA translesion synthesis (TLS). In addition to its catalytic domain, Rev1 possesses a so-called BRCA1 C-terminal (BRCT) domain. Here, we describe cells and mice containing a targeted deletion of this domain. Rev1B/B mice are healthy, fertile and display normal somatic hypermutation. Rev1B/B cells display an elevated spontaneous frequency of intragenic deletions at Hprt. In addition, these cells were sensitized to exogenous DNA damages. Ultraviolet-C (UV-C) light induced a delayed progression through late S and G2 phases of the cell cycle and many chromatid aberrations, specifically in a subset of mutant cells, but not enhanced sister chromatid exchanges (SCE). UV-C-induced mutagenesis was reduced and mutations at thymidine–thymidine dimers were absent in Rev1B/B cells, the opposite phenotype of UV-C-exposed cells from XP-V patients, lacking TLS polymerase η. This suggests that the enhanced UV-induced mutagenesis in XP-V patients may depend on error-prone Rev1-dependent TLS. Together, these data indicate a regulatory role of the Rev1 BRCT domain in TLS of a limited spectrum of endogenous and exogenous nucleotide damages during a defined phase of the cell cycle.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Toxicogenetics, Leiden University Medical Center 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
37
|
Min IM, Selsing E. Antibody class switch recombination: roles for switch sequences and mismatch repair proteins. Adv Immunol 2005; 87:297-328. [PMID: 16102577 DOI: 10.1016/s0065-2776(05)87008-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mechanisms and targeting of antibody class switch DNA recombination are reviewed. Particular emphasis is on the roles for the DNA sequences comprising switch (S) regions, including the S-region tandem repeats, and on the roles of proteins that are involved in both DNA mismatch repair and in class switch recombination.
Collapse
Affiliation(s)
- Irene M Min
- Genetics Program, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
38
|
Xiao Y, Hendriks J, Langerak P, Jacobs H, Borst J. CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. THE JOURNAL OF IMMUNOLOGY 2004; 172:7432-41. [PMID: 15187121 DOI: 10.4049/jimmunol.172.12.7432] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies on human B cells have featured CD27 as a marker and mediator of the B cell response. We have studied CD27 expression and function on B cells in the mouse. We find that B cells acquire CD27 at the centroblast stage and lose it progressively upon further differentiation. It is not a marker for somatically mutated B cells and is present at very low frequency on memory B cells. Enrichment of CD27 among centroblasts and the presence of its ligand CD70 on occasional T and B cells in or near germinal centers (GCs) suggested a role for CD27/CD70 interactions in clonal B cell expansion. Accordingly, GC formation in response to influenza virus infection was delayed in CD27 knockout mice. CD27 deficiency did not affect somatic hypermutation or serum levels of virus-specific IgM, IgG, and IgA attained in primary and recall responses. Adoptive transfer of T and B cells into CD27/CD28(-/-) mice revealed that CD27 promotes GC formation and consequent IgG production by two distinct mechanisms. Stimulation of CD27 on B cells by CD28(+) Th cells accelerates GC formation, most likely by promoting centroblast expansion. In addition, CD27 on T cells can partially substitute for CD28 in supporting GC formation.
Collapse
Affiliation(s)
- Yanling Xiao
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Tippin B, Pham P, Bransteitter R, Goodman MF. Somatic Hypermutation: A Mutational Panacea. ACTA ACUST UNITED AC 2004; 69:307-35. [PMID: 15588848 DOI: 10.1016/s0065-3233(04)69011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Brigette Tippin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
40
|
Rahman ZSM, Rao SP, Kalled SL, Manser T. Normal induction but attenuated progression of germinal center responses in BAFF and BAFF-R signaling-deficient mice. ACTA ACUST UNITED AC 2003; 198:1157-69. [PMID: 14557413 PMCID: PMC2194236 DOI: 10.1084/jem.20030495] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The factors regulating germinal center (GC) B cell fate are poorly understood. Recent studies have defined a crucial role for the B cell–activating factor belonging to TNF family (BAFF; also called BLyS) in promoting primary B cell survival and development. A role for this cytokine in antigen-driven B cell responses has been suggested but current data in this regard are limited. A BAFF receptor expressed by B cells (BAFF-R/BR3) is defective in A/WySnJ mice which exhibit a phenotype similar to BAFF-deficient (BAFF−/−) animals. Here, we show that although GC responses can be efficiently induced in both A/WySnJ and BAFF−/− mice, these responses are not sustained. In BAFF−/− mice, this response is rapidly attenuated and accompanied by perturbed follicular dendritic cell development and immune complex trapping. In contrast, analysis of the A/WySnJ GC response revealed a B cell autonomous proliferative defect associated with reduced or undetectable Ki67 nuclear proliferation antigen expression by GC B cells at all stages of the response. These data demonstrate a multifaceted role for the BAFF pathway in regulating GC progression.
