1
|
Ahmad S, Mukhopadhyay D, Grewal R, Jayaprakash C, Das J. Spatial statistics of submicron size clusters of activating and inhibitory Natural Killer cell receptors in the resting state regulate early time signal discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645117. [PMID: 40196617 PMCID: PMC11974869 DOI: 10.1101/2025.03.25.645117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Natural Killer (NK) cells are lymphocytes of the innate immunity and sense healthy or diseased target cells with activating and inhibitory NK cell receptor (NKR) molecules expressed on the cell surface. The protection provided by NK cells against viral infections and tumors critically depends on their ability to distinguish healthy cells from diseased target cells that express 100-fold more activating ligands. NK cell signaling and activation depend on integrating opposing signals initiated by activating and inhibitory NKRs interacting with the cognate ligands expressed on target cells. A wide range of imaging experiments have demonstrated aggregation of both activating and inhibitory NKRs in the plasma membrane on submicron scales in resting NK cells. How do these submicron size NKR clusters formed in the resting state affect signal discrimination? Using in silico mechanistic signaling modeling with information theory and published superresolution imaging data for two well-studied human NKRs, activating NKG2D and inhibitory KIR2DL1, we show that early time signal discrimination by NK cells depends on the spatial statistics of these clusters. When NKG2D and KIR2DL1 clusters are disjoint in the resting state, these clusters help NK cells to discriminate between target cells expressing low and high doses of the activating cognate ligand, whereas, when the NKR clusters fully overlap the NK cells are unable to distinguish between healthy and diseased target cells. Therefore, the spatial statistics of submicron scale clusters of activating and inhibitory NKRs at the resting state provides an additional layer of control for signal discrimination in NK cells.
Collapse
Affiliation(s)
- Saeed Ahmad
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus OH
| | - Debangana Mukhopadhyay
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus OH
| | - Rajdeep Grewal
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus OH
| | | | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus OH
- Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
- Biophysics Program, The Ohio State University, Columbus OH
| |
Collapse
|
2
|
Ahmad S, Xing K, Rajakaruna H, Stewart WC, Beckwith KA, Nayak I, Kararoudi MN, Lee DA, Das J. A framework integrating multiscale in-silico modeling and experimental data predicts CD33CAR-NK cytotoxicity across target cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630941. [PMID: 39803543 PMCID: PMC11722217 DOI: 10.1101/2024.12.31.630941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics. The model trained with quantitative flow cytometry and in vitro cytotoxicity data accurately predicts the short- and long-term cytotoxicity of CD33CAR-NK cells against leukemia cell lines across multiple CAR designs. Furthermore, using Pareto optimization we explored the effect of CAR proportion and NK cell signaling on the differential cytotoxicity of CD33CAR-NK cells to cancer and healthy cells. This model can be extended to predict CAR-NK cytotoxicity across many antigens and tumor targets.
Collapse
Affiliation(s)
- Saeed Ahmad
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Kun Xing
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH
| | - Harshana Rajakaruna
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | | | - Kyle A. Beckwith
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Sugawara S, Lee E, Craemer MA, Pruitt A, Balachandran H, Gressens SB, Kroll K, Manickam C, Li Y, Jost S, Woolley G, Reeves RK. Knockdowns of CD3zeta Chain in Primary NK Cells Illustrate Modulation of Antibody-Dependent Cellular Cytotoxicity Against Human Immunodeficiency Virus-1. AIDS Res Hum Retroviruses 2024; 40:631-636. [PMID: 39041622 PMCID: PMC11631794 DOI: 10.1089/aid.2023.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Multifaceted natural killer (NK) cell activities are indispensable for controlling human immunodeficiency virus (HIV)-1 transmission and pathogenesis. Among the diverse functions of NK cells, antibody-dependent cellular cytotoxicity (ADCC) has been shown to predict better HIV-1 protection. ADCC is initiated by the engagement of an Fc γ receptor CD16 with an Fc portion of the antibody, leading to phosphorylation of the CD3 ζ chain (CD3ζ) and Fc receptor γ chain (FcRγ) as well as downstream signaling activation. Though CD3ζ and FcRγ were thought to have overlapping roles in NK cell ADCC, several groups have reported that CD3ζ-mediated signals trigger a more robust ADCC. However, few studies have illustrated the direct contribution of CD3ζ in HIV-1-specific ADCC. To further understand the roles played by CD3ζ in HIV-1-specific ADCC, we developed a CD3ζ knockdown system in primary human NK cells. We observed that HIV-1-specific ADCC was inhibited by CD3ζ perturbation. In summary, we demonstrated that CD3ζ is important for eliciting HIV-1-specific ADCC, and this dynamic can be utilized for NK cell immunotherapeutics against HIV-1 infection and other diseases.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Esther Lee
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Melissa A. Craemer
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Alayna Pruitt
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Simon B. Gressens
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Center for Biomolecular Therapeutics & Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Karyu H, Niki T, Sorimachi Y, Hata S, Shimabukuro-Demoto S, Hirabayashi T, Mukai K, Kasahara K, Takubo K, Goda N, Honke K, Taguchi T, Sorimachi H, Toyama-Sorimachi N. Collaboration between a cis-interacting natural killer cell receptor and membrane sphingolipid is critical for the phagocyte function. Front Immunol 2024; 15:1401294. [PMID: 38720899 PMCID: PMC11076679 DOI: 10.3389/fimmu.2024.1401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.
Collapse
Affiliation(s)
- Hitomi Karyu
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Takahiro Niki
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuriko Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shoji Hata
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kojiro Mukai
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Honke
- Department of Biochemistry and Kochi System Glycobiology Center, Kochi University Medical School, Kochi, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
5
|
Bi W, Kraft A, Engelskircher S, Mischke J, Witte M, Klawonn F, van Ham M, Cornberg M, Wedemeyer H, Hengst J, Jänsch L. Proteomics reveals a global phenotypic shift of NK cells in HCV patients treated with direct-acting antivirals. Eur J Immunol 2023; 53:e2250291. [PMID: 37515498 DOI: 10.1002/eji.202250291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Chronic hepatitis C virus (HCV) infections compromise natural killer (NK)-cell immunity. Direct-acting antivirals (DAA) effectively eliminate HCV, but the long-term effects on NK cells in cured patients are debated. We conducted a proteomic study on CD56+ NK cells of chronic HCV-infected patients before and 1 year after DAA therapy. Donor-variation was observed in NK-cell proteomes of HCV-infected patients, with 46 dysregulated proteins restored after DAA therapy. However, 30% of the CD56+ NK-cell proteome remained altered 1 year post-therapy, indicating a phenotypic shift with low donor-variation. NK cells from virus-negative cured patients exhibited global regulation of RNA-processing and pathways related to "stimuli response", "chemokine signaling", and "cytotoxicity regulation". Proteomics identified downregulation of vesicle transport components (CD107a, COPI/II complexes) and altered receptor expression profiles, indicating an inhibited NK-cell phenotype. Yet, activated NK cells from HCV patients before and after therapy effectively upregulated IFN-γ and recruited CD107a. Conversely, reduced surface expression levels of Tim-3 and 2B4 were observed before and after therapy. In conclusion, this study reveals long-term effects on the CD56+ NK-cell compartment in convalescent HCV patients 1 year after therapy, with limited abundance of vesicle transport complexes and surface receptors, associated with a responsive NK-cell phenotype.
