1
|
Gong Y, Germeraad WTV, Zhang X, Wu N, Li B, Janssen L, He Z, Gijbels MJJ, Wu B, Gijsbers BLMG, Olieslagers TI, Bos GMJ, Zheng L, Klein Wolterink RGJ. NKG2A genetic deletion promotes human primary NK cell anti-tumor responses better than an anti-NKG2A monoclonal antibody. Mol Ther 2024; 32:2711-2727. [PMID: 38943249 PMCID: PMC11405175 DOI: 10.1016/j.ymthe.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024] Open
Abstract
Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.
Collapse
Affiliation(s)
- Ying Gong
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China; Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands
| | - Wilfred T V Germeraad
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; CiMaas BV, 6202 AZ Maastricht, the Netherlands
| | - Xulin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou 510000, China
| | - Nisha Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Bo Li
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lynn Janssen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands
| | - Zongzhong He
- Department of Transfusion Medicine of General Hospital of Southern Theatre Command, Guangzhou 510515, P.R. China
| | - Marion J J Gijbels
- GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; Department of Pathology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, 1081 HV Amsterdam, the Netherlands
| | - Bodeng Wu
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Birgit L M G Gijsbers
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands
| | - Timo I Olieslagers
- GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, 6202 AZ Maastricht, the Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands; CiMaas BV, 6202 AZ Maastricht, the Netherlands
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China.
| | - Roel G J Klein Wolterink
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, 6227 HX Maastricht, the Netherlands; GROW - Research Institute for Oncology & Reproduction, Maastricht University, 6202 AZ Maastricht, the Netherlands.
| |
Collapse
|
2
|
Hsieh MJ, Lin JT, Chuang YC, Lin CC, Lo YS, Ho HY, Chen MK. Limocitrin increases cytotoxicity of KHYG-1 cells against K562 cells by modulating MAPK pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2939-2951. [PMID: 37584500 DOI: 10.1002/tox.23929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Natural killer (NK) cells are gaining popularity in the field of cancer immunotherapy. The present study was designed to investigate the effect of a natural flavonol compound limocitrin in increasing cytotoxicity of a permanent NK leukemia cell line KHYG-1 against an aggressive leukemia cell line K562. The findings revealed that limocitrin increased the expressions of cytolytic molecules perforin, granzymes A and B, and granulysin in KHYG-1 cells by inducing phosphorylation of transcription factor CREB, leading to increased lysis of K562 cells. Mechanistically, limocitrin was found to increase the expressions of t-Bid, cleaved caspase 3, and cleaved PARP to induce K562 cell apoptosis. Moreover, limocitrin reduced the expressions of SET and Ape1 to inhibit DNA repair mechanism, leading to caspase-independent K562 cell death. At the molecular level, limocitrin was found to increase the phosphorylation of ERK, p38, and JNK to increase granzyme B expression in KHYG-1 cells. Taken together, the study indicates that limocitrin increases cytotoxicity of NK cells against a range of cancer cells.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Feng YB, Chen L, Chen FX, Yang Y, Chen GH, Zhou ZH, Xu CF. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int J Immunopathol Pharmacol 2023; 37:3946320231161174. [PMID: 36848930 PMCID: PMC9974612 DOI: 10.1177/03946320231161174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Apigenin is a kind of flavonoid with many beneficial biological effects. It not only has direct cytotoxicity to tumor cells, but also can boost the antitumor effect of immune cells by modulating immune system. The purpose of this study was to investigate the proliferation of NK cells treated with apigenin and its cytotoxicity to pancreatic cancer cells in vitro, and explore its potential molecular mechanism. In this study, the effect of apigenin on NK cell proliferation and killing pancreatic cancer cells were measured by CCK-8 assay. Perforin, granzyme B (Gran B), CD107a, and NKG2D expressions of NK cells induced with apigenin were detected by flow cytometry (FCM). The mRNA expression of Bcl-2, Bax and protein expression of Bcl-2, Bax, p-ERK, and p-JNK in NK cells were evaluated by qRT-PCR and western blotting analysis, respectively. The results showed that appropriate concentration of apigenin could significantly promote the proliferation of NK cells in vitro and enhance the killing activity of NK cells against pancreatic cancer cells. The expressions of surface antigen NKG2D and intracellular antigen perforin and Gran B of NK cells were upregulated after treating with apigenin. Bcl-2 mRNA expression was increased, while Bax mRNA expression was decreased. Similarly, the expression of Bcl-2, p-JNK, and p-ERK protein was upregulated, and the expression of Bax protein was downregulated. The molecular mechanism of the immunopotentiation effects of apigenin may be that it up-regulates Bcl-2 and down-regulates Bax expression at the gene and protein levels to facilitate NK cell proliferation, and up-regulates the expression of perforin, Gran B, and NKG2D through the activation of JNK and ERK pathways to enhance NK cell cytotoxicity.
Collapse
Affiliation(s)
- Yong-Bo Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Jiangsu, China,Department of Gastroenterology, Nanjing Gaochun Hospital of Chinese Medicine, Jiangsu, China
| | - Ling Chen
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Fu-Xing Chen
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Yang Yang
- Department of Pharmacy, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Guo-Hua Chen
- Department of General Surgery, Nanjing Gaochun Hospital of Chinese Medicine, Jiangsu, China
| | - Zhong-Hai Zhou
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China,Zhong-Hai Zhou, Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, 236 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Chun-Fang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Jiangsu, China,Chun-Fang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi street, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
4
|
Philip M, Schietinger A. CD8 + T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22:209-223. [PMID: 34253904 PMCID: PMC9792152 DOI: 10.1038/s41577-021-00574-3] [Citation(s) in RCA: 572] [Impact Index Per Article: 190.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cells specific for cancer cells are detected within tumours. However, despite their presence, tumours progress. The clinical success of immune checkpoint blockade and adoptive T cell therapy demonstrates the potential of CD8+ T cells to mediate antitumour responses; however, most patients with cancer fail to achieve long-term responses to immunotherapy. Here we review CD8+ T cell differentiation to dysfunctional states during tumorigenesis. We highlight similarities and differences between T cell dysfunction and other hyporesponsive T cell states and discuss the spatio-temporal factors contributing to T cell state heterogeneity in tumours. An important challenge is predicting which patients will respond to immunotherapeutic interventions and understanding which T cell subsets mediate the clinical response. We explore our current understanding of what determines T cell responsiveness and resistance to immunotherapy and point out the outstanding research questions.
Collapse
Affiliation(s)
- Mary Philip
- Vanderbilt Center for Immunobiology, Vanderbilt-Ingram Cancer Center, Department of Medicine/Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,;
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,;
| |
Collapse
|
5
|
Lee Y, Park A, Park YJ, Jung H, Kim TD, Noh JY, Choi I, Lee S, Ran Yoon S. Ginsenoside 20(R)-Rg3 enhances natural killer cell activity by increasing activating receptor expression through the MAPK/ERK signaling pathway. Int Immunopharmacol 2022; 107:108618. [PMID: 35219164 DOI: 10.1016/j.intimp.2022.108618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/05/2022]
Abstract
Ginseng is one of the most widely used herbal remedies for various diseases worldwide. Ginsenoside Rg3 (G-Rg3), the main component of ginseng, possesses several pharmacological properties, including anti-inflammatory, anti-tumor, antioxidant, anti-obesity, and immunomodulatory activities. However, the effect of G-Rg3 on natural killer (NK) cells in humans is not fully understood. Here, we investigated the effect of G-Rg3 on NK cell function and differentiation and elucidated the underlying mechanism. G-Rg3 increased NK cell cytotoxicity and simultaneously increased the expression of NK-activating receptors, NKp44, NKp46, and NKp30. Additionally, G-Rg3 increased the mRNA expression of NK cytolytic molecules, granzyme B and perforin. The expression of CD107a, a marker of NK cell degranulation, also increased in G-Rg3-treated NK cells. We therefore proceeded to identify which MAPK signaling pathway was involved in G-Rg3-mediated cytolytic activity. Treatment with G-Rg3 increased the phosphorylation levels of extracellular signal-regulated kinase (ERK), whereas ERK inhibition eliminated G-Rg3-induced NK cell cytotoxicity, suggesting the involvement of the ERK pathway. G-Rg3 did not affect the rate of differentiation of human cord-blood-derived NK cells; however, it increased the functional maturation of differentiated NK cells and promoted their cytotoxicity. The G-Rg3 isomer, 20(R)-Rg3, effectively activated NK cells via the extracellular signal-regulated kinase (ERK) signaling pathway, whereas 20(S)-Rg3 had no effect on NK cell activity. Altogether, the results demonstrated that 20(R)-Rg3 promoted NK cell activity via activation of the MAPK/ERK pathway, suggesting that 20(R)-Rg3 may be used as an activator of NK cell cytotoxicity for the treatment of diverse types of cancers.
Collapse
Affiliation(s)
- Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, Republic of Korea.
| | - Arum Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Seungjin Lee
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, Republic of Korea.