Collapse
Affiliation(s)
- Ziaur S M Rahman
- Department of Microbiology and Immunology, and The Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19017-5541, USA
| | | | | | | |
Collapse
|
41
|
Reynaud CA, Aoufouchi S, Faili A, Weill JC. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol 2003; 4:631-8. [PMID: 12830138 DOI: 10.1038/ni0703-631] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation-induced cytidine deaminase (AID) has been shown to trigger three mechanisms for diversifying immunoglobulin genes--somatic hypermutation, isotype switch recombination and gene conversion--most probably by initiating cytidine deamination at the immunoglobulin locus. Although this deamination process has been shown to be potentially mutagenic by itself, most of the mutations generated in the physiological hypermutation process seem to be created through the AID-mediated assembly of a mutasome complex involving specific repair activities and error-prone DNA polymerases.
Collapse
Affiliation(s)
- Claude-Agnès Reynaud
- INSERM U373, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | |
Collapse
|
42
|
Winter DB, Phung QH, Zeng X, Seeberg E, Barnes DE, Lindahl T, Gearhart PJ. Normal somatic hypermutation of Ig genes in the absence of 8-hydroxyguanine-DNA glycosylase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5558-62. [PMID: 12759433 DOI: 10.4049/jimmunol.170.11.5558] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypermutation cascade in Ig V genes can be initiated by deamination of cytosine in DNA to uracil by activation-induced cytosine deaminase and its removal by uracil-DNA glycosylase. To determine whether damage to guanine also contributes to hypermutation, we examined the glycosylase that removes oxidized guanine from DNA, 8-hydroxyguanine-DNA glycosylase (OGG1). OGG1 has been reported to be overexpressed in human B cells from germinal centers, where mutation occurs, and could be involved in initiating Ab diversity by removing modified guanines. In this study, mice deficient in Ogg1 were immunized, and V genes from the H and kappa L chain loci were sequenced. Both the frequency of mutation and the spectra of nucleotide substitutions were similar in ogg1(-/-) and Ogg1(+/+) clones. More importantly, there was no significant increase in G:C to T:A transversions in the ogg1(-/-) clones, which would be expected if 8-hydroxyguanine remained in the DNA. Furthermore, Ogg1 was not up-regulated in murine B cells from germinal centers. These findings show that hypermutation is unaffected in the absence of Ogg1 activity and indicate that 8-hydroxyguanine lesions most likely do not cause V gene mutations.
Collapse
Affiliation(s)
- David B Winter
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Weill JC, Bertocci B, Faili A, Aoufouchi S, Frey S, De Smet A, Storck S, Dahan A, Delbos F, Weller S, Flatter E, Reynaud CA. Ig gene hypermutation: a mechanism is due. Adv Immunol 2002; 80:183-202. [PMID: 12078481 DOI: 10.1016/s0065-2776(02)80015-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jean-Claude Weill
- INSERM Unité 373, Faculté de Médecine Necker-Enfants Malades, Université Paris V, 75730 Paris, 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Alabyev B, Manser T. Bcl-2 rescues the germinal center response but does not alter the V gene somatic hypermutation spectrum in MSH2-deficient mice. THE JOURNAL OF IMMUNOLOGY 2002; 169:3819-24. [PMID: 12244177 DOI: 10.4049/jimmunol.169.7.3819] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab V genes in mice deficient for the postreplication mismatch repair factor MutS homolog (MSH2) have been reported to display an abnormal bias for hypermutations at G and C nucleotides and hotspots. We previously showed that the germinal center (GC) response is severely attenuated in MSH2-deficient mice. This suggested that premature death of GC B cells might preclude multiple rounds of hypermutation necessary to generate a normal spectrum of base changes. To test this hypothesis, we created MSH2-deficient mice in which Bcl-2 expression was driven in B cells from a transgene. In such mice, the elevated levels of intra-GC apoptosis and untimely GC dissolution characteristic of MSH2-deficient mice are suppressed. However, the spectrum of hypermutation is unchanged. These data indicate that the effects of MSH2 deficiency on GC B cell viability and the hypermutation process are distinct.