Collapse
Affiliation(s)
- Wenjie Bi
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anke Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Sophie Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Moana Witte
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Frank Klawonn
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Heiner Wedemeyer
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Sugawara S, Hueber B, Woolley G, Terry K, Kroll K, Manickam C, Ram DR, Ndhlovu LC, Goepfert P, Jost S, Reeves RK. Multiplex interrogation of the NK cell signalome reveals global downregulation of CD16 signaling during lentivirus infection through an IL-18/ADAM17-dependent mechanism. PLoS Pathog 2023; 19:e1011629. [PMID: 37669308 PMCID: PMC10503717 DOI: 10.1371/journal.ppat.1011629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Despite their importance, natural killer (NK) cell responses are frequently dysfunctional during human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV) infections, even irrespective of antiretroviral therapies, with poorly understood underlying mechanisms. NK cell surface receptor modulation in lentivirus infection has been extensively studied, but a deeper interrogation of complex cell signaling is mostly absent, largely due to the absence of any comprehensive NK cell signaling assay. To fill this knowledge gap, we developed a novel multiplex signaling analysis to broadly assess NK cell signaling. Using this assay, we elucidated that NK cells exhibit global signaling reduction from CD16 both in people living with HIV-1 (PLWH) and SIV-infected rhesus macaques. Intriguingly, antiretroviral treatment did not fully restore diminished CD16 signaling in NK cells from PLWH. As a putative mechanism, we demonstrated that NK cells increased surface ADAM17 expression via elevated plasma IL-18 levels during HIV-1 infection, which in turn reduced surface CD16 downregulation. We also illustrated that CD16 expression and signaling can be restored by ADAM17 perturbation. In summary, our multiplex NK cell signaling analysis delineated unique NK cell signaling perturbations specific to lentiviral infections, resulting in their dysfunction. Our analysis also provides mechanisms that will inform the restoration of dysregulated NK cell functions, offering potential insights for the development of new NK cell-based immunotherapeutics for HIV-1 disease.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Brady Hueber
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, United States of America
| | - Paul Goepfert
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol 2023; 14:1207276. [PMID: 37638058 PMCID: PMC10450036 DOI: 10.3389/fimmu.2023.1207276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role in immunity by killing virally infected or tumor cells and secreting cytokines and chemokines. NK cell-mediated immunotherapy has emerged as a promising approach for cancer treatment due to its safety and effectiveness. NK cell engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE (trispecific killer cell engager), are a novel class of antibody-based therapeutics that exhibit several advantages over other cancer immunotherapies harnessing NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to tumor cell lysis. A growing number of NKCEs are currently undergoing development, with some already in clinical trials. However, there is a need for more comprehensive studies to determine how the molecular design of NKCEs affects their functionality and manufacturability, which are crucial for their development as off-the-shelf drugs for cancer treatment. In this review, we summarize current knowledge on NKCE development and discuss critical factors required for the production of effective NKCEs.
Collapse
Affiliation(s)
- Minchuan Zhang
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells 2023; 12:cells12091276. [PMID: 37174676 PMCID: PMC10177506 DOI: 10.3390/cells12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.
Collapse
Affiliation(s)
- Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Matan Risling
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Medical Corps, Israel Defense Forces, Tel-Hashomer 02149, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
9
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
10
|
Demaria O, Gauthier L, Vetizou M, Blanchard Alvarez A, Vagne C, Habif G, Batista L, Baron W, Belaïd N, Girard-Madoux M, Cesari C, Caratini M, Bosco F, Benac O, Lopez J, Fenis A, Galluso J, Trichard S, Carrette B, Carrette F, Maguer A, Jaubert S, Sansaloni A, Letay-Drouet R, Kosthowa C, Lovera N, Dujardin A, Chanuc F, Le Van M, Bokobza S, Jarmuzynski N, Fos C, Gourdin N, Remark R, Lechevallier E, Fakhry N, Salas S, Deville JL, Le Grand R, Bonnafous C, Vollmy L, Represa A, Carpentier S, Rossi B, Morel A, Cornen S, Perrot I, Morel Y, Vivier E. Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell Rep Med 2022; 3:100783. [PMID: 36260981 PMCID: PMC9589122 DOI: 10.1016/j.xcrm.2022.100783] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
Harnessing innate immunity is emerging as a promising therapeutic approach in cancer. We report here the design of tetraspecific molecules engaging natural killer (NK) cell-activating receptors NKp46 and CD16a, the β-chain of the interleukin-2 receptor (IL-2R), and a tumor-associated antigen (TAA). In vitro, these tetraspecific antibody-based natural killer cell engager therapeutics (ANKETs) induce a preferential activation and proliferation of NK cells, and the binding to the targeted TAA triggers NK cell cytotoxicity and cytokine and chemokine production. In vivo, tetraspecific ANKETs induce NK cell proliferation and their accumulation at the tumor bed, as well as the control of local and disseminated tumors. Treatment of non-human primates with CD20-directed tetraspecific ANKET leads to CD20+ circulating B cell depletion, with minimal systemic cytokine release and no sign of toxicity. Tetraspecific ANKETs, thus, constitute a technological platform for harnessing NK cells as next-generation cancer immunotherapies. Tetraspecific ANKETs constitute a technological platform to harness NK cells in cancer Tetraspecific ANKETs target NKp46, CD16a, IL-2Rβ, and a tumor antigen Tetraspecific ANKETs stimulate NK cell proliferation, activation, and antitumor functions In vivo, tetraspecific ANKETs promote NK cell tumor accumulation and antitumor activity
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric Lechevallier
- Assistance Publique des Hôpitaux de Marseille, Chirurgie Urologique et Transplantation Rénale, Hôpital de la Conception, Marseille, France
| | - Nicolas Fakhry
- Assistance Publique des Hôpitaux de Marseille, ORL et Chirurgie Cervico-Faciale, Hôpital de la Conception, Marseille, France
| | - Sébastien Salas
- Assistance Publique des Hôpitaux de Marseille, Service d'Oncologie Médicale et de Soins Palliatifs, CHU Timone Adulte, Marseille, France
| | - Jean-Laurent Deville
- Assistance Publique des Hôpitaux de Marseille, Oncologie Médicale, Hôpital de la Timone, Marseille, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | - Eric Vivier
- Innate Pharma, Marseille, France,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France,Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France,Corresponding author
| |
Collapse
|
11
|
Guan Q, Liu W, Mu K, Hu Q, Xie J, Cheng L, Wang X. Single-cell RNA sequencing of CSF reveals neuroprotective RAC1+ NK cells in Parkinson’s disease. Front Immunol 2022; 13:992505. [PMID: 36211372 PMCID: PMC9532252 DOI: 10.3389/fimmu.2022.992505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Brain infiltration of the natural killer (NK) cells has been observed in several neurodegenerative disorders, including Parkinson’s disease (PD). In a mouse model of α-synucleinopathy, it has been shown that NK cells help in clearing α-synuclein (α-syn) aggregates. This study aimed to investigate the molecular mechanisms underlying the brain infiltration of NK cells in PD. Immunofluorescence assay was performed using the anti-NKp46 antibody to detect NK cells in the brain of PD model mice. Next, we analyzed the publicly available single-cell RNA sequencing (scRNA-seq) data (GSE141578) of the cerebrospinal fluid (CSF) from patients with PD to characterize the CSF immune landscape in PD. Results showed that NK cells infiltrate the substantia nigra (SN) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice and colocalize with dopaminergic neurons and α-syn. Moreover, the ratio of NK cells was found to be increased in the CSF of PD patients. Analysis of the scRNA-seq data revealed that Rac family small GTPase 1 (RAC1) was the most significantly upregulated gene in NK cells from PD patients. Furthermore, genes involved in regulating SN development were enriched in RAC1+ NK cells and these cells showed increased brain infiltration in MPTP-induced PD mice. In conclusion, NK cells actively home to the SN of PD model mice and RAC1 might be involved in regulating this process. Moreover, RAC1+ NK cells play a neuroprotective role in PD.