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Wu K, Wang L, Liu M, Xiu Y, Hu Y, Fu S, Huang H, Xu B, Xiao H. The CD226-ERK1/2-LAMP1 pathway is an important mechanism for Vγ9Vδ2 T cell cytotoxicity against chemotherapy-resistant acute myeloid leukemia blasts and leukemia stem cells. Cancer Sci 2021; 112:3233-3242. [PMID: 34107135 PMCID: PMC8353902 DOI: 10.1111/cas.15014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Vγ9Vδ2 T cells are attractive effector cells for immunotherapy with potent cytotoxic activity against a variety of malignant cells. However, the effect of Vγ9Vδ2 T cells on chemotherapy-resistant acute myeloid leukemia (AML) blasts, especially highly refractory leukemia stem cells (LSCs) is still unknown. In this study, we investigated the effect of cytotoxicity of allogeneic Vγ9Vδ2 T cells on chemotherapy-resistant AML cell lines, as well as on primary AML blasts and LSCs obtained from refractory AML patients. The results indicated that Vγ9Vδ2 T cells can efficiently kill drug-resistant AML cell lines in vitro and in vivo, and the sensitivity of AML cells to Vγ9Vδ2 T cell-mediated cytotoxicity is not influenced by the sensitivity of AML cells to chemotherapy. We further found that Vγ9Vδ2 T cells exhibited a comparable effect of cytotoxicity against LSCs to primary AML blasts. More importantly, we revealed that the CD226-extracellular signal-regulatory kinase1/2 (ERK1/2)-lysosome-associated membrane protein 1 (LAMP1) pathway is an important mechanism for Vγ9Vδ2 T cell-induced cytotoxicity against AML cells. First, Vγ9Vδ2 T cells recognized AML cells by receptor-ligand interaction of CD226-Nectin-2, which then induced ERK1/2 phosphorylation in Vγ9Vδ2 T cells. Finally, triggering the movement of lytic granules toward AML cells induced cytolysis of AML cells. The expression level of Nectin-2 may be used as a novel marker to predict the susceptibility/resistance of AML cells to Vγ9Vδ2 T cell treatment.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytotoxicity, Immunologic
- Drug Resistance, Neoplasm
- Female
- HL-60 Cells
- Humans
- Immunotherapy, Adoptive
- K562 Cells
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lysosomal Membrane Proteins/metabolism
- MAP Kinase Signaling System
- Mice
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kangni Wu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HematologyThe First Affiliated Hospital of Xiamen University and Institute of HematologyMedical College of Xiamen UniversityXiamenChina
| | - Li‐mengmeng Wang
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Meng Liu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanghui Xiu
- Eye Institute and Xiamen Eye Center Affiliated to Xiamen UniversityXiamenChina
| | - Yongxian Hu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shan Fu
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - He Huang
- Bone Marrow Transplantation CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Bing Xu
- Department of HematologyThe First Affiliated Hospital of Xiamen University and Institute of HematologyMedical College of Xiamen UniversityXiamenChina
| | - Haowen Xiao
- Department of HematologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Lu T, Cardenas A, Perron P, Hivert MF, Bouchard L, Greenwood CMT. Detecting cord blood cell type-specific epigenetic associations with gestational diabetes mellitus and early childhood growth. Clin Epigenetics 2021; 13:131. [PMID: 34174944 PMCID: PMC8236204 DOI: 10.1186/s13148-021-01114-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies (EWAS) have provided opportunities to understand the role of epigenetic mechanisms in development and pathophysiology of many chronic diseases. However, an important limitation of conventional EWAS is that profiles of epigenetic variability are often obtained in samples of mixed cell types. Here, we aim to assess whether changes in cord blood DNA methylation (DNAm) associated with gestational diabetes mellitus (GDM) exposure and early childhood growth markers occur in a cell type-specific manner. RESULTS We analyzed 275 cord blood samples collected at delivery from a prospective pre-birth cohort with genome-wide DNAm profiled by the Illumina MethylationEPIC array. We estimated proportions of seven common cell types in each sample using a cord blood-specific DNAm reference panel. Leveraging a recently developed approach named CellDMC, we performed cell type-specific EWAS to identify CpG loci significantly associated with GDM, or 3-year-old body mass index (BMI) z-score. A total of 1410 CpG loci displayed significant cell type-specific differences in methylation level between 23 GDM cases and 252 controls with a false discovery rate < 0.05. Gene Ontology enrichment analysis indicated that LDL transportation emerged from CpG specifically identified from B-cells DNAm analyses and the mitogen-activated protein kinase pathway emerged from CpG specifically identified from natural killer cells DNAm analyses. In addition, we identified four and six loci associated with 3-year-old BMI z-score that were specific to CD8+ T-cells and monocytes, respectively. By performing genome-wide permutation tests, we validated that most of our detected signals had low false positive rates. CONCLUSION Compared to conventional EWAS adjusting for the effects of cell type heterogeneity, the proposed approach based on cell type-specific EWAS could provide additional biologically meaningful associations between CpG methylation, prenatal maternal GDM or 3-year-old BMI. With careful validation, these findings may provide new insights into the pathogenesis, programming, and consequences of related childhood metabolic dysregulation. Therefore, we propose that cell type-specific analyses are worth cautious explorations.
Collapse
Affiliation(s)
- Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, Centre Intégré Universitaire de Santé et de Services Sociaux Saguenay-Lac-Saint-Jean - Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Kandell WM, Donatelli SS, Trinh TL, Calescibetta AR, So T, Tu N, Gilvary DL, Chen X, Cheng P, Adams WA, Chen YK, Liu J, Djeu JY, Wei S, Eksioglu EA. MicroRNA-155 governs SHIP-1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma. PLoS One 2020; 15:e0225820. [PMID: 32040476 PMCID: PMC7010306 DOI: 10.1371/journal.pone.0225820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
NK cell migration and activation are crucial elements of tumor immune surveillance. In mammary carcinomas, the number and function of NK cells is diminished, despite being positively associated with clinical outcome. MicroRNA-155 (miR-155) has been shown to be an important regulator of NK cell activation through its interaction with SHIP-1 downstream of inhibitory NK receptor signaling, but has not been explored in regard to NK cell migration. Here, we explored the migratory potential and function of NK cells in subcutaneous AT3 in mice lacking miR-155. Without tumor, these bic/miR-155-/- mice possess similar numbers of NK cells that exhibit comparable surface levels of cytotoxic receptors as NK cells from wild-type (WT) mice. Isolated miR-155-/- NK cells also exhibit equivalent cytotoxicity towards tumor targets in vitro compared to isolated WT control NK cells, despite overexpression of known miR-155 gene targets. NK cells isolated from miR-155-/- mice exhibit impaired F-actin polymerization and migratory capacity in Boyden-chamber assays in response chemokine (C-C motif) ligand 2 (CCL2). This migratory capacity could be normalized in the presence of SHIP-1 inhibitors. Of note, miR-155-/- mice challenged with mammary carcinomas exhibited heightened tumor burden which correlated with a lower number of tumor-infiltrating NK1.1+ cells. Our results support a novel, physiological role for SHIP-1 in the control of NK cell tumor trafficking, and implicate miR-155 in the regulation of NK cell chemotaxis, in the context of mammary carcinoma. This may implicate dysfunctional NK cells in the lack of tumor clearance in mice.
Collapse
Affiliation(s)
- Wendy M. Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, United States of America
| | - Sarah S. Donatelli
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Thu Le Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- Dong Nai Technology University, Dong Nai Province, Vietnam
| | | | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Nhan Tu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Danielle L. Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - William A. Adams
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Yin-Kai Chen
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jinhong Liu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Julie Y. Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sabry M, Zubiak A, Hood SP, Simmonds P, Arellano-Ballestero H, Cournoyer E, Mashar M, Pockley AG, Lowdell MW. Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One 2019; 14:e0218674. [PMID: 31242243 PMCID: PMC6594622 DOI: 10.1371/journal.pone.0218674] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or “priming,” of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /β and IL-1β/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of Haematology, University College London, London, United Kingdom
| | - Agnieszka Zubiak
- Department of Haematology, University College London, London, United Kingdom
| | - Simon P. Hood
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Poppy Simmonds
- Department of Haematology, University College London, London, United Kingdom
| | | | - Eily Cournoyer
- Department of Haematology, University College London, London, United Kingdom
| | - Meghavi Mashar
- Department of Haematology, University College London, London, United Kingdom
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Mark W. Lowdell
- Department of Haematology, University College London, London, United Kingdom
- InmuneBio Inc., La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Impaired cytolytic activity of asthma-associated natural killer cells is linked to dysregulated transcriptional program in energy metabolism. Mol Immunol 2018; 101:514-520. [PMID: 30145544 DOI: 10.1016/j.molimm.2018.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells are a cytotoxic subset of the innate lymphoid cells, playing essential roles in host defense against tumors and infections, which, however, are usually functionally compromised in chronic diseases. Atopic diseases, such as allergic asthma, characterized by type 2 immune responses, are usually associated with chronic inflammations. Whether asthma -associated immune environment affects the cytolytic function of NK cells has not been elucidated. Here, YTS, a human NK cell line, was exposed to serum from healthy donors or asthma patients for analysis of its cytolytic function. We found that, serum from asthma patients reduced the cytolytic activity of YTS cells against Raji human B lymphoblasts, in comparison with normal serum. The impairment of cytolytic activity of these YTS cells was accompanied with decreased degranulation potentials, weakened conjugation formation with Raji cells, and premature termination of ERK phosphorylation upon stimulation. Meanwhile, apoptosis or cell death of YTS cells was not increased after exposure to serum from asthma patients. Importantly, such impairment of cytolytic activity of asthma -associated YTS NK cells was accompanied with aberrantly enriched genes involved in oxidative phosphorylation. Taken together, these results demonstrate that the serum of asthma patients directly suppresses the cytolytic function of NK cells, possibly through dysregulation of energy metabolism in NK cells.
