1
|
Chini A, Guha P, Rishi A, Bhat N, Covarrubias A, Martinez V, Devejian L, Nguyen BN, Mandal SS. HDLR-SR-BI Expression and Cholesterol Uptake are Regulated via Indoleamine-2,3-dioxygenase 1 in Macrophages under Inflammation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11253-11271. [PMID: 40309829 DOI: 10.1021/acs.langmuir.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Macrophages play crucial roles in inflammation, and their dysfunction is a contributing factor to various human diseases. Maintaining the balance of cholesterol and lipid metabolism is central to macrophage function, and any disruption in this balance increases the risk of conditions such as cardiovascular disease, atherosclerosis, and others. HDLR-SR-BI (SR-BI) is pivotal for reverse cholesterol transport and cholesterol homeostasis. Our studies demonstrate that the expression of SR-BI is reduced along with a decrease in cholesterol uptake in macrophages, both of which are regulated by the activation of NF-κB. Furthermore, we have discovered that indoleamine-2,3-dioxygenase 1 (IDO1), which is a critical player in tryptophan (Trp) catabolism, is crucial to the regulation of SR-BI expression. Inflammation leads to elevated levels of IDO1 and the associated Trp catabolite kynurenine (KYN) in macrophages. Interestingly, knockdown or inhibition of IDO1 results in the downregulation of LPS-induced inflammation, decreased KYN levels, and the restoration of SR-BI expression as well as cholesterol uptake in macrophages. Beyond LPS, stimulation with pro-inflammatory cytokine IFNγ exhibits similar trends in inflammatory response, IDO1 regulation, and cholesterol uptake in macrophages. These observations suggest that IDO1 plays a critical role in SR-BI expression and cholesterol uptake in macrophages under inflammation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nagashree Bhat
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Angel Covarrubias
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Valeria Martinez
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lucine Devejian
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Bao Nhi Nguyen
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Karimova AF, Khalitova AR, Suezov R, Markov N, Mukhamedshina Y, Rizvanov AA, Huber M, Simon HU, Brichkina A. Immunometabolism of tumor-associated macrophages: A therapeutic perspective. Eur J Cancer 2025; 220:115332. [PMID: 40048925 DOI: 10.1016/j.ejca.2025.115332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment (TME), actively contributing to the formation of an immunosuppressive niche that fosters tumor progression. Consequently, there has been a growing interest in targeting TAMs as a promising avenue for cancer therapy. Recent advances in the field of immunometabolism have shed light on the influence of metabolic adaptations on macrophage physiology in the context of cancer. Here, we discuss the key metabolic pathways that shape the phenotypic diversity of macrophages. We place special emphasis on how metabolic reprogramming impacts the activation status of TAMs and their functions within the TME. Additionally, we explore alterations in TAM metabolism and their effects on phagocytosis, production of cytokines/chemokines and interaction with cytotoxic T and NK immune cells. Moreover, we examine the application of nanomedical approaches to target TAMs and assess the clinical significance of modulating the metabolism of TAMs as a strategy to develop new anti-cancer therapies. Taken together, in this comprehensive review article focusing on TAMs, we provide invaluable insights for the development of effective immunotherapeutic strategies and the enhancement of clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Adelya F Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya R Khalitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roman Suezov
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Tulsian K, Thakker D, Vyas VK. Overcoming chimeric antigen receptor-T (CAR-T) resistance with checkpoint inhibitors: Existing methods, challenges, clinical success, and future prospects : A comprehensive review. Int J Biol Macromol 2025; 306:141364. [PMID: 39988153 DOI: 10.1016/j.ijbiomac.2025.141364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Immune checkpoint blockade is, as of today, the most successful form of cancer immunotherapy, with more than 43 % of cancer patients in the US eligible to receive it; however, only up to 12.5 % of patients respond to it. Similarly, adoptive cell therapy using bioengineered chimeric antigen receptorT (CAR-T) cells and T-cell receptor (TCR) cells has provided excellent responses against liquid tumours, but both forms of immunotherapy have encountered challenges within a tumour microenvironment that is both lacking in tumour-specific T-cells and is strongly immunosuppressive toward externally administered CAR-T and TCR cells. This review focuses on understanding approved checkpoint blockade and adoptive cell therapy at both biological and clinical levels before delving into how and why their combination holds significant promise in overcoming their individual shortcomings. The advent of next-generation checkpoint inhibitors has further strengthened the immune checkpoint field, and a special section explores how these inhibitors can address existing hurdles in combining checkpoint blockade with adoptive cell therapy and homing in on our cancer target for long-term immunity.
Collapse
Affiliation(s)
- Kartik Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Dhinal Thakker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
4
|
Yu W, Yuan X, Zhai P, Li X, Han C. Effects of Trichinella spiralis excretory-secretory antigens on expression of indoleamine 2, 3-dioxygenase on dendritic cells in vitro. Parasite 2025; 32:26. [PMID: 40239041 PMCID: PMC12002673 DOI: 10.1051/parasite/2025018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is a potent immunoenzyme found in dendritic cells (DCs). Research has demonstrated that Trichinella spiralis induces IDO expression in the host immune response through its excretory-secretory (ES) antigens. However, the role of IDO in the immune response to T. spiralis remains unclear. To examine the effects of T. spiralis ES antigens on IDO expression in DCs in vitro, assessments were conducted using qRT-PCR, Western blotting (WB), flow cytometry, and siRNA transfer. The findings indicated that ES antigen stimulation upregulated IDO expression in DCs in vitro. Furthermore, ES antigen significantly enhanced the expression of the proinflammatory cytokines TNF-α and IFN-γ, along with the anti-inflammatory cytokine IL-10, downstream of IDO in DCs. Flow cytometry analysis confirmed that surface molecules CD40, MHC-II, CD80, and CD86 on DCs were upregulated following stimulation with ES antigen and lipopolysaccharide (LPS). Compared to the ES antigen alone, siRNA620 effectively inhibited IDO levels, demonstrating a statistically significant reduction. Continuous stimulation of DCs by ES antigens may lead to immune tolerance through the activation of IDO-mediated inflammation-associated factors. These results suggest that IDO expression in DCs plays a crucial role in T. spiralis infection.