Collapse
Affiliation(s)
- Qing Guan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ketao Mu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Hu
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhao Xie
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liming Cheng, ; Xiong Wang,
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liming Cheng, ; Xiong Wang,
| |
Collapse
|
12
|
Grewal RK, Das J. Spatially resolved in silico modeling of NKG2D signaling kinetics suggests a key role of NKG2D and Vav1 Co-clustering in generating natural killer cell activation. PLoS Comput Biol 2022; 18:e1010114. [PMID: 35584138 PMCID: PMC9154193 DOI: 10.1371/journal.pcbi.1010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Natural Killer (NK) cells provide key resistance against viral infections and tumors. A diverse set of activating and inhibitory NK cell receptors (NKRs) interact with cognate ligands presented by target host cells, where integration of dueling signals initiated by the ligand-NKR interactions determines NK cell activation or tolerance. Imaging experiments over decades have shown micron and sub-micron scale spatial clustering of activating and inhibitory NKRs. The mechanistic roles of these clusters in affecting downstream signaling and activation are often unclear. To this end, we developed a predictive in silico framework by combining spatially resolved mechanistic agent based modeling, published TIRF imaging data, and parameter estimation to determine mechanisms by which formation and spatial movements of activating NKG2D microclusters affect early time NKG2D signaling kinetics in a human cell line NKL. We show co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in NKG2D microclusters plays a dominant role over ligand (ULBP3) rebinding in increasing production of phospho-Vav1(pVav1), an activation marker of early NKG2D signaling. The in silico model successfully predicts several scenarios of inhibition of NKG2D signaling and time course of NKG2D spatial clustering over a short (~3 min) interval. Modeling shows the presence of a spatial positive feedback relating formation and centripetal movements of NKG2D microclusters, and pVav1 production offers flexibility towards suppression of activating signals by inhibitory KIR ligands organized in inhomogeneous spatial patterns (e.g., a ring). Our in silico framework marks a major improvement in developing spatiotemporal signaling models with quantitatively estimated model parameters using imaging data. Natural Killer cells are lymphocytes of our innate immunity and provide important resistance against viral infections and tumors. NK cells scan the local environment with diverse activating and inhibitory NK cell receptors (NKRs) and remain tolerized or lyse target cells expressing cognate ligands to NKRs. NKRs have been found to form micron sized clusters (or microclusters) as they interact with cognate ligands, and mechanisms regarding how the formation and movements of these microclusters influence NK cell signaling and activation, specifically related to activating NKRs, are often unclear. To this end, we develop a predictive spatially resolved early-time NK cell signaling model to study the interplay between membrane-proximal biochemical signaling events and the kinetics of microclusters of activating NKG2D and inhibitory KIR2DL2 receptors. We used published TIRF imaging data to validate our in silico models and estimate model parameters. Predictions from multiple in silico models are tested against a variety of data obtained from published imaging experiments and immunoassays. Our analysis suggests co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in the microclusters plays a major role in enhancing downstream activating signals. The developed framework can be extended to describe spatiotemporal signaling for other activating NKRs including CD16.
Collapse
Affiliation(s)
- Rajdeep Kaur Grewal
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
14
|
Potempa M, Aguilar OA, Gonzalez-Hinojosa MDR, Tenvooren I, Marquez DM, Spitzer MH, Lanier LL. Influence of Self-MHC Class I Recognition on the Dynamics of NK Cell Responses to Cytomegalovirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1742-1754. [PMID: 35321880 PMCID: PMC8976824 DOI: 10.4049/jimmunol.2100768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
Although interactions between inhibitory Ly49 receptors and their self-MHC class I ligands in C57BL/6 mice are known to limit NK cell proliferation during mouse CMV (MCMV) infection, we created a 36-marker mass cytometry (CyTOF) panel to investigate how these inhibitory receptors impact the NK cell response to MCMV in other phenotypically measurable ways. More than two thirds of licensed NK cells (i.e., those expressing Ly49C, Ly49I, or both) in uninfected mice had already differentiated into NK cells with phenotypes indicative of Ag encounter (KLRG1+Ly6C-) or memory-like status (KLRG1+Ly6C+). These pre-existing KLRG1+Ly6C+ NK cells resembled known Ag-specific memory NK cell populations in being less responsive to IL-18 and IFN-α stimulation in vitro and by selecting for NK cell clones with elevated expression of a Ly49 receptor. During MCMV infection, the significant differences between licensed and unlicensed (Ly49C-Ly49I-) NK cells disappeared within both CMV-specific (Ly49H+) and nonspecific (Ly49H-) responses. This lack of heterogeneity carried into the memory phase, with only a difference in CD16 expression manifesting between licensed and unlicensed MCMV-specific memory NK cell populations. Our results suggest that restricting proliferation is the predominant effect licensing has on the NK cell population during MCMV infection, but the inhibitory Ly49-MHC interactions that take place ahead of infection contribute to their limited expansion by shrinking the pool of licensed NK cells capable of robustly responding to new challenges.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Oscar A Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Maria D R Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Iliana Tenvooren
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA; and
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Diana M Marquez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA; and
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA; and
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA;
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA
| |
Collapse
|
15
|
Lau CM, Wiedemann GM, Sun JC. Epigenetic regulation of natural killer cell memory. Immunol Rev 2022; 305:90-110. [PMID: 34908173 PMCID: PMC8955591 DOI: 10.1111/imr.13031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
Immunological memory is the underlying mechanism by which the immune system remembers previous encounters with pathogens to produce an enhanced secondary response upon re-encounter. It stands as the hallmark feature of the adaptive immune system and the cornerstone of vaccine development. Classic recall responses are executed by conventional T and B cells, which undergo somatic recombination and modify their receptor repertoire to ensure recognition of a vast number of antigens. However, recent evidence has challenged the dogma that memory responses are restricted to the adaptive immune system, which has prompted a reevaluation of what delineates "immune memory." Natural killer (NK) cells of the innate immune system have been at the forefront of these pushed boundaries, and have proved to be more "adaptable" than previously thought. Like T cells, we now appreciate that their "natural" abilities actually require a myriad of signals for optimal responses. In this review, we discuss the many signals required for effector and memory NK cell responses and the epigenetic mechanisms that ultimately endow their enhanced features.