Collapse
|
11
|
Gao M, Wang K, Yang M, Meng F, Lu R, Zhuang H, Cheng G, Wang X. Transcriptome Analysis of Bronchoalveolar Lavage Fluid From Children With Mycoplasma pneumoniae Pneumonia Reveals Natural Killer and T Cell-Proliferation Responses. Front Immunol 2018; 9:1403. [PMID: 29967623 PMCID: PMC6015898 DOI: 10.3389/fimmu.2018.01403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia (MPP) is one of the most common community-acquired pneumonia; this study is to explore the immune-pathogenesis of children MPP. METHODS Next-generation transcriptome sequencing was performed on the bronchoalveolar lavage fluid cells from six children with MPP and three children with foreign body aspiration as control. Some of the results had been validated by quantitative real-time PCR in an expanded group of children. RESULTS Results revealed 810 differentially expressed genes in MPP group comparing to control group, of which 412 genes including RLTPR, CARD11 and RASAL3 were upregulated. These upregulated genes were mainly enriched in mononuclear cell proliferation and signaling biological processes. Kyoto encyclopedia of genes and genomes pathway analysis revealed that hematopoietic cell linage pathway, natural killer cell-mediated cytotoxicity pathway, and T cell receptor signaling pathway were significantly upregulated in MPP children. In addition, significant alternative splicing events were found in GNLY and SLC11A1 genes, which may cause the differential expressions of these genes. CONCLUSION Our results suggest that NK and CD8+ T cells are over activated and proliferated in MPP children; the upregulated IFNγ, PRF1, GZMB, FASL, and GNLY may play important roles in the pathogenesis of children MPP.
Collapse
Affiliation(s)
- Man Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Kuo Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fanzheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Ruihua Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Huadong Zhuang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Microbiology Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Xiaosong Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that recognize tumor cells or stressed cells through 'missing-self' signals, such as altered or absent expression of MHC class I molecules. The function of NK cells is regulated by the activation or inhibition of receptors present on their surface. The activation of NK cells results in cytotoxic activity on target cells through release of toxic granules and inflammatory cytokines. However, NK cells infiltrating tumors have been frequently shown to exhibit a skewed phenotype that includes decreased antitumor activity and enhanced protumor activities, such as angiogenesis and metastasis. In fact, many studies have reported that tumor microenvironments induce a protumor phenotype in NK cells. Here, we review the biological properties of NK cells in the context of tumorigenesis and tumor progression, with a specific focus on the interactions between NK cells and critical tumor microenvironments, such as epithelial-to-mesenchymal transition, matrix metalloproteinases, and tumor-associated chronic inflammation in tumor metastasis.
Collapse
|
13
|
Netter P, Anft M, Watzl C. Termination of the Activating NK Cell Immunological Synapse Is an Active and Regulated Process. THE JOURNAL OF IMMUNOLOGY 2017; 199:2528-2535. [DOI: 10.4049/jimmunol.1700394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
|
14
|
Wagner J, Pfannenstiel V, Waldmann A, Bergs JWJ, Brill B, Huenecke S, Klingebiel T, Rödel F, Buchholz CJ, Wels WS, Bader P, Ullrich E. A Two-Phase Expansion Protocol Combining Interleukin (IL)-15 and IL-21 Improves Natural Killer Cell Proliferation and Cytotoxicity against Rhabdomyosarcoma. Front Immunol 2017; 8:676. [PMID: 28659917 PMCID: PMC5466991 DOI: 10.3389/fimmu.2017.00676] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/24/2017] [Indexed: 01/10/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children. Despite intensive research in recent decades the prognosis for patients with metastatic or relapsed diseases has hardly improved. New therapeutic concepts in anti-tumor therapy aim to modulate the patient’s immune system to increase its aggressiveness or targeted effects toward tumor cells. Besides surgery, radiotherapy and chemotherapy, immune activation by direct application of cytokines, antibodies or adoptive cell therapy are promising approaches. In the last years, adoptive transfer of natural killer (NK) cells came into the focus of translational medicine, because of their high cytotoxic potential against transformed malignant cells. A main challenge of NK cell therapy is that it requires a high amount of functional NK cells. Therefore, ex vivo NK cell expansion protocols are currently being developed. Many culturing strategies are based on the addition of feeder or accessory cells, which need to be removed prior to the clinical application of the final NK cell product. In this study, we addressed feeder cell-free expansion methods using common γ-chain cytokines, especially IL-15 and IL-21. Our results demonstrated high potential of IL-15 for NK cell expansion, while IL-21 triggered NK cell maturation and functionality. Hence, we established a two-phase expansion protocol with IL-15 to induce an early NK cell expansion, followed by short exposure to IL-21 that boosted the cytotoxic activity of NK cells against RMS cells. Further functional analyses revealed enhanced degranulation and secretion of pro-inflammatory cytokines such as interferon-γ and tumor necrosis factor-α. In a proof of concept in vivo study, we also observed a therapeutic effect of adoptively transferred IL-15 expanded and IL-21 boosted NK cells in combination with image guided high precision radiation therapy using a luciferase-transduced RMS xenograft model. In summary, this two-phased feeder cell-free ex vivo culturing protocol combined efficient expansion and high cytolytic functionality of NK cells for treatment of radiation-resistant RMS.
Collapse
Affiliation(s)
- Juliane Wagner
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany
| | - Viktoria Pfannenstiel
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Judith W J Bergs
- Department of Radiotherapy and Oncology, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Boris Brill
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bader
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany.,LOEWE Center for Cell and Gene Therapy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Seo H, Jeon I, Kim BS, Park M, Bae EA, Song B, Koh CH, Shin KS, Kim IK, Choi K, Oh T, Min J, Min BS, Han YD, Kang SJ, Shin SJ, Chung Y, Kang CY. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat Commun 2017; 8:15776. [PMID: 28585539 PMCID: PMC5467212 DOI: 10.1038/ncomms15776] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
During cancer immunoediting, loss of major histocompatibility complex class I (MHC-I) in neoplasm contributes to the evasion of tumours from host immune system. Recent studies have demonstrated that most natural killer (NK) cells that are found in advanced cancers are defective, releasing the malignant MHC-I-deficient tumours from NK-cell-dependent immune control. Here, we show that a natural killer T (NKT)-cell-ligand-loaded tumour-antigen expressing antigen-presenting cell (APC)-based vaccine effectively eradicates these advanced tumours. During this process, we find that the co-expression of Tim-3 and PD-1 marks functionally exhausted NK cells in advanced tumours and that MHC-I downregulation in tumours is closely associated with the induction of NK-cell exhaustion in both tumour-bearing mice and cancer patients. Furthermore, the recovery of NK-cell function by IL-21 is critical for the anti-tumour effects of the vaccine against advanced tumours. These results reveal the process involved in the induction of NK-cell dysfunction in advanced cancers and provide a guidance for the development of strategies for cancer immunotherapy. Loss of major histocompatibility complex MHC-I expression contributes to cancer immune evasion. Here, the authors show that, in both mice and humans, MHC-I downregulation is associated with the induction of NK-cell exhaustion and that IL-21 restores NK-cell function and inhibits tumours progression.
Collapse
Affiliation(s)
- Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myunghwan Park
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.,Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea
| | | | - Taegwon Oh
- Cellid, Inc., Seoul 08826, Republic of Korea
| | - Jiyoun Min
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang Joon Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.,Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea.,Cellid, Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Li Y, Lu H, Gu Y, Ning Z, Cao T, Chen C, Hu C, Tao M. Enhancement of NK cells proliferation and function by Shikonin. Immunopharmacol Immunotoxicol 2017; 39:124-130. [PMID: 28303727 DOI: 10.1080/08923973.2017.1299174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yan Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Department of Oncology, The Affiliated Wujiang Hospital of Nantong University, Suzhou, P.R. China
| | - Hailin Lu
- Department of Oncology, The Affiliated Wujiang Hospital of Nantong University, Suzhou, P.R. China
| | - Yongchun Gu
- Central Laboratory, The Affiliated Wujiang Hospital of Nantong University, Suzhou, P.R. China
| | - Zhiqiang Ning
- Department of Oncology, The Affiliated Wujiang Hospital of Nantong University, Suzhou, P.R. China
| | - Tinghua Cao
- Department of Oncology, The Affiliated Wujiang Hospital of Nantong University, Suzhou, P.R. China
| | - Chao Chen
- Department of Oncology, The Affiliated Wujiang Hospital of Nantong University, Suzhou, P.R. China
| | - Chengru Hu
- Department of Oncology, The Affiliated Wujiang Hospital of Nantong University, Suzhou, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
17
|
Nguyen T, Johnston S, Clarke L, Smith P, Staines D, Marshall-Gradisnik S. Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels. Clin Exp Immunol 2016; 187:284-293. [PMID: 27727448 PMCID: PMC5217865 DOI: 10.1111/cei.12882] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 01/15/2023] Open
Abstract
Transient receptor potential melastatin subfamily 3 (TRPM3) ion channels play a role in calcium (Ca2+) cell signalling. Reduced TRPM3 protein expression has been identified in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients. However, the significance of TRPM3 and association with intracellular Ca2+ mobilization has yet to be determined. Fifteen CFS/ME patients (mean age 48·82 ± 9·83 years) and 25 healthy controls (mean age 39·2 ± 12·12 years) were examined. Isolated natural killer (NK) cells were labelled with fluorescent antibodies to determine TRPM3, CD107a and CD69 receptors on CD56dimCD16+NK cells and CD56brightCD16dim/– NK cells. Ca2+ flux and NK cytotoxicity activity was measured under various stimulants, including pregnenolone sulphate (PregS), thapsigargin (TG), 2‐aminoethoxydiphenyl borate (2APB) and ionomycin. Unstimulated CD56brightCD16dim/– NK cells showed significantly reduced TRPM3 receptors in CFS/ME compared with healthy controls (HC). Ca2+ flux showed no significant difference between groups. Moreover, PregS‐stimulated CD56brightCD16dim/–NK cells showed a significant increase in Ca2+ flux in CFS/ME patients compared with HC. By comparison, unstimulated CD56dimCD16+ NK cells showed no significant difference in both Ca2+ flux and TRPM3 expression. PregS‐stimulated CD56dimCD16+ NK cells increased TRPM3 expression significantly in CFS/ME, but this was not associated with a significant increase in Ca2+ flux. Furthermore, TG‐stimulated CD56dimCD16+ NK cells increased K562 cell lysis prior to PregS stimulation in CFS/ME patients compared with HC. Differential expression of TRPM3 and Ca2+ flux between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in CFS/ME.
