1
|
Pitner RA, Chao JL, Dahl NP, Fan MN, Cai X, Avery NG, Roe K, Spiegel PC, Miao CH, Gerner MY, James RG, Rawlings DJ. Blunting specific T-dependent antibody responses with engineered "decoy" B cells. Mol Ther 2024; 32:3453-3469. [PMID: 39192583 PMCID: PMC11489556 DOI: 10.1016/j.ymthe.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antibody inhibitors pose an ongoing challenge to the treatment of subjects with inherited protein deficiency disorders, limiting the efficacy of both protein replacement therapy and corrective gene therapy. Beyond their central role as producers of serum antibody, B cells also exhibit many unique properties that could be exploited in cell therapy applications, notably including antigen-specific recognition and the linked capacity for antigen presentation. Here we employed CRISPR-Cas9 to demonstrate that ex vivo antigen-primed Blimp1-knockout "decoy" B cells, incapable of differentiation into plasma cells, participated in and downregulated host antigen-specific humoral responses after adoptive transfer. Following ex vivo antigen pulse, adoptively transferred high-affinity antigen-specific decoy B cells were diverted into germinal centers en masse, thereby reducing participation by endogenous antigen-specific B cells in T-dependent humoral responses and suppressing both cognate and linked antigen-specific immunoglobulin (Ig)G following immunization with conjugated antigen. This effect was dose-dependent and, importantly, did not impact concurrent unrelated antibody responses. We demonstrated the therapeutic potential of this approach by treating factor VIII (FVIII)-knockout mice with antigen-pulsed decoy B cells prior to immunization with an FVIII conjugate protein, thereby blunting the production of serum FVIII-specific IgG by an order of magnitude as well as reducing the proportion of animals exhibiting functional FVIII inhibition by 6-fold.
Collapse
Affiliation(s)
- Ragan A Pitner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jaime L Chao
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Noelle P Dahl
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Meng-Ni Fan
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Xiaohe Cai
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Nathan G Avery
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Kelsey Roe
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - P Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michael Y Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Fujita K, Kuwabara T, Wang B, Tanaka K, Ito K, Akishima-Fukasawa Y, Mikami T, Akasaka Y, Ishii T. Irradiation Attenuates Systemic Lupus Erythematosus-Like Morbidity in NZBWF1 Mice: Focusing on CD180-Negative Cells. J Immunol Res 2023; 2023:9969079. [PMID: 37886369 PMCID: PMC10599955 DOI: 10.1155/2023/9969079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can induce systemic inflammation. Ultraviolet-A and X-ray irradiation have been reported to have therapeutic effects in patients with SLE. We previously demonstrated that CD180-negative cells, these are radiosensitive, contribute to the development of SLE-like morbidity in NZBWF1 mice. In this study, the effects of irradiation on SLE-like morbidity manifestations in NZBWF1 mice and on CD180-negative cells were investigated. Whole-body irradiation, excluding the head, attenuated SLE-like morbidity in vivo, as indicated by the prevention of the renal lesion development, inhibition of anti-dsDNA antibody production, reduction of urinary protein levels, and prolongation of the lifespan. Irradiation also reduced the proportion of CD180-negative cells in the spleen. Although other immune cells or molecules may be triggered because of the whole-body irradiation treatment, previous research, and the current results suggest a strong relationship between the radiation-induced decrease in CD180-negative cells and the amelioration of SLE-like morbidities. Clinical trials assessing CD180-negative cells as a therapeutic target for SLE have been hampered by the lack of validated cell markers; nonetheless, the present findings suggest that radiotherapy may be a new therapeutic strategy for managing SLE symptoms.
Collapse
Affiliation(s)
- Kazuko Fujita
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Taku Kuwabara
- Department of Molecular Immunology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Bing Wang
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan
| | - Kaoru Tanaka
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan
| | - Kei Ito
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
- Department of Medical Technology, Faculty of Health Sciences, Tsukuba International University, Ibaragi, Tsuchiura-City 305-8577, Japan
| | - Yuri Akishima-Fukasawa
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Tetuo Mikami
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Yoshikiyo Akasaka
- Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan
| | - Toshiharu Ishii
- Department of Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Yokohama-City 230-8765, Japan
| |
Collapse
|
3
|
Reth M. Discovering immunoreceptor coupling and organization motifs. Front Immunol 2023; 14:1253412. [PMID: 37731510 PMCID: PMC10507400 DOI: 10.3389/fimmu.2023.1253412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
The recently determined cryo-EM structures of the T cell antigen receptor (TCR) and B cell antigen receptor (BCR) show in molecular details the interactions of the ligand-binding part with the signaling subunits but they do not reveal the signaling mechanism of these antigen receptors. Without knowing the molecular basis of antigen sensing by these receptors, a rational design of optimal vaccines is not possible. The existence of conserved amino acids (AAs) that are not involved in the subunit interaction suggests that antigen receptors form higher complexes and/or have lateral interactors that control their activity. Here, I describe evolutionary conserved leucine zipper (LZ) motifs within the transmembrane domains (TMD) of antigen and coreceptor components that are likely to be involved in the oligomerization and lateral interaction of antigen receptor complexes on T and B cells. These immunoreceptor coupling and organization motifs (ICOMs) are also found within the TMDs of other important receptor types and viral envelope proteins. This discovery suggests that antigen receptors do not function as isolated entities but rather as part of an ICOM-based interactome that controls their nanoscale organization on resting cells and their dynamic remodeling on activated lymphocytes.
Collapse
Affiliation(s)
- Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
5
|
Comprehensive Analysis of Human Cytomegalovirus- and HIV-Mediated Plasma Membrane Remodeling in Macrophages. mBio 2021; 12:e0177021. [PMID: 34399625 PMCID: PMC8406226 DOI: 10.1128/mbio.01770-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clearance of infected cells. We performed a comprehensive analysis of cell surface dysregulation by two human-pathogenic viruses, human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1), in primary macrophages, which are classical antigen-presenting cells and orchestrators of the immune system. Scanning ion conductance microscopy revealed a loss of roughness and an overall smooth phenotype of HCMV-infected macrophages, in contrast to HIV-1 infection. This phenotype was also evident on the molecular level. When we screened for cell surface receptors modulated by HCMV, 42 of 332 receptors tested were up- or downregulated, whereas HIV-1 affected only 7 receptors. In particular CD164, CD84, and CD180 were targeted by HCMV. Mechanistically, HCMV induced transcriptional silencing of these receptors in an interferon (IFN)-independent manner, and expression was reduced not only by lab-adapted HCMV but also by clinical HCMV isolates. Altogether, our plasma membrane profiling of human macrophages provides clues to understand how viruses evade the immune system and identified novel cell surface receptors targeted by HCMV. IMPORTANCE The PM is a key component that viruses have to cope with. It is a barrier for infection and egress and is critically involved in antiviral immune signaling. We hence asked the question how two immunomodulatory viruses, HIV-1 and HCMV, dysregulate this compartment in infected macrophages, relevant in vivo targets of both viruses. We employed a contact-free microscopic technique to image the PM of infected cells and performed a phenotypic flow cytometry-based screen to identify receptor modulations on a molecular level. Our results show that HIV-1 and HCMV differentially manipulate the PM of macrophages. While HIV-1-mediated changes are relatively subtle, HCMV induces major alterations of the PM. We identify novel immune receptors manipulated by HCMV and define mechanisms of how HCMV interferes with receptor expression. Altogether, our study reveals differential strategies of how two human-pathogenic viruses manipulate infected cells and identifies potential novel pathways of HCMV immune evasion.
Collapse
|
6
|
Fan Z, Pathak JL, Ge L. The Potential Role of RP105 in Regulation of Inflammation and Osteoclastogenesis During Inflammatory Diseases. Front Cell Dev Biol 2021; 9:713254. [PMID: 34414191 PMCID: PMC8369417 DOI: 10.3389/fcell.2021.713254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory diseases have a negative impact on bone homeostasis via exacerbated local and systemic inflammation. Bone resorbing osteoclasts are mainly derived from hematopoietic precursors and bone marrow monocytes. Induced osteoclastogenesis during inflammation, autoimmunity, metabolic diseases, and cancers is associated with bone loss and osteoporosis. Proinflammatory cytokines, pathogen-associated molecular patterns, or endogenous pathogenic factors induce osteoclastogenic differentiation by binding to the Toll-like receptor (TLR) family expressed on surface of osteoclast precursors. As a non-canonical member of the TLRs, radioprotective 105 kDa (RP105 or CD180) and its ligand, myeloid differentiation protein 1 (MD1), are involved in several bone metabolic disorders. Reports from literature had demonstrated RP105 as an important activator of B cells, bone marrow monocytes, and macrophages, which regulates inflammatory cytokines release from immune cells. Reports from literature had shown the association between RP105 and other TLRs, and the downstream signaling mechanisms of RP105 with different “signaling-competent” partners in immune cells during different disease conditions. This review is focused to summarize: (1) the role of RP105 on immune cells’ function and inflammation regulation (2) the potential regulatory roles of RP105 in different disease-mediated osteoclast activation and the underlying mechanisms, and (3) the different “signaling-competent” partners of RP105 that regulates osteoclastogenesis.
