1
|
Cordes M, Pike-Overzet K, van Eggermond M, Vloemans S, Baert MR, Garcia-Perez L, Staal FJT, Reinders MJT, van den Akker EB. ImSpectR - R package to quantify immune repertoire diversity in spectratype and repertoire sequencing data. Bioinformatics 2019; 36:btz804. [PMID: 31665245 PMCID: PMC7703782 DOI: 10.1093/bioinformatics/btz804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 11/29/2022] Open
Abstract
SUMMARY An effective immune system is characterized by a diverse immune repertoire. There is a strong demand for accurate and quantitative methods to assess the diversity of the immune repertoire for various (pre-)clinical applications, including the diagnosis and prognosis of primary immune deficiencies, or to assess the response to therapy. Current strategies for immune diversity assessment generally comprise the visual inspection of the length distribution of rearranged T- and B-cell receptors. Visual inspections, however, are prone to subjective assessments and thus lead to biases. Here, we introduce ImSpectR, a unified approach to quantify immunodiversity using either spectratype, repertoire sequencing or single cell RNA sequencing data. ImSpectR scores various types of deviations from the expected length distribution and integrates these into one measure, allowing for robust quantitative comparisons of immune diversity across individuals or conditions. AVAILABILITY R-package is available for download on GitHub at https://github.com/martijn-cordes/ImSpectR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martijn Cordes
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marja van Eggermond
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra Vloemans
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda R Baert
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Garcia-Perez
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Erik B van den Akker
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Takada K, Takahama Y. Positive-Selection-Inducing Self-Peptides Displayed by Cortical Thymic Epithelial Cells. Adv Immunol 2015; 125:87-110. [DOI: 10.1016/bs.ai.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
4
|
Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP, Mora T, Thomas-Vaslin V, Walczak AM, Boudinot P. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol 2013; 4:413. [PMID: 24348479 PMCID: PMC3841818 DOI: 10.3389/fimmu.2013.00413] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023] Open
Abstract
T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a "next-generation" of repertoire analysis.
Collapse
Affiliation(s)
- Adrien Six
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Maria Encarnita Mariotti-Ferrandiz
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Wahiba Chaara
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Susana Magadan
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| | - Hang-Phuong Pham
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2 , Montpellier , France
| | - Thierry Mora
- Laboratoire de Physique Statistique, UMR8550, CNRS and Ecole Normale Supérieure , Paris , France
| | - Véronique Thomas-Vaslin
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, UMR8549, CNRS and Ecole Normale Supérieure , Paris , France
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
5
|
Self-peptides in TCR repertoire selection and peripheral T cell function. Curr Top Microbiol Immunol 2013; 373:49-67. [PMID: 23612987 DOI: 10.1007/82_2013_319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate antigen receptors are anticipatory in their antigen recognition and display a vast diversity. Antigen receptors are assembled through V(D)J recombination, in which one of each Variable, (Diverse), and Joining gene segment are randomly utilized and recombined. Both gene rearrangement and mutational insertion are generated through randomness; therefore, the process of antigen receptors generation requires a rigorous testing system to select every receptor which is useful to recognize foreign antigens, but which would cause no harm to self cells. In the case of T cell receptors (TCR), such a quality control responsibility rests in thymic positive and negative selection. In this review, we focus on the critical involvement of self-peptides in the generation of a T cell repertoire, discuss the role of T cell thymic development in shaping the specificity of TCR repertoire, and directing function fitness of mature T cells in periphery. Here, we consider thymic positive selection to be not merely a one-time maturing experience for an individual T cell, but a life-long imprinting which influences the function of each individual T cell in periphery.
Collapse
|
6
|
Maverakis E, Goodarzi H, Wehrli LN, Ono Y, Garcia MS. The etiology of paraneoplastic autoimmunity. Clin Rev Allergy Immunol 2012; 42:135-44. [PMID: 21246308 DOI: 10.1007/s12016-010-8248-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although they may sometimes appear similar, paraneoplastic autoimmunity has a unique pathogenesis, different from the classical autoimmune diseases not associated with cancer. When distinguished clinically, paraneoplastic autoimmunity is more severe and often presents with a broader range of clinical signs and symptoms. Management of these patients is difficult and is usually centered in part on treatment of the underlying malignancy. Self-antigens recognized in the setting of paraneoplastic autoimmunity can be diverse, and the number of determinants recognized within a single antigen can be numerous. This review uses prototypic examples of paraneoplastic immune-mediated diseases and their associated malignancies to describe the mechanisms by which immune dysregulation can occur in the setting of cancer. Specific diseases covered include paraneoplastic pemphigus, Sweet's syndrome, pyoderma gangrenosum, thymoma-associated multiorgan autoimmunity, myasthenia gravis, autoimmune hemolytic anemia, immune thrombocytopenia, and the paraneoplastic neurological syndromes. The malignancies discussed include thymoma, non-Hodgkin's lymphoma, and chronic lymphocytic leukemia, among others. The mechanisms by which cancers induce autoimmunity are broken down into the following categories: disruption of central tolerance, peripheral immune dysregulation, and alteration of self-antigens. For each category, examples of paraneoplastic autoimmune diseases and their associated malignancies are discussed. Finally, mechanisms by which cancer treatment can lead to autoimmunity and examples of polymorphisms that are linked to both cancer and autoimmunity are discussed.
Collapse
Affiliation(s)
- Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California-Davis, 3301 C Street, Sacramento, CA, 95816, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
The rules for the conserved reaction of alphabeta T cell receptors (TCRs) with major histocompatibility complex (MHC) proteins plus peptides are poorly understood, probably because thymocytes bearing TCRs with the strongest MHC reactivity are lost by negative selection. Thus, only TCRs with an attenuated ability to react with MHC appear on mature T cells. Also, the interaction sites between TCRs and MHC may be inherently flexible and hence difficult to spot. We reevaluated contacts between TCRs and MHC in the solved structures of their complexes with these points in mind. Relatively conserved amino acids in the TCR complementarity-determining regions (CDR) 1 and CDR2 are often used to bind exposed areas of the MHC alpha-helices. These areas are exposed because of small amino acids that allow somewhat flexible binding of the TCRs. The TCR amino acids involved are specific to families of variable (V) regions and to some extent different rules may govern the recognition of MHCI versus MHCII.