Collapse
Affiliation(s)
- T Nguyen
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Gold Coast, QLD, Australia.,School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - S Johnston
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Gold Coast, QLD, Australia.,School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - L Clarke
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Gold Coast, QLD, Australia.,School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - P Smith
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Gold Coast, QLD, Australia
| | - D Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Gold Coast, QLD, Australia.,School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - S Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Gold Coast, QLD, Australia.,School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
18
|
Chacko A, Staines DR, Johnston SC, Marshall-Gradisnik SM. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:85-93. [PMID: 27594784 PMCID: PMC5003121 DOI: 10.4137/grsb.s40036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME. METHOD Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years). RESULTS The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls. CONCLUSIONS In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.
Collapse
Affiliation(s)
- Anu Chacko
- School of Medical Science, Griffith University, QLD, Australia.; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| | - Samantha C Johnston
- School of Medical Science, Griffith University, QLD, Australia.; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| | - Sonya M Marshall-Gradisnik
- School of Medical Science, Griffith University, QLD, Australia.; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, QLD, Australia
| |
Collapse
|
19
|
Lu CC, Hsu YJ, Chang CJ, Lin CS, Martel J, Ojcius DM, Ko YF, Lai HC, Young JD. Immunomodulatory properties of medicinal mushrooms: differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity. Innate Immun 2016; 22:522-33. [DOI: 10.1177/1753425916661402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Medicinal mushrooms have been used for centuries in Asian countries owing to their beneficial effects on health and longevity. Previous studies have reported that a single medicinal mushroom may produce both stimulatory and inhibitory effects on immune cells, depending on conditions, but the factors responsible for this apparent dichotomy remain obscure. We show here that water and ethanol extracts of cultured mycelium from various species ( Agaricus blazei Murrill, Antrodia cinnamomea, Ganoderma lucidum and Hirsutella sinensis) produce opposite effects on NK cells. Water extracts enhance NK cell cytotoxic activity against cancer cells, whereas ethanol extracts inhibit cytotoxicity. Water extracts stimulate the expression and production of cytolytic proteins (perforin and granulysin) and NKG2D/NCR cell surface receptors, and activate intracellular signaling kinases (ERK, JNK and p38). In contrast, ethanol extracts inhibit expression of cytolytic and cell surface receptors. Our results suggest that the mode of extraction of medicinal mushrooms may determine the nature of the immunomodulatory effects produced on immune cells, presumably owing to the differential solubility of stimulatory and inhibitory mediators. These findings have important implications for the preparation of medicinal mushrooms to prevent and treat human diseases.
Collapse
Affiliation(s)
- Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China
| | - Ya-Jing Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chih-Jung Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chuan-Sheng Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| | - Yun-Fei Ko
- Chang Gung Biotechnology Corporation, Taipei, Taiwan, Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, Republic of China
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Chang Gung Biotechnology Corporation, Taipei, Taiwan, Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY, USA
| |
Collapse
|
20
|
Huth TK, Staines D, Marshall-Gradisnik S. ERK1/2, MEK1/2 and p38 downstream signalling molecules impaired in CD56 dim CD16+ and CD56 bright CD16 dim/- natural killer cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. J Transl Med 2016; 14:97. [PMID: 27098723 PMCID: PMC4839077 DOI: 10.1186/s12967-016-0859-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/10/2016] [Indexed: 01/08/2023] Open
Abstract
Background Natural Killer (NK) cell effector functions are dependent on phosphorylation of the mitogen-activated protein kinases (MAPK) pathway to produce an effective immune response for the clearance of target cells infected with viruses, bacteria or malignantly transformed cells. Intracellular signals activating NK cell cytokine production and cytotoxic activity are propagated through protein phosphorylation of MAPKs including MEK1/2, ERK1/2, p38 and JNK. Reduced NK cell cytotoxic activity is consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients and intracellular signalling by MAPK in NK cells remains to be investigated. Therefore, the purpose of this paper was to investigate MAPK downstream signalling molecules in NK cell phenotypes from CFS/ME patients. Methods Flow cytometric protocols were used to measure phosphorylation of the MAPK pathway in CD56brightCD16dim/− and CD56dimCD16+ NK cells following stimulation with K562 tumour cells or phorbol-12-myristate-13-acetate plus ionomycin. NK cell cytotoxic activity, degranulation, lytic proteins and cytokine production were also measured as markers for CD56brightCD16dim/− and CD56dimCD16+ NK cell function using flow cytometric protocols. Results CFS/ME patients (n = 14) had a significant decrease in ERK1/2 in CD56dimCD16+ NK cells compared to the non-fatigued controls (n = 11) after incubation with K562 cells. CD56brightCD16dim/− NK cells from CFS/ME patients had a significant increase in MEK1/2 and p38 following incubation with K562 cells. Conclusions This is the first study to report significant differences in MAPK intracellular signalling molecules in CD56dimCD16+ and CD56brightCD16dim/− NK cells from CFS/ME patients. The current results highlight the importance of intracellular signalling through the MAPK pathway for synergistic effector function of CD56dimCD16+ and CD56brightCD16dim/− NK cells to ensure efficient clearance of target cells. In CFS/ME patients, dysfunctional MAPK signalling may contribute to reduced NK cell cytotoxic activity. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0859-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teilah Kathryn Huth
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, Australia.
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,School of Medical Science, Griffith University, Southport, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,School of Medical Science, Griffith University, Southport, QLD, Australia
| |
Collapse
|
21
|
Gamma/delta intraepithelial lymphocytes in the mouse small intestine. Anat Sci Int 2016; 91:301-12. [PMID: 27056578 DOI: 10.1007/s12565-016-0341-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
Abstract
Although many studies of intraepithelial lymphocytes (IELs) have been reported, most of them have focused on αβ-IELs; little attention has been paid to γδ-IELs. The function of γδ-IELs remains largely unclear. In this article, we briefly review a number of reports on γδ-IELs, especially those in the small intestine, along with our recent studies. We found that γδ-IELs are the most abundant (comprising >70 % of the) IELs in the duodenum and the jejunum, implying that it is absolutely necessary to investigate the function(s) of γδ-IELs when attempting to delineate the in vivo defense system of the small intestine. Intraperitoneal injection of anti-CD3 mAb stimulated the γδ-IELs and caused rapid degranulation of them. Granzyme B released from their granules induced DNA fragmentation of duodenal and jejunal epithelial cells (paracrine) and of the IELs themselves (autocrine). However, perforin (Pfn) was not detected, and DNA fragmentation was induced even in Pfn-knockout mice; our system was therefore found to present a novel type of in vivo Pfn-independent DNA fragmentation. We can therefore consider γδ-IELs to be a novel type of large granular lymphocyte without Pfn. Fragmented DNA was repaired in the cells, indicating that DNA fragmentation alone cannot be regarded as an unambiguous marker of cell death or apoptosis. Finally, since the response was so rapid and achieved without the need for accessory cells, it seems that γδ-IELs respond readily to various stimuli, are activated only once, and die 2-3 days after activation in situ without leaving their site. Taken together, these results suggest that γδ-IELs are not involved in the recognition of specific antigen(s) and are not involved in the resulting specific killing or exclusion of the relevant antigen(s).
Collapse
|
22
|
Quatrini L, Molfetta R, Zitti B, Peruzzi G, Fionda C, Capuano C, Galandrini R, Cippitelli M, Santoni A, Paolini R. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci Signal 2015; 8:ra108. [PMID: 26508790 DOI: 10.1126/scisignal.aab2724] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytotoxic lymphocytes share the presence of the activating receptor NK receptor group 2, member D (NKG2D) and the signaling-competent adaptor DNAX-activating protein 10 (DAP10), which together play an important role in antitumor immune surveillance. Ligand stimulation induces the internalization of NKG2D-DAP10 complexes and their delivery to lysosomes for degradation. In experiments with human NK cells and cell lines, we found that the ligand-induced endocytosis of NKG2D-DAP10 depended on the ubiquitylation of DAP10, which was also required for degradation of the internalized complexes. Moreover, through combined biochemical and microscopic analyses, we showed that ubiquitin-dependent receptor endocytosis was required for the activation of extracellular signal-regulated kinase (ERK) and NK cell functions, such as the secretion of cytotoxic granules and the inflammatory cytokine interferon-γ. These results suggest that NKG2D-DAP10 endocytosis represents a means to decrease cell surface receptor abundance, as well as to control signaling outcome in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Beatrice Zitti
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giovanna Peruzzi
- Istituto Italiano di Tecnologia, CLNS@Sapienza, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy. Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
23
|
NK cell function triggered by multiple activating receptors is negatively regulated by glycogen synthase kinase-3β. Cell Signal 2015; 27:1731-41. [PMID: 26022178 DOI: 10.1016/j.cellsig.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Activation of NK cells is triggered by combined signals from multiple activating receptors that belong to different families. Several NK cell activating receptors have been identified, but their role in the regulation of effector functions is primarily understood in the context of their individual engagement. Therefore, little is known about the signaling pathways broadly implicated by the multiple NK cell activation cues. Here we provide evidence pointing to glycogen synthase kinase (GSK)-3β as a negative regulator of multiple NK cell activating signals. Using an activation model that combines NKG2D and 2B4 and tests different signaling molecules, we found that GSK-3 undergoes inhibitory phosphorylation at regulatory serine residues by the engagement of NKG2D and 2B4, either individually or in combination. The extent of such phosphorylation was closely correlated with the degree of NK cell activation. NK cell functions, such as cytokine production and cytotoxicity, were consistently enhanced by the knockdown of GSK-3β or its inhibition with different pharmacological inhibitors, whereas inhibition of the GSK-3α isoform had no effect. In addition, NK cell function was augmented by the overexpression of a catalytically inactive form of GSK-3β. Importantly, the regulation of NK cell function by GSK-3β was common to diverse activating receptors that signal through both ITAM and non-ITAM pathways. Thus, our results suggest that GSK-3β negatively regulates NK cell activation and that modulation of GSK-3β function could be used to enhance NK cell activation.