Collapse
Affiliation(s)
- Colleen M. Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gabriela M. Wiedemann
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
16
|
Charreau B. Cellular and Molecular Crosstalk of Graft Endothelial Cells During AMR: Effector Functions and Mechanisms. Transplantation 2021; 105:e156-e167. [PMID: 33724240 DOI: 10.1097/tp.0000000000003741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Graft endothelial cell (EC) injury is central to the pathogenesis of antibody-mediated rejection (AMR). The ability of donor-specific antibodies (DSA) to bind C1q and activate the classical complement pathway is an efficient predictor of graft rejection highlighting complement-dependent cytotoxicity as a key process operating during AMR. In the past 5 y, clinical studies further established the cellular and molecular signatures of AMR revealing the key contribution of other, IgG-dependent and -independent, effector mechanisms mediated by infiltrating NK cells and macrophages. Beyond binding to alloantigens, DSA IgG can activate NK cells and mediate antibody-dependent cell cytotoxicity through interacting with Fcγ receptors (FcγRs) such as FcγRIIIa (CD16a). FcRn, a nonconventional FcγR that allows IgG recycling, is highly expressed on ECs and may contribute to the long-term persistence of DSA in blood. Activation of NK cells and macrophages results in the production of proinflammatory cytokines such as TNF and IFNγ that induce transient and reversible changes in the EC phenotype and functions promoting coagulation, inflammation, vascular permeability, leukocyte trafficking. MHC class I mismatch between transplant donor and recipient can create a situation of "missing self" allowing NK cells to kill graft ECs. Depending on the microenvironment, cellular proximity with ECs may participate in macrophage polarization toward an M1 proinflammatory or an M2 phenotype favoring inflammation or vascular repair. Monocytes/macrophages participate in the loss of endothelial specificity in the process of endothelial-to-mesenchymal transition involved in renal and cardiac fibrosis and AMR and may differentiate into ECs enabling vessel and graft (re)-endothelialization.
Collapse
Affiliation(s)
- Béatrice Charreau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et en Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
17
|
Fionda C, Stabile H, Molfetta R, Kosta A, Peruzzi G, Ruggeri S, Zingoni A, Capuano C, Soriani A, Paolini R, Gismondi A, Cippitelli M, Santoni A. Cereblon regulates NK cell cytotoxicity and migration via Rac1 activation. Eur J Immunol 2021; 51:2607-2617. [PMID: 34392531 PMCID: PMC9291148 DOI: 10.1002/eji.202149269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/23/2021] [Indexed: 11/14/2022]
Abstract
Rearrangement of the actin cytoskeleton is critical for cytotoxic and immunoregulatory functions as well as migration of natural killer (NK) cells. However, dynamic reorganization of actin is a complex process, which remains largely unknown. Here, we investigated the role of the protein Cereblon (CRBN), an E3 ubiquitin ligase complex co‐receptor and the primary target of the immunomodulatory drugs, in NK cells. We observed that CRBN partially colocalizes with F‐actin in chemokine‐treated NK cells and is recruited to the immunological synapse, thus suggesting a role for this protein in cytoskeleton reorganization. Accordingly, silencing of CRBN in NK cells results in a reduced cytotoxicity that correlates with a defect in conjugate and lytic synapse formation. Moreover, CRBN depletion significantly impairs the ability of NK cells to migrate and reduces the enhancing effect of lenalidomide on NK cell migration. Finally, we provided evidence that CRBN is required for activation of the small GTPase Rac1, a critical mediator of cytoskeleton dynamics. Indeed, in CRBN‐depleted NK cells, chemokine‐mediated or target cell–mediated Rac1 activation is significantly reduced. Altogether our data identify a critical role for CRBN in regulating NK cell functions and suggest that this protein may mediate the stimulatory effect of lenalidomide on NK cells.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Andrea Kosta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Silvia Ruggeri
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy.,RCCS Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
18
|
Smagina AS, Kulemzin SV, Yusubalieva GM, Kedrova AG, Sanzharov AE, Ivanov YV, Matvienko DA, Kalsin VA, Gorchakov AA, Baklaushev VP, Taranin AV. VAV1-overexpressing YT cells display improved cytotoxicity against malignant cells. Biotechnol Appl Biochem 2021; 68:849-855. [PMID: 32767384 DOI: 10.1002/bab.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Immunotherapy based on adoptive transfer of genetically engineered T- and NK-cells is an area of active ongoing research and has proven highly efficacious for patients with certain B-cell malignancies. Use of NK cells and NK cell lines as carriers of chimeric antigen receptors (CARs) appears particularly promising, as this opens an opportunity for moving the therapy from autologous to the allogeneic (universal) format. This "off-the-shelf" approach is thought to significantly reduce the price of the treatment and make it available to many more patients in need. Yet, the efficacy of CAR-NK cells in vivo presently remains low, and boosting the activity of CAR NK cells via stronger tumor homing, resistance to tumor microenvironment, as well as greater cytotoxicity may translate into improved patient outcomes. Here, we established a derivative of a human NK cell line YT overexpressing a positive regulator of cytotoxicity, VAV1. Activity of YT-VAV1 cells obtained was assayed in vitro against several cancer cell lines and primary patient-derived cancer cells. YT-VAV1 cells outperform parental YT cells in terms of cytotoxicity.
Collapse
Affiliation(s)
- Anna S Smagina
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Sergey V Kulemzin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | | | - Anna G Kedrova
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Andrey E Sanzharov
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Yurii V Ivanov
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Darya A Matvienko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Vladimir A Kalsin
- Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | | | - Aleksandr V Taranin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
19
|
Santoni G, Amantini C, Santoni M, Maggi F, Morelli MB, Santoni A. Mechanosensation and Mechanotransduction in Natural Killer Cells. Front Immunol 2021; 12:688918. [PMID: 34335592 PMCID: PMC8320435 DOI: 10.3389/fimmu.2021.688918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Federica Maggi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
20
|
Phatarpekar PV, Overlee BL, Leehan A, Wilton KM, Ham H, Billadeau DD. The septin cytoskeleton regulates natural killer cell lytic granule release. J Cell Biol 2021; 219:152040. [PMID: 32841357 PMCID: PMC7594501 DOI: 10.1083/jcb.202002145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Natural killer (NK) cell–mediated killing involves the membrane fusion of preformed lytic granules. While the roles of actin and microtubules are well accepted during this process, the function of septins, another cytoskeletal component that associates with actin and microtubules, has not been investigated. Here we show that genetic depletion or pharmacologic stabilization of the septin cytoskeleton significantly inhibited NK cell cytotoxicity. Although the stabilization of septin filaments impaired conjugate formation, depletion of septin proteins had no impact on conjugate formation, lytic granule convergence, or MTOC polarization to the cytotoxic synapse (CS). Interestingly, septins copurify and accumulate near the polarized lytic granules at the CS, where they regulate lytic granule release. Mechanistically, we find that septin 7 interacts with the SNARE protein syntaxin 11 and facilitates its interaction with syntaxin binding protein 2 to promote lytic granule fusion. Altogether, our data identify a critical role for septins in regulating the release of lytic granule contents during NK cell–mediated killing.