Collapse
MESH Headings
- Amino Acids/chemistry
- Amino Acids/genetics
- Animals
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Evolution, Molecular
- Histocompatibility Antigens/chemistry
- Histocompatibility Antigens/metabolism
- Humans
- Mice
- Models, Molecular
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Philippa Marrack
- HHMI, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
- Integrated Department of Immunology, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
- Departments of Biochemistry and Molecular Genetics, University of Colorado Denver Health Science Center Denver, CO 80206
- Departments of Medicine, University of Colorado Denver Health Science Center Denver, CO 80206
| | - James P. Scott-Browne
- Integrated Department of Immunology, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
| | - Shaodong Dai
- HHMI, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
- Integrated Department of Immunology, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
| | - Laurent Gapin
- Integrated Department of Immunology, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
| | - John W. Kappler
- HHMI, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
- Integrated Department of Immunology, Nation Jewish Medical and Research Center and University of Colorado Denver Health Science Center
- Departments of Medicine, University of Colorado Denver Health Science Center Denver, CO 80206
- Departments of Pharmacology and the Program in Biomolecular Structure, University of Colorado Denver Health Science Center Denver, CO 80206
| |
Collapse
|
8
|
Matsutani T, Ohmori T, Ogata M, Soga H, Kasahara S, Yoshioka T, Suzuki R, Itoh T. Comparison of CDR3 length among thymocyte subpopulations: impacts of MHC and BV segment on the CDR3 shortening. Mol Immunol 2006; 44:2378-87. [PMID: 17156844 DOI: 10.1016/j.molimm.2006.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Thymocytes are thought to be selected on the basis of antigen specificity between TCR and peptide-MHC (pMHC) ligands. The specificity depends primarily on extensive diversities of complementarity determining region 3 (CDR3), whose specificity is considered to be determined through thymocyte selection. We examined the CDR3 length profiles with 20 BV segments in thymocyte subpopulations from C57BL/6 (H-2(b)), C.B10 (Balb/c congenic, H-2(b)) and Balb/c (H-2(d)) mice. The CDR3 length was shorter in both CD4 single positive (SP) and CD8SP than in double positive (DP), but not altered among DP, double negative (DN) 4 and DN3 subpopulations. The CDR3 shortened more prominently in CD4SP than in CD8SP for C57BL/6 and C.B10, but the shortening was only slight for Balb/c. Although the shortening varied considerably among different BV segments, the greater shortening was observed in most BV segments for CD4SP and in several for CD8SP, in particular, the extent was the greatest in BV1, BV2, BV15, BV16, BV23 and BV26 for CD4SP, and in BV13-1 and BV29 for CD8SP. Moreover, the extent and the pattern of CDR3 shortening were basically the same among highly homologous BV segments (e.g. BV12-1 and 12-2; BV13-1, 13-2 and 13-3). These results taken together indicate that (1) the CDR3 shortening occurred between the DP to the SP stages but never earlier, that (2) there would be the MHC class preference for the CDR3 shortening, that (3) it was in part influenced by MHC haplotype, and finally that (4) the primary structure of particular BV segments would possibly affect the CDR3 length in selected thymocytes. It could be deduced from these results that the CDR3 shortening might play roles in ensuring geometrical disposition of CDRs unique to each BV segment and consequently allow CDRs to intimately interact with pMHC ligands.
Collapse
Affiliation(s)
- Takaji Matsutani
- Division of Immunology and Embryology, Department of Cell Biology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Miqueu P, Guillet M, Degauque N, Doré JC, Soulillou JP, Brouard S. Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases. Mol Immunol 2006; 44:1057-64. [PMID: 16930714 DOI: 10.1016/j.molimm.2006.06.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 06/15/2006] [Indexed: 12/20/2022]
Abstract
Complementarity-determining region 3 (CDR3) length distribution analysis explores the diversity of the T cell receptor (TCR) and immunoglobulin (Ig) repertoire at the transcriptome level. Studies of the CDR3, the most hypervariable part of these molecules, have been frequently used to identify recruitment of T and B cell clones involved in immunological responses. CDR3 length distribution analysis gives a clear perception of repertoire variations between individuals and over time. However, the complexity of CDR3 length distribution patterns and the high number of possible repertoire alterations per individual called for the development of robust data analysis methods. The goal of these methods is to identify, quantify and statistically assess differences between repertoires so as to offer a better diagnostic or predictive tool for pathologies involving the immune system. In this review we will explain the benefit of analyzing CDR3 length distribution for the study of immune cell diversity. We will start by describing this technology and its associated data processing, and will subsequently focus on the statistical methods used to compare CDR3 length distribution patterns. Finally, we will address the various methods for assessing CDR3 length distribution gene signatures in pathological states.
Collapse
Affiliation(s)
- Patrick Miqueu
- Institut National de la Santé Et de la Recherche Médicale (I.N.S.E.R.M.), Unité 643, "Immunointervention dans les Allo et Xénotransplantations", CHU Hôtel-Dieu, 30 Bd Jean Monnet, 44093 Nantes Cedex 01, France
| | | | | | | | | | | |
Collapse
|
10
|
Dare R, Sykes PJ, Morley AA, Brisco MJ. Effect of age on the repertoire of cytotoxic memory (CD8+CD45RO+) T cells in peripheral blood: the use of rearranged T cell receptor gamma genes as clonal markers. J Immunol Methods 2006; 308:1-12. [PMID: 16325196 DOI: 10.1016/j.jim.2005.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 08/23/2005] [Accepted: 08/31/2005] [Indexed: 11/24/2022]
Abstract
We have established a method to estimate the number of clones in peripheral blood, using rearranged T cell receptor gamma genes as clonal markers, selecting cells at random, and establishing the sizes of the clones to which they belong. Clone sizes were quantified by a clone-specific PCR test based on the VNJ junctional sequence, which typically detects 1-2 copies of its target gene. All clones chosen for study were subsequently quantified in blood, and sizes ranged from 3 x 10(-6) (1 cell in 330,000 CD8+CD45RO+ cells) to 3.5 x 10(-2) permitting numbers of clones to be estimated from the harmonic mean of clone size. Two independent estimates from a healthy young adult (20-30 years old) gave repertoires of 94,000 and 110,000 clones. Two other healthy young adults gave repertoires of 40,000 and 55,000 clones. Repertoires in four healthy active older (>75 years old) adults were more variable but generally lower, being 3600, 5500, 14,000 and 97,000 clones, despite enlarged clones making up >1% of the compartment in the last individual. Overall, young adults had smaller clones (p=0.026, non-directional Mann-Whitney U-test). If the human body contains 5 l of blood, clones have 2 x 10(3)-1.0 x 10(7) cells in blood. These results confirm a diverse repertoire of rearranged T cell receptor gamma genes. The number of clones thus defined are broadly consistent with other estimates of repertoire, despite differences in marker genes used and subsets of cells studied.
Collapse
Affiliation(s)
- Raellene Dare
- Department of Haematology and Genetic Pathology, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | | | | | | |
Collapse
|
11
|
Peggs KS, Allison JP. Co-stimulatory pathways in lymphocyte regulation: the immunoglobulin superfamily. Br J Haematol 2005; 130:809-24. [PMID: 16156851 DOI: 10.1111/j.1365-2141.2005.05627.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The controlled orchestration of immune responses is a vital feature of cellular immunity in a system that must be able to reliably distinguish self from non-self. Contrary to early beliefs, peptide recognition by T cells exhibits a relatively high level of promiscuity. The requirement for a second signalling event to be present in addition to that provided by T cell receptor ligation for T cell activation to proceed helps to prevent inappropriately directed responses. An expanding array of co-stimulatory or inhibitory signalling receptors and ligands are now recognised to be involved in the control of the crucial decisions made determining the activation, expansion, and effector functions of responding cells, and ultimately the final targeting and execution of these functions. Tight regulation of the temporal and spatial organisation of receptor/ligand expression, combined with both forward and reverse signalling, endows an extraordinary elegance to these co-stimulatory pathways. The immunoglobulin superfamily occupies a central importance in this coordination of immune responses. The understanding of its relevance in a variety of physio-pathological circumstances is now yielding a number of potential targets for therapeutic manipulation, and such immunological molecular adjuvants are beginning to enter clinical trials.
Collapse
Affiliation(s)
- Karl S Peggs
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
12
|
Cheunsuk S, Lian ZX, Yang GX, Gershwin ME, Gruen JR, Bowlus CL. Prss16 is not required for T-cell development. Mol Cell Biol 2005; 25:789-96. [PMID: 15632078 PMCID: PMC543420 DOI: 10.1128/mcb.25.2.789-796.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PRSS16 is a serine protease expressed exclusively in cortical thymic epithelial cells (cTEC) of the thymus, suggesting that it plays a role in the processing of peptide antigens during the positive selection of T cells. Moreover, the human PRSS16 gene is encoded in a region near the class I major histocompatibility complex (MHC) that has been linked to type 1 diabetes mellitus susceptibility. The mouse orthologue Prss16 is conserved in genetic structure, sequence, and pattern of expression. To study the role of Prss16 in thymic development, we generated a deletion mutant of Prss16 and characterized T-lymphocyte populations and MHC class II expression on cortical thymic epithelial cells. Prss16-deficient mice develop normally, are fertile, and show normal thymic morphology, cellularity, and anatomy. The total numbers and frequencies of thymocytes and splenic T-cell populations did not differ from those of wild-type controls. Surface expression of MHC class II on cTEC was also similar in homozygous mutant and wild-type animals, and invariant chain degradation was not impaired by deletion of Prss16. These findings suggest that Prss16 is not required for quantitatively normal T-cell development.
