1
|
Dudek AM, Feist WN, Sasu EJ, Luna SE, Ben-Efraim K, Bak RO, Cepika AM, Porteus MH. A simultaneous knockout knockin genome editing strategy in HSPCs potently inhibits CCR5- and CXCR4-tropic HIV-1 infection. Cell Stem Cell 2024; 31:499-518.e6. [PMID: 38579682 PMCID: PMC11212398 DOI: 10.1016/j.stem.2024.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/29/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.
Collapse
Affiliation(s)
- Amanda M Dudek
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William N Feist
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena J Sasu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaya Ben-Efraim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
| | - Alma-Martina Cepika
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Majumdar S, Pontejo SM, Jaiswal H, Gao JL, Salancy A, Stassenko E, Yamane H, McDermott DH, Balabanian K, Bachelerie F, Murphy PM. Severe CD8+ T Lymphopenia in WHIM Syndrome Caused by Selective Sequestration in Primary Immune Organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1913-1924. [PMID: 37133343 PMCID: PMC10247468 DOI: 10.4049/jimmunol.2200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is an ultra-rare combined primary immunodeficiency disease caused by heterozygous gain-of-function mutations in the chemokine receptor CXCR4. WHIM patients typically present with recurrent acute infections associated with myelokathexis (severe neutropenia due to bone marrow retention of mature neutrophils). Severe lymphopenia is also common, but the only associated chronic opportunistic pathogen is human papillomavirus and mechanisms are not clearly defined. In this study, we show that WHIM mutations cause more severe CD8 than CD4 lymphopenia in WHIM patients and WHIM model mice. Mechanistic studies in mice revealed selective and WHIM allele dose-dependent accumulation of mature CD8 single-positive cells in thymus in a cell-intrinsic manner due to prolonged intrathymic residence, associated with increased CD8 single-positive thymocyte chemotactic responses in vitro toward the CXCR4 ligand CXCL12. In addition, mature WHIM CD8+ T cells preferentially home to and are retained in the bone marrow in mice in a cell-intrinsic manner. Administration of the specific CXCR4 antagonist AMD3100 (plerixafor) in mice rapidly and transiently corrected T cell lymphopenia and the CD4/CD8 ratio. After lymphocytic choriomeningitis virus infection, we found no difference in memory CD8+ T cell differentiation or viral load between wild-type and WHIM model mice. Thus, lymphopenia in WHIM syndrome may involve severe CXCR4-dependent CD8+ T cell deficiency resulting in part from sequestration in the primary lymphoid organs, thymus, and bone marrow.
Collapse
Affiliation(s)
- Shamik Majumdar
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Hemant Jaiswal
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Abigail Salancy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Stassenko
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hidehiro Yamane
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Karl Balabanian
- Université Paris-Cité, Institut de Recherche Saint-Louis, OPALE Carnot Institute, EMiLy, INSERM U1160, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
McDaniel Mims B, Jones-Hall Y, Dos Santos AP, Furr K, Enriquez J, Grisham MB. Induction of acute graft vs. host disease in lymphopenic mice. ACTA ACUST UNITED AC 2019; 26:233-244. [PMID: 31248669 DOI: 10.1016/j.pathophys.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially life-saving treatment for refractory/relapsing hematological malignancies, blood disorders or autoimmune diseases. However, approximately 40-50% of patients undergoing allogeneic HSCT will develop a multi-organ, inflammatory disorder called acute graft vs. host disease (aGVHD). Experimental and clinical studies suggest that intestinal injury due to toxic, pre-transplant conditioning protocols (e.g. lethal irradiation and/or chemotherapy) may play a major role in the development of aGVHD. However, recent studies from our laboratory suggest that this may not be the case. The objective of this study was to quantify and compare the onset and severity of aGVHD induced by the adoptive transfer of allogeneic T cells into untreated lymphopenic mice. Four million allogeneic or syngeneic CD4+CD62L+CD25- T cells were transferred (i.p.) into NK cell-depleted RAG1-/- mice or RAG2-/-IL2rγ-/-double knock-out (DKO) mice and assessed daily for signs of aGVHD. We found that adoptive transfer of allogeneic but not syngeneic T cells into NK cell-depleted RAG1-/- or DKO mice induced many of the clinical and histological features of aGVHD including weight loss, inflammatory cytokine production and tissue inflammation. In addition, adoptive transfer of allogeneic T cells into each recipient induced severe anemia as well as dramatic reductions in bone marrow and spleen cellularity. Taken together, we conclude that allogeneic CD4+ T cells are both necessary and sufficient to induce aGVHD in lymphopenic recipients in the absence of toxic, pre-transplant conditioning.
Collapse
Affiliation(s)
- Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States
| | - Yava Jones-Hall
- Purdue University, College of Veterinary Medicine, Department of Comparative Pathobiology, West Lafayette, IN 47907, United States
| | - Andrea Pires Dos Santos
- Purdue University, College of Veterinary Medicine, Department of Comparative Pathobiology, West Lafayette, IN 47907, United States
| | - Kathryn Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States
| | - Josue Enriquez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health, Sciences Center, Lubbock, TX 79430, United States.
| |
Collapse
|
5
|
HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4(+) T cells. Oncogene 2016; 35:4509-17. [PMID: 26804169 DOI: 10.1038/onc.2015.510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/18/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4(+) T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3(+) T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4(+) T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4(+) T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4(+) T cells infected with HTLV-1.
Collapse
|
6
|
Gonzalez L, Strbo N, Podack ER. Humanized mice: novel model for studying mechanisms of human immune-based therapies. Immunol Res 2014; 57:326-34. [PMID: 24248605 DOI: 10.1007/s12026-013-8471-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The lack of relevant animal models is the major bottleneck for understanding human immunology and immunopathology. In the last few years, a novel model of humanized mouse has been successfully employed to investigate some of the most critical questions in human immunology. We have set up and tested in our laboratory the latest technology for generating mice with a human immune system by reconstituting newborn immunodeficient NOD/SCID-γ(c)(-/-) mice with human fetal liver-derived hematopoietic stem cells. These humanized mice have been deemed most competent as human models in a thorough comparative study with other humanized mouse technologies. Lymphocytes in these mice are of human origin while other hematopoietic cells are chimeric, partly of mouse and partly of human origin. We demonstrate that human CD8 T lymphocytes in humanized mice are fully responsive to our novel cell-based secreted heat shock protein gp96(HIV)-Ig vaccine. We also show that the gp96(HIV)-Ig vaccine induces powerful mucosal immune responses in the rectum and the vagina, which are thought to be required for protection from HIV infection. We posit the hypothesis that vaccine approaches tested in humanized mouse models can generate data rapidly, economically and with great flexibility (genetic manipulations are possible), to be subsequently tested in larger nonhuman primate models and humans.