Collapse
Affiliation(s)
- Boris Alabyev
- Kimmel Cancer Center and Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University Philadelphia, PA 19107, USA
| | | |
Collapse
|
45
|
Cardoso RS, Espanhol AR, Passos GAS, Sakamoto-Hojo ET. Differential gene expression in gamma-irradiated BALB/3T3 fibroblasts under the influence of 3-aminobenzamide, an inhibitior of parp enzyme. Mutat Res 2002; 508:33-40. [PMID: 12379459 DOI: 10.1016/s0027-5107(02)00141-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
3-Aminobenzamide (3AB) is an inhibitor of poly (ADP-ribose) polymerase (PARP), an enzyme implicated in the maintenance of genomic integrity, which is activated in response to radiation-induced DNA strand breaks. cDNA macroarray membranes containing 1536 clones were used to characterize the gene expression profiles displayed by mouse BALB/3T3 fibroblasts (A31 cell line) in response to ionizing irradiation alone or in combination with 3AB. A31 cells in exponential growth were pre-treated with 3AB 4mM 1h before gamma-irradiation (4Gy), remaining in culture during 6h until harvesting time. A31 cells treated with 3AB alone presented a down-regulation in genes involved in protein processing and cell cycle control, while an up-regulation of genes involved in apoptosis and related to DNA/RNA synthesis and repair was verified. A31 cells irradiated with 4Gy displayed 41 genes differentially expressed, being detected a down-regulation of genes involved in protein processing and apoptosis, and genes controlling the cell cycle. Concomitantly, another set of genes for protein processing and related to DNA/RNA synthesis and repair were found to be up-regulated. A positive or negative interaction effect between 3AB and radiation was verified for 29 known genes. While the combined treatment induced a synergistic effect on the expression of LCK proto-oncogene and several genes related to protein synthesis/processing, a negative interaction effect was found for the expression of genes related to cytoskeleton and extracellular matrix assembly (SATB1 and Anexin III), cell cycle control (tyrosine kinase), and genes participating in DNA/RNA synthesis and repair (RNA helicase, FLAP endonuclease-1, DNA-3 glycosylase methyladenine, splicing factor SC35 and Soh1). The present data open the possibility to investigate the direct participation of specific genes, or gene products acting in concert in the mechanism underlying the cell response to radiation-induced DNA damage under the influence of PARP inhibitor.
Collapse
Affiliation(s)
- R S Cardoso
- Grupo de Imunogenética Molecular, Departmento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
46
|
D'Avirro N, Truong D, Luong M, Kanaar R, Selsing E. Gene conversion-like sequence transfers between transgenic antibody V genes are independent of RAD54. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3069-75. [PMID: 12218123 DOI: 10.4049/jimmunol.169.6.3069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Homology-based Ig gene conversion is a major mechanism for Ab diversification in chickens and the Rad54 DNA repair protein plays an important role in this process. In mice, although gene conversion appears to be rare among endogenous Ig genes, Ab H chain transgenes undergo isotype switching and gene conversion-like sequence transfer processes that also appear to involve homologous recombination or gene conversion. Furthermore, homology-based DNA repair has been suggested to be important for somatic mutation of endogenous mouse Ig genes. To assess the role of Rad54 in these mouse B cell processes, we have analyzed H chain transgene isotype switching, sequence transfer, and somatic hypermutation in mice that lack RAD54. We find that Rad54 is not required for either transgene switching or transgene hypermutation. Furthermore, even transgene sequence transfers that are known to require homology-based recombinations are Rad54 independent. These results indicate that mouse B cells must use factors for promoting homologous recombination that are distinct from the Rad54 proteins important in homology-based chicken Ab gene recombinations. Our findings also suggest that mouse H chain transgene sequence transfers might be more closely related to an error-prone homology-based somatic hypermutational mechanism than to the hyperconversion mechanism that operates in chicken B cells.