Collapse
Affiliation(s)
- Saijai Cheunsuk
- Division of Gastroenterology, Department of Internal Medicine, UC Davis Medical Center, 4150 V St., PSSB 3500, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
13
|
Faro J, Velasco S, González-Fernández A, Bandeira A. The impact of thymic antigen diversity on the size of the selected T cell repertoire. THE JOURNAL OF IMMUNOLOGY 2004; 172:2247-55. [PMID: 14764693 DOI: 10.4049/jimmunol.172.4.2247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR repertoire of a normal animal is shaped in the thymus by ligand-specific positive- and negative-selection events. These processes are believed to be determined at the single-cell level primarily by the affinity of the TCR-ligand interactions. The relationships among all the variables involved are still unknown due to the complexity of the interactions and the lack of quantitative analysis of those parameters. In this study, we developed a quantitative model of thymic selection that provides estimates of the fractions of positively and negatively selected thymocytes in the cortex and in the medulla, as well as upper-bound ranges for the number of selecting ligands required for the generation of a normal diverse TCR repertoire. Fitting the model to current estimates of positive- and negative-selected thymocytes leads to specific predictions. The results indicate the following: 1) the bulk of thymocyte death takes place in the cortex, and it is due to neglect; 2) the probability of a thymocyte to be negatively selected in the cortex is at least 10-fold lower than in the medulla; 3) <60 ligands are involved in cortical positive selection; and 4) negative selection in the medulla is constrained by a large diversity of selecting ligands on medullary APCs.
Collapse
Affiliation(s)
- Jose Faro
- Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | |
Collapse
|
14
|
Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2004; 81:331-71. [PMID: 14711059 DOI: 10.1016/s0065-2776(03)81008-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Naturally acquired immunological self-tolerance is not entirely accounted for by clonal deletion, anergy, and ignorance. It is now well established that the T cell-repertoire of healthy individuals harbors self-reactive lymphocytes with a potential to cause autoimmune disease and these lymphocytes are under dominant control by a unique subpopulation of CD4+ T cells now called regulatory T cells. Efforts to delineate these Treg cells naturally present in normal individuals have revealed that they are enriched in the CD25+ CD4+ population. The identification of the CD25 molecule as a useful marker for naturally arising CD4+ regulatory T cells has made it possible to investigate many key aspects of their immunobiology, including their antigen specificities and the cellular/molecular pathways involved in their development and their mechanisms of action. Furthermore, reduction or dysfunction of the CD25+ CD4+ regulatory T cell population can be responsible for certain autoimmune diseases in humans.
Collapse
Affiliation(s)
- Shohei Hori
- Laboratory of Immunopathology, Research Center for Allergy and Immunology, The Institute for Physical and Chemical Research (RIKEN), Yokohama 230-0045, Japan
| | | | | |
Collapse
|
15
|
Dao T, Blander JM, Sant'Angelo DB. Recognition of a specific self-peptide: self-MHC class II complex is critical for positive selection of thymocytes expressing the D10 TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:48-54. [PMID: 12496382 DOI: 10.4049/jimmunol.170.1.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the specificity of positive and negative selection by using transgenic mice carrying a variant of the D10 TCR. We demonstrate that a point mutation at position 51 within the CDR2alpha segment significantly reduces the avidity of this TCR for its cognate ligand, but does not impact recognition of nonself MHC class II molecules. Although structural studies have suggested that this TCR site interacts with the MHC class II beta-chain, the avidity of this TCR for its ligand and the function of the T cell can be reconstituted by a point mutation in the bound antigenic peptide. These data demonstrate that the bound peptide can indirectly alter TCR interactions by influencing MHC structure. Remarkably, reducing the avidity of this TCR for a specific antigenic peptide-MHC ligand has a dramatic impact on thymic selection. Positive selection of thymocytes expressing this TCR is nearly completely blocked, whereas negative selection on allogenic MHC class II molecules remains intact. Therefore, the recognition of self that promotes positive selection of the D10 TCR is highly peptide-specific.
Collapse
MESH Headings
- Alleles
- Animals
- Arginine/genetics
- Autoantigens/metabolism
- Cell Differentiation/immunology
- Cell Line
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/physiology
- Conalbumin/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Glycine/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Leucine/genetics
- Lymphocyte Count
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Peptides/immunology
- Peptides/metabolism
- Point Mutation
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Serine/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- Tao Dao
- Laboratory of T Cell Immunobiology, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
16
|
Rodriguez-Barbosa JI, Zhao Y, Zhao G, Ezquerra A, Sykes M. Murine CD4 T cells selected in a highly disparate xenogeneic porcine thymus graft do not show rapid decay in the absence of selecting MHC in the periphery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6697-710. [PMID: 12471101 DOI: 10.4049/jimmunol.169.12.6697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CD4 repopulation can be achieved in T cell-depleted, thymectomized mice grafted with xenogeneic porcine thymus tissue. These CD4 T cells are specifically tolerant of the xenogeneic porcine thymus donor and the recipient, but are positively selected only by porcine MHC. Recent studies suggest that optimal peripheral survival of naive CD4 T cells requires the presence of the same class II MHC in the periphery as that of the thymus in which they were selected. These observations would suggest that T cells selected on porcine thymic MHC would die rapidly in the periphery, where porcine MHC is absent. Persistent CD4 reconstitution achieved in mice grafted with fetal porcine thymus might be due to increased thymic output to compensate for rapid death of T cells in the periphery. Comparison of CD4 T cell decay after removal of porcine or murine thymic grafts ruled out this possibility. No measurable role for peripheral murine class II MHC in maintaining the naive CD4 pool originating in thymic grafts was demonstrable. However, mouse class II MHC supported the conversion to, survival, and/or proliferation of memory-type CD4 cells selected in fetal porcine thymus. Thus, the same MHC as that mediating positive selection in the thymus is not critical for maintenance of the memory CD4 cell pool in the periphery. Our results support the interpretation that xenogeneic thymic transplantation is a feasible strategy to reconstitute CD4 T cells and render recipients tolerant of a xenogeneic donor.
Collapse
Affiliation(s)
- Jose-Ignacio Rodriguez-Barbosa
- Transplantation Biology Research Center, Bone Marrow Transplantation Section, Surgical Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | |
Collapse
|
17
|
Hori S, Collette A, Demengeot J, Stewart J. A new statistical method for quantitative analyses: application to the precise quantification of T cell receptor repertoires. J Immunol Methods 2002; 268:159-70. [PMID: 12215384 DOI: 10.1016/s0022-1759(02)00187-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In experimental immunology, a situation quite commonly arises in which there are a large number of potential events but the probability of any individual event is small and one wishes to measure the number of events which actually occur. We present a new general statistical method, denoted Continuous Poisson Method (COPOM), for estimating the number of events underlying a quantitative measurement. This situation is well illustrated in the case of quantitative analyses of the immune receptor repertoire in a diverse population of cells. We show that repetition of T cell receptors (TCRs) complementarity determining region 3 (CDR3) length measurements by Immunoscope, on independent samples containing the similar numbers of cells prepared from splenocytes, results in variable profiles. When analyzed by COPOM, this variability provides direct quantification of the lymphocytes expressing any antigen receptor with a given V, J and CDR3 length inside the cell population. Using COPOM, a single dilution was sufficient to cover events over a 100-fold variation in frequency and the sensitivity of the assay was such that a single cell inside a pool of 5 x 10(4) lymphocytes could be quantified. A comparison of the frequency of splenocytes using either Vbeta14-Jbeta or the specific Vbeta8.3-Jbeta1.1 rearrangement, determined either by our or other approaches, revealed the accuracy and convenience of our method. This approach provides the first precise method able to measure the diversity of the antigen receptor repertoire inside a complex cell population by the use of a single straightforward technique.