Collapse
Affiliation(s)
- Louis Gonzalez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
7
|
Besedovsky L, Linz B, Dimitrov S, Groch S, Born J, Lange T. Cortisol increases CXCR4 expression but does not affect CD62L and CCR7 levels on specific T cell subsets in humans. Am J Physiol Endocrinol Metab 2014; 306:E1322-9. [PMID: 24760986 DOI: 10.1152/ajpendo.00678.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids are well known to affect T cell migration, leading to a redistribution of the cells from blood to the bone marrow, accompanied by a concurrent suppression of lymph node homing. Despite numerous studies in this context, with most of them employing synthetic glucocorticoids in nonphysiological doses, the mechanisms of this redistribution are not well understood. Here, we investigated in healthy men the impact of cortisol at physiological concentrations on the expression of different migration molecules on eight T cell subpopulations in vivo and in vitro. Hydrocortisone (cortisol, 22 mg) infused during nocturnal rest when endogenous cortisol levels are low, compared with placebo, differentially reduced numbers of T cell subsets, with naive CD4(+) and CD8(+) subsets exhibiting the strongest reduction. Hydrocortisone in vivo and in vitro increased CXCR4 expression, which presumably mediates the recruitment of T cells to the bone marrow. Expression of the lymph node homing receptor CD62L on total CD3(+) and CD8(+) T cells appeared reduced following hydrocortisone infusion. However, this was due to a selective extravasation of CD62L(+) T cell subsets, as hydrocortisone affected neither CD62L expression on a subpopulation level nor CD62L expression in vitro. Corresponding results in the opposite direction were observed after blocking of endogenous cortisol synthesis by metyrapone. CCR7, another lymph node homing receptor, was also unaffected by hydrocortisone in vitro. Thus, cortisol seems to redirect T cells to the bone marrow by upregulating their CXCR4 expression, whereas its inhibiting effect on T cell homing to lymph nodes is apparently regulated independently of the expression of classical homing receptors.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Barbara Linz
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Stoyan Dimitrov
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Sabine Groch
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany
| | - Jan Born
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; and
| | - Tanja Lange
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany; Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Chewning JH, Zhang W, Randolph DA, Swindle CS, Schoeb TR, Weaver CT. Allogeneic Th1 cells home to host bone marrow and spleen and mediate IFNγ-dependent aplasia. Biol Blood Marrow Transplant 2013; 19:876-87. [PMID: 23523972 PMCID: PMC3683565 DOI: 10.1016/j.bbmt.2013.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Bone marrow graft failure and poor graft function are frequent complications after hematopoietic stem cell transplantation and result in significant morbidity and mortality. Both conditions are associated with graft-versus-host disease (GVHD), although the mechanism remains undefined. Here we show, in 2 distinct murine models of GVHD (complete MHC- and class II-disparate) that mimic human peripheral blood stem cell transplantation, that Th1 CD4(+) cells induce bone marrow failure in allogeneic recipients. Bone marrow failure after transplantation of allogeneic naïve CD4(+) T cells was associated with increased CD4(+) Th1 cell development within bone marrow and lymphoid tissues. Using IFNγ-reporter mice, we found that Th1 cells generated during GVHD induced bone marrow failure after transfers into secondary recipients. Homing studies demonstrated that transferred Th1 cells express CXCR4, which was associated with accumulation within bone marrow and spleen. Allogeneic Th1 cells were activated by radiation-resistant host bone marrow cells and induced bone marrow failure through an IFNγ-dependent mechanism. Thus, allogeneic Th1 CD4(+) cells generated during GVHD traffic to hematopoietic sites and induce bone marrow failure via IFNγ-mediated toxicity. These results have important implications for prevention and treatment of bone marrow graft failure after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Joseph H Chewning
- Department of Pediatrics, Pediatric Blood and Marrow Transplantation Program, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | |
Collapse
|
9
|
van der Voort R, Volman TJH, Verweij V, Linssen PCM, Maas F, Hebeda KM, Dolstra H. Homing characteristics of donor T cells after experimental allogeneic bone marrow transplantation and posttransplantation therapy for multiple myeloma. Biol Blood Marrow Transplant 2012; 19:378-86. [PMID: 23266741 DOI: 10.1016/j.bbmt.2012.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/14/2012] [Indexed: 01/13/2023]
Abstract
Relapse and graft-versus-host disease remain major problems associated with allogeneic bone marrow (BM) transplantation (allo-BMT) and posttransplantation therapy in patients with multiple myeloma (MM) and other hematologic malignancies. A possible strategy for selectively enhancing the graft-versus-myeloma response and possibly reducing graft-versus-host disease is to increase the migration of alloreactive T cells toward the MM-containing BM. In the present study, we characterized the BM-homing behavior of donor-derived effector T cells in a novel allo-BMT model for the treatment of MM. We observed that posttransplantation immunotherapy consisting of donor lymphocyte infusion (DLI) and vaccination with minor histocompatibility antigen-loaded dendritic cells (DCs) was associated with prolonged survival compared with allo-BMT with no further treatment. Moreover, CD8(+) effector T cells expressing inflammatory homing receptors, including high levels of CD44, LFA-1, and inflammatory chemokine receptors, were recruited to MM-bearing BM. This was paralleled by strongly increased expression of IFN-γ and IFN-γ-inducible chemokines, including CXCL9, CXCL10, and CXCL16, especially in mice treated with DLI plus minor histocompatibility antigen-loaded DC vaccination. Remarkably, expression of the homeostatic chemokine CXCL12 was reduced. Furthermore, IFN-γ and TNF-α induced BM endothelial cells to express high levels of the inflammatory chemokines and reduced or unaltered levels of CXCL12. Finally, presentation of CXCL9 by multiple BM endothelial cell-expressed heparan sulfate proteoglycans triggered transendothelial migration of effector T cells. Taken together, our data demonstrate that both post-transplantation DLI plus miHA-loaded DC vaccination and MM growth result in an increased expression of inflammatory homing receptors on donor T cells, decreased levels of the homeostatic BM-homing chemokine CXCL12, and strong induction of inflammatory chemokines in the BM. Thus, along with increasing the population of alloreactive T cells, post-transplantation immunotherapy also might contribute to a more effective graft-versus-tumor response by switching homeostatic T cell migration to inflammation-driven migration.
Collapse
Affiliation(s)
- Robbert van der Voort
- Department of Laboratory Medicine, Laboratory of Hematology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
10
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|
11
|
Gorantla S, Poluektova L, Gendelman HE. Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci 2012; 35:197-208. [PMID: 22305769 DOI: 10.1016/j.tins.2011.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) reflect the spectrum of neural impairments seen during chronic viral infection. Current research efforts focus on improving antiretroviral and adjunctive therapies, defining disease onset and progression, facilitating drug delivery, and halting neurodegeneration and viral resistance. Because HIV is species-specific, generating disease in small-animal models has proved challenging. After two decades of research, rodent HAND models now include those containing a human immune system. Antiviral responses, neuroinflammation and immunocyte blood-brain barrier (BBB) trafficking follow HIV infection in these rodent models. We review these and other rodent models of HAND and discuss their unmet potential in reflecting human pathobiology and in facilitating disease monitoring and therapeutic discoveries.
Collapse
Affiliation(s)
- Santhi Gorantla
- Center for Neurodegenerative Disorders and Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
12
|
Nakayama EE, Shioda T. TRIM5α and Species Tropism of HIV/SIV. Front Microbiol 2012; 3:13. [PMID: 22291694 PMCID: PMC3264904 DOI: 10.3389/fmicb.2012.00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 12/03/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects humans and chimpanzees but not old world monkeys (OWMs) such as the rhesus monkey (Rh) and cynomolgus monkey (CM). HIV-1 efficiently enters cells of OWMs but encounters a block before reverse transcription. This narrow host range is attributed to a barrier in the host cell. In 2004, the screening of a Rh cDNA library identified tripartite motif 5α (TRIM5α) as a cellular antiviral factor. TRIM5α is one of splicing variants produced by TRIM5 gene and TRIM5 proteins are members of the TRIM family containing RING, B-box 2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase and TRIM5α is degraded via the ubiquitin–proteasome-dependent pathway. Among TRIM5 splicing variants, TRIM5α alone has an additional C-terminal PRYSPRY (B30.2) domain. Previous studies have shown that sequence variation in variable regions of the PRYSPRY domain among different monkey species affects species-specific retrovirus infection, while amino acid sequence differences in the viral capsid protein determine viral sensitivity to restriction. TRIM5α recognizes the multimerized capsid proteins (viral core) of an incoming virus by its PRYSPRY domain and is thus believed to control retroviral infection. There are significant intraspecies variations in the Rh-TRIM5 gene. It has also been reported that some Rh and CM individuals have retrotransposed cyclophilin A open reading frame in the TRIM5 gene, which produces TRIM5–cyclophilin A fusion protein (TRIMCyp). TRIMCyp, which was originally identified as an anti-HIV-1 factor of New World owl monkeys, is an interesting example of the gain of a new function by retrotransposition. As different TRIM5 genotypes of Rh showed different levels of simian immunodeficiency virus replication in vivo, the TRIM5 genotyping is thought to be important in acquired immunodeficiency syndrome monkey models.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka, Japan
| | | |
Collapse
|
13
|
Bignon A, Biajoux V, Bouchet-Delbos L, Emilie D, Lortholary O, Balabanian K. [CXCR4, a therapeutic target in rare immunodeficiencies?]. Med Sci (Paris) 2011; 27:391-7. [PMID: 21524404 DOI: 10.1051/medsci/2011274015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Currently, more than 200 primary immunodeficiency diseases have been discovered. In most cases, genetic defects affect the expression or the function of proteins involved in immune development and homeostasis. Some orphan immuno-hematological disorders are characterized by an abnormal leukocyte trafficking, a notion predictive of an anomaly of the chemokine/chemokine receptor system. In this review, we focus on recent advances in the characterization of dysfunctions of the CXCL12 (SDF-1)/CXCR4 signaling axis in two rare human immunodeficiencies, one associated with a loss of CXCR4 function, the Idiopathic CD4(+) T-cell Lymphocytopenia, and the other with a gain of CXCR4 function, the WHIM syndrome.
Collapse
Affiliation(s)
- Alexandre Bignon
- Université Paris-Sud, laboratoire cytokines, chimiokines et immunopathologie, UMR-S996, 32, rue des Carnets, 92140 Clamart, France
| | | | | | | | | | | |
Collapse
|
14
|
Cedeno-Laurent F, Gómez-Flores M, Mendez N, Ancer-Rodríguez J, Bryant JL, Gaspari AA, Trujillo JR. New insights into HIV-1-primary skin disorders. J Int AIDS Soc 2011; 14:5. [PMID: 21261982 PMCID: PMC3037296 DOI: 10.1186/1758-2652-14-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/24/2011] [Indexed: 11/23/2022] Open
Abstract
Since the first reports of AIDS, skin involvement has become a burdensome stigma for seropositive patients and a challenging task for dermatologist and infectious disease specialists due to the severe and recalcitrant nature of the conditions. Dermatologic manifestations in AIDS patients act as markers of disease progression, a fact that enhances the importance of understanding their pathogenesis. Broadly, cutaneous disorders associated with HIV type-1 infection can be classified as primary and secondary. While the pathogenesis of secondary complications, such as opportunistic infections and skin tumours, is directly correlated with a decline in the CD4+ T cell count, the origin of the certain manifestations primarily associated with the retroviral infection itself still remains under investigation. The focus of this review is to highlight the immunological phenomena that occur in the skin of HIV-1-seropositive patients, which ultimately lead to skin disorders, such as seborrhoeic dermatitis, atopic dermatitis, psoriasis and eosinophilic folliculitis. Furthermore, we compile the latest data on how shifts in the cytokines milieu, impairments of the innate immune compartment, reactions to xenobiotics and autoimmunity are causative agents in HIV-1-driven skin diseases. Additionally, we provide a thorough analysis of the small animal models currently used to study HIV-1-associated skin complications, centering on transgenic rodent models, which unfortunately, have not been able to fully unveil the role of HIV-1 genes in the pathogenesis of their primarily associated dermatological manifestations.