Collapse
Affiliation(s)
- Zhou Fan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linhu Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Oral Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Sakaguchi T, Okumura R, Ono C, Okuzaki D, Kawai T, Okochi Y, Tanimura N, Murakami M, Kayama H, Umemoto E, Kioka H, Ohtani T, Sakata Y, Miyake K, Okamura Y, Baba Y, Takeda K. TRPM5 Negatively Regulates Calcium-Dependent Responses in Lipopolysaccharide-Stimulated B Lymphocytes. Cell Rep 2021; 31:107755. [PMID: 32521253 DOI: 10.1016/j.celrep.2020.107755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/16/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
B cells produce high amounts of cytokines and immunoglobulins in response to lipopolysaccharide (LPS) stimulation. Calcium signaling cascades are critically involved in cytokine production of T cells, and the cytosolic calcium concentration is regulated by calcium-activated monovalent cation channels (CAMs). Calcium signaling is also implicated in B cell activation; however, its involvement in the cytokine production of LPS-stimulated B cells remains less well characterized. Here, we show that the transient receptor potential melastatin 5 channel (TRPM5), which is one of the CAMs, negatively modulates calcium signaling, thereby regulating LPS-induced proliferative and inflammatory responses by B cells. LPS-stimulated B cells of Trpm5-deficient mice exhibit an increased cytosolic calcium concentration, leading to enhanced proliferation and the production of the inflammatory cytokines interleukin-6 and CXCL10. Furthermore, Trpm5-deficient mice show an exacerbation of endotoxic shock with high mortality. Our findings demonstrate the importance of TRPM5-dependent regulatory mechanisms in LPS-induced calcium signaling of splenic B cells.
Collapse
Affiliation(s)
- Taiki Sakaguchi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Chisato Ono
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Okochi
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Natsuko Tanimura
- Department of Pharmacology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Mari Murakami
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
| | - Eiji Umemoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomohito Ohtani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
8
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Yang Y, Wang C, Cheng P, Zhang X, Li X, Hu Y, Xu F, Hong F, Dong G, Xiong H. CD180 Ligation Inhibits TLR7- and TLR9-Mediated Activation of Macrophages and Dendritic Cells Through the Lyn-SHP-1/2 Axis in Murine Lupus. Front Immunol 2018; 9:2643. [PMID: 30498494 PMCID: PMC6249336 DOI: 10.3389/fimmu.2018.02643] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Activation of TLR7 and TLR9 by endogenous RNA- or DNA-containing ligands, respectively, can lead to hyper-activation of immune cells, including macrophages and DCs, subsequently contributes to the pathogenesis of SLE. CD180, a TLR-like protein, is specifically involved in the development and activation of immune cells. Our previous study and others have reported that CD180-negative B cells are dramatically increased in SLE patients and responsible for the production of auto-antibodies. However, the mode of CD180 expression on macrophages and DCs in SLE remains unclear and the role of CD180 on regulating TLR7- and TLR9-mediated activation of macrophages and DCs are largely unknown. In the present study, we found that the percentages of CD180-negative macrophages and DCs were both increased in SLE patients and lupus-prone MRL/lpr mice compared with healthy donors and wild-type mice, respectively. Notably, ligation of CD180 significantly inhibited the activation of TLR7 and TLR9 signaling pathways in macrophages and DCs through the Lyn-SHP-1/2 axis. What's more, injection of anti-CD180 Ab could markedly ameliorate the lupus-symptoms of imiquimod-treated mice and lupus-prone MRL/lpr mice through inhibiting the activation of macrophages and DCs. Collectively, our results highlight a critical role of CD180 in regulating TLR7- and TLR9-mediated activation of macrophages and DCs, hinting that CD180 can be regarded as a potential therapeutic target for SLE treatment.
Collapse
Affiliation(s)
- Yonghong Yang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Cuiling Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiaobei Zhang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xuehui Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuan Hu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Feihong Xu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Feng Hong
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Miljkovic D, Ou J, Kirana C, Hulse KE, Hauben E, Psaltis A, Wormald PJ, Vreugde S. Discordant frequencies of tissue-resident and circulating CD180-negative B cells in chronic rhinosinusitis. Int Forum Allergy Rhinol 2017; 7:609-614. [PMID: 28236375 DOI: 10.1002/alr.21924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The unconventional toll-like receptor (TLR) CD180 is implicated in chronic inflammatory diseases; however, its role in chronic rhinosinusitis (CRS) has yet to be investigated. Here we study the expression of CD180, its homologue TLR4 and myeloid differentiation factor 1 (MD1) on mucosal and systemic immune cell populations in relation to serum immunoglobulin G (IgG) levels. METHODS A total of 70 patients were recruited to the study. Mucosal and peripheral blood samples were prospectively collected from CRS patients and non-CRS controls without evidence of sinus disease. The expression of TLR4, MD1, and CD180 was investigated using qualitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry, and flow cytometry. Serum IgG levels were determined using enzyme-linked immunosorbent assay (ELISA). RESULTS CRS with nasal polyps (CRSwNP) patients had significantly increased messenger RNA (mRNA) expression of CD180 and MD1 compared to controls (5.54-fold and 2.1-fold, respectively, p < 0.01). B cells lacking CD180 were lower in CRSwNP tissue compared to CRS without nasal polyps (CRSsNP) and controls (21.07 ± 6.41 vs 41.61 ± 7.82 vs 40.06 ± 8.06; p < 0.01) but higher in blood (39.18 ± 8.3 vs 17.95 ± 7.82 and 12.49 ± 4.92; p ≤ 0.05). CONCLUSION Changes in mucosal and peripheral CD180-expressing B cells were identified in CRSwNP patients compared to CRSsNP and controls. This suggests a role for these cells in the dysregulated immune response in these patients.
Collapse
Affiliation(s)
- Dijana Miljkovic
- Department of Surgery-Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Judy Ou
- Department of Surgery-Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Chandra Kirana
- Department of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Northwestern University, Chicago, IL
| | - Ehud Hauben
- Department of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Alkis Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
You M, Dong G, Li F, Ma F, Ren J, Xu Y, Yue H, Tang R, Ren D, Hou Y. Ligation of CD180 inhibits IFN-α signaling in a Lyn-PI3K-BTK-dependent manner in B cells. Cell Mol Immunol 2017; 14:192-202. [PMID: 26277892 PMCID: PMC5301152 DOI: 10.1038/cmi.2015.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE) is the consistent production of various auto-antibodies by auto-reactive B cells. Interferon-α (IFN-α) signaling is highly activated in SLE B cells and plays a vital role in the antibody response by B cells. Previous studies have shown that CD180-negative B cells, which are dramatically increased in SLE patients, are responsible for the production of auto-antibodies. However, the association between CD180 and IFN-α signaling remains unknown. In the present study, we explored the effect of CD180 on regulating the activation of IFN-α signaling in B cells. We found that the number of CD180-negative B cells was increased in MRL/Mp-Fas(lpr/lpr) lupus-prone mice compared with wild-type mice. Phenotypic analysis showed that CD180-negative B cells comprised CD138+ plasmablast/plasma cells and GL-7+ germinal center (GC) B cells. Notably, ligation of CD180 significantly inhibited the IFN-α-induced phosphorylation of signal transducer and activator of transcription 2 (STAT-2) and expression of IFN-stimulated genes (ISGs) in a Lyn-PI3K-BTK-dependent manner in vitro. Moreover, ligation of CD180 could also inhibit IFN-α-induced ISG expression in B cells in vivo. Furthermore, the Toll-like receptor 7 and Toll-like receptor 9 signaling pathways could significantly downregulate CD180 expression and modulate the inhibitory effect of CD180 signaling on the activation of IFN-α signaling. Collectively, our results highlight the close association between the increased proportion of CD180-negative B cells and the activation of IFN-α signaling in SLE. Our data provide molecular insight into the mechanism of IFN-α signaling activation in SLE B cells and a potential therapeutic approach for SLE treatment.
Collapse
Affiliation(s)
- Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Guanjun Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Fanlin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Feiya Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Huimin Yue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ruijing Tang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Deshan Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University Nanjing 210093, People's Republic of China
| |
Collapse
|
12
|
Maly J, Blachly JS. Chronic Lymphocytic Leukemia: Exploiting Vulnerabilities with Targeted Agents. Curr Hematol Malig Rep 2016; 11:52-60. [PMID: 26893063 DOI: 10.1007/s11899-016-0299-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The field of oncology has been transformed over the course of the last 20 years in large part due to the enhanced understanding of cellular biology and cellular signaling. The indolent natural history of chronic lymphocytic leukemia (CLL) has permitted extensive study of cancer biology and can in some ways be thought of a model for understanding and translating concepts to other diseases. By systematically probing the biology of CLL cells and working out in stepwise fashion the transduction of signals from the surface immunoglobulin to nuclear transcription factors, investigators have paved the way for rational targeting of therapies at natural vulnerabilities that mimic oncogene addiction. These key targets include Bruton's tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), Src, Bcl2, and cyclin-dependent kinases (CDKs). In this review, we will consider these proteins and describe the current and future molecules designed to target them in CLL.