Collapse
Affiliation(s)
- Shohei Hori
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande #6, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
18
|
Barton GM, Beers C, deRoos P, Eastman SR, Gomez ME, Forbush KA, Rudensky AY. Positive selection of self-MHC-reactive T cells by individual peptide-MHC class II complexes. Proc Natl Acad Sci U S A 2002; 99:6937-42. [PMID: 12011451 PMCID: PMC124507 DOI: 10.1073/pnas.102645699] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If T cells require specific interactions with MHC-bound peptides during positive selection, then the specificities of T cells selected by one peptide should be distinct from those selected by another. We have examined positive selection of CD4 T cells in four strains of mice, each overexpressing a different peptide-1-A(b)(A(b)) complex. We show that a subset of CD4 T cells is selected by the overexpressed peptide and that the specificities of the CD4 T cells, as measured by reactivity to wild-type antigen-presenting cells, vary greatly depending on which peptide is overexpressed. These differences in specificity are mediated through positive selection not negative selection. Each of the four peptide-A(b) complexes appears to adopt a different conformation, and these differences correlate with the differences in reactivity. Our results suggest that individual peptide-MHC complexes positively select different subsets of self-MHC-reactive T cells and that the conformation of the peptide-MHC complex may contribute to this process.
Collapse
Affiliation(s)
- Gregory M Barton
- Molecular and Cellular Biology Program, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yokosuka T, Takase K, Suzuki M, Nakagawa Y, Taki S, Takahashi H, Fujisawa T, Arase H, Saito T. Predominant role of T cell receptor (TCR)-alpha chain in forming preimmune TCR repertoire revealed by clonal TCR reconstitution system. J Exp Med 2002; 195:991-1001. [PMID: 11956290 PMCID: PMC2193687 DOI: 10.1084/jem.20010809] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The CDR3 regions of T cell receptor (TCR)-alpha and -beta chains play central roles in the recognition of antigen (Ag)-MHC complex. TCR repertoire is created on the basis of Ag recognition specificity by CDR3s. To analyze the potential spectrum of TCR-alpha and -beta to exhibit Ag specificity and generate TCR repertoire, we established hundreds of TCR transfectants bearing a single TCR-alpha or -beta chain derived from a cytotoxic T cell (CTL) clone, RT-1, specific for HIVgp160 peptide, and randomly picked up TCR-beta or -alpha chains. Surprisingly, one-third of such TCR-beta containing random CDR3 beta from naive T cells of normal mice could reconstitute the antigen-reactive TCR coupling with RT-1 TCR-alpha. A similar dominant function of TCR-alpha in forming Ag-specific TCR, though low-frequency, was obtained for lymphocytic choriomeningitis virus-specific TCR. Subsequently, we generated TCR-alpha and/or -beta transgenic (Tg) mice specific for HIVgp160 peptide, and analyzed the TCR repertoire of Ag-specific CTLs. Similar to the results from TCR reconstitution, TCR-alpha Tg generated CTLs with heterogeneous TCR-beta, whereas TCR-beta Tg-induced CTLs bearing a single TCR-alpha. These findings of Ag recognition with minimum involvement of CDR3 beta expand our understanding regarding the flexibility of the spectrum of TCR and suggest a predominant role of TCR-alpha chain in determining the preimmune repertoire of Ag-specific TCR.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Base Sequence
- DNA, Complementary
- HIV Envelope Protein gp160/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Tadashi Yokosuka
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yassai M, Ammon K, Goverman J, Marrack P, Naumov Y, Gorski J. A molecular marker for thymocyte-positive selection: selection of CD4 single-positive thymocytes with shorter TCRB CDR3 during T cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3801-7. [PMID: 11937532 DOI: 10.4049/jimmunol.168.8.3801] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The generation of the naive T cell repertoire is a direct result of maturation and selection events in the thymus. Although maturation events are judged predominantly on the expression of surface markers, molecular markers, more intimately involved in the selection process, can be informative. We have identified a molecular marker for selection in later stages of maturation in humans. Thymocytes are selected for the expression of TCR beta-chains with shorter CDR3 at the double-positive to single-positive (SP) transition. Here we extend these studies to the mouse and show that the selection phenotype is not related to alpha-chain pairing but is a function of the MHC haplotype. Interestingly, the selection is much more apparent in CD4 SP thymocytes than in CD8 SP cells. This is in contrast to human thymocytes, where the selection is equally apparent in both lineages. The involvement of MHC in the process argues that this is a positive selection stage. The difference in the extent of this selection between the two SP lineages may indicate a class difference in the nature of the TCR-MHC interaction, the role of coreceptors in the selection process, or both.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Complementarity Determining Regions/analysis
- Complementarity Determining Regions/blood
- Complementarity Determining Regions/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, MHC Class II/physiology
- Immunophenotyping
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Maryam Yassai
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee, WI 53201, USA
| | | | | | | | | | | |
Collapse
|
21
|
Casrouge A, Fazilleau N, Cabaniols JP, Kourilsky P, Kanellopoulos JM. [Methods of studying T-lymphocyte repertoires]. PATHOLOGIE-BIOLOGIE 2002; 50:151-6. [PMID: 11980327 DOI: 10.1016/s0369-8114(02)00281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Peggs K, Verfuerth S, Pizzey A, Ainsworth J, Moss P, Mackinnon S. Characterization of human cytomegalovirus peptide-specific CD8(+) T-cell repertoire diversity following in vitro restimulation by antigen-pulsed dendritic cells. Blood 2002; 99:213-23. [PMID: 11756174 DOI: 10.1182/blood.v99.1.213] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under conditions of impaired T-cell immunity, human cytomegalovirus (HCMV) can reactivate from lifelong latency, resulting in potentially fatal disease. A crucial role for CD8(+) T cells has been demonstrated in control of viral replication, and high levels of HCMV-specific cytotoxic T-lymphocytes are seen in immunocompetent HCMV-seropositive individuals despite very low viral loads. Elucidation of the minimum portion of the anti-HCMV T-cell repertoire that is required to suppress viral replication requires further study of clonal composition. The ability of dendritic cells to take up and process exogenous viral antigen by constitutive macropinocytosis was used to study HCMV-specific T-cell memory in the absence of viral replication. The specificity and clonal composition of the CD8(+) T-cell responses were evaluated using HLA tetrameric complexes and T-cell receptor beta chain (TCRBV) spectratypic analyses. There was a skewed reactivity toward the matrix protein pp65, with up to 40-fold expansion of CD8(+) T cells directed toward a single peptide-MHC combination. Individual expansions detected on TCRBV spectratype analysis were HCMV-specific and composed of single or highly restricted numbers of clones. There was preferential TCRBV gene usage (BV6.1/6.2, BV8, and BV13 in HLA-A*0201(+) individuals) but lack of conservation of CDR3 length and junctional motifs between donors. While there was a spectrum of TCR repertoire diversity directed toward individual MHC-peptide combinations between donors, a relatively small number of clones appeared to predominate the response in each case. These data provide further insight into the range of anti-HCMV responses and will aid the design and monitoring of adoptive immunotherapy protocols.