Collapse
|
24
|
Ogata M, Ota Y, Nanno M, Suzuki R, Itoh T. Autocrine DNA fragmentation of intra-epithelial lymphocytes (IELs) in mouse small intestine. Cell Tissue Res 2015; 361:799-810. [PMID: 25750028 DOI: 10.1007/s00441-015-2151-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/31/2015] [Indexed: 11/27/2022]
Abstract
Intraepithelial lymphocytes (IELs) are present in the intestinal epithelium. Mechanisms of IELs for the protection of villi from foreign antigens and from infections by micro-organisms have not been sufficiently explained. Although more than 70% of mouse duodenal and jejunal IELs bear γδTCR (γδIELs), the functions of γδIELs are little investigated. We stimulate γδIELs by anti-CD3 monoclonal antibody (mAb) injection. The mAb activates γδIELs to release Granzyme B (GrB) into the spaces surrounding the γδIELs and intestinal villous epithelial cells (IECs). Released GrB induces DNA fragmentation in IECs independently of Perforin (Pfn). IECs immediately repair their fragmented DNA. Activated IELs reduce their cell size, remain for some time in the epithelium after the activation and are ultimately eliminated without leaving the site. We focus our attention on the response of IELs to the released GrB present in the gap surrounding IELs, after activation, in order to examine whether the released GrB has a similar effect on IELs to that observed on IECs in our previous studies. DNA fragmentation is also induced in IELs together with the repair of fragmented DNA thereafter. The time-kinetics of both events were found to be identical to those observed in IECs. DNA fragmentation in IELs is Pfn-independent. Here, we present Pfn-independent "autocrine DNA fragmentation" in IELs and the repair of fragmented DNA in IELs and discuss their biological significance. Autocrine DNA fragmentation has never been reported to date in vivo.
Collapse
Affiliation(s)
- Masaki Ogata
- Division of Immunology and Embryology, Department of Cell Biology, Tohoku University School of Medicine, 980-8575, Sendai, Japan,
| | | | | | | | | |
Collapse
|
25
|
Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B. Biochem Biophys Res Commun 2015; 456:799-803. [DOI: 10.1016/j.bbrc.2014.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 11/20/2022]
|
26
|
Therapeutic activity of multiple common γ-chain cytokine inhibition in acute and chronic GVHD. Blood 2014; 125:570-80. [PMID: 25352130 DOI: 10.1182/blood-2014-06-581793] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The common γ chain (CD132) is a subunit of the interleukin (IL) receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Because levels of several of these cytokines were shown to be increased in the serum of patients developing acute and chronic graft-versus-host disease (GVHD), we reasoned that inhibition of CD132 could have a profound effect on GVHD. We observed that anti-CD132 monoclonal antibody (mAb) reduced acute GVHD potently with respect to survival, production of tumor necrosis factor, interferon-γ, and IL-6, and GVHD histopathology. Anti-CD132 mAb afforded protection from GVHD partly via inhibition of granzyme B production in CD8 T cells, whereas exposure of CD8 T cells to IL-2, IL-7, IL-15, and IL-21 increased granzyme B production. Also, T cells exposed to anti-CD132 mAb displayed a more naive phenotype in microarray-based analyses and showed reduced Janus kinase 3 (JAK3) phosphorylation upon activation. Consistent with a role of JAK3 in GVHD, Jak3(-/-) T cells caused less severe GVHD. Additionally, anti-CD132 mAb treatment of established chronic GVHD reversed liver and lung fibrosis, and pulmonary dysfunction characteristic of bronchiolitis obliterans. We conclude that acute GVHD and chronic GVHD, caused by T cells activated by common γ-chain cytokines, each represent therapeutic targets for anti-CD132 mAb immunomodulation.
Collapse
|
27
|
Ardolino M, Azimi CS, Iannello A, Trevino TN, Horan L, Zhang L, Deng W, Ring AM, Fischer S, Garcia KC, Raulet DH. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest 2014; 124:4781-94. [PMID: 25329698 DOI: 10.1172/jci74337] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
Various cytokines have been evaluated as potential anticancer drugs; however, most cytokine trials have shown relatively low efficacy. Here, we found that treatments with IL-12 and IL-18 or with a mutant form of IL-2 (the "superkine" called H9) provided substantial therapeutic benefit for mice specifically bearing MHC class I-deficient tumors, but these treatments were ineffective for mice with matched MHC class I+ tumors. Cytokine efficacy was linked to the reversal of the anergic state of NK cells that specifically occurred in MHC class I-deficient tumors, but not MHC class I+ tumors. NK cell anergy was accompanied by impaired early signal transduction and was locally imparted by the presence of MHC class I-deficient tumor cells, even when such cells were a minor population in a tumor mixture. These results demonstrate that MHC class I-deficient tumor cells can escape from the immune response by functionally inactivating NK cells, and suggest cytokine-based immunotherapy as a potential strategy for MHC class I-deficient tumors. These results suggest that such cytokine therapies would be optimized by stratification of patients. Moreover, our results suggest that such treatments may be highly beneficial in the context of therapies to enhance NK cell functions in cancer patients.
Collapse
|
28
|
Celada LJ, Whalen MM. Effects of butyltins on mitogen-activated-protein kinase kinase kinase and Ras activity in human natural killer cells. J Appl Toxicol 2014; 34:1002-11. [PMID: 24038145 PMCID: PMC3868639 DOI: 10.1002/jat.2921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/10/2013] [Accepted: 07/21/2013] [Indexed: 01/05/2023]
Abstract
Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT) diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 min of TBT exposure and the MAP3K, ASK1, after 1 h exposures to TBT. In addition, our results suggest that both TBT and DBT affect the regulation of c-Raf.
Collapse
Affiliation(s)
- Lindsay J Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | |
Collapse
|
29
|
Lu CC, Wu TS, Hsu YJ, Chang CJ, Lin CS, Chia JH, Wu TL, Huang TT, Martel J, Ojcius DM, Young JD, Lai HC. NK cells kill mycobacteria directly by releasing perforin and granulysin. J Leukoc Biol 2014; 96:1119-29. [DOI: 10.1189/jlb.4a0713-363rr] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
30
|
Brehm C, Huenecke S, Esser R, Kloess S, Quaiser A, Betz S, Zimmermann O, Soerensen J, Passweg JR, Klingebiel T, Schwabe D, Bader P, Koehl U. Interleukin-2-stimulated natural killer cells are less susceptible to mycophenolate mofetil than non-activated NK cells: possible consequences for immunotherapy. Cancer Immunol Immunother 2014; 63:821-33. [PMID: 24806448 PMCID: PMC11028798 DOI: 10.1007/s00262-014-1556-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/22/2014] [Indexed: 01/05/2023]
Abstract
In a clinical phase I/II trial, pediatric patients with high-risk malignancies were treated with ex vivo IL-2-stimulated donor natural killer (NK) cells after transplantation with haploidentical stem cells. To evaluate the potential negative effects of the immunosuppressive drug mycophenolate mofetil (MMF) used for immunotherapy, the functionality and signaling of ex vivo NK cells was investigated. Our results show that during NK cell expansion, long-term (9 days) incubation with mycophenolic acid (MPA), the active metabolite of MMF, in therapeutically relevant concentrations led to the severe inhibition of NK cell proliferation. This correlated with a significantly reduced cytokine/chemokine secretion and the inhibited acquisition of surface receptors regarding cytotoxicity (e.g., NKp30, NKp44, NKp46, NKG2D), adhesion/migration (e.g., ICAM-1/CD54, LFA-1/CD11a, CD62L, CXCR3) and activation (e.g., CD25). Moreover, MPA prevented phosphorylation of the central signaling molecules STAT-3/-4/-5, AKT and ERK1/2. In contrast, short-term (24 h) MPA incubation of IL-2-stimulated NK cells had no or only marginal effects on the activated NK cell phenotype, including receptor expression, cytokine/chemokine secretion and intracellular signaling. Further, short-term MPA incubation only moderately affected the highly cytotoxic activity of previously IL-2-stimulated NK cells. In conclusion, while long-term MPA incubation significantly compromised ex vivo NK cell functionality, previously IL-2-activated NK cells seemed to be rather resistant to short-term MPA treatment. This finding supports the use of IL-2-activated NK cells as immunotherapy, especially for patients treated with MMF after haploidentical stem cell transplantation.
Collapse
Affiliation(s)
- Claudia Brehm
- Clinic for Pediatric and Adolescent Medicine, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nandagopal N, Ali AK, Komal AK, Lee SH. The Critical Role of IL-15-PI3K-mTOR Pathway in Natural Killer Cell Effector Functions. Front Immunol 2014; 5:187. [PMID: 24795729 PMCID: PMC4005952 DOI: 10.3389/fimmu.2014.00187] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells were so named for their uniqueness in killing certain tumor and virus-infected cells without prior sensitization. Their functions are modulated in vivo by several soluble immune mediators; interleukin-15 (IL-15) being the most potent among them in enabling NK cell homeostasis, maturation, and activation. During microbial infections, NK cells stimulated with IL-15 display enhanced cytokine responses. This priming effect has previously been shown with respect to increased IFN-γ production in NK cells upon IL-12 and IL-15/IL-2 co-stimulation. In this study, we explored if this effect of IL-15 priming can be extended to various other cytokines and observed enhanced NK cell responses to stimulation with IL-4, IL-21, IFN-α, and IL-2 in addition to IL-12. Notably, we also observed elevated IFN-γ production in primed NK cells upon stimulation through the Ly49H activation receptor. Currently, the fundamental processes required for priming and whether these signaling pathways work collaboratively or independently for NK cell functions are poorly understood. To identify the key signaling events for NK cell priming, we examined IL-15 effects on NK cells in which the pathways emanating from IL-15 receptor activation were blocked with specific inhibitors. Our results demonstrate that the PI3K–AKT–mTOR pathway is critical for cytokine responses in IL-15 primed NK cells. Furthermore, this pathway is also implicated in a broad range of IL-15-induced NK cell effector functions such as proliferation and cytotoxicity. Likewise, NK cells from mice treated with rapamycin to block the mTOR pathway displayed defects in proliferation, and IFN-γ and granzyme B productions resulting in elevated viral burdens upon murine cytomegalovirus infection. Taken together, our data demonstrate the requirement of PI3K–mTOR pathway for enhanced NK cell functions by IL-15, thereby coupling the metabolic sensor mTOR to NK cell anti-viral responses.