Collapse
|
15
|
Biajoux V, Bignon A, Bouchet-Delbos L, Emilie D, Balabanian K. [Dysfunctions of the CXCL12 (SDF-1)/CXCR4 signaling axis in the WHIM syndrome and the idiopathic CD4(+) T-cell lymphocytopenia]. Biol Aujourdhui 2011; 204:273-284. [PMID: 21215244 DOI: 10.1051/jbio/2010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Indexed: 05/30/2023]
Abstract
Chemokines are small cytokine-like secreted proteins that govern migration of leukocytes to their specific niches in lymphoid organs and to inflammatory sites. They mediate their functions by binding to and activating chemokine receptors, which belong to the heptahelical G protein-coupled receptor family. The CXC chemokine Stromal cell Derived Factor-1 (SDF-1/CXCL12) is the sole natural ligand for the broadly expressed CXCR4 receptor and acts as a chemoattractant for many leukocyte subsets. The CXCL12/CXCR4 axis exerts critical activities in homeostatic processes such as organogenesis, hematopoiesis and leukocyte trafficking. Dysregulations of CXCR4 signaling and/or expression are associated with several infectious, inflammatory, autoimmune and malignant conditions. In light of recent data, we review here CXCR4 dysfunctions unveiled in two rare human immunodeficiency disorders, one characterized by a gain of CXCR4 function, the WHIM syndrome, and the other by a loss of CXCR4 function, the idiopathic CD4(+) T-cell lymphocytopenia.
Collapse
Affiliation(s)
- Vincent Biajoux
- Université Paris-Sud, Laboratoire Cytonkin, Chimiokines et Immunopathologies, UMR S996, 32 rue des Carnets, 92140 Clamart, France - INSERM, 92140 Clamart, France
| | | | | | | | | |
Collapse
|
16
|
Goffinet C, Schmidt S, Kern C, Oberbremer L, Keppler OT. Endogenous CD317/Tetherin limits replication of HIV-1 and murine leukemia virus in rodent cells and is resistant to antagonists from primate viruses. J Virol 2010; 84:11374-84. [PMID: 20702620 PMCID: PMC2953199 DOI: 10.1128/jvi.01067-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/04/2010] [Indexed: 12/16/2022] Open
Abstract
Human CD317 (BST-2/tetherin) is an intrinsic immunity factor that blocks the release of retroviruses, filoviruses, herpesviruses, and arenaviruses. It is unclear whether CD317 expressed endogenously in rodent cells has the capacity to interfere with the replication of the retroviral rodent pathogen murine leukemia virus (MLV) or, in the context of small-animal model development, contributes to the well-established late-phase restriction of human immunodeficiency virus type 1 (HIV-1). Here, we show that small interfering RNA (siRNA)-mediated knockdown of CD317 relieved a virion release restriction and markedly enhanced the egress of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) in rat cells, including primary macrophages. Moreover, rodent CD317 potently inhibited MLV release, and siRNA-mediated depletion of CD317 in a mouse T-cell line resulted in the accelerated spread of MLV. Several virus-encoded antagonists have recently been reported to overcome the restriction imposed by human or monkey CD317, including HIV-1 Vpu, envelope glycoproteins of HIV-2 and Ebola virus, Kaposi's sarcoma-associated herpesvirus K5, and SIV Nef. In contrast, both rat and mouse CD317 showed a high degree of resistance to these viral antagonists. These data suggest that CD317 is a broadly acting and conserved mediator of innate control of retroviral infection and pathogenesis that restricts the release of retroviruses and lentiviruses in rodents. The high degree of resistance of the rodent CD317 restriction factors to antagonists from primate viruses has implications for HIV-1 small-animal model development and may guide the design of novel antiviral interventions.
Collapse
Affiliation(s)
- Christine Goffinet
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Sarah Schmidt
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Christian Kern
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Lena Oberbremer
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Oliver T. Keppler
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Idiopathic CD4+ T-cell lymphocytopenia is associated with impaired membrane expression of the chemokine receptor CXCR4. Blood 2009; 115:3708-17. [PMID: 20038787 DOI: 10.1182/blood-2009-02-202796] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Idiopathic CD4(+) T-cell lymphocytopenia (ICL) is a rare acquired T-cell immunodeficiency of unknown pathogenic basis. Six adults with ICL who developed opportunistic infections were investigated using extensive immunophenotyping analysis and functional evaluation of the chemokine receptor CXCR4. For all 6 patients studied, a profound defect in CXCR4 expression was detected at the surface of CD4(+) T lymphocytes, in association with an abnormal intracellular accumulation of CXCR4 and of its natural ligand, the chemokine CXCL12. For all patients studied, CD4(+) T-cell chemotactic response toward CXCL12 was decreased, whereas sensitivity to CXCL8 was preserved. CXCR4 recovery after ligand-induced endocytosis was impaired in ICL CD4(+) T cells. Upon in vitro addition of interleukin-2 (IL-2), membrane expression of CXCR4 returned to normal levels in 5 of 6 patients, whereas intracellular accumulation of CXCR4 and CXCL12 disappeared. Upon therapeutic administration of IL-2, CD4(+) T-cell count and membrane CXCR4 expression and function improved over time in 3 of 4 patients treated. Therefore, our data indicate that ICL is associated with defective surface expression of CXCR4, which may be reversed by IL-2.
Collapse
|
18
|
Blanco JCG, Pletneva LM, Wieczorek L, Khetawat D, Stantchev TS, Broder CC, Polonis VR, Prince GA. Expression of Human CD4 and chemokine receptors in cotton rat cells confers permissiveness for productive HIV infection. Virol J 2009; 6:57. [PMID: 19442298 PMCID: PMC2689193 DOI: 10.1186/1743-422x-6-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current small animal models for studying HIV-1 infection are very limited, and this continues to be a major obstacle for studying HIV-1 infection and pathogenesis, as well as for the urgent development and evaluation of effective anti-HIV-1 therapies and vaccines. Previously, it was shown that HIV-1 can infect cotton rats as indicated by development of antibodies against all major proteins of the virus, the detection of viral cDNA in spleen and brain of challenged animals, the transmission of infectious virus, albeit with low efficiency, from animal to animal by blood, and an additional increase in the mortality in the infected groups. RESULTS Using in vitro experiments, we now show that cotton rat cell lines engineered to express human receptor complexes for HIV-1 (hCD4 along with hCXCR4 or hCCR5) support virus entry, viral cDNA integration, and the production of infectious virus. CONCLUSION These results further suggest that the development of transgenic cotton rats expressing human HIV-1 receptors may prove to be useful small animal model for HIV infection.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Virion Systems Inc,, 9610 Medical Center Drive, Suite 100, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 2009; 83:7305-21. [PMID: 19420076 DOI: 10.1128/jvi.02207-08] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The generation of humanized BLT mice by the cotransplantation of human fetal thymus and liver tissues and CD34(+) fetal liver cells into nonobese diabetic/severe combined immunodeficiency mice allows for the long-term reconstitution of a functional human immune system, with human T cells, B cells, dendritic cells, and monocytes/macrophages repopulating mouse tissues. Here, we show that humanized BLT mice sustained high-level disseminated human immunodeficiency virus (HIV) infection, resulting in CD4(+) T-cell depletion and generalized immune activation. Following infection, HIV-specific humoral responses were present in all mice by 3 months, and HIV-specific CD4(+) and CD8(+) T-cell responses were detected in the majority of mice tested after 9 weeks of infection. Despite robust HIV-specific responses, however, viral loads remained elevated in infected BLT mice, raising the possibility that these responses are dysfunctional. The increased T-cell expression of the negative costimulator PD-1 recently has been postulated to contribute to T-cell dysfunction in chronic HIV infection. As seen in human infection, both CD4(+) and CD8(+) T cells demonstrated increased PD-1 expression in HIV-infected BLT mice, and PD-1 levels in these cells correlated positively with viral load and inversely with CD4(+) cell levels. The ability of humanized BLT mice to generate both cellular and humoral immune responses to HIV will allow the further investigation of human HIV-specific immune responses in vivo and suggests that these mice are able to provide a platform to assess candidate HIV vaccines and other immunotherapeutic strategies.
Collapse
|
20
|
Michel N, Goffinet C, Ganter K, Allespach I, Kewalramani VN, Saifuddin M, Littman DR, Greene WC, Goldsmith MA, Keppler OT. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo. Retrovirology 2009; 6:2. [PMID: 19144136 PMCID: PMC2631513 DOI: 10.1186/1742-4690-6-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 01/13/2009] [Indexed: 12/20/2022] Open
Abstract
Background Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1). Results Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env) that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. Conclusion Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity.
Collapse
Affiliation(s)
- Nico Michel
- Department of Virology, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation 2008; 77:395-411. [PMID: 19281787 DOI: 10.1016/j.diff.2008.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/12/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4-EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF.