Collapse
Affiliation(s)
- Karl Peggs
- Department of Haematology, University College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Twenty years ago, antigenic and self peptides presented by MHC molecules were absent from the immunological scene. While foreign peptides could be assayed by immune reactions, self peptides, as elusive and invisible as they were at the time, were bound to have an immunological role. How self peptides are selected and presented by MHC molecules, and how self MHC-peptide complexes are seen or not seen by T cells raised multiple questions particularly related to MHC restriction, alloreactivity, positive and negative selection, the nature of tumor antigens and tolerance. These issues were addressed in the "peptiditic self model" (1986) and subsequent hypothesis. They are retrospectively and critically reviewed here in the context of our current understanding of these major immunological phenomena.
Collapse
Affiliation(s)
- P Kourilsky
- Laboratory of Molecular Biology of the Gene, U.277 INSERM, Institute Pasteur, Paris, France
| | | |
Collapse
|
24
|
Pacholczyk R, Kraj P, Ignatowicz L. An incremental increase in the complexity of peptides bound to class II MHC changes the diversity of positively selected alpha beta TCRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2357-63. [PMID: 11160293 DOI: 10.4049/jimmunol.166.4.2357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Positive selection of the normal repertoire of TCRs results from low-avidity interactions with a set of self-peptides bound to the MHC molecules expressed by thymic epithelial cells. The contribution of the individual peptide to positive selection remains a matter of debate. Here, for the first time, we show that two covalent class II MHC-peptide complexes positively select different TCRs expressing a common transgenic TCRbeta-chain and endogenous TCRalpha-chains. Simultaneous expression of both A(b)-peptide complexes changed the diversity of positively selected TCRs, indicating an additive and possibly synergistic effect of various peptides in this process.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Separation
- Crosses, Genetic
- Fetus
- Flow Cytometry
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/metabolism
- Hybridomas
- Macromolecular Substances
- Mice
- Mice, Knockout
- Mice, Transgenic
- Organ Culture Techniques
- Peptide Fragments/biosynthesis
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- R Pacholczyk
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
25
|
Fukui Y, Oono T, Cabaniols JP, Nakao K, Hirokawa K, Inayoshi A, Sanui T, Kanellopoulos J, Iwata E, Noda M, Katsuki M, Kourilsky P, Sasazuki T. Diversity of T cell repertoire shaped by a single peptide ligand is critically affected by its amino acid residue at a T cell receptor contact. Proc Natl Acad Sci U S A 2000; 97:13760-5. [PMID: 11087837 PMCID: PMC17649 DOI: 10.1073/pnas.250470797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell differentiation in the thymus is driven by positive selection through the interaction of alphabeta T cell receptors (TCRs) with self-peptides bound to self-major histocompatibility complex molecules, yet the influence of the peptide sequence on this process remains unknown. To address this issue, we have compared CD4(+) T cell differentiation between two sets of mouse lines in which MHC class II I-A(b) molecules are occupied with either Ealpha chain-derived peptide ((p)Ealpha) or its variant, (p)60K, with one amino acid substitution from leucine to lysine at P5 residue of TCR contacts. Here, we show that despite the comparable expression of I-A(b)-peptide complex in the thymus, this substitution from leucine to lysine affects efficiency of positive selection, resulting in extremely small numbers of CD4(+) T cells to be selected to mature on I-A(b)-(p)60K complex. Furthermore, we show that, although I-A(b)-(p)Ealpha complex selects diverse T cells, T cell repertoire shaped by I-A(b)-(p)60K complex is markedly constrained. Our findings thus suggest that positive selection is both specific and degenerate, depending on the amino acid residues at TCR contacts of the selecting self-peptides.
Collapse
Affiliation(s)
- Y Fukui
- Department of Genetics, CREST (Core Research for Evolutional Science and Technology), Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mizoguchi A, Mizoguchi E, Saubermann LJ, Higaki K, Blumberg RS, Bhan AK. Limited CD4 T-cell diversity associated with colitis in T-cell receptor alpha mutant mice requires a T helper 2 environment. Gastroenterology 2000; 119:983-95. [PMID: 11040185 DOI: 10.1053/gast.2000.18153] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS T-cell receptor alpha mutant (TCRalpha(-/-)) mice spontaneously develop chronic colitis mediated by CD4(+) TCRalpha(-)beta(+) T cells. The aim of this study was to analyze the mechanisms of expansion of these cells by characterization of the TCRbeta repertoire. METHODS TCRbeta repertoire was analyzed by reverse-transcription polymerase chain reaction/Southern blot and DNA sequencing. Clonality of T cells was examined in the lymphoid tissues and colons of TCRalpha(-/-) mice and interleukin 4-deficient TCRalpha(-/-) mice. In addition, an in vitro culture system using syngeneic colonic epithelial cells as antigens was used. RESULTS The clonal expansion of a restricted subset of Vbeta8.2(+) T cells was characterized by conservation of a single negatively charged amino acid residue in the second position of the complementarity-determining region 3 (CDR3). These T cells were observed in the diseased colon and appendix (cecal patch) of TCRalpha(-/-) mice, but not germfree TCRalpha(-/-) mice. Culture of polyclonal T cells from young TCRalpha(-/-) mice with colonic epithelial cells under T helper 2 conditions resulted in the survival of Vbeta8.2(+) T cells characterized by the same CDR3 pattern. In addition, the transfer of the cultivated T cells induced mild colitis in recombination-activating gene 1 mutant mice. CONCLUSIONS In the TCRalpha(-/-) mice, the development of colitis is associated with the presence of a restricted diversity of Vbeta8. 2(+) T-cell subsets characterized by a specific TCR motif. The limited diversity of lamina propria T cells that are derived from naive T cells expanded by reacting with luminal bacterial antigens is likely caused by the survival of these T cells after stimulation with self-antigens in the presence of a T helper 2 environment.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Diversity
- CD4-Positive T-Lymphocytes/immunology
- Colitis/genetics
- Colitis/immunology
- Colon/immunology
- Genes, T-Cell Receptor alpha
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Interleukin-4/deficiency
- Interleukin-4/genetics
- Interleukin-4/immunology
- Intestinal Mucosa/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Receptor-CD3 Complex, Antigen, T-Cell/deficiency
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- A Mizoguchi
- Department of Pathology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | |
Collapse
|
27
|
Levitsky V, Liu D, Southwood S, Levitskaya J, Sette A, Masucci MG. Supermotif peptide binding and degeneracy of MHC: peptide recognition in an EBV peptide-specific CTL response with highly restricted TCR usage. Hum Immunol 2000; 61:972-84. [PMID: 11082510 DOI: 10.1016/s0198-8859(00)00179-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have investigated the presentation and CTL recognition of an HLA A*1101-restricted CTL peptide epitope AVFDRKSDAK (AVF)(3), derived from the EBV nuclear antigen (EBNA) 4, in the context of alleles belonging to the A3-supertype, A*0101, 0301, 1101, 3101, 3301, and 6801. The peptide binds to a A*6801 molecule as efficiently as to A*1101. The A*6801:AVF complex is recognized by some A*1101-restricted AVF- specific CTL clones. However, A*6801-positive (A*6801+) EBV-transformed lymphoblastoid cell lines (LCLs) are not killed by the same effectors. Furthermore, two A*6801+ donors did not mount an AVF-specific CTL response in vitro and lacked detectable AVF-specific effectors. Thus, this epitope is either subdominant, or non-immunogenic in the context of A*6801. These characteristics correlate with low stability of this MHC:peptide complex in living cells. We also demonstrate that a highly conserved AVF-specific TCR that dominates the AVF-specific CTL response in the majority of A*1101+ individuals recognizes the A*6801 molecule as a crossreactive alloantigen. Therefore, deletion of AVF-specific T cells may contribute to the non-immunogenicity or subdominance of the peptide in A*6801+ individuals.