Collapse
Affiliation(s)
- Neethi Nandagopal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Amandeep Kaur Komal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
32
|
Chang CJ, Chen YYM, Lu CC, Lin CS, Martel J, Tsai SH, Ko YF, Huang TT, Ojcius DM, Young JD, Lai HC. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin. Innate Immun 2013; 20:301-11. [PMID: 23803412 DOI: 10.1177/1753425913491789] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) is a medicinal mushroom long used in Asia as a folk remedy to promote health and longevity. Recent studies indicate that G. lucidum activates NK cells, but the molecular mechanism underlying this effect has not been studied so far. To address this question, we prepared a water extract of G. lucidum and examined its effect on NK cells. We observed that G. lucidum treatment increases NK cell cytotoxicity by stimulating secretion of perforin and granulysin. The mechanism of activation involves an increased expression of NKG2D and natural cytotoxicity receptors (NCRs), as well as increased phosphorylation of intracellular MAPKs. Our results indicate that G. lucidum induces NK cell cytotoxicity against various cancer cell lines by activating NKG2D/NCR receptors and MAPK signaling pathways, which together culminate in exocytosis of perforin and granulysin. These observations provide a cellular and molecular mechanism to account for the reported anticancer effects of G. lucidum extracts in humans.
Collapse
Affiliation(s)
- Chih-Jung Chang
- 1Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Meng M, Li C, Chen D, Wang Z, Hong Y, Chen H, Li X, Zhang J, Wang FS. Novel synthetic immunostimulators with a thiazolidin-4-one ring promote the cytotoxicity of human NK Cells via ERK1/2 activation in vitro. Int Immunopharmacol 2013; 15:655-60. [DOI: 10.1016/j.intimp.2013.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/03/2013] [Accepted: 02/19/2013] [Indexed: 11/27/2022]
|
34
|
Zhang QB, Sun HC, Zhang KZ, Jia QA, Bu Y, Wang M, Chai ZT, Zhang QB, Wang WQ, Kong LQ, Zhu XD, Lu L, Wu WZ, Wang L, Tang ZY. Suppression of natural killer cells by sorafenib contributes to prometastatic effects in hepatocellular carcinoma. PLoS One 2013; 8:e55945. [PMID: 23409093 PMCID: PMC3568028 DOI: 10.1371/journal.pone.0055945] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/03/2013] [Indexed: 01/17/2023] Open
Abstract
Sorafenib, a multi-tyrosine kinase inhibitor, is a standard treatment for advanced hepatocellular carcinoma (HCC). The present study was undertaken to determine whether the growth and metastasis of HCC were influenced in mice receiving sorafenib prior to implantation with tumors, and to investigate the in-vivo and in-vitro effect of sorafenib on natural killer (NK) cells. In sorafenib-pretreated BALB/c nu/nu mice and C57BL/6 mice, tumor growth was accelerated, mouse survival was decreased, and lung metastasis was increased. However, the depletion of NK1.1+ cells in C57BL/6 mice eliminated sorafenib-mediated pro-metastatic effects. Sorafenib significantly reduced the number of NK cells and inhibited reactivity of NK cells against tumor cells, in both tumor-bearing and tumor-free C57BL/6 mice. Sorafenib down-regulated the stimulatory receptor CD69 in NK cells of tumor-bearing mice, but not in tumor-free mice, and inhibited proliferation of NK92-MI cells, which is associated with the blocking of the PI3K/AKT pathway, and inhibited cytotoxicity of NK cells in response to tumor targets, which was due to impaired ERK phosphorylation. These results suggest immunotherapeutic approaches activating NK cells may enhance the therapeutic efficacy of sorafenib in HCC patients.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/toxicity
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Humans
- Immunocompromised Host
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/toxicity
- K562 Cells
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Neoplasm Metastasis
- Niacinamide/administration & dosage
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Phenylurea Compounds/administration & dosage
- Phenylurea Compounds/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Signal Transduction/drug effects
- Sorafenib
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qiang-Bo Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Hui-Chuan Sun
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Ke-Zhi Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Qing-An Jia
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Yang Bu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Miao Wang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Zong-Tao Chai
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Quan-Bao Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Wen-Quan Wang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Ling-Qun Kong
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Xiao-dong Zhu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Lu Lu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Wei-Zhong Wu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Lu Wang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
35
|
Granzyme B-dependent and perforin-independent DNA fragmentation in intestinal epithelial cells induced by anti-CD3 mAb-activated intra-epithelial lymphocytes. Cell Tissue Res 2013; 352:287-300. [PMID: 23361111 DOI: 10.1007/s00441-012-1549-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022]
Abstract
We previously found that an i.p. injection of anti-CD3 monoclonal antibody (mAb) into mice caused DNA fragmentation in the intestinal villous epithelial cells (IVECs) of the duodenum and the jejunum. In this study, in order to elucidate the mechanism of DNA fragmentation in IVECs, we searched for the inducer(s) of DNA fragmentation by using immunohistochemistry. The release of cytoplasmic granules from intraepithelial lymphocytes (IELs) and the formation of large gaps between IELs and IVECs were observed electron microscopically after antibody administration. The presence and distribution pattern of Granzyme B (GrB), a serine protease in cytolytic granules present in cytotoxic T lymphocytes and natural killer cells and considered to be the responsible molecule for DNA fragmentation in target cells, was examined in detail in intestinal villi by immunohistology. GrB was detected in cytoplasmic granules in nearly all IELs. The time-kinetics of granule release from IELs after mAb injection coincided not only with that of the extracellular diffusion of GrB, but also with that of DNA fragmentation in IVECs. On the other hand, perforin (Pfn), assumed to cooperate with GrB in DNA fragmentation, could not be detected in IELs, and its release was not confirmed after the anti-CD3 mAb injection. Anti-CD3 mAb injection also induced DNA fragmentation in IVECs in Pfn-knockout mice. These results support the notion that DNA fragmentation in IVECs by the stimulated IELs in the present study is induced by a mechanism involving GrB, but independent of Pfn.
Collapse
|
36
|
Hassold N, Seystahl K, Kempf K, Urlaub D, Zekl M, Einsele H, Watzl C, Wischhusen J, Seggewiss-Bernhardt R. Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. Int J Cancer 2012; 131:E916-27. [PMID: 22419518 DOI: 10.1002/ijc.27537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/28/2012] [Indexed: 11/06/2022]
Abstract
As NK cell immunotherapy is still poorly successful, combinations with drugs enhancing NK cell activity are of major interest. NK large granular lymphocyte expansions associated with improved survival have been described under monotherapy with the Bcr-Abl/Src inhibitor dasatinib, which inhibits NK cell functions in vitro. As Src kinases play a major role in inhibitory and activating signaling pathways of NK cells, both outcomes appear plausible. To clarify these contradictory observations and potentially enable the use of dasatinib as adjuvant, we analyzed how clinically relevant doses promote NK cell effector functions. Polyclonal human NK cells were studied ex vivo. Functional outcomes assessed included conjugate formation, calcium flux, receptor regulation, cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction. While dasatinib inhibits NK cell effector functions during functional assays, 24 hr pretreatment of NK cells followed by washout of dasatinib, led to dose-dependent enhancement of cytokine production, degranulation marker expression and cytotoxicity against selected lymphoma and leukemia cell lines. Mechanistically, this was neither due to an altered viability of NK cells nor increased NKG2D, LFA-1 or conjugate formation with target cells. Receptor proximal signaling events were inhibited. However, a slight time dependent enhancement of Vav phosphorylation was observed under certain circumstances. The shift in Vav phosphorylation level may be one major mechanism for NK cell activity enhancement induced by dasatinib. Our findings argue for a careful timing and dosing of dasatinib application during leukemia/lymphoma treatment to enhance NK cell immunotherapeutic efforts.
Collapse
Affiliation(s)
- Nicole Hassold
- Immune Recovery Section, Comprehensive Cancer Center, Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Perkovic S, Basic-Kinda S, Gasparovic V, Krznaric Z, Babel J, Ilic I, Aurer I, Batinic D. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2. Hematol Rep 2012; 4:e16. [PMID: 23087805 PMCID: PMC3475938 DOI: 10.4081/hr.2012.e16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 11/22/2022] Open
Abstract
Aggressive natural killer-cell leukaemia (ANKL) is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV) and P-glycoprotein (P-gp) expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56(+) NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.