Collapse
Affiliation(s)
- Wenhao Yu
- College of Veterinary Medicine, Northeast Agricultural University Harbin China
| | - Xuhong Yuan
- College of Veterinary Medicine, Northeast Agricultural University Harbin China
| | - Peng Zhai
- College of Veterinary Medicine, Northeast Agricultural University Harbin China
| | - Xiaoyun Li
- College of Veterinary Medicine, Northeast Agricultural University Harbin China
| | - Caixia Han
- College of Veterinary Medicine, Northeast Agricultural University Harbin China
| |
Collapse
|
5
|
Hua Q, Li Z, Weng Y, Wu Y, Zheng L. Myeloid cells: key players in tumor microenvironments. Front Med 2025; 19:265-296. [PMID: 40048137 DOI: 10.1007/s11684-025-1124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 05/04/2025]
Abstract
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Qiaomin Hua
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhixiong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yulan Weng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Limin Zheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Davila M, Lee SB, Kang YP, Boucher J, Mandula J, Roselli E, Chang D, Jimenez R, Kotani H, Reid K, Vazquez-Martinez J, Beatty N, Goala P, Sierra-Mondragon R, Liu M, Koomen J, Nguyen J, Hussaini M, Shaw T, Wang X, Faramand R, Jain M, Locke F, Rodriguez P, Sailer C, McSain S, Hamid S, Tariq M, Wang J, Abraham-Miranda J. CAR T cell-driven induction of iNOS in tumor-associated macrophages promotes CAR T cell resistance in B cell lymphoma. RESEARCH SQUARE 2025:rs.3.rs-3481746. [PMID: 40235478 PMCID: PMC11998770 DOI: 10.21203/rs.3.rs-3481746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapies have revolutionized B cell malignancy treatment, but subsets of patients with large B cell lymphoma (LBCL) experience primary resistance or relapse after CAR T cell treatment. To uncover tumor microenvironment (TME)-induced resistance mechanisms, we examined patients' intratumoral immune infiltrates and observed that elevated levels of immunoregulatory macrophages in pre-infusion tumor biopsies are correlated with poor clinical responses. CAR T cell-produced interferon-gamma (IFN-γ) promotes the expression of inducible nitric oxide synthase (iNOS, NOS2) in immunoregulatory macrophages, impairing CAR T cell function. Mechanistically, iNOS-expressing macrophages upregulated the p53 pathway, mediating apoptosis and cell cycle arrest in CAR T cells, while downregulating the MYC pathway involved in ribosome biogenesis and protein synthesis. Furthermore, CAR T cell metabolism is compromised by depletion of glycolytic intermediates and rewiring of the TCA cycle. Pharmacological inhibition of iNOS enhances the CAR T cell treatment efficacy in B cell tumor-bearing mice. Notably, elevated levels of iNOS+CD14+ monocytes were observed in leukaphereses of patients with non-durable response to CAR T cell therapy. These findings suggest that mitigating iNOS in tumor-associated macrophages (TAMs) by blocking IFN-γ secretion from CAR T cells will improve outcomes for LBCL patients.
Collapse
|
7
|
Gong P, Zhao L, Ma Y, Shu Q, Sun H, Lu J, Meng F, Wan F. AHR Agonist ITE Boosted PD1 Antibody's Effects by Inhibiting Myeloid-Derived Cells Suppressive Cells in an Orthotopic Mouse Glioma Model. Pharmaceuticals (Basel) 2025; 18:471. [PMID: 40283908 PMCID: PMC12030425 DOI: 10.3390/ph18040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/25/2024] [Accepted: 01/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Glioblastoma is "cold". Consequently, immune checkpoint blockade therapy has failed to improve patients' survival, which is negatively correlated with patients' peripheral MDSC counts. AHR is known to mediate immune-suppressive functions of certain tryptophan metabolites such as kynurenine; yet, there lack of reports on how AHR agonists affect glioma immunity. Methods/Objectives: We hypothesized that ITE could synergize with PD1 antibody as AHR is one major node of immune-suppressive pathways, and tested it using an immune-competent mouse glioma model. Results: The combination of ITE+PD1 antibody glioma MDSC was significantly reduced, along with increased infiltration of the CD4-CD8+ and CD4+CD8+ T cells, leading to extended mouse survival. ITE treatment alone significantly reduces the infiltration of CD11b+Ly6G+Ly6Clo cells, namely PMN-MDSCs, and neutrophils, while the combination with PD1 antibody significantly reduces all MDSCs plus neutrophils. The presence of ITE inhibits the expression of IL11 and the in vitro induction of MDSCs from mouse PBMCs by IL11. The identification of the ITE-AHR-IL11-MDSC pathway provides more mechanistic insights into AHR's effects. The fact that ITE, which is otherwise immune-suppressive, can activate immunity in glioma indicates that searching for drugs targeting AHR should go beyond antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanhua Meng
- Tumor Molecular Pharmacology Laboratory, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, China; (P.G.); (L.Z.); (Y.M.); (Q.S.); (H.S.); (J.L.)
| | - Fang Wan
- Tumor Molecular Pharmacology Laboratory, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, China; (P.G.); (L.Z.); (Y.M.); (Q.S.); (H.S.); (J.L.)
| |
Collapse
|
8
|
Jain N, Ogbonna EC, Maliga Z, Jacobson C, Zhang L, Shih A, Rosenberg J, Kalam H, Gagné A, Solomon IH, Santagata S, Sorger PK, Aldridge BB, Martinot AJ. Multiomic analysis identifies suppressive myeloid cell populations in human TB granulomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642376. [PMID: 40161687 PMCID: PMC11952478 DOI: 10.1101/2025.03.10.642376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tuberculosis (TB) remains a major global health challenge, particularly in the context of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb). Host-directed therapies (HDTs) have been proposed as adjunctive therapy to enhance immune control of infection. Recently, one such HDT, pharmacologic modulation of myeloid-derived suppressor cells (MDSCs), has been proposed to treat MDR-TB. While MDSCs have been well characterized in cancer, their role in TB pathogenesis remains unclear. To investigate whether MDSCs or other myeloid suppressor populations contribute to TB granuloma microenvironments (GME), we performed spatial transcriptional profiling and single-cell immunophenotyping on eighty-four granulomas in lung specimens from three individuals with active disease. Granulomas were histologically classified based on H&E staining, and transcriptional signatures were compared across regions of interest (ROIs) at different states of granuloma maturation. Our analysis revealed that immune suppression within granuloma was not primarily driven by classical MDSCs but rather by multiple myeloid cell subsets, including dendritic cells expressing indoleamine 2,3 dioxygenase-1 expressing (IDO1+ DCs). IDO1+ DCs were the most frequently observed suppressive myeloid cells, particularly in cellular regions, and their spatial proximity to activated T cells suggested localized immunosuppression. Importantly, granulomas at different stages contained distinct proportions of suppressor myeloid cells, with necrotic and cellular regions showing different myeloid phenotypes that may influence granuloma progression. Gene set enrichment analysis (GSEA) further indicated that elevated IDO1 expression was associated with a complex immune response that balanced suppressive signaling, immune activation, and cellular metabolism. These findings suggest that classical MDSCs, as defined in tumor microenvironments, likely play a minor role in TB, whereas IDO1+ DCs may be key regulators of immune suppression in granulomas influencing local Mtb control in infected lung. A deeper understanding of the role of IDO1+ suppressive myeloid cells in TB granulomas is essential to assessing their potential as therapeutic targets in TB treatment.