Collapse
Affiliation(s)
- V Levitsky
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
28
|
Apostolou I, Cumano A, Gachelin G, Kourilsky P. Evidence for two subgroups of CD4-CD8- NKT cells with distinct TCR alpha beta repertoires and differential distribution in lymphoid tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2481-90. [PMID: 10946274 DOI: 10.4049/jimmunol.165.5.2481] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells are a subset of T lymphocytes that is mainly restricted by the nonclassical MHC class I molecule, CD1d, and that includes several subpopulations, in particular CD4+ and CD4-CD8- (DN) cells. In the mouse, differential distribution of these subpopulations as well as heterogeneity in the expression of various markers as a function of tissue localization have been reported. We have thus undertaken a detailed study of the DN NKT cell subpopulation. With a highly sensitive semiquantitative RT-PCR technique, its TCR repertoire was characterized in various tissues. We found that mouse DN NKT cells are a variable mixture of two subgroups, one bearing the invariant Valpha14 chain paired to rearranged Vbeta2, Vbeta7, Vbeta8.1, Vbeta8.2, or Vbeta8.3 beta-chains and the other exhibiting unskewed alpha- and beta-chains. The proportion of these subgroups varies from about 100:0 in thymus, 80:20 in liver, and 50:50 in spleen to 20:80% in bone marrow, respectively. Finally, further heterogeneity in the tissue-derived DN NKT cells was discovered by sequencing extensively Vbeta8.2-Jbeta2.5 rearrangements in individual mice. Despite a few recurrences in TCR sequences, we found that each population exhibits its own and broad TCRbeta diversity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- Clone Cells
- Female
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Count
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Organ Specificity/genetics
- Organ Specificity/immunology
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- I Apostolou
- Unité de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Médicale Unité 277, and Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
29
|
Boileau C, Houde M, Dulude G, Clegg CH, Perreault C. Regulation of extrathymic T cell development and turnover by oncostatin M. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5713-20. [PMID: 10820248 DOI: 10.4049/jimmunol.164.11.5713] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic exposure to oncostatin M (OM) has been shown to stimulate extrathymic T cell development. The present work shows that in OM transgenic mice, 1) massive extrathymic T cell development takes place exclusively the lymph nodes (LNs) and not in the bone marrow, liver, intestines, or spleen; and 2) LNs are the sole site where the size of the mature CD4+ and CD8+ T cell pool is increased (6- to 7-fold). Moreover, when injected into OM transgenic mice, both transgenic and nontransgenic CD4+ and CD8+ T cells preferentially migrated to the LNs rather than the spleen. Studies of athymic recipients of fetal liver grafts showed that lymphopoietic pathway modulated by OM was truly thymus independent, and that nontransgenic progenitors could generate extrathymic CD4+CD8+ cells as well as mature T cells under the paracrine influence of OM. The progeny of the thymic-independent differentiation pathway regulated by OM was polyclonal in terms of Vbeta usage, exhibited a phenotype associated with previous TCR ligation, and displayed a rapid turnover rate (5-bromo-2'-deoxyuridine pulse-chase assays). This work suggests that chronic exposure to OM 1) discloses a unique ability of LNs to sustain extrathymic T cell development, and 2) increases the number and/or function of LN niches able to support seeding of recirculating mature T cells. Regulation of the lymphopoietic pathway discovered in OM transgenic mice could be of therapeutic interest for individuals with thymic hypoplasia or deficient peripheral T cell niches.
Collapse
Affiliation(s)
- C Boileau
- Guy Bernier Research Center, Maisonneuve Rosemont Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Casrouge A, Beaudoing E, Dalle S, Pannetier C, Kanellopoulos J, Kourilsky P. Size estimate of the alpha beta TCR repertoire of naive mouse splenocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5782-7. [PMID: 10820256 DOI: 10.4049/jimmunol.164.11.5782] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The diversity of the T cell repertoire of mature T splenocytes is generated, in the thymus, by pairing of alpha and beta variable domains of the alpha beta TCR and by the rearrangements of various gene segments encoding these domains. In the periphery, it results from competition between various T cell subpopulations including recent thymic migrants and long-lived T cells. Quantitative data on the actual size of the T cell repertoire are lacking. Using PCR methods and extensive sequencing, we have measured for the first time the size of the TCR-alpha beta repertoire of naive mouse T splenocytes. There are 5-8 x 105 different nucleotide sequences of BV chains in the whole spleen of young adult mice. We have also determined the size of the BV repertoire in a subpopulation of AV2+ T splenocytes, which allows us to provide a minimum estimate of the alpha beta repertoire. We find that the mouse spleen harbors about 2 x 106 clones of about 10 cells each. This figure, although orders of magnitude smaller than the maximum theoretical diversity (estimated up to 1015), is still large enough to maintain a high functional diversity.
Collapse
MESH Headings
- Animals
- Cell Division/genetics
- Cell Division/immunology
- Cloning, Molecular
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Interphase/genetics
- Interphase/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/isolation & purification
- Sequence Analysis, DNA
- Species Specificity
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- A Casrouge
- Unité de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Médicale, Unité 277, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Bousso P, Lemaître F, Laouini D, Kanellopoulos J, Kourilsky P. The peripheral CD8 T cell repertoire is largely independent of the presence of intestinal flora. Int Immunol 2000; 12:425-30. [PMID: 10744643 DOI: 10.1093/intimm/12.4.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
While numerous studies have analyzed the shaping of T cell repertoires by self or foreign peptides, little is known on the influence of commensal self peptides derived from the intestinal flora (IF). Here, we have analyzed naive and immune repertoires in mice devoid of IF [germ-free (GF) mice]. First, by means of an extensive CDR3beta sequencing strategy, we show that the naive peripheral CD8 T cell repertoire does not exhibit a major imprint of IF antigens. Second, using MHC-peptide tetramers, CDR3beta length distribution analyses and TCR sequencing, we show that cytotoxic T lymphocyte (CTL) responses specific for two distinct epitopes are quasi-identical in normal and GF mice. Our findings indicate that, in general, peptides derived from the intestinal microflora have little if any influence on CTL responses in the mouse.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/microbiology
- Cell Differentiation/immunology
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/genetics
- Flow Cytometry
- Genes, T-Cell Receptor beta/genetics
- Germ-Free Life/immunology
- H-2 Antigens/analysis
- H-2 Antigens/genetics
- Intestinal Mucosa/metabolism
- Intestines/immunology
- Intestines/microbiology
- Mice
- Mice, Inbred BALB C
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- P Bousso
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
32
|
Arstila T, Arstila TP, Calbo S, Selz F, Malassis-Seris M, Vassalli P, Kourilsky P, Guy-Grand D. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J Exp Med 2000; 191:823-34. [PMID: 10755885 PMCID: PMC2195856 DOI: 10.1084/jem.191.5.823] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine gut intraepithelial (IEL) T cell receptor (TCR)-alpha/beta lymphocytes bearing CD8alpha/13 or CD8alpha/alpha coreceptors have been shown previously to express different oligoclonal TCR beta chain repertoires in the same mouse, in agreement with other evidence indicating that these two populations belong to different ontogenic lineages, with only CD8alpha/beta+ IELs being fully thymus dependent. CD8alpha/beta+, but not CD8alpha/alpha+, T lymphocytes are also present in the lamina propria. Here, we show that CD8alpha/beta+ lymphocytes from the lamina propria and the epithelium are both oligoclonal, and that they share the same TCR-beta clonotypes in the same mouse, as is also the case for CD4alpha T cells. Furthermore, identical T cell clones were detected among CD8alpha/beta IELs and CD8alpha/beta+ blasts circulating into the thoracic duct (TD) lymph of the same mouse, whereas TD small lymphocytes are polyclonal. These findings must be considered in light of previous observations showing that T blasts, but not small T lymphocytes, circulating in the TD lymph have the capacity of homing into the gut epithelium and lamina propria. These combined observations have interesting implications for our understanding of the recirculation of gut thymus-dependent lymphocytes and their precursors, and of the events leading up to the selection of their restricted TCR repertoire.