Collapse
|
22
|
Ikeda T, Ohsugi T, Kimura T, Matsushita S, Maeda Y, Harada S, Koito A. The antiretroviral potency of APOBEC1 deaminase from small animal species. Nucleic Acids Res 2008; 36:6859-71. [PMID: 18971252 PMCID: PMC2588513 DOI: 10.1093/nar/gkn802] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although the role of the APOBEC3-dependent retroelement restriction system as an intrinsic immune defense against human immunodeficiency virus type1 (HIV-1) infection is becoming clear, only the rat ortholog of mammalian APOBEC1s (A1) thus far has been shown to possess antiviral activity. Here, we cloned A1 cDNAs from small animal species, and showed that similar to rat A1, both wild-type and Δvif HIV-1 infection was inhibited by mouse and hamster A1 (4- to 10-fold), whereas human A1 had negligible effects. Moreover, rabbit A1 significantly reduced the infectivity of both HIV-1 virions (>300-fold), as well as that of SIVmac, SIVagm, FIV and murine leukemia virus. Immunoblot analysis showed that A1s were efficiently incorporated into the HIV-1 virion, and their packaging is mediated through an interaction with the nucleocapsid Gag domain. Interestingly, there was a clear accumulation of particular C-T changes in the genomic RNAs of HIV-1 produced in their presence, with few G-A changes in the proviral DNA. Together, these data reveal that A1 may function as a defense mechanism, regulating retroelements in a wide range of mammalian species.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Department of Retrovirology and Self-Defense, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Tervo HM, Goffinet C, Keppler OT. Mouse T-cells restrict replication of human immunodeficiency virus at the level of integration. Retrovirology 2008; 5:58. [PMID: 18611257 PMCID: PMC2557013 DOI: 10.1186/1742-4690-5-58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/08/2008] [Indexed: 12/20/2022] Open
Abstract
Background The development of an immunocompetent, genetically modified mouse model to study HIV-1 pathogenesis and to test antiviral strategies has been hampered by the fact that cells from native mice do not or only inefficiently support several steps of the HIV-1 replication cycle. Upon HIV-1 infection, mouse T-cell lines fail to express viral proteins, but the underlying replication barrier has thus far not been unambiguously identified. Here, we performed a kinetic and quantitative assessment of consecutive steps in the early phase of the HIV-1 replication cycle in T-cells from mice and humans. Results Both T-cell lines and primary T-cells from mice harbor a severe post-entry defect that is independent of potential species-specTR transactivation. Reverse transcription occurred efficiently following VSV-G-mediated entry of virions into mouse T-cells, and abundant levels of 2-LTR circles indicated successful nuclear import of the pre-integration complex. To probe the next step in the retroviral replication cycle, i.e. the integration of HIV-1 into the host cell genome, we established and validated a nested real-time PCR to specifically quantify HIV-1 integrants exploiting highly repetitive mouse B1 elements. Importantly, we demonstrate that the frequency of integrant formation is diminished 18- to > 305-fold in mouse T-cell lines compared to a human counterpart, resulting in a largely abortive infection. Moreover, differences in transgene expression from residual vector integrants, the transcription off which is cyclin T1-independent, provided evidence for an additional, peri-integrational deficit in certain mouse T-cell lines. Conclusion In contrast to earlier reports, we find that mouse T-cells efficiently support early replication steps up to and including nuclear import, but restrict HIV-1 at the level of chromosomal integration.
Collapse
Affiliation(s)
- Hanna-Mari Tervo
- Department of Virology, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
24
|
Ferris MJ, Mactutus CF, Booze RM. Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: current status of dopamine system vulnerability in NeuroAIDS. Neurosci Biobehav Rev 2008; 32:883-909. [PMID: 18430470 PMCID: PMC2527205 DOI: 10.1016/j.neubiorev.2008.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 01/09/2008] [Accepted: 01/13/2008] [Indexed: 12/21/2022]
Abstract
There are roughly 30-40 million HIV-infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity.
Collapse
Affiliation(s)
- Mark J Ferris
- University of South Carolina, Program in Behavioral Neuroscience, Columbia, SC 29208, United States.
| | | | | |
Collapse
|
25
|
Relief of preintegration inhibition and characterization of additional blocks for HIV replication in primary mouse T cells. PLoS One 2008; 3:e2035. [PMID: 18446227 PMCID: PMC2323578 DOI: 10.1371/journal.pone.0002035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/05/2008] [Indexed: 12/21/2022] Open
Abstract
Development of a small animal model to study HIV replication and pathogenesis has been hampered by the failure of the virus to replicate in non-primate cells. Most studies aimed at achieving replication in murine cells have been limited to fibroblast cell lines, but generating an appropriate model requires overcoming blocks to viral replication in primary T cells. We have studied HIV-1 replication in CD4(+) T cells from human CD4/CCR5/Cyclin T1 transgenic mice. Expression of hCD4 and hCCR5 in mouse CD4(+) T cells enabled efficient entry of R5 strain HIV-1. In mouse T cells, HIV-1 underwent reverse transcription and nuclear import as efficiently as in human T cells. In contrast, chromosomal integration of HIV-1 proviral DNA was inefficient in activated mouse T cells. This process was greatly enhanced by providing a secondary T cell receptor (TCR) signal after HIV-1 infection, especially between 12 to 24 h post infection. This effect was specific for primary mouse T cells. The pathways involved in HIV replication appear to be PKCtheta-, CARMA1-, and WASp-independent. Treatment with Cyclosporin A (CsA) further relieved the pre-integration block. However, transcription of HIV-1 RNA was still reduced in mouse CD4(+) T cells despite expression of the hCyclin T1 transgene. Additional post-transcriptional defects were observed at the levels of Gag expression, Gag processing, Gag release and virus infectivity. Together, these post-integration defects resulted in a dramatically reduced yield of infectious virus (300-500 fold) after a single cycle of HIV-1 replication. This study implies the existence of host factors, in addition to those already identified, that are critical for HIV-1 replication in mouse cells. This study also highlights the differences between primary T cells and cell lines regarding pre-integration steps in the HIV-1 replication cycle.
Collapse
|
26
|
CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood 2008; 112:34-44. [PMID: 18436740 DOI: 10.1182/blood-2007-07-102103] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is an immune deficiency linked in many cases to heterozygous mutations causing truncations in the cytoplasmic tail of CXC chemokine receptor 4 (CXCR4). Leukocytes expressing truncated CXCR4 display enhanced responses to the receptor ligand CXCL12, including chemotaxis, which likely impair their trafficking and contribute to the immunohematologic clinical manifestations of the syndrome. CXCR4 desensitization and endocytosis are dependent on beta-arrestin (betaarr) recruitment to the cytoplasmic tail, so that the truncated CXCR4 are refractory to these processes and so have enhanced G protein-dependent signaling. Here, we show that the augmented responsiveness of WHIM leukocytes is also accounted for by enhanced betaarr2-dependent signaling downstream of the truncated CXCR4 receptor. Indeed, the WHIM-associated receptor CXCR4(1013) maintains association with betaarr2 and triggers augmented and prolonged betaarr2-dependent signaling, as revealed by ERK1/2 phosphorylation kinetics. Evidence is also provided that CXCR4(1013)-mediated chemotaxis critically requires betaarr2, and disrupting the SHSK motif in the third intracellular loop of CXCR4(1013) abrogates betaarr2-mediated signaling, but not coupling to G proteins, and normalizes chemotaxis. We also demonstrate that CXCR4(1013) spontaneously forms heterodimers with wild-type CXCR4. Accordingly, we propose a model where enhanced functional interactions between betaarr2 and receptor dimers account for the altered responsiveness of WHIM leukocytes to CXCL12.
Collapse
|
27
|
Mora JR. Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm Bowel Dis 2008; 14:275-89. [PMID: 17924560 DOI: 10.1002/ibd.20280] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lymphocyte migration is at the heart of chronic inflammatory ailments, including inflammatory bowel disease (IBD). Whereas naïve lymphocytes migrate to all secondary lymphoid organs, they are mostly excluded from nonlymphoid peripheral tissues. Upon activation, lymphocytes change their pattern of adhesion receptors and acquire the capacity to migrate to extralymphoid tissues. Antigen-experienced T cells are subdivided into different subsets based on their expression of homing receptors that favor their accumulation in specific tissues, such as the skin and the gut mucosa. B cells and antibody-secreting cells (ASC) also show tissue-tropism, which is somewhat correlated with the class of immunoglobulin that they produce. In fact, IgA-ASC are located in mucosal tissues, where they produce IgA, the main class of antibodies found in secretions. Although IgA-ASC are usually considered as a homogeneous pool of cells, those located in the small bowel have some unique migratory characteristics, suggesting that they are generated under different conditions as compared to IgA-ASC in other mucosal compartments. Foxp3(+) regulatory T cells (T(REG)) can also exhibit tissue-specific migratory potential and recent evidence suggests that T(REG) can be imprinted with gut-specific homing. Moreover, foxp3(+) T(REG) are enriched in the small bowel lamina propria, where they can be generated locally. The present review addresses our current understanding of how tissue-specific homing is acquired and modulated on T cells, B cells, and ASC, with a special emphasis on the intestinal mucosa. Harnessing these mechanisms could offer novel, effective, and more specific therapeutic strategies in IBD.