Collapse
|
9
|
Huang L, Liu Y, Shi Y, Sun Q, Li H, Sun C. Comprehensive single-cell analysis of triple-negative breast cancer based on cDC1 immune-related genes: prognostic model construction and immunotherapy potential. Discov Oncol 2025; 16:206. [PMID: 39969635 PMCID: PMC11839968 DOI: 10.1007/s12672-025-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Various components of the immunological milieu surrounding tumors have become a key focus in cancer immunotherapy research. There are currently no reliable biomarkers for triple-negative breast cancer (TNBC), leading to limited clinical benefits. However, some studies have indicated that patients with TNBC may achieve better outcomes after immunotherapy. Therefore, this study aimed to identify molecular features potentially associated with conventional type 1 dendritic cell (cDC1) immunity to provide new insights into TNBC prognostication and immunotherapy decision-making. METHODS Single-cell ribonucleic acid sequencing data from the Gene Expression Omnibus database were analyzed to determine which genes are differentially expressed genes (DEGs) in cDC1s. We then cross-referenced cDC1-related DEGs with gene sets linked to immunity from the ImmPort and InnateDB databases to screen for the genes linked to the immune response and cDC1s. We used univariate Cox and least absolute shrinkage and selection operator regression analyses to construct a risk assessment model based on four genes in patients with TNBC obtained from the Cancer Genome Atlas, which was validated in a testing group. This model was also used to assess immunotherapy responses among the IMvigor210 cohort. We subsequently utilized single sample Gene Set Enrichment Analysis, CIBERSORT, and ESTIMATE to analyze the immunological characteristics of the feature genes and their correlation with drug response. RESULTS We identified 93 DEGs related to the immune response and cDC1s, of which four (IDO1, HLA-DOB, CTSD, and IL3RA) were substantially linked to the overall survival rate of TNBC patients. The risk assessment model based on these genes stratified patients into high- and low-risk groups. Low-risk patients exhibited enriched ''hot tumor'' phenotypes, including higher infiltration of memory-activated CD4 + T cells, CD8 + T cells, gamma delta T cells, and M1 macrophages, as well as elevated immune checkpoint expression and tumor mutational burden, suggesting potential responsiveness to immunotherapy. Conversely, high-risk patients displayed "cold tumor" characteristics, with higher infiltration of M0 and M2 macrophages and lower immune scores, which may be poorer in response to immunotherapy. However, experimental validation and larger clinical studies are necessary to confirm these findings and explore the underlying mechanisms of the identified genes. CONCLUSION This study developed a robust risk assessment model using four genes that effectively forecast the outcome of patients with TNBC and have the potential to guide immunotherapy. This model provided new theoretical insights for knowing the TNBC immune microenvironment and developing personalized treatment strategies.
Collapse
Affiliation(s)
- Linan Huang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China
| | - Yiran Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China
| | - Yulin Shi
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261000, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| |
Collapse
|
10
|
Gu T, Qi H, Wang J, Sun L, Su Y, Hu H. Identification of T cell dysfunction molecular subtypes and exploration of potential immunotherapy targets in BRAF V600E-mutant colorectal cancer. Discov Oncol 2025; 16:163. [PMID: 39934467 DOI: 10.1007/s12672-025-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Immunotherapy is an effective treatment for BRAF V600E-mutant colorectal cancer, but currently, only a few benefit from it. Therefore, exploring new immunotherapy strategies is essential. METHODS We obtained RNA sequencing data and clinical information of colorectal cancer patients from the TCGA and GEO databases. The impact of the BRAF V600E mutation on tumor microenvironment characteristics, gene expression, and signaling pathways was evaluated using bioinformatics approaches. Weighted gene co-expression network analysis (WGCNA) were used to identify core genes associated with T cell dysfunction. Consensus clustering was applied for subtype construction. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF) algorithms were employed to filter potential immunotherapy targets. RESULTS We found that BRAF V600E mutation has a complex impact on the immune profile of colorectal cancer. It increases immune cell infiltration and activates immune-related signaling pathways, yet it also severely restricts T cell function. We subsequently identified 39 core genes associated with T cell dysfunction and constructed subtypes of BRAF V600E colorectal cancer based on their expression profiles. Significant heterogeneity was observed between these subtypes in immune signaling pathway activity, immune infiltration patterns, immune phenotype scores, and mechanisms of resistance to immunotherapy. Ultimately, using machine learning algorithms and bioinformatics validation, we identified IDO1 as a potential immunotherapy targets for BRAF V600E-mutant colorectal cancer. CONCLUSION This study constructed novel T cell dysfunction molecular subtypes for BRAF V600E-mutant colorectal cancer and identified IDO1 as a potential immunotherapy target, providing a new strategy for immunotherapy.
Collapse
Affiliation(s)
- Tiefeng Gu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Haonan Qi
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Jiaqi Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Liangwei Sun
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Yongqi Su
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China
| | - Hanqing Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, China.