Collapse
Affiliation(s)
- Sanja Perkovic
- Department of Laboratory Diagnostics, Division of Immunology and Department of Internal Medicine
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Varchetta S, Mele D, Mantovani S, Oliviero B, Cremonesi E, Ludovisi S, Michelone G, Alessiani M, Rosati R, Montorsi M, Mondelli MU. Impaired intrahepatic natural killer cell cytotoxic function in chronic hepatitis C virus infection. Hepatology 2012; 56:841-9. [PMID: 22431186 DOI: 10.1002/hep.25723] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/06/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) persistence in the host results from inefficiencies of innate and adaptive immune responses. Most studies addressing the role of innate immunity concentrated on peripheral blood (PB) natural killer (NK) cells, whereas only limited information is available on intrahepatic (IH) NK cells. We therefore examined phenotypic and functional features of IH and PB NK cells in paired liver biopsy and venous blood samples from 70 patients with chronic HCV infection and 26 control persons subjected to cholecystectomy for gallstones as controls. Ex vivo isolated IH NK cells from HCV-infected patients displayed unique phenotypic features, including increased expression of NKp46-activating receptor in the face of reduced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cluster of differentiation (CD) 107a expression, which resulted in impaired degranulation compared with controls. To gain insights into the effect of HCV on NK cells, we exposed peripheral blood mononuclear cells (PBMCs) from patients and healthy donors to cell-culture-derived HCV (HCVcc) and measured NK cell degranulation, TRAIL, and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression. Exposure of PBMCs to HCVcc significantly boosted NK degranulation, pERK1/2, and TRAIL expression in healthy donors, but not in patients with chronic HCV infection, a defect that was completely reversed by interferon-alpha. Purified NK cells showed a minimal, though significant, increase in degranulation and TRAIL expression, both in patients and controls, after exposure to HCVcc. CONCLUSIONS These findings indicate dysfunctional IH NK cell cytotoxicity associated with TRAIL down-regulation in chronic HCV infection, which may contribute to virus persistence. PB NK cell impairment upon exposure to HCVcc suggests the existence of an accessory cell-dependent NK cell lytic defect in chronic HCV infection predominantly involving the TRAIL pathway.
Collapse
Affiliation(s)
- Stefania Varchetta
- Research Laboratories Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lai HC, Chang CJ, Yang CH, Hsu YJ, Chen CC, Lin CS, Tsai YH, Huang TT, Ojcius DM, Tsai YH, Lu CC. Activation of NK cell cytotoxicity by the natural compound 2,3-butanediol. J Leukoc Biol 2012; 92:807-14. [PMID: 22802446 DOI: 10.1189/jlb.0112024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The natural compound 2,3-BTD has diverse physiological effects in a range of organisms, including acting as a detoxifying product of liver alcohol metabolism in humans and ameliorating endotoxin-induced acute lung injury in rats. In this study, we reveal that 2,3-BTD enhances NK cell cytotoxic activity in human pNK cells and NK92 cells. Treatment of NK cells with 2,3-BTD increased perforin expression in a dose-dependent manner. This was accompanied by elevated JNK and ERK1/2 MAPK activities and enhanced expression of NKG2D/NCRs, upstream signaling molecules of the MAPK pathways. The 2,3-BTD effect was inhibited by pretreatment with inhibitors of JNK (SP) or ERK1/2 (PD) or by depleting NKG2D/NCRs or JNK1 or ERK2 with siRNA. These results indicate that 2,3-BTD activates NK cell cytotoxicity by NKG2D/NCR pathways and represent the first report of the 2,3-BTD effect on activation of innate immunity cells.
Collapse
Affiliation(s)
- Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen Y, Wang Y, Zhuang Y, Zhou F, Huang L. Mifepristone increases the cytotoxicity of uterine natural killer cells by acting as a glucocorticoid antagonist via ERK activation. PLoS One 2012; 7:e36413. [PMID: 22563497 PMCID: PMC3341349 DOI: 10.1371/journal.pone.0036413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/09/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mifepristone (RU486), a potent antagonist of progesterone and glucocorticoids, is involved in immune regulation. Our previous studies demonstrated that mifepristone directly augments the cytotoxicity of human uterine natural killer (uNK) cells. However, the mechanism responsible for this increase in cytotoxicity is not known. Here, we explored whether the increased cytotoxicity in uNK cells produced by mifepristone is due to either anti-progesterone or anti-glucocorticoid activity, and also investigated relevant changes in the mitogen-activated protein kinase (MAPK) pathway. METHODOLOGY/PRINCIPAL FINDINGS Uterine NK cells were isolated from decidual samples and incubated with different concentrations of progesterone, cortisol, or mifepristone. The cytotoxicity and perforin expression of uNK cells were detected by mitochondrial lactate dehydrogenase-based MTS staining and flow cytometry assays, respectively. Phosphorylation of components of the MAPK signaling pathway was detected by Western blot. Cortisol attenuated uNK cell-mediated cytotoxicity in a concentration-dependent manner whereas progesterone had no effect. Mifepristone alone increased the cytotoxicity and perforin expression of uNK cells; these effects were blocked by cortisol. Furthermore, mifepristone increased the phosphorylation of ERK1/2 in a cortisol-reversible manner. Specific ERK1/2 inhibitor PD98059 or U0126 blocked cortisol- and mifepristone-induced responses in uNK cells. CONCLUSIONS/SIGNIFICANCE These results suggest that mifepristone acts as a glucocorticoid antagonist to augment uNK cell-mediated cytotoxicity via ERK activation, which may be caused by increased perforin expression. These observations may reveal an important mechanism by which mifepristone upregulates the cytotoxicity of uNK cells.
Collapse
Affiliation(s)
- Yuezhou Chen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Wang
- Department of Gastroenterology, Taihe Hospital, Hubei Medical University, Shiyan, Hubei, People's Republic of China
| | - Yaling Zhuang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Feng Zhou
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lili Huang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
41
|
Ito M, Zhao N, Zeng Z, Zhou X, Chang CC, Zu Y. Interleukin-2 Functions in Anaplastic Large Cell Lymphoma Cells through Augmentation of Extracellular Signal-Regulated Kinases 1/2 Activation. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2011; 7:181-90. [PMID: 23675235 PMCID: PMC3614832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/08/2011] [Indexed: 11/04/2022]
Abstract
In addition to intrinsic genetic alterations, the effects of the extrinsic microenvironment also play a pathological role in cancer development. Altered chemokine/cytokine networks in the tumor microenvironment may contribute to the dysregulation of cellular functions in cancer cells. Anaplastic large cell lymphoma (ALCL) is an aggressive T-cell lymphoma caused by abnormal expression of anaplastic lymphoma kinase due to a chromosomal translocation. Notably, ALCL cells are also characterized by high-level expression of the high-affinity IL-2 receptor subunit CD25 on the cell surface. However, whether the IL-2/IL-2 receptor functions in ALCL cells and how this signaling affects the tumor remain unclear. In this study, we treated cultured ALCL cells with exogenous IL-2 and examined changes in cellular function and signaling pathways. IL-2 stimulated cell growth and augmented activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) pathway. Additionally, IL-2 enhanced lymphoma cell survival by overcoming kinase inhibitor U0126-induced growth arrest and apoptosis. Subsequently, to identify the potential source of IL-2 for lymphoma cells in vivo, we performed gene expression and immunochemical analyses. RT-PCR revealed no IL-2 gene expression in cultured ALCL cells and ruled out the possibility of an IL-2 autocrine loop. Interestingly, immunostaining of lymphoma tumor tissues showed IL-2 protein expression in background cells within tumor tissue, but not in ALCL cells. Our findings demonstrate that IL-2 signaling plays a functional role in ALCL cells, and enhances lymphoma cell survival by increasing activation of the ERK1/2 pathway.
Collapse
|
42
|
Taylor TR, Whalen MM. Ziram activates mitogen-activated protein kinases and decreases cytolytic protein levels in human natural killer cells. Toxicol Mech Methods 2011; 21:577-84. [PMID: 21859362 DOI: 10.3109/15376516.2011.578170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human natural killer (NK) cells are central in immune defense with their ability to lyse tumor cells and virally infected cells. Tumor formation and viral infection may increase if NK cytotoxic function is disrupted. Ziram (zinc dithiocarbamate) is used as an accelerating agent in the production of latex and to protect various fruits and vegetables from fungal infection. Previously, we have shown that exposure to ziram inhibits NK lytic function. Butyltin environmental contaminants, which also inhibit NK lytic function, cause rapid activations of mitogen-activated protein kinases (MAPKs) and decreases in expression of the cytolytic proteins granzyme B and perforin (after 24 h) in exposed NK cells. MAPKs are important regulators of the lytic response of NK cells, and spurious activation of these enzymes by contaminants would leave the NK cells unable to respond to appropriate targets. This study examined the effects of ziram exposures on MAPKs (p44/42, p38, and c-jun-N-terminal kinase) and on levels of cytolytic proteins. Ten-minute to 6-h exposures of NK cells to ziram caused activation of MAPKs, p44/42, and p38. Exposure to ziram for 24 h caused a decrease in granzyme B and perforin levels. MAPK inhibitors were able to prevent these ziram-induced decreases in granzyme B and perforin. These results suggest that ziram-induced MAPK activation is at least in part responsible for decreased cytolytic function in ziram-exposed NK cells. Furthermore, the results indicate that these changes are in common with other environmental contaminants that have been shown to decrease NK lytic function.