Collapse
Affiliation(s)
- J Rodrigo Mora
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Goffinet C, Michel N, Allespach I, Tervo HM, Hermann V, Kräusslich HG, Greene WC, Keppler OT. Primary T-cells from human CD4/CCR5-transgenic rats support all early steps of HIV-1 replication including integration, but display impaired viral gene expression. Retrovirology 2007; 4:53. [PMID: 17655755 PMCID: PMC1971067 DOI: 10.1186/1742-4690-4-53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 07/26/2007] [Indexed: 01/15/2023] Open
Abstract
Background In vivo studies on HIV-1 pathogenesis and testing of antiviral strategies have been hampered by the lack of an immunocompetent small animal model that is highly susceptible to HIV-1 infection. Since native rodents are non-permissive, we developed transgenic rats that selectively express the HIV-1 receptor complex, hCD4 and hCCR5, on relevant target cells. These animals display a transient low-level plasma viremia after HIV-1YU-2 infection, demonstrating HIV-1 susceptibility in vivo. However, unlike macrophages, primary CD4 T-cells from double-transgenic animals fail to support viral spread ex vivo. To identify quantitative limitations or absolute blocks in this rodent species, we quantitatively assessed the efficiency of key steps in the early phase of the viral replication cycle in a side-by-side comparison in infected cell lines and primary T-cells from hCD4/hCCR5-transgenic rats and human donors. Results Levels of virus entry, HIV-1 cDNA synthesis, nuclear import, and integration into the host genome were shown to be remarkably similar in cell lines and, where technically accessible, in primary T-cells from both species. In contrast, a profound impairment at the level of early HIV gene expression was disclosed at the single-cell level in primary rat T-cells and most other rat-derived cells. Macrophages were a notable exception, possibly reflecting the unique transcriptional milieu in this evolutionarily conserved target cell of all lentiviruses. Importantly, transient trans-complementation by ex vivo nucleofection with the Tat-interacting protein Cyclin T1 of human origin markedly elevated HIV gene expression in primary rat T-cells. Conclusion This is the first study that has quantitatively determined the efficiency of consecutive steps in the HIV-1 replication cycle in infected primary HIV target cells from a candidate transgenic small animal and compared it to human cells. Unlike cells derived from mice or rabbits, rat cells complete all of the early steps in the HIV-1 replication cycle, including provirus integration in vivo, with high efficiency. A deficiency in gene expression was disclosed at the single cell level and could be counteracted by the human pTEFb transcription complex factor Cyclin T1. Collectively, these results provide the basis for the advancement of this transgenic rat model through strategies aimed at boosting HIV-1 gene expression in primary rat CD4 T-cells, including human Cyclin T1 transgenesis.
Collapse
Affiliation(s)
| | - Nico Michel
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | - Ina Allespach
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | - Hanna-Mari Tervo
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | - Volker Hermann
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | | | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, USA
- Departments of Medicine and Microbiology and Immunology, University of California San Francisco, San Francisco, USA
| | - Oliver T Keppler
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Kremer KN, Kumar A, Hedin KE. Haplotype-independent costimulation of IL-10 secretion by SDF-1/CXCL12 proceeds via AP-1 binding to the human IL-10 promoter. THE JOURNAL OF IMMUNOLOGY 2007; 178:1581-8. [PMID: 17237407 PMCID: PMC2905171 DOI: 10.4049/jimmunol.178.3.1581] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Costimulation by the chemokine, stromal cell-derived factor-1 (SDF-1)/CXCL12, has been shown to increase the amount of IL-10 secreted by TCR-stimulated human T cells; however, the molecular mechanisms of this response are unknown. Knowledge of this signaling pathway may be useful because extensive evidence indicates that deficient IL-10 secretion promotes autoimmunity. The human IL-10 locus is highly polymorphic. We report in this study that SDF-1 costimulates IL-10 secretion from T cells containing all three of the most common human IL-10 promoter haplotypes that are identified by single-nucleotide polymorphisms at -1082, -819, and -592 bp (numbering is relative to the transcription start site). We further show that SDF-1 primarily costimulates IL-10 secretion by a diverse population of CD45RA(-) ("memory") phenotype T cells that includes cells expressing the presumed regulatory T cell marker, Foxp3. To address the molecular mechanisms of this response, we showed that SDF-1 costimulates the transcriptional activities in normal human T cells of reporter plasmids containing 1.1 kb of all three of the common IL-10 promoter haplotypes. IL-10 promoter activity was ablated by mutating two nonpolymorphic binding sites for the AP-1 transcription factor, and chromatin immunoprecipitation assays of primary human T cells revealed that SDF-1 costimulation enhances AP-1 binding to both of these sites. Together, these results delineate the molecular mechanisms responsible for SDF-1 costimulation of T cell IL-10 secretion. Because it is preserved among several human haplotypes and in diverse T cell populations including Foxp3(+) T cells, this pathway of IL-10 regulation may represent a key mechanism for modulating expression of this important immunoregulatory cytokine.
Collapse
Affiliation(s)
| | | | - Karen E. Hedin
- Direct correspondence to: Dr. Karen E. Hedin, Mayo Clinic, Department of Immunology, Guggenheim Building 3rd Floor, 200 First Street Southwest, Rochester, MN 55905, PH: 507-284-6441, FAX: 507-284-1637,
| |
Collapse
|
30
|
An DS, Poon B, Ho Tsong Fang R, Weijer K, Blom B, Spits H, Chen ISY, Uittenbogaart CH. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:391-6. [PMID: 17314230 PMCID: PMC1865603 DOI: 10.1128/cvi.00403-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2(-/-)gamma(c)(-/-) mice that are neonatally injected with human CD34(+) cells develop a functional human immune system (HIS), with human hematopoietic cells being found in the thymuses, peripheral blood, spleens, and bone marrow of the animals (hereafter these animals are referred to as HIS-Rag2(-/-)gamma(c)(-/-) mice). HIS-Rag2(-/-)gamma(c)(-/-) mice were infected with small amounts of CCR5-tropic HIV-1. Viral replication and immunophenotypic changes in the human cells in peripheral blood and lymphoid organs were examined. The productive infection of human cells in peripheral blood, thymus and spleen tissue, and bone marrow was detected. Ratios of CD4(+) T cells to CD8(+) T cells in the infected animals declined. Although no specific anti-HIV-1 immune responses were detected, immunoglobulin M (IgM) and IgG antibodies to an unidentified fetal calf serum protein present in the virus preparation were found in the inoculated animals. Thus, we have shown that the HIS-Rag2(-/-)gamma(c)(-/-) mouse model can be used for infection with low doses of CCR5-tropic HIV-1, which is most commonly transmitted during primary infections. HIS-Rag2(-/-)gamma(c)(-/-) mice can serve as a small-animal model for investigating HIV-1 pathogenesis and testing potential HIV-1 therapies, and studies with this model may replace some long and costly studies with nonhuman primates.
Collapse
Affiliation(s)
- Dong Sung An
- Department of Medicine, David E. Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1747, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen J, Zhao X, Lai Y, Suzuki A, Tomaru U, Ishizu A, Takada A, Ikeda H, Kasahara M, Yoshiki T. Enhanced production of p24 Gag protein in HIV-1-infected rat cells fused with uninfected human cells. Exp Mol Pathol 2007; 83:125-30. [PMID: 17222823 DOI: 10.1016/j.yexmp.2006.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/25/2006] [Accepted: 11/20/2006] [Indexed: 11/29/2022]
Abstract
Although many human molecules have been suggested to affect replication of human immunodeficiency virus type 1 (HIV-1), the distribution of such cofactors in human cell types is not well understood. Rat W31/D4R4 fibroblasts expressing human CD4 and CXCR4 receptors were infected with HIV-1. The provirus was integrated in the host genome, but only a limited amount of p24 Gag protein was produced in the cells and culture supernatants. Here we found that p24 production was significantly increased by fusing HIV-1-infected W31/D4R4 cells with uninfected human cell lines of T-cell, B-cell, or macrophage lineages. These findings suggest that human cellular factors supporting HIV-1 replication are distributed widely in cells of lymphocyte and macrophage lineages. We also examined whether the amount of p24 produced by rat-human hybrid cells was correlated with expression levels of specific human genes. The results suggested that HP68 and MHC class II transactivator (CIITA) might up- and down-regulate p24 production, respectively. It was also suggested that HIV-1 replication is affected by molecules other than those examined in this study, namely, cyclin T1, cyclin-dependent kinase 9, CRM1, HP68, and CIITA.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ding Z, Jia SH, Marshall JC, Downey GP, Waddell TK. Up-regulation of functional CXCR4 expression on human lymphocytes in sepsis. Crit Care Med 2006; 34:3011-7. [PMID: 17075377 DOI: 10.1097/01.ccm.0000247719.37793.43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Lymphocyte dysfunction has been documented in sepsis, and evidence suggests that lymphocyte infiltration contributes to tissue injury. The purpose of this study was to examine chemokine receptor expression and function in lymphocytes from septic patients and healthy donors. DESIGN Observational study of septic patients and laboratory investigation of normal controls. SETTING Tertiary care intensive care unit. PATIENTS AND SUBJECTS Nine critically ill patients fulfilling criteria for the systemic inflammatory response syndrome and with a Sepsis Score of >/=3 were included in this study. Lymphocytes were also obtained from healthy volunteers. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The total number of circulating leukocytes in septic patients was markedly increased; however, lymphocyte counts were decreased. Chemokine receptor expression on lymphocytes was examined by flow cytometry. CXCR4 expression on lymphocytes from septic patients was increased whereas CCR5 was decreased and CCR7 was unchanged. Lipopolysaccharide stimulation of normal lymphocytes increased CXCR4 expression but decreased CCR5 and did not change CCR7 expression. This lipopolysaccharide-stimulated CXCR4 expression required 20 hrs of stimulation and was accompanied by increased messenger RNA. Lymphocytes from septic patients or after lipopolysaccharide treatment demonstrated enhanced actin polymerization and migration in response to CXCL12. Taken together, sepsis and lipopolysaccharide up-regulated CXCR4 expression and enhanced lymphocyte activation and migration in response to CXCL12. CONCLUSIONS Blocking CXCR4 and CXCL12 function may provide a novel therapeutic method for controlling systemic inflammation and tissue injury in sepsis.