| |
Collapse
|
11
|
Li G, Li S, Jiang Y, Chen T, An Z. Unleashing the Power of immune Checkpoints: A new strategy for enhancing Treg cells depletion to boost antitumor immunity. Int Immunopharmacol 2025; 147:113952. [PMID: 39764997 DOI: 10.1016/j.intimp.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025]
Abstract
Regulatory T (Treg) cells, immunosuppressive CD4+ T cells, can impede anti-tumor immunity, complicating cancer treatment. Since their discovery, numerous studies have been dedicated to understand Treg cell biology, with a focus on checkpoint pathways' role in their generation and function. Immune checkpoints, such as PD-1/PD-L1, CTLA-4, TIGIT, TIM-3, and OX40, are pivotal in controlling Treg cell expansion and activity in the tumor microenvironment (TME), affecting their ability to suppress immune responses. This review examines the complex relationship between these checkpoints and Tregs in the TME, and how they influence tumor immunity. We also discuss the therapeutic potential of targeting these checkpoints to enhance anti-tumor immunity, including the use of immune checkpoint blockade (ICB) therapies and novel approaches such as CCR8-targeted therapies. Understanding the interaction between immune checkpoints and Treg cells can lead to more effective immunotherapeutic strategies, such as combining CCR8-targeted therapies with immune checkpoint inhibitors, to improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Guoxin Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siqi Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yilin Jiang
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tao Chen
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
12
|
Gorría T, Sierra-Boada M, Rojas M, Figueras C, Marin S, Madurga S, Cascante M, Maurel J. Metabolic Singularities in Microsatellite-Stable Colorectal Cancer: Identifying Key Players in Immunosuppression to Improve the Immunotherapy Response. Cancers (Basel) 2025; 17:498. [PMID: 39941865 PMCID: PMC11815897 DOI: 10.3390/cancers17030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Although immune checkpoint inhibitor (ICI) therapy is currently the standard of care in microsatellite-unstable (MSI) metastatic colorectal cancer (CRC), ICI therapy, alone or in combination with other therapies, is not a treatment approach in microsatellite-stable (MSS) CRC, which is present in 95% of patients. In this review, we focus on metabolic singularities-at the transcriptomic (either bulk or single cell), proteomic, and post-translational modification levels-that induce immunosuppression in cancer and specifically in MSS CRC. First, we evaluate the current efficacy of ICIs in limited and metastatic disease in MSS CRC. Second, we discuss the latest findings on the potential biomarkers for evaluating ICI efficacy in MSS CRC using strict REMARK criteria. Third, we review the current evidence on metabolic patterns in CRC tumors and immune cell metabolism to advance our understanding of metabolic crosstalk and to pave the way for the development of combination strategies to enhance ICI efficacy.
Collapse
Affiliation(s)
- Teresa Gorría
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
- Translational Genomics and Targeted Therapies in Solid Tumors, Agustí Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Marina Sierra-Boada
- Medical Oncology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - Mariam Rojas
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
| | - Carolina Figueras
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08036 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona (IBUB), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sergio Madurga
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08036 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona (IBUB), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
- Translational Genomics and Targeted Therapies in Solid Tumors, Agustí Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
13
|
Li X, Edén A, Malwade S, Cunningham JL, Bergquist J, Weidenfors JA, Sellgren CM, Engberg G, Piehl F, Gisslen M, Kumlien E, Virhammar J, Orhan F, Rostami E, Schwieler L, Erhardt S. Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses. Brain Behav Immun 2025; 124:163-176. [PMID: 39615604 DOI: 10.1016/j.bbi.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024] Open
Abstract
Long-term symptoms such as pain, fatigue, and cognitive impairments are commonly observed in individuals affected by coronavirus disease 2019 (COVID-19). Metabolites of the kynurenine pathway have been proposed to account for cognitive impairment in COVID-19 patients. Here, cerebrospinal fluid (CSF) and plasma levels of kynurenine pathway metabolites in 53 COVID-19 patients and 12 non-inflammatory neurological disease controls in Sweden were measured with an ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS) and correlated with immunological markers and neurological markers. Single cell transcriptomic data from a previous study of 130 COVID-19 patients was used to investigate the expression of key genes in the kynurenine pathway. The present study reveals that the neuroactive kynurenine pathway metabolites quinolinic acid (QUIN) and kynurenic acid (KYNA) are increased in CSF in patients with acute COVID-19. In addition, CSF levels of kynurenine, ratio of kynurenine/tryptophan (rKT) and QUIN correlate with neurodegenerative markers. Furthermore, tryptophan is significantly decreased in plasma but not in the CSF. In addition, the kynurenine pathway is strongly activated in the plasma and correlates with the peripheral immunological marker neopterin. Single-cell transcriptomics revealed upregulated gene expressions of the rate-limiting enzyme indoleamine 2,3- dioxygenase1 (IDO1) in CD14+ and CD16+ monocytes that correlated with type II-interferon response exclusively in COVID-19 patients. In summary, our study confirms significant activation of the peripheral kynurenine pathway in patients with acute COVID-19 and, notably, this is the first study to identify elevated levels of kynurenine metabolites in the central nervous system associated with the disease. Our findings suggest that peripheral inflammation, potentially linked to overexpression of IDO1 in monocytes, activates the kynurenine pathway. Increased plasma kynurenine, crossing the blood-brain barrier, serves as a source for elevated brain KYNA and neurotoxic QUIN. We conclude that blocking peripheral-to-central kynurenine transport could be a promising strategy to protect against neurotoxic effects of QUIN in COVID-19 patients.
Collapse
Affiliation(s)
- Xueqi Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Janet L Cunningham
- Department of Medical Science, Psychiatry, Uppsala University, Uppsala 75185, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry─BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden; The ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| | | | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Fredrik Piehl
- Unit of Neuroimmunology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm 17177, Sweden; Division of Neurology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41685, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Disease, Gothenburg, 41685, Sweden; Public Health Agency of Sweden, Solna, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala 75185, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
14
|
Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep 2025; 15:3392. [PMID: 39870681 PMCID: PMC11772771 DOI: 10.1038/s41598-025-86130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Cell-penetrating peptides (CPPs) have been shown to have superior material transport ability because poor infiltration of activated lymphocytes into tumors is one of the crucial factors limiting the therapeutic effect of tumor immunotherapy. Numerous studies have investigated the potential application of CPPs in tumor immunotherapy. This review delves into the crucial role that CPPs play in enhancing tumor immunotherapy, emphasizing their impact on various immunotherapy strategies, such as cytokine therapy, adoptive cell therapy, cancer vaccines, and immune checkpoint inhibitors. We also discuss the practical application challenges associated with enhancing the efficiency of CPPs in terms of their stability and targeting ability. In conclusion, the combination of CPPs with tumor immunotherapy is a promising strategy that has potential for precision administration and requires further research for optimal implementation.
Collapse
Affiliation(s)
- Di Yang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China.
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Huizi Sha
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
15
|
Lee S, Kim EW, Lee HR, Lim SU, Jung CK, Kang YJ, Jung GA, Oh IH. Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD). Int J Mol Sci 2025; 26:847. [PMID: 39859561 PMCID: PMC11766046 DOI: 10.3390/ijms26020847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene. The IDO-1-inducing potential of miR-4662a was conserved across primary MSCs from various donors and sources but exhibited variability. Notably, iPSC-derived MSCs (iMSCs) demonstrated superior IDO-1 induction and immune-modulatory efficacy compared with their donor-matched primary MSCs. Accordingly, iMSCs expressing miR-4662a (4662a/iMSC) exhibited stronger suppressive effects on T-cell proliferation and more potent suppressive effects on graft-versus-host disease (GVHD), improving survival rates and reducing tissue damage in the liver and gut. Our results point to the therapeutic potential of standardized, off-the-shelf 4662a/iMSC as a robust immune-modulating cell therapy for GVHD.