Collapse
Affiliation(s)
- Tuula Arstila
- Institut National de la Santé et de la Recherche Médicale (INSERM) U429, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
| | - T. Petteri Arstila
- Unité de Biologie Moléculaire du Gène, INSERM U277 and Institut Pasteur, 75724 Paris Cedex 15, France
| | - Sébastien Calbo
- Unité de Biologie Moléculaire du Gène, INSERM U277 and Institut Pasteur, 75724 Paris Cedex 15, France
| | - Françoise Selz
- Institut National de la Santé et de la Recherche Médicale (INSERM) U429, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
| | - Michèle Malassis-Seris
- Institut National de la Santé et de la Recherche Médicale (INSERM) U429, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
| | - Pierre Vassalli
- Département de Pathologie, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | - Philippe Kourilsky
- Unité de Biologie Moléculaire du Gène, INSERM U277 and Institut Pasteur, 75724 Paris Cedex 15, France
| | - Delphine Guy-Grand
- Institut National de la Santé et de la Recherche Médicale (INSERM) U429, Hôpital Necker-Enfants Malades, 75743 Paris Cedex 15, France
- Unité de Biologie Moléculaire du Gène, INSERM U277 and Institut Pasteur, 75724 Paris Cedex 15, France
| |
Collapse
|
33
|
Abstract
To differentiate into T cells, immature thymocytes must engage, through their antigen-specific T-cell receptor, peptides derived from self proteins presented by cortical epithelial cells in the thymus, a process called positive selection. Despite this requirement for self-recognition during development, mature T cells do not normally show autoreactivity. Mice injected in the thymus with procainamide-hydroxylamine, a metabolite of procainamide, develop autoimmune features resembling drug-induced lupus. Here, we show that when thymocytes undergo positive selection in the presence of procainamide-hydroxylamine, they fail to establish unresponsiveness to low affinity selecting self antigens, resulting in systemic autoimmunity.
Collapse
Affiliation(s)
- A Kretz-Rommel
- W.M. Keck Autoimmune Disease Center, Department of Molecular and Experimental Medicine, The Scripps Research Institute, MEM 131, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
34
|
Initiation of antiretroviral therapy during primary HIV-1 infection induces rapid stabilization of the T-cell receptor β chain repertoire and reduces the level of T-cell oligoclonality. Blood 2000. [DOI: 10.1182/blood.v95.5.1743.005k14_1743_1751] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major T-cell receptor β chain variable region (TCRBV) repertoire perturbations are temporally associated with the down-regulation of viremia during primary human immunodeficiency virus (HIV) infection and with oligoclonal expansion and clonal exhaustion of HIV-specific cytotoxic T lymphocytes (CTLs). To determine whether initiation of antiretroviral therapy (ART) or highly active antiretroviral therapy (HAART) during primary infection influences the dynamics of T-cell–mediated immune responses, the TCRBV repertoire was analyzed by semiquantitative polymerase chain reaction in serial blood samples obtained from 11 untreated and 11 ART-treated patients. Repertoire variations were evaluated longitudinally. Stabilization of the TCRBV repertoire was more consistently observed in treated as compared with untreated patients. Furthermore, the extent and the rapidity of stabilization were significantly different in treated versus untreated patients. TCRBV repertoire stabilization was positively correlated with the slope of HIV viremia in the treated group, suggesting an association between repertoire stabilization and virologic response to treatment. To test whether stabilization was associated with variations in the clonal complexity of T-cell populations, T-cell receptor (TCR) heteroduplex mobility shift assays (HMAs) were performed on sequential samples from 4 HAART-treated subjects. Densitometric analysis of HMA profiles showed a reduction in the number of TCR clonotypes in most TCRBV families and a significant decrease in the total number of clonotypes following 7 months of HAART. Furthermore, a biphasic decline in HIV-specific but not heterologous CTL clones was observed. This indicates that ART leads to a global reduction of CD8+T-cell oligoclonality and significantly modulates the mobilization of HIV-specific CTL during primary infection.
Collapse
|
35
|
Paulsson G, Zhou X, Törnquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20:10-7. [PMID: 10634795 DOI: 10.1161/01.atv.20.1.10] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T cells are present in atherosclerotic lesions at all stages of development. They exhibit activation markers and are particularly prominent at sites of plaque rupture. This suggests that T-cell-mediated immune responses are involved in the pathogenesis of atherosclerosis. Antigen-specific T cells reactive with oxidized lipoproteins and heat shock proteins have been isolated from plaques, indicating that local activation and clonal expansion might occur. To analyze different stages of atherosclerosis, we have used a murine model. Targeted deletion of the apolipoprotein E gene results in severe hypercholesterolemia and spontaneous atherosclerosis, with lesions containing large numbers of T cells and macrophages. We have analyzed mRNA for T-cell antigen receptors (TCRs) from aortic fatty streaks, early fibrofatty plaques, and advanced fibrofatty plaques of such mice. Polymerase chain reaction amplification of complementarity-determining region 3 (CDR3 region) of TCRs was followed by spectratyping of fragment lengths. This analysis detected all types of variable (V) segments with a gaussian distribution of CDR3 in lymph nodes. In contrast, a restricted heterogeneity was found in atherosclerotic lesions, with expansion of a limited set of Vbeta and Valpha segments and a monotypic or oligotypic CDR3 spectrum in each lesion. Vbeta6 was expressed in all lesions; Vbeta5.2, Vbeta16, Valpha34s, and Valpha9, in the majority of lesions; and Vbeta6, Vbeta5.2, and Valpha34S, in lesions at all 3 stages of development. The strongly skewed pattern of the CDR3 region in the TCR is indicative of oligoclonal expansions of T cells and suggests the occurrence of antigen-driven T-cell proliferation in atherosclerosis.
Collapse
Affiliation(s)
- G Paulsson
- Center for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
36
|
Faure M, Calbo S, Kanellopoulos J, Drapier AM, Cazenave PA, Rueff-Juy D. Tolerance to Maternal Immunoglobulins: Resilience of the Specific T Cell Repertoire in Spite of Long-Lasting Perturbations. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
T cell tolerance is established and maintained through various mechanisms, the critical component being the persistence of the specific Ag. However, at the molecular level, the nature of the recovering TCR repertoire following breakdown of tolerance is unknown. We address this important question by following κ light chain constant region (Cκ)-specific CD4+ T cells of κ light chain knock-out (κ−/−) mice born to κ+/− mothers. These cells, which were in contact with maternal κ+ Igs from early ontogeny until weaning, were strongly tolerized. Tolerance was reversible and waned with the disappearance of peptide Cκ134–148 presentation in lymphoid organs, including the thymus. Whereas three specific Vβ-Jβ rearrangements emerged in the peptide Cκ134–148-specific CD4+ T cell response of all regular κ−/− mice, soon after breakdown of tolerance only one of these rearrangements was detected. The two others displayed a significant delay in reappearance and were still rare at 26 wk of age, while the control proliferative response had already recovered 3 mo earlier. At 52 wk of age, a complete recovery of the three canonical Vβ-Jβ rearrangements was observed. Thus, although profoundly perturbed for several months, the T cell repertoire returns to equilibrium, highlighting the resilient nature of this system.