Collapse
Affiliation(s)
- Thyneice R Taylor
- Department of Biological Sciences, Tennessee State University , Nashville, TN 37209 , USA
| | | |
Collapse
|
43
|
Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood 2011; 118:3254-62. [PMID: 21803852 DOI: 10.1182/blood-2010-12-325324] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major issue in immunosuppressive biotherapy is the use of mesenchymal stem cells (MSCs) that harbor regulatory capacity. However, currently used bone marrow-derived MSCs (BM-MSCs) are short-lived and cannot assure long lasting immunoregulatory function both in vitro and in vivo. Consequently, we have generated MSCs from human induced pluripotent stem (IPS-MSCs) cells that share similar properties with embryonic stem cells (ES-MSCs). Herein, we compared the immunoregulatory properties of ES/IPS-MSCs with those of BM-MSCs and showed, for the first time, that IPS-derived MSCs display remarkable inhibition of NK-cell proliferation and cytolytic function in a similar way to ES-MSCs. Both MSCs disrupt NK-cell cytolytic machinery in the same fashion that BM-MSCs, by down-regulating the expression of different activation markers and ERK1/2 signaling, leading to an impairment to form immunologic synapses with target cells and, therefore, secretion of cytotoxic granules. In addition, they are more resistant than adult BM-MSCs to preactivated NK cells. IPS-MSCs could represent an attractive alternative source of immunoregulatory cells, and their capacity to impair NK-cell cytotoxicity constitutes a complex mechanism to prevent allograft rejection.
Collapse
|
44
|
Wagner MCE. The therapeutic potential of adenosine triphosphate as an immune modulator in the treatment of HIV/AIDS: a combination approach with HAART. Curr HIV Res 2011; 9:209-22. [PMID: 21675943 PMCID: PMC3343418 DOI: 10.2174/157016211796320289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/27/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host's own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection.
Collapse
|
45
|
Abstract
The ability of natural killer (NK) cells to kill malignant or infected cells depends on the integration of signals from different families of cell surface receptors, including cytokine receptors. How such signals then regulate NK-cell cytotoxicity is incompletely understood. Here we analyzed an endogenous inhibitor of protein phosphatase 2A (PP2A) activity called SET, and its role in regulating human NK-cell cytotoxicity and its mechanism of action in human NK cells. RNAi-mediated suppression of SET down-modulates NK-cell cytotoxicity, whereas ectopic overexpression of SET enhances cytotoxicity. SET knockdown inhibits both mRNA and protein granzyme B expression, as well as perforin expression, whereas SET overexpression enhances granzyme B expression. Treatment of NK cells with the PP2A activator 1,9-dideoxy-forskolin also inhibits both granzyme B expression and cytotoxicity. In addition, pretreatment with the PP2A inhibitor okadaic acid rescues declining granzyme B mRNA levels in SET knockdown cells. Down-modulation of SET expression or activation of PP2A also decreases human NK-cell antibody-dependent cellular cytotoxicity. Finally, the induction of granzyme B gene expression by interleukin-2 and interleukin-15 is inhibited by SET knockdown. These data provide evidence that granzyme B gene expression and therefore human NK-cell cytotoxicity can be regulated by the PP2A-SET interplay.
Collapse
|
46
|
Dudimah FD, Abraha A, Wang X, Whalen MM. Activation of p44/42 in human natural killer cells decreases cell-surface protein expression: Relationship to tributyltin-induced alterations of protein expression. Toxicol Mech Methods 2010; 20:544-55. [PMID: 20883105 PMCID: PMC2962685 DOI: 10.3109/15376516.2010.518174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, this study investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously it was shown that PMA caused losses of lytic function similar to those seen with TBT exposures. This study examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged, and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56.
Collapse
Affiliation(s)
- Fred D Dudimah
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | | | |
Collapse
|
47
|
Das A, Long EO. Lytic granule polarization, rather than degranulation, is the preferred target of inhibitory receptors in NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:4698-704. [PMID: 20833835 PMCID: PMC3842026 DOI: 10.4049/jimmunol.1001220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural cytotoxicity is achieved by polarized release of perforin and granzymes at the NK cell-target cell immunological synapse. Signals for granule polarization and degranulation can be uncoupled in NK cells, which raises the question of their respective sensitivity to inhibitory receptors. Expression of either HLA-C or HLA-E on the human cell line 721.221 blocked granule polarization, degranulation, and CD16-dependent MIP-1α secretion by NK cell clones that expressed inhibitory receptors of matching HLA specificity. To test inhibition of signals for polarization and degranulation separately, Drosophila S2 cells expressing ICAM-1 with either HLA-C or HLA-E were used. CD16-dependent degranulation and MIP-1α secretion were not fully inhibited, suggesting that other receptor-ligand interactions, which occur with 721.221 cells, contribute to inhibition. In contrast, HLA-C or HLA-E on S2 cells coexpressing ICAM-1 or ULBP1 were sufficient to block granule polarization induced by either LFA-1 or NKG2D, even during concomitant CD16-dependent degranulation. Similarly, expression of a ligand for NKR-P1A on S2 cells inhibited granule polarization but not CD16-induced degranulation. Therefore, granule polarization, rather than degranulation, is the preferred target of inhibitory receptors in NK cells.
Collapse
Affiliation(s)
- Asmita Das
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
48
|
Odman-Ghazi SO, Abraha A, Isom ET, Whalen MM. Dibutyltin activates MAP kinases in human natural killer cells, in vitro. Cell Biol Toxicol 2010; 26:469-79. [PMID: 20333459 PMCID: PMC2892640 DOI: 10.1007/s10565-010-9157-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/25/2010] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that dibutyltin (DBT) interferes with the function of human natural killer (NK) cells, diminishing their capacity to destroy tumor cells, in vitro. DBT is a widespread environmental contaminant and has been found in human blood. As NK cells are our primary immune defense against tumor cells, it is important to understand the mechanism by which DBT interferes with their function. The current study examines the effects of DBT exposures on key enzymes in the signaling pathway that regulates NK responsiveness to tumor cells. These include several protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), and mitogen-activated protein kinase kinases (MAP2Ks). The results showed that in vitro exposures of NK cells to DBT had no effect on PTKs. However, exposures to DBT for as little as 10 min were able to increase the phosphorylation (activation) of the MAPKs. The DBT-induced activations of these MAPKs appear to be due to DBT-induced activations of the immediate upstream activators of the MAPKs, MAP2Ks. The results suggest that DBT-interference with the MAPK signaling pathway is a consequence of DBT exposures, which could account for DBT-induced decreases in NK function.
Collapse
Affiliation(s)
- Sabah O. Odman-Ghazi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Abraham Abraha
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Erica Taylor Isom
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209
| |
Collapse
|
49
|
Salih J, Hilpert J, Placke T, Grünebach F, Steinle A, Salih HR, Krusch M. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 2010; 127:2119-28. [PMID: 20143399 DOI: 10.1002/ijc.25233] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In chronic myeloid leukemia (CML), BCR/ABL-mediated oncogenic signaling can be targeted with the BCR/ABL-inhibitors Imatinib, Nilotinib and Dasatinib. However, these agents may also affect anti-tumor immunity. Here, we analyzed the effects of the 3 BCR/ABL-inhibitors on natural killer (NK) cell reactivity. Exposure of CML cells (K562, Meg-01) to pharmacological concentrations of Imatinib, Nilotinib and Dasatinib diminished expression of ligands for the activating immunoreceptor NKG2D to a similar extent. This resulted in comparably reduced NK cell cytotoxicity and IFN-gamma production. When direct effects on NK cell responses to K562 and primary CML cells as well as activating cytokines were studied, Dasatinib was found to abrogate NK cytotoxicity and cytokine production. Nilotinib did not alter cytotoxicity but, at high levels, impaired NK cytokine production, while Imatinib had no direct influence on NK cell reactivity. Of note, Nilotinib, but not the other BCR/ABL-inhibitors increased cell death within the preferentially cytokine-secreting CD56(bright)CD16(-) NK cell subset, which may, at least in part, serve to explain the effect of Nilotinib on NK cytokine production. Analysis of NK cell signaling revealed that Dasatinib inhibited proximal signaling events leading to decreased phosphorylation of PI3K and ERK that are crucial for NK cell reactivity. Imatinib and Nilotinib, in contrast, showed no relevant effect on NK cell PI3K or ERK activity. In light of the potential role of NK cells in the immunesurveillance of residual leukemia and for future combinatory immunotherapeutic approaches, our data indicate that choice and dosing of the most suitable BCR/ABL-inhibitor for a given patient require careful consideration.
Collapse
Affiliation(s)
- Julia Salih
- Department of Hematology/Oncology, Eberhard-Karls-University, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 2010; 16:4583-94. [PMID: 20702612 DOI: 10.1158/1078-0432.ccr-10-0733] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Myeloid-derived suppressor cells (MDSC) accumulate in tumor-bearing hosts and are associated with immune suppression. To date, there have only been few studies that evaluate the direct effect of chemotherapeutic agents on MDSCs. Agents that inhibit MDSCs may be useful in the treatment of patients with various cancers. EXPERIMENTAL DESIGN We investigated the in vivo effects of docetaxel on immune function in 4T1-Neu mammary tumor-bearing mice to examine if a favorable immunomodulatory effect accompanies tumor suppression. Primary focus was on the differentiation status of MDSCs and their ability to modulate T-cell responses. RESULTS Docetaxel administration significantly inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC proportion in the spleen. The treatment also selectively increased CTL responses. Docetaxel-pretreated MDSCs cocultured with OT-II splenocytes in the presence of OVA(323-339) showed OT-II-specific CD4 activation and expansion in vitro. In characterizing the phenotype of MDSCs for M1 (CCR7) and M2 [mannose receptor (CD206)] markers, MDSCs from untreated tumor bearers were primarily MR(+) with few CCR7(+) cells. Docetaxel treatment polarized MDSCs toward an M1-like phenotype, resulting in 40% of MDSCs expressing CCR7 in vivo and in vitro, and macrophage differentiation markers such as MHC class II, CD11c, and CD86 were upregulated. Interestingly, docetaxel induced cell death selectively in MR(+) MDSCs while sparing the M1-like phenotype. Finally, inhibition of signal transducer and activator of transcription 3 may in part be responsible for the observed results. CONCLUSIONS These findings suggest potential clinical benefit for the addition of docetaxel to current immunotherapeutic protocols.
Collapse
Affiliation(s)
- Krithika N Kodumudi
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|