Collapse
Affiliation(s)
- Joseph Maly
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
13
|
Miyake K, Nagai Y, Akashi S, Nagafuku M, Ogata M, Kosugi A. Essential role of MD-2 in B-cell responses to lipopolysaccharide and Toll-like receptor 4 distribution. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080061401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. Moreover, mice lacking MD-2 (MD-2— /—) do not respond to LPS, survive endotoxin shock, and are susceptible to Salmonella typhimurium infection. Here, we further show that B cells lacking MD-2 do not up-regulate CD23 in response to LPS. TLR4 predominantly resides in the Golgi apparatus without MD-2. MD-2 is essential for LPS responses in vivo.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Infectious Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan, -tokyo.ac.jp, CREST, Japan Science and Technology Corporation, Tokyo, Japan
| | - Yoshinori Nagai
- Division of Infectious Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan, CREST, Japan Science and Technology Corporation, Tokyo, Japan
| | - Sachiko Akashi
- Division of Infectious Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan, CREST, Japan Science and Technology Corporation, Tokyo, Japan
| | - Masakazu Nagafuku
- CREST, Japan Science and Technology Corporation, Tokyo, Japan, School of Allied Health Sciences, Faculty of Medicine, Osaka University Medical School, Osaka, Japan
| | - Masato Ogata
- Department of Oncogenesis, Osaka University Medical School, Osaka, Japan
| | - Atsushi Kosugi
- CREST, Japan Science and Technology Corporation, Tokyo, Japan, School of Allied Health Sciences, Faculty of Medicine, Osaka University Medical School, Osaka, Japan
| |
Collapse
|
14
|
Thomas Jennings R, Odkhuu E, Nakashima A, Morita N, Kobayashi T, Yamai I, Tanaka M, Suganami T, Haga S, Ozaki M, Watanabe Y, Nagai Y, Takatsu K, Kikuchi-Ueda T, Ichimonji I, Ogawa Y, Takagi H, Yamazaki T, Miyake K, Akashi-Takamura S. Inflammatory responses increase secretion of MD-1 protein. Int Immunol 2016; 28:503-512. [PMID: 27352793 DOI: 10.1093/intimm/dxw031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
Radioprotective 105 (RP105) is a type I transmembrane protein, which associates with a glycoprotein, MD-1. Monoclonal antibody (mAb)-mediated ligation of RP105/MD-1 robustly activates B cells. RP105/MD-1 is structurally similar to Toll-like receptor 4 (TLR4)/MD-2. B-cell responses to TLR2 and TLR4/MD-2 ligands are impaired in the absence of RP105 or MD-1. In addition to RP105/MD-1, MD-1 alone is secreted. The structure of MD-1 shows that MD-1 has a hydrophobic cavity that directly binds to phospholipids. Little is known, however, about a ligand for MD-1 and the role of MD-1 in vivo To study the role of RP105/MD-1 and MD-1 alone, specific mAbs against MD-1 are needed. Here, we report the establishment and characterization of two anti-MD-1 mAbs (JR2G9, JR7G1). JR2G9 detects soluble MD-1, whereas JR7G1 binds both soluble MD-1 and the cell surface RP105/MD-1 complex. With these mAbs, soluble MD-1 was detected in the serum and urine. The MD-1 concentration was altered by infection, diet and reperfusion injury. Serum MD-1 was rapidly elevated by TLR ligand injection in mice. The quantitative PCR and supernatant-precipitated data indicate that macrophages are one of the sources of serum soluble MD-1. These results suggest that soluble MD-1 is a valuable biomarker for inflammatory diseases.
Collapse
Affiliation(s)
- Richard Thomas Jennings
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Erdenezaya Odkhuu
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Akina Nakashima
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Naoko Morita
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Toshihiko Kobayashi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Ikuko Yamai
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Sanae Haga
- Laboratory of Molecular and Functional Bio-imaging, Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Michitaka Ozaki
- Laboratory of Molecular and Functional Bio-imaging, Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Yasuharu Watanabe
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630, Toyama 930-0194, Japan
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630, Toyama 930-0194, Japan JST, PRESTO, 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630, Toyama 930-0194, Japan Toyama Prefectural Institute for Pharmaceutical Research, 17-1, Irimizu, Toyama 939-0363, Japan
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan AMED, CREST, 1-7-1, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Tatsuya Yamazaki
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1, Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
15
|
Levit-Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity PC, Rajewsky K, Reth M, Hobeika E. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2348-60. [PMID: 26843325 DOI: 10.4049/jimmunol.1501707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
Expression of a functional BCR is essential for the development of mature B cells and has been invoked in the control of their maintenance. To test this maintenance function in a new experimental setting, we used the tamoxifen-inducible mb1-CreER(T2) mouse strain to delete or truncate either the mb-1 gene encoding the BCR signaling subunit Igα or the VDJ segment of the IgH (H chain [HC]). In this system, Cre-mediated deletion of the mb-1 gene is accompanied by expression of a GFP reporter. We found that, although the Igα-deficient mature B cells survive for >20 d in vivo, the HC-deficient or Igα tail-truncated B cell population is short-lived, with the HC-deficient cells displaying signs of an unfolded protein response. We also show that Igα-deficient B cells still respond to the prosurvival factor BAFF in culture and require BAFF-R signaling for their in vivo maintenance. These results suggest that, under certain conditions, the loss of the BCR can be tolerated by mature B cells for some time, whereas HC-deficient B cells, potentially generated by aberrant somatic mutations in the germinal center, are rapidly eliminated.
Collapse
Affiliation(s)
- Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Martin Becker
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Wilhelm
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Palash Chandra Maity
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
| | - Michael Reth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany;
| | - Elias Hobeika
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
16
|
Yu CH, Micaroni M, Puyskens A, Schultz TE, Yeo JC, Stanley AC, Lucas M, Kurihara J, Dobos KM, Stow JL, Blumenthal A. RP105 Engages Phosphatidylinositol 3-Kinase p110δ To Facilitate the Trafficking and Secretion of Cytokines in Macrophages during Mycobacterial Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:3890-900. [PMID: 26371254 DOI: 10.4049/jimmunol.1500017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022]
Abstract
Cytokines are key regulators of adequate immune responses to infection with Mycobacterium tuberculosis. We demonstrate that the p110δ catalytic subunit of PI3K acts as a downstream effector of the TLR family member RP105 (CD180) in promoting mycobacteria-induced cytokine production by macrophages. Our data show that the significantly reduced release of TNF and IL-6 by RP105(-/-) macrophages during mycobacterial infection was not accompanied by diminished mRNA or protein expression. Mycobacteria induced comparable activation of NF-κB and p38 MAPK signaling in wild-type (WT) and RP105(-/-) macrophages. In contrast, mycobacteria-induced phosphorylation of Akt was abrogated in RP105(-/-) macrophages. The p110δ-specific inhibitor, Cal-101, and small interfering RNA-mediated knockdown of p110δ diminished mycobacteria-induced TNF secretion by WT but not RP105(-/-) macrophages. Such interference with p110δ activity led to reduced surface-expressed TNF in WT but not RP105(-/-) macrophages, while leaving TNF mRNA and protein expression unaffected. Activity of Bruton's tyrosine kinase was required for RP105-mediated activation of Akt phosphorylation and TNF release by mycobacteria-infected macrophages. These data unveil a novel innate immune signaling axis that orchestrates key cytokine responses of macrophages and provide molecular insight into the functions of RP105 as an innate immune receptor for mycobacteria.
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Massimo Micaroni
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Puyskens
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Thomas E Schultz
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Jeremy Changyu Yeo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda C Stanley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jade Kurihara
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Hobeika E, Levit-Zerdoun E, Anastasopoulou V, Pohlmeyer R, Altmeier S, Alsadeq A, Dobenecker MW, Pelanda R, Reth M. CD19 and BAFF-R can signal to promote B-cell survival in the absence of Syk. EMBO J 2015; 34:925-39. [PMID: 25630702 PMCID: PMC4388600 DOI: 10.15252/embj.201489732] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 01/11/2023] Open
Abstract
The development and function of B lymphocytes is regulated by numerous signaling pathways, some emanating from the B-cell antigen receptor (BCR). The spleen tyrosine kinase (Syk) plays a central role in the activation of the BCR, but less is known about its contribution to the survival and maintenance of mature B cells. We generated mice with an inducible and B-cell-specific deletion of the Syk gene and found that a considerable fraction of mature Syk-negative B cells can survive in the periphery for an extended time. Syk-negative B cells are defective in BCR, RP105 and CD38 signaling but still respond to an IL-4, anti-CD40, CpG or LPS stimulus. Our in vivo experiments show that Syk-deficient B cells require BAFF receptor and CD19/PI3K signaling for their long-term survival. These studies also shed a new light on the signals regulating the maintenance of the normal mature murine B-cell pool.