Collapse
Affiliation(s)
- Susie Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eung-Won Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Sun-Ung Lim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Chan Kwon Jung
- Department of Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Young-Ju Kang
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| | - Gyung-Ah Jung
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
- RegenInnopharm Inc., Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
16
|
Smolag KI, Olszowka J, Rosberg R, Johansson E, Marinko E, Leandersson K, O’Connell DJ, Governa V, Tuysuz EC, Belting M, Pietras A, Martin M, Blom AM. Complement Factor H Is an ICOS Ligand Modulating Tregs in the Glioma Microenvironment. Cancer Immunol Res 2025; 13:122-138. [PMID: 39378431 PMCID: PMC11712038 DOI: 10.1158/2326-6066.cir-23-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
The survival rate of patients with glioma has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, in which regulatory T cells (Treg) play a pivotal role in immunologic tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGFβ and IL10 while suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for patients with glioma. We confirmed the effect of FH on glioma development in a mouse model, in which FH knockdown was associated with a decrease in the number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (P = 0.064). Because the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.
Collapse
Affiliation(s)
- Karolina I. Smolag
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jakub Olszowka
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elisabet Marinko
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - David J. O’Connell
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Valeria Governa
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emre Can Tuysuz
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Mattias Belting
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Myriam Martin
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
17
|
Tai TS, Hsu DW, Yang YS, Tsai CY, Shi JW, Wu CH, Hsu SC. IL-10RA governor the expression of IDO in the instruction of lymphocyte immunity. Br J Cancer 2025; 132:126-136. [PMID: 39592739 PMCID: PMC11723913 DOI: 10.1038/s41416-024-02893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO) impairs anti-pathogen and anti-tumour immunity. Mesenchymal stem cells (MSCs) modulate immunity via IDO but also suppress IFN-γ. While MSC IDO induction by IFN-γ is established, other drivers in this immunosuppressive setting remain unknown. METHODS Human bone marrow mesenchymal stem cells (MSCs) with IDO or IL-10RA knockdown were co-cultured with healthy donor T cells to assess immunosuppression. PDAC organoid anticancer activity was also tested in these co-cultures. RESULTS Co-culturing MSCs with T cells in an IL-10RA-enriched environment enhances IDO expression, resulting in T cell suppression. Moreover, IL-10RA-positive MSCs collected from co-cultures with IL-10 supplementation show increased IDO expression. Conversely, MSCs with IL-10RA knockdown exhibit a significant reduction in IDO RNA and protein expression, as well as STAT3 phosphorylation status, which is a known upstream signalling pathway in IDO gene regulation, in T cell co-cultures. Down-regulation of IL-10RA also inhibits IDO activity in MSCs, resulting in reduced T cell suppression, and enabling the co-cultured T cells to kill PDAC organoids. CONCLUSION Our research reveals IL-10RA as a pharmacological target in stromal cells for enhancing T cell-mediated PDAC eradication by downregulating IDO via blocked IL-10/IL-10RA signalling in MSCs. This advances IL-10RA interference in the tumour microenvironment (TME) to restore T cell cytotoxicity against cancers.
Collapse
Affiliation(s)
- Tzong-Shyuan Tai
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung City, Taiwan
| | - Yu-Shao Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Yen Tsai
- Transgenic Core Facility, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jai-Wen Shi
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung City, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Hui Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
- Graduate Institute of Biomedical Science, Immunology Research and Development Center, China Medical University, Taichung City, Taiwan.
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan.
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan.
| |
Collapse
|
18
|
Capelletti MM, Montini O, Ruini E, Tettamanti S, Savino AM, Sarno J. Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. Int J Mol Sci 2024; 26:45. [PMID: 39795903 PMCID: PMC11719665 DOI: 10.3390/ijms26010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Genetic studies of haematological cancers have pointed out the heterogeneity of leukaemia in its different subpopulations, with distinct mutations and characteristics, impacting the treatment response. Next-generation sequencing (NGS) and genome-wide analyses, as well as single-cell technologies, have offered unprecedented insights into the clonal heterogeneity within the same tumour. A key component of this heterogeneity that remains unexplored is the intracellular metabolome, a dynamic network that determines cell functions, signalling, epigenome regulation, immunity and inflammation. Understanding the metabolic diversities among cancer cells and their surrounding environments is therefore essential in unravelling the complexities of leukaemia and improving therapeutic strategies. Here, we describe the currently available methodologies and approaches to addressing the dynamic heterogeneity of leukaemia progression. In the second section, we focus on metabolic leukaemic vulnerabilities in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). Lastly, we provide a comprehensive overview of the most interesting clinical trials designed to target these metabolic dependencies, highlighting their potential to advance therapeutic strategies in leukaemia treatment. The integration of multi-omics data for cancer identification with the metabolic states of tumour cells will enable a comprehensive "micro-to-macro" approach for the refinement of clinical practices and delivery of personalised therapies.
Collapse
Affiliation(s)
- Martina Maria Capelletti
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Orsola Montini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Emilio Ruini
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
| | - Sarah Tettamanti
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Angela Maria Savino
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Jolanda Sarno
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; (M.M.C.); (O.M.); (E.R.); (A.M.S.)
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
19
|
Besermenji K, Petracca R. Rewiring Lysine Catabolism in Cancer Leads to Increased Histone Crotonylation and Immune Escape. Chembiochem 2024; 25:e202400638. [PMID: 39462882 DOI: 10.1002/cbic.202400638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Indexed: 10/29/2024]
Abstract
Crotonyl-CoA (cr-CoA) is a metabolite derived directly from the catabolism of lysine (Lys) and tryptophan (Trp) or from the β-oxidation of fatty acids. In glioblastoma stem cells (GSCs), histone H4 crotonylation levels are significantly elevated, which appears to positively correlate with tumor growth. This increase in crotonyl-CoA production is attributed to the overexpression of specific Lys transporters on the cell membrane, leading to higher free lysine levels. Additionally, the overexpression of glutaryl-CoA dehydrogenase (GCDH), the enzyme responsible for crotonyl-CoA production, further contributes to this increase. When GCDH is depleted or under a lysine-restricted diet, genes involved in type I interferon (IFN) signaling are upregulated, resulting in tumor growth suppression. Type I interferons are a group of cytokines critical for antiviral responses and immunoregulation. This highlights how cancer cells exploit crotonylation to modulate the immune response. This work opens up new avenues for investigating how cancer cells rewire their metabolism to increase crotonylation and evade the immune system.