Collapse
Affiliation(s)
| | - Brittany L Overlee
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Alexander Leehan
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Katelynn M Wilton
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
21
|
Sugawara S, Manickam C, Reeves K. TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics? AIDS 2021; 35:165-176. [PMID: 33116071 PMCID: PMC7775286 DOI: 10.1097/qad.0000000000002743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Natural killer (NK) cells are one of the critical innate immune effector cells that directly kill tumors and virus-infected cells, and modulate other immune cells including dendritic cells, CD4+ and CD8+ T cells. Signals from activating and inhibitory surface receptors orchestrate the regulatory and cytotoxic functions of NK cells. Although a number of surface receptors are involved, multiple signaling molecules are shared so that NK cell responses are synergistically regulated. Many pathogens and tumors evade NK cell responses by targeting NK cell signaling. Particularly in HIV/simian immunodeficiency virus (SIV) infection, the NK cell repertoire is diminished by changes in subsets of NK cells, expression of activating and inhibitory receptors, and intracellular signaling molecules. However, in-depth studies on intracellular signaling in NK cells in HIV/SIV infections remain limited. Checkpoint blockade and chimeric antigen receptor (CAR)-NK cells have demonstrated enhanced NK cell activities against tumors and viral infections. In addition, targeting intracellular signaling molecules by small molecules could also improve NK cell responses towards HIV/SIV infection in vivo. Therefore, further understanding of NK cell signaling including identification of key signaling molecules is crucial to maximize the efficacy of NK cell-based treatments. Herein, we review the current state of the literature and outline potential future avenues where optimized NK cells could be utilized in HIV-1 cure strategies and other immunotherapeutics in PLWH.
Collapse
Affiliation(s)
- Sho Sugawara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
22
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
23
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
24
|
Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol 2020; 32:5-15. [PMID: 31630188 PMCID: PMC6949370 DOI: 10.1093/intimm/dxz067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dedicator of cytokinesis (DOCK) proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in other GEFs, they mediate the GTP–GDP exchange reaction through the DOCK homology region-2 (DHR-2) domain. In mammals, this family consists of 11 members, each of which has unique functions depending on the expression pattern and the substrate specificity. For example, DOCK2 is a Rac activator critical for migration and activation of leukocytes, whereas DOCK8 is a Cdc42-specific GEF that regulates interstitial migration of dendritic cells. Identification of DOCK2 and DOCK8 as causative genes for severe combined immunodeficiency syndromes in humans has highlighted their roles in immune surveillance. In addition, the recent discovery of a naturally occurring DOCK2-inhibitory metabolite has uncovered an unexpected mechanism of tissue-specific immune evasion. On the other hand, GEF-independent functions have been shown for DOCK8 in antigen-induced IL-31 production in helper T cells. This review summarizes multifaced functions of DOCK family proteins in the immune system.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
25
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
26
|
Sherratt S, Patel A, Baker DA, Riley EM, Goodier MR. Differential IL-18 Dependence of Canonical and Adaptive NK Cells for Antibody Dependent Responses to P. falciparum. Front Immunol 2020; 11:533. [PMID: 32296438 PMCID: PMC7137096 DOI: 10.3389/fimmu.2020.00533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Human adaptive natural killer (NK) cells have diminished reliance on accessory cytokines for their activation whilst being efficiently activated by infected host cells in conjunction with pathogen specific antibodies. Here, we show that potent antibody-dependent NK cell responses are induced by Plasmodium falciparum infected erythrocytes (iRBC) in peripheral blood mononuclear cells (PBMC) from malaria-exposed Gambian individuals in the presence of autologous sera, which are absent in those from malaria-naïve UK individuals. However, malaria hyper-immune serum promotes rapid NK cell responses to iRBC in cells from both Gambian and UK individuals. Among Gambians, highly differentiated, adaptive (CD56dimFcεR1γ-CD57+) NK cells dominate both antibody-dependent NK cell IFN-γ responses and degranulation responses, whereas among UK individuals these responses are predominantly found within canonical, highly differentiated CD56dimFcεR1γ+CD57+ NK cells. Indeed, overall frequencies of adaptive, FcεR1γ-CD57+ NK cells are significantly higher among Gambian donors compared to HCMV-infected and HCMV-uninfected UK adults. Among UK individuals, antibody-dependent NK cell IFN-γ responses to iRBC were dependent on IL-18 whereas among Gambians, the predominant adaptive FcεR1γ- NK cell response was IL-18 (and accessory cell) independent (although the lower frequency response of canonical FcεR1γ NK cells did rely on this cytokine).
Collapse
Affiliation(s)
- Samuel Sherratt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Avnish Patel
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David A Baker
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M Riley
- School of Biological Sciences, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
27
|
Dorsch M, Urlaub D, Bönnemann V, Bröde P, Sandusky M, Watzl C. Quantitative analysis of human NK cell reactivity using latex beads coated with defined amounts of antibodies. Eur J Immunol 2020; 50:656-665. [PMID: 32027754 DOI: 10.1002/eji.201948344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 01/17/2023]
Abstract
Natural Killer (NK) cell responses are regulated by a variety of different surface receptors. While we can determine the overall positive or negative effect of a given receptor on NK cell functions, investigating NK cell regulation in a quantitative way is challenging. To quantitatively investigate individual receptors for their effect on NK cell activation, we chose to functionalize latex beads that have approximately the same size as lymphocytes with defined amounts of specific antibodies directed against distinct activating receptors. This enabled us to investigate NK cell reactivity in a defined, clean, and controllable system. Only CD16 and NKp30 could activate the degranulation of resting human NK cells. CD16, NKG2D, NKp30, NKp44, and NKp46 were able to activate cultured NK cells. NK cell activation resulted in the induction of polyfunctional cells that degranulated and produced IFN-γ and MIP-1β. Interestingly, polyfunctional NK cells were only induced by triggering ITAM-coupled receptors. NKp44 showed a very sensitive response pattern, where a small increase in receptor stimulation caused maximal NK cell activity. In contrast, stimulation of 2B4 induced very little NK cell degranulation, while providing sufficient signal for NK cell adhesion. Our data demonstrate that activating receptors differ in their effectiveness to stimulate NK cells.