Collapse
Affiliation(s)
- Elias Hobeika
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany Department of Molecular Immunology, BioIII, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ella Levit-Zerdoun
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Roland Pohlmeyer
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Simon Altmeier
- Institute of Mircobiology, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Ameera Alsadeq
- Department of General Pediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Marc-Werner Dobenecker
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael Reth
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany Department of Molecular Immunology, BioIII, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany BIOSS, Centre For Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Porakishvili N, Vispute K, Steele AJ, Rajakaruna N, Kulikova N, Tsertsvadze T, Nathwani A, Damle RN, Clark EA, Rai KR, Chiorazzi N, Lydyard PM. Rewiring of sIgM-Mediated Intracellular Signaling through the CD180 Toll-like Receptor. Mol Med 2015; 21:46-57. [PMID: 25611435 DOI: 10.2119/molmed.2014.00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) development and progression are thought to be driven by unknown antigens/autoantigens through the B cell receptor (BCR) and environmental signals for survival and expansion including toll-like receptor (TLR) ligands. CD180/RP105, a membrane-associated orphan receptor of the TLR family, induces normal B cell activation and proliferation and is expressed by approximately 60% of CLL samples. Half of these respond to ligation with anti-CD180 antibody by increased activation/phosphorylation of protein kinases associated with BCR signaling. Hence CLL cells expressing both CD180 and the BCR could receive signals via both receptors. Here we investigated cross-talk between BCR and CD180-mediated signaling on CLL cell survival and apoptosis. Our data indicate that ligation of CD180 on responsive CLL cells leads to activation of either prosurvival Bruton tyrosine kinase (BTK)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT-mediated, or proapoptotic p38 mitogen-activated protein kinase (p38MAPK)-mediated signaling pathways, while selective immunoglobulin M (sIgM) ligation predominantly engages the BTK/PI3K/AKT pathway. Furthermore, pretreatment of CLL cells with anti-CD180 redirects IgM-mediated signaling from the prosurvival BTK/PI3K/AKT toward the proapoptotic p38MAPK pathway. Thus preengaging CD180 could prevent further prosurvival signaling mediated via the BCR and, instead, induce CLL cell apoptosis, opening the door to therapeutic profiling and new strategies for the treatment of a substantial cohort of CLL patients.
Collapse
Affiliation(s)
- Nino Porakishvili
- Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Ketki Vispute
- Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | | | - Nadeeka Rajakaruna
- Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Nina Kulikova
- Faculty of Science and Technology, University of Westminster, London, United Kingdom.,Javakhishvili Tbilisi State University, Georgia
| | | | - Amit Nathwani
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Rajendra N Damle
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Edward A Clark
- University of Washington, Seattle, Washington, United States of America
| | - Kanti R Rai
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Peter M Lydyard
- Faculty of Science and Technology, University of Westminster, London, United Kingdom
| |
Collapse
|
19
|
Chen J, Elfiky A, Han M, Chen C, Saif MW. The Role of Src in Colon Cancer and Its Therapeutic Implications. Clin Colorectal Cancer 2014; 13:5-13. [DOI: 10.1016/j.clcc.2013.10.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
|
20
|
Chaplin JW, Chappell CP, Clark EA. Targeting antigens to CD180 rapidly induces antigen-specific IgG, affinity maturation, and immunological memory. ACTA ACUST UNITED AC 2013; 210:2135-46. [PMID: 24019553 PMCID: PMC3782047 DOI: 10.1084/jem.20130188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Targeting antigen to B cells and dendritic cells via direct conjugation to anti-CD180 antibody promotes robust antigen-specific antibody responses in the absence of adjuvant. Antigen (Ag) targeting is an efficient way to induce immune responses. Ag is usually coupled to an antibody (Ab) specific for a receptor expressed on dendritic cells (DCs), and then the Ag–anti-receptor is inoculated with an adjuvant. Here we report that targeting Ag to a receptor expressed on both B cells and DCs, the TLR orphan receptor CD180, in the absence of adjuvant rapidly induced IgG responses that were stronger than those induced by Ag in alum. Ag conjugated to anti-CD180 (Ag-αCD180) induced affinity maturation and Ab responses that were partially T cell independent, as Ag-specific IgGs were generated in CD40- and T cell–deficient mice. After preimmunization with Ag-αCD180 and boosting with soluble Ag, both WT and CD40 knockout (KO) mice rapidly produced Ag-specific IgG-forming cells, demonstrating that Ag–anti-CD180 induces immunological memory. The potent adjuvant effect of Ag-αCD180 required Ag to be coupled to anti-CD180 and the responsive B cells to express both CD180 and an Ag-specific B cell receptor. Surprisingly, CD180 Ag targeting also induced IgG Abs in BAFF-R KO mice lacking mature B cells and in mice deficient in interferon signaling. Targeting Ag to CD180 may be useful for therapeutic vaccination and for vaccinating the immune compromised.
Collapse
Affiliation(s)
- Jay W Chaplin
- Department of Immunology and 2 Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | | | | |
Collapse
|
21
|
Nündel K, Busto P, Debatis M, Marshak-Rothstein A. The role of Bruton's tyrosine kinase in the development and BCR/TLR-dependent activation of AM14 rheumatoid factor B cells. J Leukoc Biol 2013; 94:865-75. [PMID: 23804807 DOI: 10.1189/jlb.0313126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein kinase Btk has been implicated in the development, differentiation, and activation of B cells through its role in the BCR and TLR signaling cascades. These receptors and in particular, the BCR and either TLR7 or TLR9 also play a critical role in the activation of autoreactive B cells by RNA- or DNA-associated autoantigens. To explore the role of Btk in the development of autoreactive B cells, as well as their responses to nucleic acid-associated autoantigens, we have now compared Btk-sufficient and Btk-deficient mice that express a prototypic RF BCR encoded by H- and L-chain sdTgs. These B cells bind autologous IgG2a with low affinity and only proliferate in response to IgG2a ICs that incorporate DNA or RNA. We found that Btk-sufficient RF(+) B cells mature into naïve FO B cells, all of which express the Tg BCR, despite circulating levels of IgG2a. By contrast, a significant proportion of Btk-deficient RF(+) B cells acquires a MZ or MZ precursor phenotype. Remarkably, despite the complete inability of RF(+) Xid/y B cells to respond to F(ab')2 anti-IgM, RF(+) Xid/y B cells could respond well to autoantigen-associated ICs. These data reveal unique features of the signaling cascades responsible for the activation of autoreactive B cells.
Collapse
Affiliation(s)
- Kerstin Nündel
- 2.Division of Rheumatology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
22
|
FCRL5 exerts binary and compartment-specific influence on innate-like B-cell receptor signaling. Proc Natl Acad Sci U S A 2013; 110:E1282-90. [PMID: 23509253 DOI: 10.1073/pnas.1215156110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Innate-like splenic marginal zone (MZ) and peritoneal cavity B1 B lymphocytes share critical responsibilities in humoral responses but have divergent B-cell receptor (BCR) signaling features. A discrete marker of these subsets with tyrosine-based dual regulatory potential termed "Fc receptor-like 5" (FCRL5) was investigated to explore this discrepancy. Although FCRL5 repressed the robust BCR activity that is characteristic of MZ B cells, it had no influence on antigen receptor stimulation that is blunted in peritoneal cavity-derived B1 B cells. The molecular basis for the receptor's inhibitory function derived from recruitment of the Src homology-2 domain-containing tyrosine phosphatase 1 (SHP-1) to a cytoplasmic immunoreceptor tyrosine-based inhibitory motif. Surprisingly, mutagenesis of this docking site unearthed coactivation properties for FCRL5 that were orchestrated by independent association of the Lyn Src-family kinase with an intracellular immunoreceptor tyrosine-based activation motif-like sequence. FCRL5's unique binary regulation directly correlated with SHP-1 and Lyn activity, which, like BCR function, differed between MZ and B1 B cells. These findings collectively imply a specialized counterregulatory role for FCRL molecules at the intersection of innate and adaptive immunity.
Collapse
|
23
|
Pathogenesis of lupus-like nephritis through autoimmune antibody produced by CD180-negative B lymphocytes in NZBWF1 mouse. Immunol Lett 2012; 144:1-6. [PMID: 22387632 DOI: 10.1016/j.imlet.2012.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/05/2012] [Accepted: 02/19/2012] [Indexed: 02/08/2023]
Abstract
Toll-like receptors appear to play an important role in the pathogenesis of lupus-like nephritis in mice. In human and mouse, CD180 is a homologue of TLR4. In SLE patients, the number of CD180-negative B cells in peripheral blood changes in parallel with disease activity. In the present study using NZBWF1 mice, the population of splenic CD180-negative B cells increased with progression of renal lesions and aging. These cells produced both anti-dsDNA and histone antibodies; the peripheral blood levels of anti-dsDNA antibody increased markedly with aging. B cells infiltrating into renal lesions were CD180-negative and produced anti-dsDNA antibody. Considered together, these findings indicate that CD180-negative B cells contribute significantly to development of SLE-like morbidity in NZBWF1 mice by autoantibody production.