Collapse
Affiliation(s)
- Kosta Besermenji
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| | - Rita Petracca
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| |
Collapse
|
20
|
De Martin E, Fulgenzi CAM, Celsa C, Laurent-Bellue A, Torkpour A, Lombardi P, D'Alessio A, Pinato DJ. Immune checkpoint inhibitors and the liver: balancing therapeutic benefit and adverse events. Gut 2024:gutjnl-2024-332125. [PMID: 39658265 DOI: 10.1136/gutjnl-2024-332125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Immune checkpoint inhibitors (ICI) have led to breakthrough improvements in the management of malignancy including hepatocellular (HCC) and biliary tract cancer, improving decades-old standards of care and increasing patient survival. In both liver tumour types, which commonly arise in the context of liver inflammation and underlying functional impairment, the lack of validated predictors of response underscores the need to balance predicted gains in survival with risk of treatment-related hepatoxicity and decompensation of underlying chronic liver disease.In addition, the liver is implicated in the toxicity associated with ICI therapy for non-liver cancers, which exhibits a high degree of variability in presentation and severity. An accurate assessment is mandatory for the diagnosis and management of ICI-induced liver injury.In this Recent Advances article, we provide an overview of the mechanisms of efficacy and toxicity of anticancer immunotherapy in liver tumours and liver toxicity in extrahepatic malignancies.We compare and contrast characteristics, management strategies and outcomes from immune-related liver injury in patients with chronic hepatitis/cirrhosis or with an underlying healthy liver and discuss the latest findings on how toxicity and decompensation may impact the outlook of patients with liver tumours and extrahepatic malignancies offering insights into the future directions of clinical research and practice in the field.
Collapse
Affiliation(s)
- Eleonora De Martin
- Centre Hepatobiliaire, Paul Brousse Hospital, Villejuif, France
- Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicetre, France
| | | | - Ciro Celsa
- Surgery & Cancer, Imperial College London, London, UK
- Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, Gastroenterology and Hepatology Unit, Palermo, Italy
| | - Astrid Laurent-Bellue
- Hôpital Kremlin Bicêtre, Anatomie & Cytologie Pathologiques, Le Kremlin Bicetre, France
| | - Aria Torkpour
- Surgery & Cancer, Imperial College London, London, UK
| | - Pasquale Lombardi
- Surgery & Cancer, Imperial College London, London, UK
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio D'Alessio
- Surgery & Cancer, Imperial College London, London, UK
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - David J Pinato
- Surgery & Cancer, Imperial College London, London, UK
- Imperial College London, University of Eastern Piedmont Amedeo Avogadro, Department of Translational Medicine, Novara, Italy
| |
Collapse
|
21
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
22
|
Girithar HN, Krishnamurthy S, Carroll L, Guller A, Bilgin AA, Gluch L, Guillemin GJ, Ahn SB, Heng B. Breast cancer metastasis progression is associated with elevated activity of kynurenine monooxygenase and kynureninase. Br J Cancer 2024; 131:1881-1892. [PMID: 39558063 PMCID: PMC11628561 DOI: 10.1038/s41416-024-02889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
INTRODUCTION Metastasis remains the major cause of death in breast cancer (BrCa) and lacks specific treatment strategies. The kynurenine pathway (KP) has been suggested as a key mechanism facilitating progression of BrCa. While KP activity has been explored in primary BrCa, its role in metastasis remains unclear. To better understand this, we examined changes in the KP of BrCa with no metastasis compared to BCa that produced local or distant metastases. Given that the cancer cell secretome plays a role in metastasis, we also investigated the relationship between changes in KP activity and serum proteins of patients with local or distant metastases. METHODS To investigate changes in the KP in BrCa, with and without metastasis, we quantified KP metabolites in blood sera collected from patients with stage 1 BrCa (n = 34), BrCa with local metastases (n = 46), BrCa with distant metastases (n = 20) and healthy controls (n = 39). The serum protein profile of the BrCa patients with local or distant metastasis was determined before correlation analyses were carried out to examine the relationship between changes in the KP and cancer serum proteins using SPSS. RESULTS We found that the KP was elevated in BrCa patients with local and distant metastasis compared to healthy controls and stage 1 BrCa patients. The activity of kynurenine monooxygenase (KMO) and kynureninase (KYNU) A was positively associated with disease stage and was higher compared to healthy controls. Proteome analysis in patients with local or distant metastasis revealed the dysregulation of 14 proteins, 9 of which were up-regulated and 5 down-regulated at the distant metastasis stage. Importantly, three of these proteins have not been previously linked to BrCa metastasis. In the correlation studies between the KP profile, cancer serum proteins and metastasis status, KYNU A had the greatest number of significant associations with cancer serum protein, followed by KMO. CONCLUSION Our findings reveal that the KP was regulated differently at various stages of BrCa and was more dysregulated in patients with local or distant metastasis. These KP activity changes showed a significant association with cancer serum proteins in BrCa patients with local or distant metastasis, highlighting the potential role of KP in BrCa metastasis.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Luke Carroll
- Australian Proteome Analysis Facility, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Anna Guller
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Computational Neurosurgery (CNS) Laboratory, Macquarie Medicine School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Sydney, Australia
| | - Ayse A Bilgin
- Faculty of Sciences and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
24
|
Bowen MB, Melendez B, Zhang Q, Yang RK, Fellman BM, Lawson BC, Adjei NN, Celestino J, Wani KM, Singh B, Urbauer DL, Lazar AJ, Lu KH, Wargo JA, Westin SN, Yates MS. Long-Term Follow-up of Levonorgestrel Intrauterine Device for Atypical Hyperplasia and Early Endometrial Cancer Reveals Relapse Characterized by Immune Exhaustion. Clin Cancer Res 2024; 30:5073-5082. [PMID: 38922360 PMCID: PMC11567806 DOI: 10.1158/1078-0432.ccr-24-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Nonsurgical treatment options are increasingly needed for endometrial atypical hyperplasia (AH) and endometrioid endometrial cancer (EEC). Despite promising initial response rates, prospective long-term data and determinants for relapse are limited. MATERIALS AND METHODS Follow-up data from patients in our prospective phase II trial of levonorgestrel intrauterine device (LIUD) for AH/G1EEC were collected from medical records. Spatial transcriptomics (Nanostring GeoMX digital spatial profiling) with in silico cell type deconvolution and pathway analyses were employed on longitudinal biopsy samples from five patients across pre-treatment, on-treatment, and relapse. RESULTS Of 43 participants exhibiting initial response to LIUD, 41 had follow-up data. Sixteen (39%) experienced relapse. Clinical factors associated with shorter response duration included younger age, initial diagnosis of G1EEC, lack of response at 6 months, premenopausal status, and Hispanic ethnicity (P < 0.05), but only 6-month response status remained a significant predictor in a multivariate model (P = 0.023). LIUD increased abundance of NK cells (ΔMCP-counter score = 46.13, FDR = 0.004) and cytotoxic lymphocytes (ΔMCP-counter score = 277.67, FDR = 0.004), as well as lymphocyte cytotoxicity markers PRF1 (log2FC = 1.62, FDR = 0.025) and GZMA (log2FC = 2.47, FDR = 0.008). NK cells were reduced at relapse (ΔMCP-counter score = -55.96, FDR = 0.02). Immune-related pathways (IFNα response and TGFβ signaling) were enriched at relapse (FDR < 0.05). IDO1 expression, reflecting immune exhaustion, was upregulated at relapse (FDR < 0.05). CONCLUSIONS Upfront resistance and relapse after initial response to LIUD for AH/G1EEC impacts nearly half of patients, remaining a major hurdle for nonsurgical treatment of AH/G1EEC. Molecular studies evaluating longitudinal biopsies from a small cohort implicate immune mechanisms at relapse, including reversal of progestin-related immunomodulation and increased immune exhaustion. See related commentary by Johannet and Friedman, p. 5001.