Collapse
Affiliation(s)
- Madeleine Dorsch
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Doris Urlaub
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Vivian Bönnemann
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Peter Bröde
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| |
Collapse
|
28
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Vav1 mutations: What makes them oncogenic? Cell Signal 2020; 65:109438. [DOI: 10.1016/j.cellsig.2019.109438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
|
30
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
31
|
High expression of GALNT7 promotes invasion and proliferation of glioma cells. Oncol Lett 2018; 16:6307-6314. [PMID: 30405766 PMCID: PMC6202485 DOI: 10.3892/ol.2018.9498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/20/2018] [Indexed: 01/06/2023] Open
Abstract
Polypeptide-N-acetyl-galactosaminlytransferase 7 (GALNT7), a member of the GalNAc-transferase family, has not been previously evaluated as a prognostic factor of glioblastoma (GBM) or low-grade glioma (LGG). Based on The Cancer Genome Atlas database and bioinformatics analyses, the expression of GALNT7 was demosntrated to be higher in GBM and LGG tissues than in normal brain tissue. The expression levels of GANLT7 were associated with age, tumor grade, survival rate, disease-free survival time and overall survival time. Gene correlation and gene-set enrichment analyses suggested that GALNT7 may affect the proliferative and invasive abilities of glioma cells through multiple signaling pathways, including regulation of the actin cytoskeleton, natural killer cell-mediated cytotoxicity, the janus kinase-signal transducer and activator of transcription (STAT) signaling pathway, cell adhesion molecules and extracellular matrix receptor interaction pathways. Furthermore, 5 target genes of GALNT7 involved in these signaling pathways were identified, including Crk, Rac family small GTPase 1, STAT3, poliovirus receptor and Tenascin C. In summary, high expression of GALNT7 was associated with poor prognosis of glioma, and may be used as an effective biomarker of glioma.
Collapse
|
32
|
Impaired cytolytic activity of asthma-associated natural killer cells is linked to dysregulated transcriptional program in energy metabolism. Mol Immunol 2018; 101:514-520. [PMID: 30145544 DOI: 10.1016/j.molimm.2018.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells are a cytotoxic subset of the innate lymphoid cells, playing essential roles in host defense against tumors and infections, which, however, are usually functionally compromised in chronic diseases. Atopic diseases, such as allergic asthma, characterized by type 2 immune responses, are usually associated with chronic inflammations. Whether asthma -associated immune environment affects the cytolytic function of NK cells has not been elucidated. Here, YTS, a human NK cell line, was exposed to serum from healthy donors or asthma patients for analysis of its cytolytic function. We found that, serum from asthma patients reduced the cytolytic activity of YTS cells against Raji human B lymphoblasts, in comparison with normal serum. The impairment of cytolytic activity of these YTS cells was accompanied with decreased degranulation potentials, weakened conjugation formation with Raji cells, and premature termination of ERK phosphorylation upon stimulation. Meanwhile, apoptosis or cell death of YTS cells was not increased after exposure to serum from asthma patients. Importantly, such impairment of cytolytic activity of asthma -associated YTS NK cells was accompanied with aberrantly enriched genes involved in oxidative phosphorylation. Taken together, these results demonstrate that the serum of asthma patients directly suppresses the cytolytic function of NK cells, possibly through dysregulation of energy metabolism in NK cells.
Collapse
|
33
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
34
|
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that recognize tumor cells or stressed cells through 'missing-self' signals, such as altered or absent expression of MHC class I molecules. The function of NK cells is regulated by the activation or inhibition of receptors present on their surface. The activation of NK cells results in cytotoxic activity on target cells through release of toxic granules and inflammatory cytokines. However, NK cells infiltrating tumors have been frequently shown to exhibit a skewed phenotype that includes decreased antitumor activity and enhanced protumor activities, such as angiogenesis and metastasis. In fact, many studies have reported that tumor microenvironments induce a protumor phenotype in NK cells. Here, we review the biological properties of NK cells in the context of tumorigenesis and tumor progression, with a specific focus on the interactions between NK cells and critical tumor microenvironments, such as epithelial-to-mesenchymal transition, matrix metalloproteinases, and tumor-associated chronic inflammation in tumor metastasis.
Collapse
|
35
|
Hara R, Onizuka M, Matsusita E, Kikkawa E, Nakamura Y, Matsushita H, Ohgiya D, Murayama H, Machida S, Ohmachi K, Shirasugi Y, Ogawa Y, Kawada H, Ando K. NKG2D gene polymorphisms are associated with disease control of chronic myeloid leukemia by dasatinib. Int J Hematol 2017; 106:666-674. [DOI: 10.1007/s12185-017-2294-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
|
36
|
Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget 2016; 6:28731-42. [PMID: 26353933 PMCID: PMC4745688 DOI: 10.18632/oncotarget.5086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023] Open
Abstract
Many deregulated signal transducer proteins are involved in various cancers at numerous stages of tumor development. One of these, Vav1, is normally expressed exclusively in the hematopoietic system, where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form of Vav1 identified in the screen has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies, including neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic lymphocytic leukemia. In addition, it was recently identified as a mutated gene in human cancers of various origins. However, the activity and contribution to cancer of these Vav1 mutants is still unclear. This review addresses the physiological function of wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the novel mutations identified in Vav1 in various cancers and their potential contribution to cancer development as oncogenes or tumor suppressor genes.
Collapse
|
37
|
Xiang RF, Stack D, Huston SM, Li SS, Ogbomo H, Kyei SK, Mody CH. Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans. J Biol Chem 2016; 291:6912-22. [PMID: 26867574 PMCID: PMC4807276 DOI: 10.1074/jbc.m115.681544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/13/2016] [Indexed: 11/06/2022] Open
Abstract
The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found thatCryptococcus neoformansindependently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing,Cryptococcusinitiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity againstC. neoformans Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to killC. neoformans.