Collapse
|
24
|
Nagai Y, Yanagibashi T, Watanabe Y, Ikutani M, Kariyone A, Ohta S, Hirai Y, Kimoto M, Miyake K, Takatsu K. The RP105/MD-1 complex is indispensable for TLR4/MD-2-dependent proliferation and IgM-secreting plasma cell differentiation of marginal zone B cells. Int Immunol 2012; 24:389-400. [PMID: 22354914 DOI: 10.1093/intimm/dxs040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Marginal zone (MZ) B cells mount rapid T-cell-independent (T-I) immune responses against microbial components such as LPS. While Toll-like receptor 4 (TLR4) is essential for LPS responses, MZ B cells uniquely express high levels of another LPS sensor Radioprotective 105 (RP105). However, little is known about how RP105 is used by MZ B cells. In this study, we investigated TLR4- or RP105-dependent MZ B cell responses by utilizing agonistic monoclonal antibodies (mAbs) to each receptor. Cross-linking TLR4 and RP105 at the same time with the mAbs induced robust IgM-secreting plasma cell generation as lipid A moiety of LPS. In contrast, stimulation with either mAb alone did not elicit such responses. RP105-deficient MZ B cells failed to produce IgM-secreting plasma cells in response to lipid A. TLR4 or lipid A stimulation of MZ B cells up-regulated their B lymphocyte-induced maturation protein 1 (Blimp-1) and X-box-binding protein 1 (Xbp-1) mRNA expression. RP105 stimulation alone did not give these responses and in fact decreased TLR4-mediated their expression. Compared with wild-type (WT) MZ B cells, RP105-deficient MZ B cells exhibited increased levels of Blimp-1 and Xbp-1 mRNA expression in response to lipid A. Lipid A or TLR4 plus RP105 stimulation induced massive proliferation and expression of Bcl-xL and c-Myc in WT but not RP105-deficient MZ B cells. These responses contributed to TLR4-mediated anti-apoptotic responses in MZ B cells. Thus, RP105 contributes in a unique way to the TLR4-dependent survival, proliferation and plasma cell generation of MZ B cells.
Collapse
Affiliation(s)
- Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Allen JL, Flick LM, Divanovic S, Jackson SW, Bram R, Rawlings DJ, Finkelman FD, Karp CL. Cutting edge: regulation of TLR4-driven B cell proliferation by RP105 is not B cell autonomous. THE JOURNAL OF IMMUNOLOGY 2012; 188:2065-9. [PMID: 22291190 DOI: 10.4049/jimmunol.1103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanistic understanding of RP105 has been confounded by the fact that this TLR homolog has appeared to have opposing, cell type-specific effects on TLR4 signaling. Although RP105 inhibits TLR4-driven signaling in cell lines and myeloid cells, impaired LPS-driven proliferation by B cells from RP105(-/-) mice has suggested that RP105 facilitates TLR4 signaling in B cells. In this article, we show that modulation of B cell proliferation by RP105 is not a function of B cell-intrinsic expression of RP105, and identify a mechanistic role for dysregulated BAFF expression in the proliferative abnormalities of B cells from RP105(-/-) mice: serum BAFF levels are elevated in RP105(-/-) mice, and partial BAFF neutralization rescues aberrant B cell proliferative responses in such mice. These data indicate that RP105 does not have dichotomous effects on TLR4 signaling and emphasize the need for caution in interpreting the results of global genetic deletion.
Collapse
Affiliation(s)
- Jessica L Allen
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chaplin JW, Kasahara S, Clark EA, Ledbetter JA. Anti-CD180 (RP105) activates B cells to rapidly produce polyclonal Ig via a T cell and MyD88-independent pathway. THE JOURNAL OF IMMUNOLOGY 2011; 187:4199-209. [PMID: 21918197 DOI: 10.4049/jimmunol.1100198] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD180 is homologous to TLR4 and regulates TLR4 signaling, yet its function is unclear. We report that injection of anti-CD180 mAb into mice induced rapid Ig production of all classes and subclasses, with the exception of IgA and IgG2b, with up to 50-fold increases in serum IgG1 and IgG3. IgG production after anti-CD180 injection was not due to reactivation of memory B cells and was retained in T cell-deficient (TCR knockout [KO]), CD40 KO, IL-4 KO, and MyD88 KO mice. Anti-CD180 rapidly increased both transitional and mature B cells, with especially robust increases in transitional B cell number, marginal zone B cell proliferation, and CD86, but not CD80, expression. In contrast, anti-CD40 induced primarily follicular B cell and myeloid expansion, with increases in expression of CD80 and CD95 but not CD86. The expansion of splenic B cells was due, in part, to proliferation and occurred in wild-type and TCR KO mice, whereas T cell expansion occurred in wild-type, but not in B cell-deficient, mice, indicating a direct role for B cells in CD180 stimulation in vivo. Combination of anti-CD180 with various MyD88-dependent TLR ligands biased B cell fate because coinjection diminished Ig production, but purified B cells exhibited synergistic proliferation. Anti-CD180 had no effect on cytokine production from B cells, but it increased IL-6, IL-10, and TNF-α production in combination with LPS or CpG. Thus, CD180 stimulation induces intrinsic B cell proliferation and differentiation, causing rapid increases in IgG, and integrates MyD88-dependent TLR signals to regulate proliferation, cytokine production, and differentiation.
Collapse
Affiliation(s)
- Jay W Chaplin
- Division of Rheumatology, Department of Medicine; University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
27
|
Porakishvili N, Memon A, Vispute K, Kulikova N, Clark EA, Rai KR, Nathwani A, Damle RN, Chiorazzi N, Lydyard PM. CD180 functions in activation, survival and cycling of B chronic lymphocytic leukaemia cells. Br J Haematol 2011; 153:486-98. [PMID: 21443749 DOI: 10.1111/j.1365-2141.2011.08605.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously showed that approximately 60% of B chronic lymphocytic leukaemia (B-CLL) cells express surface CD180, an orphan receptor of the Toll-like receptor family. Here we investigated the ability of anti-CD180 monoclonal antibody (mAb) to induce activation, cell cycling, survival and signalling in B-CLL cells and normal B cells. Upon addition of anti-CD180 mAb, alone or in combination with anti-CD40 mAb or recombinant IL-4 (rIL-4), expression of CD86, Ki-67, uptake of DiOC(6) , phosphorylation of signalling protein kinases and Ca(2+) flux were measured in B-CLL cells from untreated patients and normal B cells from age-matched volunteers. Normal B cells and approximately 50% of CD180(+) B-CLL clones responded to CD180 ligation by activation, cycling and increased survival comparable with, or superior to, those induced by anti-CD40 mAb or rIL-4 (Responder B-CLL). Non-responder CD180(+) B-CLL clones failed to respond to CD180 mAb and responded poorly to CD40 mAb and rIL-4. Anti-CD180 mAb induced phosphorylation of ZAP70/Syk, Erk, p38MAPK and Akt in normal B cells and Responder B-CLL cells. In contrast, Erk, p38MAPK and Akt were not phosphorylated in Non-responder B-CLL cells indicating a block in signalling and possible anergy. CD180 may provide powerful expansion and survival signals for Responder B-CLL cells and have an important prognostic value.