Collapse
Affiliation(s)
- Nicole D'Avirro
- Genetics Program, Immunology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Alberto Martin
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 403, Bronx, New York 10461, USA.
| | | |
Collapse
|
48
|
Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 2002; 20:165-96. [PMID: 11861601 DOI: 10.1146/annurev.immunol.20.090501.112049] [Citation(s) in RCA: 456] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Class switch recombination (CSR) and somatic hypermutation (SHM) have been considered to be mediated by different molecular mechanisms because both target DNAs and DNA modification products are quite distinct. However, involvement of activation-induced cytidine deaminase (AID) in both CSR and SHM has revealed that the two genetic alteration mechanisms are surprisingly similar. Accumulating data led us to propose the following scenario: AID is likely to be an RNA editing enzyme that modifies an unknown pre-mRNA to generate mRNA encoding a nicking endonuclease specific to the stem-loop structure. Transcription of the S and V regions, which contain palindromic sequences, leads to transient denaturation, forming the stem-loop structure that is cleaved by the AID-regulated endonuclease. Cleaved single-strand tails will be processed by error-prone DNA polymerase-mediated gap-filling or exonuclease-mediated resection. Mismatched bases will be corrected or fixed by mismatch repair enzymes. CSR ends are then ligated by the NHEJ system while SHM nicks are repaired by another ligation system.
Collapse
Affiliation(s)
- Tasuku Honjo
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
49
|
Bross L, Muramatsu M, Kinoshita K, Honjo T, Jacobs H. DNA double-strand breaks: prior to but not sufficient in targeting hypermutation. J Exp Med 2002; 195:1187-92. [PMID: 11994423 PMCID: PMC2193713 DOI: 10.1084/jem.20011749] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2001] [Revised: 01/18/2002] [Accepted: 01/24/2002] [Indexed: 11/29/2022] Open
Abstract
The activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) and class-switch recombination (CSR) of immunoglobulin (Ig) genes, both of which are associated with DNA double-strand breaks (DSBs). As AID is capable of deaminating deoxy-cytidine (dC) to deoxy-uracil (dU), it might induce nicks (single strand DNA breaks) and also DNA DSBs via a U-DNA glycosylase-mediated base excision repair pathway ('DNA-substrate model'). Alternatively, AID functions like its closest homologue Apobec1 as a catalytic subunit of a RNA editing holoenzyme ('RNA-substrate model'). Although rearranged Vlambda genes are preferred targets of SHM we found that germinal center (GC) B cells of AID-proficient and -deficient Vlambda1-expressing GC B cells display a similar frequency, distribution, and sequence preference of DSBs in rearranged and also in germline Vlambda1 genes. The possible roles of DSBs in relation to AID function and SHM are discussed.
Collapse
Affiliation(s)
- Linda Bross
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Abstract
Immunoglobulin hypermutation provides the structural correlate for the affinity maturation of the antibody response. Characteristic modalities of this mechanism include a preponderance of point-mutations with prevalence of transitions over transversions, and the mutational hotspot RGYW sequence. Recent evidence suggests a mechanism whereby DNA-breaks induce error-prone DNA synthesis in immunoglobulin V(D)J regions by error-prone DNA polymerases. The nature of the targeting mechanism and the trans-factors effecting such breaks and their repair remain to be determined.
Collapse
Affiliation(s)
- Marilyn Diaz
- Department of Immunology, Imm16, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paolo Casali
- Division of Molecular Immunology, C-410, Cornell University Weill Medical College, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|