Collapse
Affiliation(s)
- Richard F Xiang
- From the Departments of Microbiology, Immunology and Infectious Diseases and the Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Danuta Stack
- From the Departments of Microbiology, Immunology and Infectious Diseases and the Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shaunna M Huston
- From the Departments of Microbiology, Immunology and Infectious Diseases and the Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shu Shun Li
- From the Departments of Microbiology, Immunology and Infectious Diseases and the Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Henry Ogbomo
- From the Departments of Microbiology, Immunology and Infectious Diseases and the Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Stephen K Kyei
- From the Departments of Microbiology, Immunology and Infectious Diseases and the Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Christopher H Mody
- From the Departments of Microbiology, Immunology and Infectious Diseases and the Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta T2N 4N1, Canada Internal Medicine and
| |
Collapse
|
38
|
Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma. Cancer Lett 2016; 374:85-95. [PMID: 26872724 DOI: 10.1016/j.canlet.2016.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/16/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022]
Abstract
The efficiency of surgery in hepatocellular carcinoma (HCC) is limited due to metastasis and recurrence, but the molecular mechanisms are unclear. Here, we show that MMP-8 and TGF-β1 accumulate in highly invasive HCC cell lines and invasive HCC patient tissues. Upregulation of MMP-8 and TGF-β1 correlated with changes in cellular epithelial-mesenchymal transition (EMT) phenotypes and HCC migration and invasion. The expression of TGF-β1 was markedly restored by MMP-8 overexpression in TGF-β1-depleted HCC cells mainly via the activation of PI3K/Akt/Rac1 pathway. Similarly, the expression of MMP-8 was restored by TGF-β1 treatment in MMP-8-depleted HCC cells mainly through the activation of the same PI3K/Akt/Rac1 pathway. MMP-8 expression was significantly related to TGF-β1 expression in HCC patient tissues, and high expression of MMP-8 or TGF-β1 was significantly associated with TNM stage and HCC metastasis. Specifically, patients with high co-expression of MMP-8 and TGF-β1 had a shorter time-to-recurrence than those with low co-expression. Therefore, the reciprocal positive interplay between MMP-8 and TGF-β1 contributes to HCC invasion and metastasis by inducing EMT mainly through the PI3K/Akt/Rac1 pathway.
Collapse
|
39
|
Lee HR, Huh SY, Hur DY, Jeong H, Kim TS, Kim SY, Park SB, Yang Y, Bang SI, Park H, Cho D. ERDR1 enhances human NK cell cytotoxicity through an actin-regulated degranulation-dependent pathway. Cell Immunol 2015; 292:78-84. [PMID: 25460082 DOI: 10.1016/j.cellimm.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/12/2014] [Accepted: 10/19/2014] [Indexed: 01/08/2023]
Abstract
Erythroid differentiation regulator 1 (ERDR1), which is a stress-related survival factor, exhibits anti-cancer effects against melanoma. However, the function of ERDR1 on immune cells has not been examined. We investigated whether ERDR1 regulates the cytotoxic ability of human natural killer (NK) cells, which are known as innate effector lymphocytes. In this study, treatment with recombinant ERDR1 resulted in enhanced NK cell cytotoxicity through the secretion of lytic granules. Furthermore, actin modulation was involved in the ERDR1-enhanced NK cell cytotoxicity. ERDR1 stimulated actin accumulation at the immunological synapse, which was induced by the activation of Vav-1 in NK cells. These findings suggest new insight into the function of ERDR1 function in the human immune system.
Collapse
|
40
|
Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 2014; 122:91-128. [PMID: 24507156 PMCID: PMC4228931 DOI: 10.1016/b978-0-12-800267-4.00003-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, roles of the immune system in immune surveillance of cancer have been explored using a variety of approaches. The roles of the adaptive immune system have been a major emphasis, but increasing evidence supports a role for innate immune effector cells such as natural killer (NK) cells in tumor surveillance. Here, we discuss some of the evidence for roles in tumor surveillance of innate immune cells. In particular, we focus on NK cells and other immune cells that express germline-encoded receptors, often labeled NK receptors. The impact of these receptors and the cells that express them on tumor suppression is summarized. We discuss in detail some of the pathways and events in tumor cells that induce or upregulate cell-surface expression of the ligands for these receptors, and the logic of how those pathways serve to identify malignant, or potentially malignant cells. How tumors often evade tumor suppression mediated by innate killer cells is another major subject of the review. We end with a discussion on some of the implications of the various findings with respect to possible therapeutic approaches.
Collapse
Affiliation(s)
- Assaf Marcus
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Thornton W Thompson
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Alexandre Iannello
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Michele Ardolino
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Weiwen Deng
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Lin Wang
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Nataliya Shifrin
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA.
| |
Collapse
|
41
|
Galandrini R, Capuano C, Santoni A. Activation of Lymphocyte Cytolytic Machinery: Where are We? Front Immunol 2013; 4:390. [PMID: 24312097 PMCID: PMC3832890 DOI: 10.3389/fimmu.2013.00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/06/2013] [Indexed: 11/13/2022] Open
Abstract
Target cell recognition by cytotoxic lymphocytes implies the simultaneous engagement and clustering of adhesion and activating receptors followed by the activation of an array of signal transduction pathways. The cytotoxic immune synapse represents the highly specialized dynamic interface formed between the cytolytic effector and its target that allows temporal and spatial integration of signals responsible for a defined sequence of processes culminating with the polarized secretion of lytic granules. Over the last decades, much attention has been given to the molecular signals coupling receptor ligation to the activation of cytolytic machinery. Moreover, in the last 10 years the discovery of genetic defects affecting cytotoxic responses greatly boosted our knowledge on the molecular effectors involved in the regulation of discrete phases of cytotoxic process at post-receptor levels. More recently, the use of super resolution and total internal reflection fluorescence imaging technologies added new insights on the dynamic reorganization of receptor and signaling molecules at lytic synapse as well as on the relationship between granule dynamics and cytoskeleton remodeling. To date we have a solid knowledge of the molecular mechanisms governing granule movement and secretion, being not yet fully unraveled the machinery that couples early receptor signaling to the late stage of synapse remodeling and granule dynamics. Here we highlight recent advances in our understanding of the molecular mechanisms acting in the activation of cytolytic machinery, also discussing similarities and differences between Natural killer cells and cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Ricciarda Galandrini
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci-Bolognetti, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University , Rome , Italy
| | | | | |
Collapse
|
42
|
Huse M, Catherine Milanoski S, Abeyweera TP. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells. Immunol Rev 2013; 251:143-53. [PMID: 23278746 DOI: 10.1111/imr.12014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
43
|
The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation. Blood 2013; 122:386-93. [PMID: 23719299 DOI: 10.1182/blood-2012-12-475897] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells play an important role in protective immunity against viral infection and tumor progression, but they also contribute to rejection of bone marrow grafts via contact-dependent cytotoxicity. Ligation of activating NK receptors with their ligands expressed on target cells induces receptor clustering and actin reorganization at the interface and triggers polarized movement of lytic granules to the contact site. Although activation of the small GTPase Rac has been implicated in NK cell-mediated cytotoxicity, its precise role and the upstream regulator remain elusive. Here, we show that DOCK2, an atypical guanine nucleotide exchange factor for Rac, plays a key role in NK cell-mediated cytotoxicity. We found that although DOCK2 deficiency in NK cells did not affect conjugate formation with target cells, DOCK2-deficienct NK cells failed to effectively kill leukemia cells in vitro and major histocompatibility complex class I-deficient bone marrow cells in vivo, regardless of the sorts of activating receptors. In DOCK2-deficient NK cells, NKG2D-mediated Rac activation was almost completely lost, resulting in a severe defect in the lytic synapse formation. Similar results were obtained when the Rac guanine nucleotide exchange factor activity of DOCK2 was selectively abrogated. These results indicate that DOCK2-Rac axis controls NK cell-mediated cytotoxicity through the lytic synapse formation.