Collapse
Affiliation(s)
- Ziqiang Ding
- Division of Thoracic Surgery, Department of Surgery, Toronto General Research Institute of the University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
33
|
Wald O, Izhar U, Amir G, Avniel S, Bar-Shavit Y, Wald H, Weiss ID, Galun E, Peled A. CD4+CXCR4highCD69+ T Cells Accumulate in Lung Adenocarcinoma. THE JOURNAL OF IMMUNOLOGY 2006; 177:6983-90. [PMID: 17082613 DOI: 10.4049/jimmunol.177.10.6983] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemokine receptor CXCR4 is involved in the growth and metastasis of tumor cells. However, the expression of its ligand, the chemokine CXCL12, in tumors and its role in regulating the accumulation of immune cells within the tumors is not clear. Using ELISA and immunohistochemistry we found that CXCL12 is expressed in the majority of nonsmall cell lung cancer tissue sections obtained from stage IA to IIB nonsmall cell lung cancer patients undergoing operation. Histopathologic examination of these sections indicated that high CXCL12 expression correlated with increased tumor inflammation. In addition, disease recurrence rates in a subgroup of adenocarcinoma patients showed a tendency to correlate with high CXCL12 expression in the tumor. Isolation of adenocarcinoma-infiltrating immune cells demonstrated an increase in the percentage of CD4+CD69+CXCR4+ T cells as compared with normal lung tissue. About 30% of these cells expressed the regulatory T cell markers CD25high and FoxP3. The percentage of CD8 T cells within the tumor did not change, however; the percentage of NK and NK T cells was significantly reduced. In correlation with CXCR4 expression, CD4 T cells showed increased migration in response to CXCL12 compared with CD8 T cells and NK cells. Overall, these observations suggest that CXCL12 expression may influence tumor progression by shaping the immune cell population infiltrating lung adenocarcinoma tumors.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Aged
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/chemistry
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Movement/immunology
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Female
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Lectins, C-Type
- Lung Neoplasms/chemistry
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/metabolism
Collapse
Affiliation(s)
- Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Isreal
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsurutani N, Yasuda J, Yamamoto N, Choi BI, Kadoki M, Iwakura Y. Nuclear import of the preintegration complex is blocked upon infection by human immunodeficiency virus type 1 in mouse cells. J Virol 2006; 81:677-88. [PMID: 17079325 PMCID: PMC1797461 DOI: 10.1128/jvi.00870-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse cells do not support human immunodeficiency virus type 1 (HIV-1) replication because of host range barriers at steps including virus entry, transcription, RNA splicing, polyprotein processing, assembly, and release. The exact mechanisms for the suppression, however, are not completely understood. To elucidate further the barriers against HIV-1 replication in mouse cells, we analyzed the replication of the virus in lymphocytes from human CD4/CXCR4 transgenic mice. Although primary splenocytes and thymocytes allowed the entry and reverse transcription of HIV-1, the integration efficiency of the viral DNA was greatly reduced in these cells relative to human peripheral blood mononuclear cells, suggesting an additional block(s) before or at the point of host chromosome integration of the viral DNA. Preintegration processes were further analyzed using HIV-1 pseudotyped viruses. The reverse transcription step of HIV-1 pseudotyped with the envelope of murine leukemia virus or vesicular stomatitis virus glycoprotein was efficiently supported in both human and mouse cells, but nuclear import of the preintegration complex (PIC) of HIV-1 was blocked in mouse cells. We found that green fluorescent protein (GFP)-labeled HIV-1 integrase, which is known to be important in the nuclear localization of the PIC, could not be imported into the nucleus of mouse cells, in contrast to human cells. On the other hand, GFP-Vpr localized exclusively to the nuclei of both mouse and human cells. These observations suggest that, due to the dysfunction of integrase, the nuclear localization of PIC is suppressed in mouse cells.
Collapse
Affiliation(s)
- Naomi Tsurutani
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE, Hedin KE. CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 2006; 25:213-24. [PMID: 16919488 DOI: 10.1016/j.immuni.2006.06.015] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 04/26/2006] [Accepted: 06/06/2006] [Indexed: 11/17/2022]
Abstract
SDF-1alpha (CXCL12) signaling via its receptor, CXCR4, stimulates T cell chemotaxis and gene expression. The ZAP-70 tyrosine kinase critically mediates SDF-1alpha-dependent migration and prolonged ERK mitogen-activated protein (MAP) kinase activation in T cells. However, the molecular mechanism by which CXCR4 or other G protein-coupled receptors activate ZAP-70 has not been characterized. Here we show that SDF-1alpha stimulates the physical association of CXCR4 and the T cell receptor (TCR) and utilizes the ZAP-70 binding ITAM domains of the TCR for signal transduction. This pathway is responsible for several of the effects of SDF-1alpha on T cells, including prolonged ERK MAP kinase activity, increased intracellular calcium ion concentrations, robust AP-1 transcriptional activity, and SDF-1alpha costimulation of cytokine secretion. These results suggest new paradigms for understanding the effects of SDF-1alpha and other chemokines on immunity.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Calcium/metabolism
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/pharmacology
- Enzyme Activation/drug effects
- Humans
- Interleukin-10/metabolism
- Interleukin-2/metabolism
- Lectins, C-Type
- Models, Immunological
- Phosphotyrosine/metabolism
- Protein Binding
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/immunology
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcription Factor AP-1/metabolism
- Transcriptional Activation/genetics
- ZAP-70 Protein-Tyrosine Kinase/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Schüle S, Steidl S, Panitz S, Coulibaly C, Kalinke U, Cichutek K, Schweizer M. Selective gene transfer to T lymphocytes using coreceptor-specific [MLV(HIV)] pseudotype vectors in a transgenic mouse model. Virology 2006; 351:237-47. [PMID: 16650881 DOI: 10.1016/j.virol.2006.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/09/2006] [Accepted: 03/23/2006] [Indexed: 11/21/2022]
Abstract
The coreceptor usage of HIV-1 envelope proteins (Env) is mainly dependent on a defined variable region within the V3-loop of Env. Thus, retroviral vectors derived from murine leukemia virus (MLV), which have been pseudotyped with HIV-1 envelope proteins holding different V3-loops, enable selective gene delivery into either CXCR4 or CCR5 positive cultured cells. Here, we tested the distribution of CD4/CCR5-tropic [MLV(HIV)]-pseudotype vectors in transgenic mice expressing CD4 and either CXCR4 or CCR5 of human origin. The specificity of gene transfer was analyzed by ex vivo transduction of spleen cells as well as after i.v. or i.p. injection of transgenic mice. Expression of the transferred marker gene EGFP and vector sequences could be detected exclusively in lymphocytes expressing (hu)CD4 and (hu)CCR5, whereas MLV vectors pseudotyped with the VSV-G envelope glycoprotein mediated gene transfer in mice of all genotypes investigated. These data demonstrated that cell-specific gene delivery via [MLV(HIV)]-pseudotyped vectors, as previously shown for cultured cells, is also achievable in vivo.