Collapse
Affiliation(s)
- Mikayla Borthwick Bowen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Brenda Melendez
- The Platform for Innovative Microbiome & Translational Research (PRIME-TR), Moon Shots Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Qian Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Richard K. Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Bryan M. Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Barrett C. Lawson
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Naomi N. Adjei
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Khalida M. Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Bhavana Singh
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Diana L. Urbauer
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alexander J. Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Shannon N. Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Melinda S. Yates
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
25
|
Wang J, He Y, Hu F, Hu C, Sun Y, Yang K, Yang S. Metabolic Reprogramming of Immune Cells in the Tumor Microenvironment. Int J Mol Sci 2024; 25:12223. [PMID: 39596288 PMCID: PMC11594648 DOI: 10.3390/ijms252212223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic reprogramming of immune cells within the tumor microenvironment (TME) plays a pivotal role in shaping tumor progression and responses to therapy. The intricate interplay between tumor cells and immune cells within this ecosystem influences their metabolic landscapes, thereby modulating the immune evasion tactics employed by tumors and the efficacy of immunotherapeutic interventions. This review delves into the metabolic reprogramming that occurs in tumor cells and a spectrum of immune cells, including T cells, macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs), within the TME. The metabolic shifts in these cell types span alterations in glucose, lipid, and amino acid metabolism. Such metabolic reconfigurations can profoundly influence immune cell function and the mechanisms by which tumors evade immune surveillance. Gaining a comprehensive understanding of the metabolic reprogramming of immune cells in the TME is essential for devising novel cancer therapeutic strategies. By targeting the metabolic states of immune cells, it is possible to augment their anti-tumor activities, presenting new opportunities for immunotherapeutic approaches. These strategies hold promise for enhancing treatment outcomes and circumventing the emergence of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| |
Collapse
|
26
|
Xu R, He X, Xu J, Yu G, Wu Y. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm (Beijing) 2024; 5:e789. [PMID: 39492834 PMCID: PMC11531657 DOI: 10.1002/mco2.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells' differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes' role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongrong Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
- School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaobo He
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Jia Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Ganjun Yu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| |
Collapse
|
27
|
Qasem HM, Odat RM, Alshwayyat S, Yasin JA, Younis OM, Hussein AM, Jain H, Abdelraheem M, Quwaider B, Nguyen D. Clinicopathological and prognostic significance of indoleamine 2,3-dioxygenase (IDO) expression in head and neck squamous cell carcinoma: A systematic review and meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102130. [PMID: 39481481 DOI: 10.1016/j.jormas.2024.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVE Indoleamine 2,3-dioxygenase-1 (IDO1) is a promising antitumor target and predictive biomarker in a variety of cancers. Hence, we performed this meta-analysis to evaluate the clinicopathological and prognostic significance of IDO1 in head and neck squamous cell carcinoma (HNSCC). METHODS We searched PubMed, Embase, Web of Science and Scopus databases from inception to May 2024, to identify studies measuring the clinicopathological and prognostic significance of IDO1 in HNSCC. The role of IDO1 in HNSCC was evaluated by pooled hazard ratios (HR), odd ratios (OR) and 95% confidence intervals (CI). The meta-analysis was performed using the meta package in R. Omics analyses on IDO1 were also performed. RESULTS Ten studies (1,119 participants) were included in the review. The analysis showed an insignificant relationship between IDO1 expression and poor overall survival, and progression free survival as indicated by the pooled HR (HR: 1.65, 95% CI: 0.68-4.02), (HR: 1.73, 95% CI: 0.63-4.77), respectively. Additionally, elevated expression of IDO1 was significantly associated with tumor T stage (OR: 1.44, 95% CI: 1.06-1.94). However, it was insignificantly correlated with positive lymph node metastasis (N status) (OR: 1.11; 95% CI: 0.82-1.50) and tumor-node-metastasis (TNM) stage (OR: 1.14; 95% CI: 0.79-1.64). CONCLUSION While higher IDO1 expression is associated with the risk of advanced tumor stage in HNSCC, its impact on overall and progression-free survival remains inconclusive. Further research is needed to elucidate its prognostic significance and therapeutic potential.
Collapse
Affiliation(s)
- Hanan M Qasem
- Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ramez M Odat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Sakhr Alshwayyat
- Research Associate, King Hussein Cancer Center, Amman, Jordan; Internship, Princess Basma Teaching Hospital, Irbid, Jordan
| | - Jehad A Yasin
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Osama M Younis
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Bishr Quwaider
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Dang Nguyen
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
28
|
Goldmann O, Medina E. Metabolic pathways fueling the suppressive activity of myeloid-derived suppressor cells. Front Immunol 2024; 15:1461455. [PMID: 39534601 PMCID: PMC11554506 DOI: 10.3389/fimmu.2024.1461455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are considered an aberrant population of immature myeloid cells that have attracted considerable attention in recent years due to their potent immunosuppressive activity. These cells are typically absent or present in very low numbers in healthy individuals but become abundant under pathological conditions such as chronic infection, chronic inflammation and cancer. The immunosuppressive activity of MDSC helps to control excessive immune responses that might otherwise lead to tissue damage. This same immunosuppressive activity can be detrimental, particularly in cancer and chronic infection. In the cancer setting, tumors can secrete factors that promote the expansion and recruitment of MDSC, thereby creating a local environment that favors tumor progression by inhibiting the effective immune responses against cancer cells. This has made MDSC a target of interest in cancer therapy, with researchers exploring strategies to inhibit their function or reduce their numbers to improve the efficacy of cancer immunotherapies. In the context of chronic infections, MDSC can lead to persistent infections by suppressing protective immune responses thereby preventing the clearance of pathogens. Therefore, targeting MDSC may provide a novel approach to improve pathogen clearance during chronic infections. Ongoing research on MDSC aims to elucidate the exact processes behind their expansion, recruitment, activation and suppressive mechanisms. In this context, it is becoming increasingly clear that the metabolism of MDSC is closely linked to their immunosuppressive function. For example, MDSC exhibit high rates of glycolysis, which not only provides energy but also generates metabolites that facilitate their immunosuppressive activity. In addition, fatty acid metabolic pathways, such as fatty acid oxidation (FAO), have been implicated in the regulation of MDSC suppressive activity. Furthermore, amino acid metabolism, particularly arginine metabolism mediated by enzymes such as arginase-1, plays a critical role in MDSC-mediated immunosuppression. In this review, we discuss the metabolic signature of MDSC and highlight the therapeutic implications of targeting MDSC metabolism as a novel approach to modulate their immunosuppressive functions.