Collapse
|
44
|
Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol 2013; 34:182-91. [PMID: 23414611 DOI: 10.1016/j.it.2013.01.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are central players in the vertebrate immune system that rapidly eliminate malignantly transformed or infected cells. The natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 are important mediators of NK cell cytotoxicity, which trigger an immune response on recognition of cognate cellular and viral ligands. Tumour and viral immune escape strategies targeting these receptor-ligand systems impair NK cell cytotoxicity and promote disease. Therefore, a molecular understanding of the function of the NCRs in immunosurveillance is instrumental to discovering novel access points to combat infections and cancer.
Collapse
|
45
|
Kwon HJ, Kim HS. Signaling for synergistic activation of natural killer cells. Immune Netw 2012; 12:240-6. [PMID: 23396805 PMCID: PMC3566418 DOI: 10.4110/in.2012.12.6.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy-dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.
Collapse
Affiliation(s)
- Hyung-Joon Kwon
- Department of Medicine, Graduate School, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | |
Collapse
|
46
|
Feau S, Schoenberger SP, Altman A, Bécart S. SLAT regulates CD8+ T cell clonal expansion in a Cdc42- and NFAT1-dependent manner. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197258 DOI: 10.4049/jimmunol.1201685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After antigenic stimulation, CD8(+) T cells undergo clonal expansion and differentiation into CTLs that can mount a strong defense against intracellular pathogens and tumors. SWAP-70-like adapter of T cells (SLAT), also known as Def6, is a novel guanine nucleotide exchange factor for the Cdc42 GTPase and plays a role in CD4(+) T cell activation and Th cell differentiation by controlling Ca(2+)/NFAT signaling, but its requirement in CD8(+) T cell response has not been explored. Using a range of transgenic and knockout in vivo systems, we show that SLAT is required for efficient expansion of CD8(+) T cells during the primary response but is not necessary for CTL differentiation. The reduced clonal expansion observed in the absence of SLAT resulted from a CD8(+) T cell-intrinsic proliferation defect and a reduced IL-2-dependent cell survival. On a molecular level, we show that Def6 deficiency resulted in defective TCR/CD28-induced NFAT translocation to the nucleus in CD8(+) T cells. Constitutively active Cdc42 or NFAT1 mutants fully restored the impaired expansion of Def6(-/-) CD8(+) T cells. Taken together, these data describe a new and pivotal role of SLAT-mediated NFAT activation in CD8(+) T cells, providing new insight into the signaling pathways involved in CD8(+) T cell proliferation.
Collapse
Affiliation(s)
- Sonia Feau
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
47
|
Dong Z, Davidson D, Pérez-Quintero LA, Kurosaki T, Swat W, Veillette A. The adaptor SAP controls NK cell activation by regulating the enzymes Vav-1 and SHIP-1 and by enhancing conjugates with target cells. Immunity 2012; 36:974-85. [PMID: 22683124 DOI: 10.1016/j.immuni.2012.03.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/31/2012] [Accepted: 03/23/2012] [Indexed: 11/29/2022]
Abstract
The adaptor SAP, mutated in X-linked lymphoproliferative disease, has critical roles in multiple immune cell types. Among these, SAP is essential for the ability of natural killer (NK) cells to eliminate abnormal hematopoietic cells. Herein, we elucidated the molecular and cellular bases of this activity. SAP enhanced NK cell responsiveness by a dual molecular mechanism. It coupled SLAM family receptors to the kinase Fyn, which triggered the exchange factor Vav-1 and augmented NK cell activation. SAP also prevented the inhibitory function of SLAM family receptors. This effect was Fyn independent and correlated with uncoupling of SLAM family receptors from the lipid phosphatase SHIP-1. Both mechanisms cooperated to enable conjugate formation with target cells and to stimulate cytotoxicity and cytokine secretion by NK cells. These data showed that SAP secures NK cell activation by a dichotomous molecular mechanism, which is required for conjugate formation. These findings may have implications for the role of SAP in other immune cell types.
Collapse
Affiliation(s)
- Zhongjun Dong
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Goronzy JJ, Li G, Yu M, Weyand CM. Signaling pathways in aged T cells - a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol 2012; 24:365-72. [PMID: 22560928 DOI: 10.1016/j.smim.2012.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/01/2012] [Accepted: 04/09/2012] [Indexed: 01/04/2023]
Abstract
With increasing age, the ability of the immune system to protect against new antigenic challenges or to control chronic infections erodes. Decline in thymic function and cumulating antigenic experiences of acute and chronic infections threaten T cell homeostasis, but insufficiently explain the failing immune competence and the increased susceptibility for autoimmunity. Alterations in signaling pathways in the aging T cells account for many of the age-related defects. Signaling threshold calibrations seen with aging frequently built on mechanisms that are operational in T cell development and T cell differentiation or are adaptations to the changing environment in the aging host. Age-related changes in transcription of receptors and signaling molecules shift the balance towards inhibitory pathways, most dominantly seen in CD8 T cells and to a lesser degree in CD4 T cells. Prominent examples are the expression of negative regulatory receptors of the CD28 and the TNF receptor superfamilies as well the expression of various cytoplasmic and nuclear dual-specific phosphatases.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | | | | | |
Collapse
|
49
|
Abstract
EHDs [EH (Eps15 homology)-domain-containing proteins] participate in different stages of endocytosis. EHD2 is a plasma-membrane-associated EHD which regulates trafficking from the plasma membrane and recycling. EHD2 has a role in nucleotide-dependent membrane remodelling and its ATP-binding domain is involved in dimerization, which creates a membrane-binding region. Nucleotide binding is important for association of EHD2 with the plasma membrane, since a nucleotide-free mutant (EHD2 T72A) failed to associate. To elucidate the possible function of EHD2 during endocytic trafficking, we attempted to unravel proteins that interact with EHD2, using the yeast two-hybrid system. A novel interaction was found between EHD2 and Nek3 [NIMA (never in mitosis in Aspergillus nidulans)-related kinase 3], a serine/threonine kinase. EHD2 was also found in association with Vav1, a Nek3-regulated GEF (guanine-nucleotide-exchange factor) for Rho GTPases. Since Vav1 regulates Rac1 activity and promotes actin polymerization, the impact of overexpression of EHD2 on Rac1 activity was tested. The results indicated that wt (wild-type) EHD2, but not its P-loop mutants, reduced Rac1 activity. The inhibitory effect of EHD2 overexpression was partially rescued by co-expression of Rac1 as measured using a cholera toxin trafficking assay. The results of the present study strongly indicate that EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity.
Collapse
|
50
|
Cavanagh MM, Qi Q, Weyand CM, Goronzy JJ. Finding Balance: T cell Regulatory Receptor Expression during Aging. Aging Dis 2011; 2:398-413. [PMID: 22396890 PMCID: PMC3295076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023] Open
Abstract
Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.
Collapse
Affiliation(s)
| | | | | | - Jörg J. Goronzy
- Correspondence should be addressed to: Jörg J. Goronzy, M.D., Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CA, USA.
| |
Collapse
|