Collapse
Affiliation(s)
- Silke Schüle
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, D-63225 Langen, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Yao CL, Feng YH, Lin XZ, Chu IM, Hsieh TB, Hwang SM. Characterization of Serum-Free Ex Vivo–Expanded Hematopoietic Stem Cells Derived from Human Umbilical Cord Blood CD133+Cells. Stem Cells Dev 2006; 15:70-8. [PMID: 16522164 DOI: 10.1089/scd.2006.15.70] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of ex vivo expansion of hematopoietic stem cells (HSCs) is a promising approach to restore the required bone marrow function of patients with hematological disorders. Previously, we have reported the development of an optimized serum-free and cytokines-limited defined medium using statistic methodology for umbilical cord blood-derived HSC expansion. The aim of this study was to analyze further the characteristics and functions of cells in vitro and in vivo when cultured in this defined medium. After a 7-day batch culture, the average absolute fold expansions for CD133(+) cells, CD34(+)CD133(+) cells, CD34(+)CD38() cells, CD133(+)CD38(-) cells, CD34(+)CXCR4(+) cells, CD133(+)CXCR4(+) cells, and long-term culture-initiating cells were 21-, 20-, 723-, 618-, 160-, 384-, and 8-fold, respectively. The high enrichment of CD38(-) cells and CXCR4(+) cells of the CD34(+) subpopulation provided a very early uncommitted HSC proliferation and homing ability. Furthermore, the expanded cells showed a high level of telomerase activity to maintain their telomere length and repopulated the lethally irradiated NOD/SCID mice in vivo. These results indicated that the cytokines limited expanded cells from CD133(+) cells could substantially support simultaneous expansion of various stem/progenitor cells and engraft with the expanded cells from a low number of HSCs initially.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Satou Y, Yasunaga JI, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 2006; 103:720-5. [PMID: 16407133 PMCID: PMC1334651 DOI: 10.1073/pnas.0507631103] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) causes adult T cell leukemia (ATL) in 2-5% of carriers after a long latent period. An HTLV-I encoded protein, Tax, induces proliferation and inhibits apoptosis, resulting in clonal proliferation of infected cells. However, tax gene expression in ATL cells is disrupted by several mechanisms, including genetic changes in the tax gene and DNA methylation/deletion of the 5' long terminal repeat (LTR). Because Tax is the major target of cytotoxic T-lymphocytes in vivo, loss of Tax expression should enable ATL cells to escape the host immune system. The 5' LTR of HTLV-I is frequently hypermethylated or deleted in ATL cells, whereas the 3' LTR remains unmethylated and intact, suggesting the involvement of the 3' LTR in leukemogenesis. Here we show that a gene encoded by the minus strand of the HTLV-I proviral genome, HTLV-I basic leucine zipper factor (HBZ), is transcribed from 3'-LTR in all ATL cells. Suppression of HBZ gene transcription by short interfering RNA inhibits proliferation of ATL cells. In addition, HBZ gene expression promotes proliferation of a human T cell line. Analyses of T cell lines transfected with mutated HBZ genes showed that HBZ promotes T cell proliferation in its RNA form, whereas HBZ protein suppresses Tax-mediated viral transcription through the 5' LTR. Thus, the single HBZ gene has bimodal functions in two different molecular forms. The growth-promoting activity of HBZ RNA likely plays an important role in oncogenesis by HTLV-I.
Collapse
Affiliation(s)
- Yorifumi Satou
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
39
|
|
40
|
Ayash-Rashkovsky M, Bentwich Z, Arditti F, Friedman S, Reisner Y, Borkow G. A novel small animal model for HIV-1 infection. FASEB J 2005; 19:1149-51. [PMID: 15833767 DOI: 10.1096/fj.04-3184fje] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lethally irradiated normal BALB/c mice, reconstituted with murine SCID bone marrow and engrafted with human PBMC (Trimera mice), were used to establish a novel murine model for HIV-1 infection. The Trimera mice were successfully infected with different clades and primary isolates of T- and M-tropic HIV-1, with the infection persisting in the animals for 4-6 wk. Rapid loss of the human CD4+ T cells, decrease in CD4/CD8 ratio, and increased T cell activation accompanied the viral infection. All HIV-1 infected animals were able to generate both primary and secondary immune responses, including HIV specific human humoral and cellular responses. In addition to testing the efficacy of new antiviral compounds, this new murine HIV-1 model may be used for studying host-virus interactions and, most importantly, for screening and developing potential HIV-1 protective vaccines and adjuvants (Ayash-Rashkovsky et al., http://www.fasebj.org/cgi/doi/10.1096/fj.04-3185fje; doi:10.1096/fj.04-3185fje.).
Collapse
|
41
|
Potash MJ, Chao W, Bentsman G, Paris N, Saini M, Nitkiewicz J, Belem P, Sharer L, Brooks AI, Volsky DJ. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A 2005; 102:3760-5. [PMID: 15728729 PMCID: PMC553332 DOI: 10.1073/pnas.0500649102] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We created a model of HIV-1 infection of conventional mice for investigation of viral replication, control, and pathogenesis. To target HIV-1 to mice, the coding region of gp120 in HIV-1/NL4-3 was replaced with that of gp80 from ecotropic murine leukemia virus, a retrovirus that infects only rodents. The resulting chimeric virus construct, EcoHIV, productively infected murine lymphocytes, but not human lymphocytes, in culture. Adult, immunocompetent mice were readily susceptible to infection by a single inoculation of EcoHIV as shown by detection of virus in splenic lymphocytes, peritoneal macrophages, and the brain. The virus produced in animals was infectious, as shown by passage in culture, and immunogenic, as shown by induction of antibodies to HIV-1 Gag and Tat. A second chimeric virus based on clade D HIV-1/NDK was also highly infectious in mice; it was detected in both spleen and brain 3 wk after tail vein inoculation, and it induced expression of infection response genes, MCP-1, STAT1, IL-1beta, and complement component C3, in brain tissue as determined by quantitative real-time PCR. EcoHIV infection of mice forms a useful model of HIV-1 infection of human beings for convenient and safe investigation of HIV-1 therapy, vaccines, and potentially pathogenesis.
Collapse
Affiliation(s)
- Mary Jane Potash
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University Medical Center, 432 West 58th Street, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nitkiewicz J, Chao W, Bentsman G, Li J, Kim SY, Choi SY, Grunig G, Gelbard H, Potash MJ, Volsky DJ. Productive infection of primary murine astrocytes, lymphocytes, and macrophages by human immunodeficiency virus type 1 in culture. J Neurovirol 2004; 10:400-8. [PMID: 15765811 DOI: 10.1080/13550280490890097] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A mouse model of human immunodeficiency virus type 1 (HIV-1) infection would be extremely valuable for evaluation of therapies and vaccines; however, multiple blocks to productive infection of NIH 3T3 and other mouse cell lines have been reported. The authors investigated the replication of HIV-1 in primary mouse astrocytes, lymphocytes, and macrophages in culture by infection with intact HIV-1 pseudotyped with the vesicular stomatitis virus G envelope glycoprotein (VSV-G) or with the envelope glycoprotein of amphotropic murine leukemia virus. Astrocytes, lymphocytes, and macrophages were susceptible to productive infection as variously assayed by detection of p24 and Tat proteins, viral protease-mediated processing of Gag, appropriately spliced viral RNA, and infectious progeny virus. As expected, NIH 3T3 cells were not susceptible to productive infection by VSV/NL4. Susceptibility mapped neither to the Fv locus nor to a possible polymorphism in cyclin T1. This study indicates that there are no intrinsic intracellular barriers to HIV-1 replication in primary mouse cells when virus entry is efficient.
Collapse
Affiliation(s)
- Jadwiga Nitkiewicz
- Molecular Virology Division, St Luke's-Roosevelt Hospital Center, New York, New York 10019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
de Repentigny L, Lewandowski D, Jolicoeur P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 2004; 17:729-59, table of contents. [PMID: 15489345 PMCID: PMC523562 DOI: 10.1128/cmr.17.4.729-759.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oropharyngeal and esophageal candidiases remain significant causes of morbidity in human immunodeficiency virus (HIV)-infected patients, despite the dramatic ability of antiretroviral therapy to reconstitute immunity. Notable advances have been achieved in understanding, at the molecular level, the relationships between the progression of HIV infection, the acquisition, maintenance, and clonality of oral candidal populations, and the emergence of antifungal resistance. However, the critical immunological defects which are responsible for the onset and maintenance of mucosal candidiasis in patients with HIV infection have not been elucidated. The devastating impact of HIV infection on mucosal Langerhans' cell and CD4(+) cell populations is most probably central to the pathogenesis of mucosal candidiasis in HIV-infected patients. However, these defects may be partly compensated by preserved host defense mechanisms (calprotectin, keratinocytes, CD8(+) T cells, and phagocytes) which, individually or together, may limit Candida albicans proliferation to the superficial mucosa. The availability of CD4C/HIV transgenic mice expressing HIV-1 in immune cells has provided the opportunity to devise a novel model of mucosal candidiasis that closely mimics the clinical and pathological features of candidal infection in human HIV infection. These transgenic mice allow, for the first time, a precise cause-and-effect analysis of the immunopathogenesis of mucosal candidiasis in HIV infection under controlled conditions in a small laboratory animal.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada.
| | | | | |
Collapse
|
44
|
Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L, Imberti L, Pirovano S, Notarangelo LD, Soresina R, Mazzolari E, Nelson DL, Notarangelo LD, Badolato R. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004; 104:444-52. [PMID: 15026312 DOI: 10.1182/blood-2003-10-3532] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The chemokine receptor CXCR4 and its functional ligand, CXCL12, are essential regulators of development and homeostasis of hematopoietic and lymphoid organs. Heterozygous truncating mutations in the CXCR4 intracellular tail cause a rare genetic disease known as WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), whose pathophysiology remains unclear. We report CXCR4 function in 3 patients with WHIM syndrome carrying heterozygous truncating mutations of CXCR4. We show that CXCR4 gene mutations in WHIM patients do not affect cell surface expression of the chemokine receptor and its internalization upon stimulation with CXCL12. Moreover, no significant differences in calcium mobilization in response to CXCL12 are found. However, the chemotactic response of both polymorphonuclear cells and T lymphocytes in response to CXCL12 is increased. Furthermore, immunophenotypic analysis of circulating T and B lymphocytes reveals a decreased number of memory B cells and of naive T cells and an accumulation of effector memory T cells associated with a restricted T-cell repertoire. Based on our results, we suggest that the altered leukocyte response to CXCL12 may account for the pathologic retention of mature polymorphonuclear cells in the bone marrow (myelokathexis) and for an altered lymphocyte trafficking, which may cause the immunophenotyping abnormalities observed in WHIM patients.