Collapse
|
28
|
Kuka M, Baronio R, Valentini S, Monaci E, Muzzi A, Aprea S, De Gregorio E, D'Oro U. Src kinases are required for a balanced production of IL-12/IL-23 in human dendritic cells activated by Toll-like receptor agonists. PLoS One 2010; 5:e11491. [PMID: 20634889 PMCID: PMC2901334 DOI: 10.1371/journal.pone.0011491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation. It was previously shown by our group that Src kinases play a key role in cytokines production during TLR4 activation in human DC. Principal Findings In this work we investigated the role of Src kinases during different TLRs triggering in human monocyte-derived DC (MoDC). We found that Src family kinases are important for a balanced production of inflammatory cytokines by human MoDC upon stimulation of TLR3 and 8 with their respective agonists. Disruption of this equilibrium through pharmacological inhibition of Src kinases alters the DC maturation pattern. In particular, while expression of IL-12 and other inflammatory cytokines depend on Src kinases, the induction of IL-23 and co-stimulatory molecules do not. Accordingly, DC treated with Src inhibitors are not compromised in their ability to induce CD4 T cell proliferation and to promote the Th17 subset survival but are less efficient in inducing Th1 differentiation. Conclusions We suggest that the pharmacological modulation of DC maturation has the potential to shape the quality of the adaptive immune response and could be exploited for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ugo D'Oro
- Novartis Vaccines, Siena, Italy
- * E-mail:
| |
Collapse
|
29
|
Potentiation of TLR9 responses for human naïve B-cell growth through RP105 signaling. Clin Immunol 2010; 135:125-36. [DOI: 10.1016/j.clim.2009.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 12/24/2009] [Accepted: 12/31/2009] [Indexed: 12/23/2022]
|
30
|
Lee J, Kim MS, Kim EY, Park HJ, Chang CY, Park KS, Jung DY, Kwon CH, Joh JW, Kim SJ. Mycophenolate mofetil promotes down-regulation of expanded B cells and production of TNF-α in an experimental murine model of colitis. Cytokine 2008; 44:49-56. [DOI: 10.1016/j.cyto.2008.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 07/18/2007] [Accepted: 06/12/2008] [Indexed: 01/05/2023]
|
31
|
Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ, Murphy KM. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 2008; 9:603-12. [PMID: 18438409 PMCID: PMC2518613 DOI: 10.1038/ni.1609] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/17/2008] [Indexed: 01/01/2023]
Abstract
Calcineurin is required for B cell receptor (BCR)-induced proliferation of mature B cells. Paradoxically, loss of NFAT transcription factors, themselves calcineurin targets, induces hyperactivity, which suggests that calcineurin targets other than NFAT are required for BCR-induced proliferation. Here we demonstrate a function for the calcineurin-regulated transcription factor Mef2c in B cells. BCR-induced calcium mobilization was intact after Mef2c deletion, but loss of Mef2c caused defects in B cell proliferation and survival after BCR stimulation in vitro and lower T cell-dependent antibody responses and germinal center formation in vivo. Mef2c activity was specific to BCR stimulation, as Toll-like receptor and CD40 signaling induced normal responses in Mef2c-deficient B cells. Mef2c-dependent targets included the genes encoding cyclin D2 and the prosurvival factor Bcl-x(L). Our results emphasize an unrecognized but critical function for Mef2c in BCR signaling.
Collapse
Affiliation(s)
- Peter R Wilker
- Department of Pathology and Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Acosta C, Davies A. Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J Neurosci Res 2008; 86:1077-86. [PMID: 18027846 DOI: 10.1002/jnr.21565] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is an opioid-related peptide that is markedly up-regulated in sensory neurons in vivo following peripheral inflammation and plays a key role in pain physiology. To identify substances that up-regulate N/OFQ expression in sensory neurons, we carried out an in vitro screen using purified adult mouse dorsal root ganglion (DRG) neurons and identified the potent proinflammatory agent bacterial lipopolysaccharide (LPS) as a very effective inducer of N/OFQ. The robust response of these neurons to LPS enabled us to identify the components of a putative neuronal LPS receptor complex. In contrast to the immune system, where the functional LPS receptor complex is composed of CD-14 together with either MD-2 and TLR4 on myeloid cells or the homologous receptors MD-1 and RP105 on mature B cells, DRG neurons express the unusual combination of CD-14, TLR4, and MD-1. Blocking antibodies against TLR4 and MD-1 prevented induction of N/OFQ by LPS, and, in immunoprecipitation experiments, MD-1 coprecipitated with TLR4. Our findings suggest that LPS regulates N/OFN expression in sensory neurons via a novel combination of LPS receptor components and demonstrate for the first time a direct action of a key initiator of innate immune responses on neurons.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antigens, Surface/drug effects
- Antigens, Surface/metabolism
- Cell Line
- Cells, Cultured
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/immunology
- Ganglia, Spinal/metabolism
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation Mediators/pharmacology
- Lipopolysaccharide Receptors/drug effects
- Lipopolysaccharide Receptors/metabolism
- Lipopolysaccharides/pharmacology
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/metabolism
- Mice
- Neurons, Afferent/drug effects
- Neurons, Afferent/immunology
- Neurons, Afferent/metabolism
- Opioid Peptides/drug effects
- Opioid Peptides/metabolism
- Pain/chemically induced
- Pain/immunology
- Pain/metabolism
- Toll-Like Receptor 4/drug effects
- Toll-Like Receptor 4/metabolism
- Up-Regulation/drug effects
- Up-Regulation/immunology
- Nociceptin
Collapse
|
33
|
Lee J, Kim MS, Kim EY, Park HJ, Chang CY, Jung DY, Kwon CH, Joh JW, Kim SJ. 15-deoxyspergualin prevents mucosal injury by inhibiting production of TNF-α and down-regulating expression of MD-1 in a murine model of TNBS-induced colitis. Int Immunopharmacol 2007; 7:1003-12. [PMID: 17570317 DOI: 10.1016/j.intimp.2007.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/08/2007] [Accepted: 02/23/2007] [Indexed: 01/08/2023]
Abstract
The immunosuppressive drug 15-deoxyspergualin (DSG) is currently being used in clinical trials to prolong graft survival and reverse graft rejection. Here we evaluated whether DSG has a potential for ameliorating diseases characterized by mucosal inflammation. Using a murine model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we were able to demonstrate that DSG reduced the severity of colitis. Therefore, colitic mice pretreated with DSG showed a striking improvement of the wasting disease compared with colitic mice, as assessed by weight loss as well as clinical, macroscopic and microscopic analysis. Also, we observed the significant change occurred in the CD19(+) B cell subset, which was decreased 15% in DSG pretreated colitic mice compared with colitic mice. However, DSG pretreatment does not influence the apoptotic population of T and B cells. Compared with colitic mice, down-regulation of TNF-alpha production was observed in DSG pretreated colitic mice. In addition, DSG pretreated colitic mice significantly reduced expression of MD-1 compared with colitic mice on B cells and dendritic cells (DCs). Therefore, pretreatment with DSG resulted in a significant histologic improvement, protecting against mucosal ulcerations and reduced inflammatory response by modulating expression of MD-1, which plays a very important role in immune response on B cells and DCs. Also, this improvement was paralleled by a reduction in TNF-alpha levels. Collectively, current results demonstrate that DSG may be an effective agent for the treatment of diseases characterized by mucosal inflammation.
Collapse
Affiliation(s)
- Jienny Lee
- Transplantation Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Kangnam-Ku, Seoul, 135-710, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Divanovic S, Trompette A, Petiniot LK, Allen JL, Flick LM, Belkaid Y, Madan R, Haky JJ, Karp CL. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol 2007; 82:265-71. [PMID: 17470533 DOI: 10.1189/jlb.0107021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As all immune responses have potential for damaging the host, tight regulation of such responses--in amplitude, space, time and character--is essential for maintaining health and homeostasis. It was thus inevitable that the initial wave of papers on the role of Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs) in activating innate and adaptive immune responses would be followed by a second wave of reports focusing on the mechanisms responsible for restraining and modulating signaling by these receptors. This overview outlines current knowledge and controversies about the immunobiology of the RP105/MD-1 complex, a modulator of the most robustly signaling TLR, TLR4.
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Manjarrez-Orduño N, Moreno-García ME, Fink K, Santos-Argumedo L. CD38 cross-linking enhances TLR-induced B cell proliferation but decreases IgM plasma cell differentiation. Eur J Immunol 2007; 37:358-67. [PMID: 17274001 DOI: 10.1002/eji.200636453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is becoming increasingly clear that the regulation of proliferation and differentiation of B cells to plasma cells involves the integration of a variety of intracellular signals provided by receptors of both the adaptive and innate immune system. The cross-linking of the surface molecule CD38 induces calcium mobilization, protein phosphorylation and NF-kappaB translocation into the nucleus, ultimately leading to proliferation and isotype switching toward IgG1. Here we describe (a) the effect on B cell activation of stimulating through both CD38 and Toll-like receptors 4, 7 and 9; and (b) that CD38 cross-linking increases the number of proliferating cells and the rate of proliferation in LPS-stimulated B cells by a Bruton's tyrosine kinase- and protein kinase C-dependent mechanism. In contrast, CD38 cross-linking reduces the number of cells committed to IgM plasma cell differentiation as measured by the number of CD138+ cells, antibody secretion, and the expression of PAX5, Bcl6 and Blimp-1. Since a putative ligand for CD38 is expressed by germinal center follicular dendritic cells, and CD38 expression is down-regulated in germinal center B cells, we speculate that CD38 might participate in the outcome of post-germinal center antibody responses.