Collapse
Affiliation(s)
- Mathias Faure
- *Unité d’Immunochimie Analytique (URA Centre National de la Recherche Scientifique 1961 and Université Pierre et Marie Curie), and
| | - Sébastien Calbo
- †Unité de Biologie Moléculaire du Gène, Institut Pasteur, Paris, France
| | - Jean Kanellopoulos
- †Unité de Biologie Moléculaire du Gène, Institut Pasteur, Paris, France
| | - Anne-Marie Drapier
- *Unité d’Immunochimie Analytique (URA Centre National de la Recherche Scientifique 1961 and Université Pierre et Marie Curie), and
| | - Pierre-André Cazenave
- *Unité d’Immunochimie Analytique (URA Centre National de la Recherche Scientifique 1961 and Université Pierre et Marie Curie), and
| | - Dominique Rueff-Juy
- *Unité d’Immunochimie Analytique (URA Centre National de la Recherche Scientifique 1961 and Université Pierre et Marie Curie), and
| |
Collapse
|
37
|
Becker JC, Guldberg P, Zeuthen J, Bröcker EB, Straten PT. Accumulation of identical T cells in melanoma and vitiligo-like leukoderma. J Invest Dermatol 1999; 113:1033-8. [PMID: 10594748 DOI: 10.1046/j.1523-1747.1999.00805.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cloning of genes encoding melanoma antigens has opened new possibilities for the treatment of patients with cancer; however, most tumor rejection antigens recognized by tumor infiltrating lymphocytes are the products of genes that are also expressed by normal melanocytes. Hence, a large set of antigenic determinants of the self have not induced self-tolerance and these peptide determinants furnish target structures for immune responses directed against tumors. The notion that the immunotherapeutic targets involved in cancer regression comprise normal differentiation antigens is stressed by the association between vitiligo-like leukoderma, due to destruction of normal melanocytes, and melanoma regression, due to destruction of cancer cells. Nevertheless, this is the first report to demonstrate by means of a new technique based on reverse transcription polymerase chain reaction and denaturing gradient gel electrophoresis, the presence of clonally expanded T cells with identical BV regions in areas of destruction of both normal and neoplastic cells.
Collapse
Affiliation(s)
- J C Becker
- Department of Dermatology, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Quantitative analyses of antigen (Ag)-specific alphabeta T cell populations have provided a large body of information on the natural course of T cell immune responses. New tools are now available to determine the clonal composition of Ag-specific pools in individual responders, an approach which offers direct insights into the generation of T cell immune responses and establishment of protective immunity. The present review discusses the parameters that determine the composition of Ag-specific T cell responses. Emphasis is placed on the role of the naive alphabeta T cell repertoire and on the dynamics of individual Ag-specific T cell clones during the successive phases of an immune response.
Collapse
Affiliation(s)
- P Bousso
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, 25 rue du Dr Roux, Paris, Cedex 15, 75015-75724, France.
| | | |
Collapse
|
39
|
Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science 1999; 286:958-61. [PMID: 10542151 DOI: 10.1126/science.286.5441.958] [Citation(s) in RCA: 681] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Generation and maintenance of an effective repertoire of T cell antigen receptors are essential to the immune system, yet the number of distinct T cell receptors (TCRs) expressed by the estimated 10(12) T cells in the human body is not known. In this study, TCR gene amplification and sequencing showed that there are about 10(6) different beta chains in the blood, each pairing, on the average, with at least 25 different alpha chains. In the memory subset, the diversity decreased to 1 x 10(5) to 2 x 10(5) different beta chains, each pairing with only a single alpha chain. Thus, the naïve repertoire is highly diverse, whereas the memory compartment, here one-third of the T cell population, contributes less than 1 percent of the total diversity.
Collapse
Affiliation(s)
- T P Arstila
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
40
|
Sebzda E, Mariathasan S, Ohteki T, Jones R, Bachmann MF, Ohashi PS. Selection of the T cell repertoire. Annu Rev Immunol 1999; 17:829-74. [PMID: 10358775 DOI: 10.1146/annurev.immunol.17.1.829] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Advances in gene technology have allowed the manipulation of molecular interactions that shape the T cell repertoire. Although recognized as fundamental aspects of T lymphocyte development, only recently have the mechanisms governing positive and negative selection been examined at a molecular level. Positive selection refers to the active process of rescuing MHC-restricted thymocytes from programmed cell death. Negative selection refers to the deletion or inactivation of potentially autoreactive thymocytes. This review focuses on interactions during thymocyte maturation that define the T cell repertoire, with an emphasis placed on current literature within this field.
Collapse
Affiliation(s)
- E Sebzda
- Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The aim of this work was to decipher how graft-versus-host disease (GVHD) affects T cell production and homeostasis. In GVHD+ mice, thymic output was decreased fourfold relative to normal mice, but was sufficient to maintain a T cell repertoire with normal diversity in terms of Vbeta usage. Lymphoid hypoplasia in GVHD+ mice was caused mainly by a lessened expansion of the peripheral postthymic T cell compartment. In 5-bromo-2'-deoxyuridine pulse-chase experiments, resident T cells in the spleen of GVHD+ mice showed a normal turnover rate (proliferation and half-life). When transferred into thymectomized GVHD- secondary hosts, T cells from GVHD+ mice expanded normally. In contrast, normal T cells failed to expand when injected into GVHD+ mice. Thus, the reduced size of the postthymic compartment in GVHD+ mice was not due to an intrinsic lymphocyte defect, but to an extrinsic microenvironment abnormality. We suggest that this extrinsic anomaly is consistent with a reduced number of functional peripheral T cell niches. Therefore, our results show that GVHD-associated T cell hypoplasia is largely caused by a perturbed homeostasis of the peripheral compartment. Furthermore, they suggest that damage to the microenvironment of secondary lymphoid organs may represent an heretofore unrecognized cause of acquired T cell hypoplasia.
Collapse
Affiliation(s)
- G Dulude
- Department of Medicine, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada H1T 2M4
| | | | | |
Collapse
|
42
|
Fukui Y, Hashimoto O, Inayoshi A, Gyotoku T, Sano T, Koga T, Gushima T, Sasazuki T. Highly restricted T cell repertoire shaped by a single major histocompatibility complex-peptide ligand in the presence of a single rearranged T cell receptor beta chain. J Exp Med 1998; 188:897-907. [PMID: 9730891 PMCID: PMC2213398 DOI: 10.1084/jem.188.5.897] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Revised: 06/17/1998] [Indexed: 11/17/2022] Open
Abstract
The T cell repertoire is shaped by positive and negative selection of thymocytes through the interaction of alpha/beta-T cell receptors (TCR) with self-peptides bound to self-major histocompatibility complex (MHC) molecules. However, the involvement of specific TCR-peptide contacts in positive selection remains unclear. By fixing TCR-beta chains with a single rearranged TCR-beta irrelevant to the selecting ligand, we show here that T cells selected to mature on a single MHC-peptide complex express highly restricted TCR-alpha chains in terms of Valpha usage and amino acid residue of their CDR3 loops, whereas such restriction was not observed with those selected by the same MHC with diverse sets of self-peptides including this peptide. Thus, we visualized the TCR structure required to survive positive selection directed by this single ligand. Our findings provide definitive evidence that specific recognition of self-peptides by TCR could be involved in positive selection of thymocytes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- CD4 Antigens/analysis
- CD4-Positive T-Lymphocytes/cytology
- CD8 Antigens/analysis
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Genes, MHC Class I/immunology
- Genes, MHC Class II/immunology
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Y Fukui
- Department of Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|