Collapse
Affiliation(s)
- Anna Virginia Gulino
- Clinica Pediatrica, Universita' di Brescia, c/o Spedali Civili, 25 123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kahn J, Byk T, Jansson-Sjostrand L, Petit I, Shivtiel S, Nagler A, Hardan I, Deutsch V, Gazit Z, Gazit D, Karlsson S, Lapidot T. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 2003; 103:2942-9. [PMID: 15070669 DOI: 10.1182/blood-2003-07-2607] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major limitation to clinical stem cell-mediated gene therapy protocols is the low levels of engraftment by transduced progenitors. We report that CXCR4 overexpression on human CD34+ progenitors using a lentiviral gene transfer technique helped navigate these cells to the murine bone marrow and spleen in response to stromal-derived factor 1 (SDF-1) signaling. Cells overexpressing CXCR4 exhibited significant increases in SDF-1-mediated chemotaxis and actin polymerization compared with control cells. A major advantage of CXCR4 overexpression was demonstrated by the ability of transduced CD34+ cells to respond to lower, physiologic levels of SDF-1 when compared to control cells, leading to improved SDF-1-induced migration and proliferation/survival, and finally resulting in significantly higher levels of in vivo repopulation of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice including primitive CD34+/CD38(-/low) cells. Importantly, no cellular transformation was observed following transduction with the CXCR4 vector. Unexpectedly, we documented lack of receptor internalization in response to high levels of SDF-1, which can also contribute to increased migration and proliferation by the transduced CD34+ cells. Our results suggest CXCR4 overexpression for improved definitive human stem cell motility, retention, and multilineage repopulation, which could be beneficial for in vivo navigation and expansion of hematopoietic progenitors.
Collapse
Affiliation(s)
- Joy Kahn
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Battisti PL, Daher A, Bannwarth S, Voortman J, Peden KWC, Hiscott J, Mouland AJ, Benarous R, Gatignol A. Additive activity between the trans-activation response RNA-binding protein, TRBP2, and cyclin T1 on HIV type 1 expression and viral production in murine cells. AIDS Res Hum Retroviruses 2003; 19:767-78. [PMID: 14585207 DOI: 10.1089/088922203769232566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tat-mediated trans-activation of the HIV-1 long terminal repeat (LTR) occurs through the phosphorylation of the carboxy-terminal domain of the RNA polymerase II. The kinase complex, pTEFb, composed of cyclin T1 (CycT1) and CDK9, mediates this process. The trans-activation response (TAR) RNA-binding protein 2 (TRBP2) increases HIV-1 LTR expression through TAR and protein kinase R (PKR) binding, but not through interactions with the Tat-CycT1-CDK9 complex. TRBP2 and the Tat-CycT1-CDK9 complex have overlapping binding sites on TAR RNA. TRBP2 and CycT1 increased Tat trans-activation in NIH 3T3 cells with additive effects. Upon transfection of HIV-1 pLAI, pNL4-3, pMAL, and pAD molecular clones, reverse transcriptase (RT) activity and p24 concentration were decreased 200- to 900-fold in NIH 3T3 cells compared with HeLa cells in both cells and supernatants. In murine cells, cotransfection of the HIV clones with CycT1 or TRBP2 increased modestly the expression of RT activity in cell extracts. The analysis of Gag expression in murine cells transfected with CycT1 compared with human cells showed a 20-fold decrease in expression and a strong processing defect. The expression of both CycT1 and TRBP2 had a more than additive activity on RT function in cell extracts and on viral particle production in supernatant of murine cells. These results suggest an activity of CycT1 and TRBP2 at different steps in HIV-1 expression and indicate the requirement for another posttranscriptional factor in murine cells for full HIV replication.
Collapse
Affiliation(s)
- Pier-Luigi Battisti
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
O'Connor BP, Gleeson MW, Noelle RJ, Erickson LD. The rise and fall of long-lived humoral immunity: terminal differentiation of plasma cells in health and disease. Immunol Rev 2003; 194:61-76. [PMID: 12846808 PMCID: PMC2827865 DOI: 10.1034/j.1600-065x.2003.00055.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-lived humoral immune responses are a hallmark of thymus-dependent immunity. The cellular basis for enduring antibody-mediated immunity is long-lived memory B cells and plasma cells (PCs). Both of these cell populations acquire longevity as a result of antigen-specific, CD40-dependent, cognate interactions with helper T cells within germinal centers (GCs). At the molecular level, defined functional domains of CD40 control the post-GC fate of B cells. PC precursors that emerge from these GC reactions are highly proliferative and terminally differentiate to end-stage cells within the bone marrow (BM). The striking phenotypic similarities between the PC precursors and the putative malignant cell in multiple myeloma (MM) suggests that MM may result from the transformation of PC precursors. Within the domain of autoimmune disease, recent studies have shown that dysregulated migration of PCs to the BM may impact immune homeostasis and the development of lupus. Understanding the processes of normal PC differentiation will provide strategic insights into identifying therapeutic targets for the treatment of differentiated B-cell disorders.
Collapse
Affiliation(s)
- Brian P O'Connor
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
48
|
Abstract
As activated B cells differentiate into plasma cells they complete a final series of migration steps that take them to locations where they can efficiently carry out their effector function, secreting immunoglobulin (Ig) M or IgG into circulation or releasing dimeric IgA adjacent to the epithelium for transcytosis. Recent experiments have established a key role for chemokines in directing antibody secreting cell (ASC) movement within the secondary lymphoid organs where they are generated, as well as in guiding the cells to the bone marrow or mucosal surfaces. This review discusses the chemokines involved in directing ASC movements, particularly focusing on the role of CXCR4 and CXCL12/SDF1. The function of CCR9 and CCR10 in IgA ASC homing and contributions made by integrins and lectins are also discussed.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143-0414, USA.
| |
Collapse
|
49
|
Zheng YH, Yu HF, Peterlin BM. Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells. Nat Cell Biol 2003; 5:611-8. [PMID: 12833064 DOI: 10.1038/ncb1000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Accepted: 05/20/2003] [Indexed: 11/09/2022]
Abstract
In the mouse, replication of human immunodeficiency virus type 1 (HIV) is blocked at the levels of entry, transcription and assembly. For the latter effect, the amounts of unspliced viral genomic RNA could have an important function. Indeed, in murine cells, HIV transcripts are spliced excessively, a process that is not inhibited by the murine splicing inhibitor p32 (mp32). In marked contrast, its human counterpart, hp32, not only blocks this splicing but promotes the accumulation of viral genomic transcripts and structural proteins, resulting in the assembly and release of infectious virions. A single substitution in hp32 of Gly 35 to Asp 35, which is found in mp32, abrogates this activity. Thus, hp32 overcomes an important post-transcriptional block to HIV replication in murine cells.
Collapse
Affiliation(s)
- Yong-Hui Zheng
- Department of Medicine, Rosalind Russell Medical Research Center, Mt. Zion Research Building Room N231, 2340 Sutter Street, University of California, San Francisco, CA 94115, USA
| | | | | |
Collapse
|
50
|
Koito A, Kameyama Y, Cheng-Mayer C, Matsushita S. Susceptibility of mink (Mustera vision)-derived cells to replication by human immunodeficiency virus type 1. J Virol 2003; 77:5109-17. [PMID: 12692213 PMCID: PMC153984 DOI: 10.1128/jvi.77.9.5109-5117.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo studies for understanding viral transmission and replication, host immune responses, and pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection would greatly benefit from the establishment of a small-animal model. In this study, we explored the potential of American mink (Mustera vison) as a susceptible host. We found that primary cells and cell lines derived from this species efficiently supported trans-activation of the HIV-1 long terminal repeat by Tat. Accordingly, the cysteine residue at position 261, which has been shown to be important for interaction of the human cyclin T1 with the HIV-1 regulatory protein Tat, is conserved in the mink homologue. No species-specific defect in Rev function could be detected in mink cells. In addition, primary splenocytes, fibroblasts, and the Mv.1.Lu cell line from American mink supported early as well as late HIV-1 gene expression following infection with vesicular stomatitis G protein-pseudotyped HIV-1 viruses, at levels comparable to those seen with permissive human cells. Furthermore, the mink Mv.1.Lu cell line stably expressing human CD4 and CCR5 receptors supported a spreading HIV-1 infection with few, if any, deficiencies compared to findings in human cell lines. This indicates the potential of HIV-1 to replicate in these cells once the blockade at the stage of virus entry has been removed. These results clearly show that cells from American mink generally pose no functional intracellular block to HIV-1 replication, and collectively they raise the possibility that this animal species could be engineered to support HIV-1 infection, providing a useful small-animal model for evaluating de novo infection by HIV-1.
Collapse
Affiliation(s)
- Atsushi Koito
- Center for AIDS Research, Kumamoto University, Japan.
| | | | | | | |
Collapse
|