Collapse
Affiliation(s)
- Nataly Manjarrez-Orduño
- Molecular Biomedicine Department, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, México
| | | | | | | |
Collapse
|
36
|
Abrams ST, Lakum T, Lin K, Jones GM, Treweeke AT, Farahani M, Hughes M, Zuzel M, Slupsky JR. B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase CβII. Blood 2006; 109:1193-201. [PMID: 17003377 DOI: 10.1182/blood-2006-03-012021] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractSignals through the B-cell antigen receptor (BCR) are important for the survival of chronic lymphocytic leukemia (CLL) cells. Therefore, factors that influence these signals have important pathophysiological roles in this disease. One key mediator of BCR signaling is protein kinase C β (PKCβ), which regulates the activation of I-κB kinases and the deactivation of Bruton tyrosine kinase within the signaling pathways initiated by BCR engagement. The present study demonstrates that overexpression of the PKCβII isoform is a feature of CLL cells and that activity of this enzyme strongly correlates with CLL cell response to BCR engagement. Thus, intracellular Ca2+ release and increases in cell survival after BCR cross-linking were significantly greater in CLL patients with low levels than in CLL patients with high levels of active PKCβII. Furthermore, BCR-induced Ca2+ fluxes could be restored in CLL patients with high levels of active PKCβII by pretreating the cells with the PKCβ-specific inhibitor LY379196. Conversely, BCR-mediated intracellular Ca2+ release could be inhibited in CLL cells with low levels of active PKCβII by pretreatment with the PKC agonist bryostatin. Taken together, these results demonstrate that overexpressed active PKCβII plays a role in the regulation and outcome of BCR signals that can be important for the progression of CLL.
Collapse
|
37
|
Jöhrens K, Anagnostopoulos I, Dürkop H, Stein H. Different T-bet expression patterns characterize particular reactive lymphoid tissue lesions. Histopathology 2006; 48:343-52. [PMID: 16487356 DOI: 10.1111/j.1365-2559.2005.02305.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate T-bet expression profiles in various lymphoid tissue diseases caused by intracellular pathogens and to compare them in disorders without an infective aetiology. Murine and in vitro experiments have shown that the expression/induction of T-bet, the master regulator of Th1 differentiation, can be achieved by obligate intracellular pathogens and high interferon (IFN)-gamma levels. METHODS Lymph node biopsies were analysed immunohistochemically employing single and double labelling for T-bet and CD20, CD4, CD8 and CD30 detection. RESULTS In disorders associated with high IFN-gamma levels and intracellular pathogens (infectious mononucleosis, HIV-associated lymphadenopathy, cat-scratch disease, and toxoplasmic lymphadenitis), T-bet-expressing CD4 cells were accompanied by significant numbers of T-bet-positive CD8 and B cells. A similar profile was also found in histiocytic necrotizing (Kikuchi) lymphadenitis, a disease of unknown cause. In contrast, T-bet expression in disorders without an infective aetiology was observed in only a small portion of lymphocytes. CONCLUSIONS Increased T-bet expression does not only identify intracellular infections in lymphoid tissue associated with high IFN-gamma levels, but also implies that, under these conditions, it becomes induced in B cells, which apparently support the Th1 response. T-bet expression in Kikuchi lymphadenitis underscores the hypothesis that it is caused by an intracellular microorganism.
Collapse
Affiliation(s)
- K Jöhrens
- Institute for Pathology, Charité, Campus Benjamin Franklin, Medical University Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 2006; 37:511-39. [PMID: 16611561 DOI: 10.1051/vetres:2006014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/10/2006] [Indexed: 12/21/2022] Open
Abstract
In developing veterinary mucosal vaccines and vaccination strategies, mucosal adjuvants are one of the key players for inducing protective immune responses. Most of the mucosal adjuvants seem to exert their effect via binding to a receptor/or target cells and these properties were used to classify the mucosal adjuvants reviewed in the present paper: (1) ganglioside receptor-binding toxins (cholera toxin, LT enterotoxin, their B subunits and mutants); (2) surface immunoglobulin binding complex CTA1-DD; (3) TLR4 binding lipopolysaccharide; (4) TLR2-binding muramyl dipeptide; (5) Mannose receptor-binding mannan; (6) Dectin-1-binding ss 1,3/1,6 glucans; (7) TLR9-binding CpG-oligodeoxynucleotides; (8) Cytokines and chemokines; (9) Antigen-presenting cell targeting ISCOMATRIX and ISCOM. In addition, attention is given to two adjuvants able to prime the mucosal immune system following a systemic immunization, namely 1alpha, 25(OH)2D3 and cholera toxin.
Collapse
Affiliation(s)
- Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
39
|
Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, Kurt-Jones EA, Karp CL. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. ACTA ACUST UNITED AC 2006. [PMID: 16303092 DOI: 10.1177/09680519050110061201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activation of Toll-like receptor (TLR) signaling by microbial and host molecular signatures is critical to the induction of immune responses. Such signaling is, perforce, kept under tight control. We recently discovered a novel endogenous inhibitor of TLR-4 - RP105. Initially identified as a B-cell-specific molecule with a role in B-cell proliferation in response to RP105 mAb and LPS, RP105 is a TLR-4 homologue. Further, like TLR-4 whose surface expression and signaling depends upon co-expression of the secreted protein MD-2, surface expression of RP105 is dependent upon co-expression of the MD2 homologue, MD-1. Unlike the TLRs, however, RP105 lacks a signaling domain, having the apparent structure of a TLR inhibitor. Further, RP105 is not B-cell-specific; its expression directly mirrors that of TLR-4 on dendritic cells and macrophages. These considerations suggested a role for RP105 as a physiological inhibitor of TLR-4 signaling. Indeed, we have recently found that: (i) RP105 is a specific inhibitor of TLR-4 signaling in HEK293 cells; (ii) RP105/MD-1 interacts directly with TLR-4/MD-2, inhibiting the ability of this signaling complex to bind LPS; (iii) RP105 regulates TLR-4 signaling in dendritic cells and macrophages; and (iv) RP105 regulates in vivo responses to LPS.
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Daoud G, Rassart E, Masse A, Lafond J. Src family kinases play multiple roles in differentiation of trophoblasts from human term placenta. J Physiol 2006; 571:537-53. [PMID: 16410281 PMCID: PMC1805791 DOI: 10.1113/jphysiol.2005.102285] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tyrosine phosphorylation plays a major role in controlling many biological processes in different cell types. Src family kinases (SFKs) are one of the most studied groups of tyrosine kinases and can mediate a variety of signalling pathways. However, little is known about the expression of SFKs in human term placenta and their implication in trophoblast differentiation. Therefore, we examined the expression profile of SFK members over time in culture and their implication in differentiation. In vitro, freshly isolated cytotrophoblast cells, cultured in 10% fetal bovine serum (FBS), spontaneously aggregate and fuse to form multinucleated cells that resemble phenotypically mature syncytiotrophoblasts, that concomitantly produce human chorionic gonadotropin (hCG) and human placental lactogen (hPL). In this study, we showed that trophoblasts expressed all SFK members and some of them are expressed as different splice variants. Moreover, using real-time PCR, this study showed two different expression profiles of SFKs in human trophoblasts during culture. In addition, the protein level and phosphorylation status of Src were evaluated using specific antibodies. Src was rapidly phosphorylated at Tyr-416 and dephosphorylated at Tyr-527 after FBS addition. Surprisingly, inhibition of SFKs by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) or herbimycin A had different effects on trophoblast differentiation. While herbimycin A inhibited morphological and hormonal differentiation, PP2 stimulated hormonal differentiation and inhibited cell adhesion and spreading with no effect on cell fusion. In summary, this study showed that SFKs play different roles in trophoblast differentiation, probably depending on SFK members activated. Thus, this study increases our knowledge and understanding of pathology related to impaired trophoblast differentiation such as pre-eclampsia and trophoblast neoplasm.
Collapse
Affiliation(s)
- Georges Daoud
- Laboratoire de Physiologie materno-foetale, Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Canada, H3C 3P8
| | | | | | | |
Collapse
|
41
|
Chu CL, Lowell CA. The Lyn tyrosine kinase differentially regulates dendritic cell generation and maturation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2880-9. [PMID: 16116174 DOI: 10.4049/jimmunol.175.5.2880] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Src family kinase Lyn plays both stimulatory and inhibitory roles in hemopoietic cells. In this report we provide evidence that Lyn is involved in dendritic cell (DC) generation and maturation. Loss of Lyn promoted DC expansion in vitro from bone marrow precursors due to enhanced generation and accelerated differentiation of Lyn-deficient DC progenitors. Differentiated Lyn-deficient DCs also had a higher survival rate. Similarly, the CD11c-positive cell number was increased in aged Lyn-deficient mice in vivo. In contrast to their enhanced generation, lyn-/- DCs failed to mature appropriately in response to innate stimuli, resulting in DCs with lower levels of MHC class II and costimulatory molecules. In addition, IL-12 production and Ag-specific T cell activation were reduced in lyn-/- DCs after maturation, resulting in impaired Th1 responses. This is the first study to characterize Lyn-deficient DCs. Our results suggest that Lyn kinase plays uniquely negative and positive regulatory roles in DC generation and maturation, respectively.
Collapse
Affiliation(s)
- Ching-Liang Chu
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | | |
Collapse
|
42
|
|
43
|
Hebeis B, Vigorito E, Kovesdi D, Turner M. Vav proteins are required for B-lymphocyte responses to LPS. Blood 2005; 106:635-40. [PMID: 15811961 DOI: 10.1182/blood-2004-10-3919] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
B lymphocytes respond to bacterial lipopolysaccharide (LPS) through Toll-like receptor 4 (TLR4) and CD180 (previously called RP105). We show here that the responses of B lymphocytes to LPS require the function of the Vav family of guanine nucleotide exchange factors. Vav1-mutant mice generate defective humoral immunoglobulin G (IgG) responses following administration of low doses of LPS but respond normally to higher doses, while mice lacking both Vav1 and Vav2 manifest defective responses even after a high dose of LPS. Vav1/2-mutant B cells fail to divide extensively in vitro in response to LPS or CD180, while deficiency of Vav1 alone impairs CD180-but not LPS-driven proliferation. Likewise, activation of Akt (a PI3K [phosphatidylinositol 3-kinase] target) and phosphorylation of IκBα in response to CD180 or LPS required Vav1 and Vav2, while Vav1 deficiency led to defective responses to CD180. In addition, activation of ERK (extracellular signal regulated kinase) required Vav1 and Vav2 in response to CD180 but was Vav1 and vav2 independent in response to LPS. Induction of CD86 and CD25 by anti-CD180 also required Vav function, as did the induction of the antiapoptotic protein Bcl-xL (B-cell leukemia XL). These data provide evidence for the function for the Vav proteins in regulating the responses of B cells to LPS. (Blood. 2005;106:635-640)
Collapse
Affiliation(s)
- Barbara Hebeis
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom
| | | | | | | |
Collapse
|
44
|
Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, Kurt-Jones EA, Karp CL. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 2005; 6:571-8. [PMID: 15852007 PMCID: PMC2144914 DOI: 10.1038/ni1198] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/18/2005] [Indexed: 12/21/2022]
Abstract
Activation of Toll-like receptor (TLR) signaling by microbial signatures is critical to the induction of immune responses. Such responses demand tight regulation. RP105 is a TLR homolog thought to be mostly B cell specific, lacking a signaling domain. We report here that RP105 expression was wide, directly mirroring that of TLR4 on antigen-presenting cells. Moreover, RP105 was a specific inhibitor of TLR4 signaling in HEK 293 cells, a function conferred by its extracellular domain. Notably, RP105 and its helper molecule, MD-1, interacted directly with the TLR4 signaling complex, inhibiting its ability to bind microbial ligand. Finally, RP105 regulated TLR4 signaling in dendritic cells as well as endotoxin responses in vivo. Thus, our results identify RP105 as a physiological negative regulator of TLR4 responses.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cytokines/biosynthesis
- DNA/genetics
- Dendritic Cells/immunology
- Gene Expression
- Humans
- Immunity, Innate
- In Vitro Techniques
- Lymphocyte Antigen 96
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Structure, Tertiary
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transfection
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity 2005; 22:9-18. [PMID: 15664155 DOI: 10.1016/j.immuni.2004.12.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 12/29/2004] [Accepted: 12/30/2004] [Indexed: 12/21/2022]
Abstract
Lyn, one of several Src-family tyrosine kinases in immune cells, is noted for its ability to negatively regulate signaling pathways through phosphorylation of inhibitory receptors, enzymes, and adaptors. Somewhat paradoxically, it is also a key mediator in several pathways of B cell activation, such as CD19 and CD180. Whether Lyn functions to promote or inhibit immune cell activation depends on the stimulus and the developmental state, meaning that the consequences of Lyn activity are context dependent. The importance of regulating Lyn activity is exemplified by the pathological conditions that develop in both lyn-/- and lyn gain-of-function mice (lynup/up), including lethal antibody-mediated autoimmune diseases and myeloid neoplasia. Here, we review the outcomes of altered Lyn activity within the framework of B cell development and differentiation and the circumstances that appear to dictate the outcome.
Collapse
Affiliation(s)
- Yuekang Xu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | | | |
Collapse
|
46
|
Milner ECB, Anolik J, Cappione A, Sanz I. Human innate B cells: a link between host defense and autoimmunity? SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2005; 26:433-52. [PMID: 15633016 PMCID: PMC1431976 DOI: 10.1007/s00281-004-0188-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 10/12/2004] [Indexed: 12/01/2022]
Abstract
B cells play a variety of immunoregulatory roles through their antigen-presentation ability and through cytokine and chemokine production. Innate immune activation of B cells may play a beneficial role through the generation of natural cross-reactive antibodies, by maintaining B cell memory and by exercising immunomodulatory functions that may provide protection against autoimmunity. In this article, we review human B cell populations and their functional properties, with a particular focus on a population of inherently autoreactive B cells, which seem to play an important physiological role in innate immunity, but which, if selected into adaptive immune responses, appear to become pathogenic agents in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Eric C. B. Milner
- Department of Medicine, Clinical Immunology and Rheumatology Unit, University of Rochester Medical School, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA
| | - Jennifer Anolik
- Department of Medicine, Clinical Immunology and Rheumatology Unit, University of Rochester Medical School, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA
| | - Amedeo Cappione
- Department of Medicine, Clinical Immunology and Rheumatology Unit, University of Rochester Medical School, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA
| | - Iñaki Sanz
- Department of Medicine, Clinical Immunology and Rheumatology Unit, University of Rochester Medical School, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA
| |
Collapse
|
47
|
|
48
|
Abstract
Mouse mammary tumor virus (MMTV) is a nonacute transforming retrovirus that causes mammary tumors in susceptible strains of mice. Upon milk-borne transmission, B cells in the gut become infected and subsequently present a virus-encoded superantigen to cognate T cells. These T cells become activated and, in turn, stimulate neighboring lymphocytes, thereby establishing an infection-competent reservoir of lymphoid cells. During puberty and pregnancy, mammary epithelial cells actively divide, and viral transmission occurs from the lymphocytes that migrate to the mammary gland. Thus, MMTV utilizes the immune system to establish infection while simultaneously avoiding immune responses.
Collapse
Affiliation(s)
- Jennifer Czarneski
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Abstract
Toll-like receptors (TLRs) are innate pathogen recognition molecules for microbial products. Lipopolysaccharide (LPS), a membrane constituent of Gram-negative bacteria, is one of the most potent microbial products. LPS is recognized by TLR4 and MD-2. TLR4 is a transmembrane protein, the extracellular domain of which is composed of a protein motif called leucine-rich repeats (LRR). MD-2 is an extracellular molecule that is associated with the extracellular LRR of TLR4. MD-2 has a role in cell surface expression of TLR4 and interaction with LPS. TLR4-MD-2 contributes to containment of infections by Gram-negative bacteria by activating immune responses.
Collapse
MESH Headings
- Acute-Phase Proteins/immunology
- Acute-Phase Proteins/physiology
- Animals
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Ly/immunology
- Antigens, Ly/physiology
- Antigens, Surface/immunology
- Antigens, Surface/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Carrier Proteins/immunology
- Carrier Proteins/physiology
- Endotoxins/immunology
- Endotoxins/physiology
- Gene Expression/physiology
- Humans
- Immunity, Innate/immunology
- Immunity, Innate/physiology
- Ligands
- Lipopolysaccharide Receptors/immunology
- Lipopolysaccharide Receptors/physiology
- Lymphocyte Antigen 96
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Models, Biological
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Toll-Like Receptor 4
- Toll-Like Receptors
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Infectious Genetics, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan.
| |
Collapse
|
50
|
Kimoto M, Nagasawa K, Miyake K. Role of TLR4/MD-2 and RP105/MD-1 in innate recognition of lipopolysaccharide. ACTA ACUST UNITED AC 2003; 35:568-72. [PMID: 14620136 DOI: 10.1080/00365540310015700] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
TLR4 and RP105 are unique members of the Toll-like receptor (TLR) family molecules. They are associated with small molecules called MD-2 and MD-1, respectively, to form heterodimers (TLR4/MD-2 and RP105/MD-1) and function as recognition/signaling molecules of lipopolysaccharide (LPS), a membrane component of Gram-negative bacteria. Analysis of transfectant cell lines and gene-targeted mice revealed that both MD-2 and MD-1 are involved in the recognition of LPS as well as in the regulation of intracellular distribution and the surface expression of TLR4 and RP105, respectively. Since RP105 or MD-1-deficient mice show a reduced but not complete lack of LPS responsiveness, there may be functional associations between TLR4/MD-2 and RP105/MD-1. In addition, there was an increased frequency of RP105-negative B-lymphocytes in the peripheral blood in several rheumatic diseases, such as systemic lupus erythematosus, suggesting the involvement of RP105 in the pathophysiology of autoimmunity. Further analysis of the structure and function of TLR4/MD-2 and RP105/MD-1 will provide a better understanding of the pathophysiology, and a chance to develop evidence-based treatments for septic shock syndrome and autoimmunity.
Collapse
Affiliation(s)
- Masao Kimoto
- Department of Immunology, Saga Medical School, Nabeshima, Saga, Japan.
| | | | | |
Collapse
|