Collapse
Affiliation(s)
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
29
|
Churchhouse AMD, Billard CV, Suzuki T, Pohl SÖG, Doleschall NJ, Donnelly K, Nixon C, Arends MJ, Din S, Kirkwood K, Marques Junior J, Von Kriegsheim A, Coffelt SB, Myant KB. Loss of DOCK2 potentiates Inflammatory Bowel Disease-associated colorectal cancer via immune dysfunction and IFNγ induction of IDO1 expression. Oncogene 2024; 43:3094-3107. [PMID: 39242821 PMCID: PMC11473400 DOI: 10.1038/s41388-024-03135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Inflammatory Bowel Disease-associated colorectal cancer (IBD-CRC) is a known and serious complication of Inflammatory Bowel Disease (IBD) affecting the colon. However, relatively little is known about the pathogenesis of IBD-associated colorectal cancer in comparison with its sporadic cancer counterpart. Here, we investigated the function of Dock2, a gene mutated in ~10% of IBD-associated colorectal cancers that encodes a guanine nucleotide exchange factor (GEF). Using a genetically engineered mouse model of IBD-CRC, we found that whole body loss of Dock2 increases tumourigenesis via immune dysregulation. Dock2-deficient tumours displayed increased levels of IFNγ-associated genes, including the tryptophan metabolising, immune modulatory enzyme, IDO1, when compared to Dock2-proficient tumours. This phenotype was driven by increased IFNγ-production in T cell populations, which infiltrated Dock2-deficient tumours, promoting IDO1 expression in tumour epithelial cells. We show that IDO1 inhibition delays tumourigenesis in Dock2 knockout mice, and we confirm that this pathway is conserved across species as IDO1 expression is elevated in human IBD-CRC and in sporadic CRC cases with mutated DOCK2. Together, these data demonstrate a previously unidentified tumour suppressive role of DOCK2 that limits IFNγ-induced IDO1 expression and cancer progression, opening potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Antonia M D Churchhouse
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Caroline V Billard
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Toshiyasu Suzuki
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sebastian Ö G Pohl
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Nora J Doleschall
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Kevin Donnelly
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, UK
| | - Mark J Arends
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Shahida Din
- Edinburgh IBD Unit, Western General Hospital, Edinburgh, UK
| | - Kathryn Kirkwood
- Department of Pathology, Western General Hospital, Edinburgh, UK
| | - Jair Marques Junior
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Alex Von Kriegsheim
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK
| | - Seth B Coffelt
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kevin B Myant
- Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Edinburgh, UK.
| |
Collapse
|
30
|
Yang M, Cao M, Zhang X, Fu B, Chen Y, Tan Y, Xuan C, Su Y, Tan D, Hu R. IDO1 inhibitors are synergistic with CXCL10 agonists in inhibiting colon cancer growth. Biomed Pharmacother 2024; 179:117412. [PMID: 39255734 DOI: 10.1016/j.biopha.2024.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an immune checkpoint that degrades L-tryptophan to kynurenine (Kyn) and enhance immunosuppression, which can be an attractive target for treating colon cancer. IDO1 inhibitors have limited efficacy when used as monotherapies, and their combination approach has been shown to provide synergistic benefits. Many studies have shown that targeting chemokines can promote the efficacy of immune checkpoint inhibitors. Therefore, this study explored the use of IDO1 inhibitors with multiple chemokines to develop a new combination regimen for IDO1 inhibitors. We found that IDO1 inhibitors reduce the secretion of C-X-C motif ligand 10(CXCL10) in cancer cells, and CXCL10 supplementation significantly improved the anticancer effect of IDO1 inhibitors. The combination of the IDO1 inhibitor with CXCL10 or its agonist axitinib had a synergistic inhibitory effect on the growth of colon cancer cells and transplanted CT26 tumors. This synergistic effect may be achieved by inhibiting cancer cell proliferation, promoting cancer cell apoptosis, promoting CD8+T cell differentiation and decreasing Tregs. Two downstream pathways of IDO1 affect CXCL10 secretion. One being the Kyn-aryl hydrocarbon receptor (AHR) pathway, the other is the general control nonderepressible 2(GCN2). Our study provides a new reference for combination regimens of IDO1 inhibitors.
Collapse
Affiliation(s)
- Mengdi Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengran Cao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Bin Fu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaxin Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Tan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chenyuan Xuan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yongren Su
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dashan Tan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Hu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Chen HJ, Sévin DC, Griffith GR, Vappiani J, Booty LM, van Roomen CPAA, Kuiper J, Dunnen JD, de Jonge WJ, Prinjha RK, Mander PK, Grandi P, Wyspianska BS, de Winther MPJ. Integrated metabolic-transcriptomic network identifies immunometabolic modulations in human macrophages. Cell Rep 2024; 43:114741. [PMID: 39276347 DOI: 10.1016/j.celrep.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Lee M Booty
- Immunology Network, Immunology Research Unit, GSK, SG1 2NY Stevenage, UK
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333 CL Leiden, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 BK Amsterdam, the Netherlands
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Palwinder K Mander
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | | | - Beata S Wyspianska
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
33
|
Kenney LL, Chiu RSY, Dutra MN, Wactor A, Honan C, Shelerud L, Corrigan JJ, Yu K, Ferrari JD, Jeffrey KL, Huang E, Stein PL. mRNA-delivery of IDO1 suppresses T cell-mediated autoimmunity. Cell Rep Med 2024; 5:101717. [PMID: 39243754 PMCID: PMC11525033 DOI: 10.1016/j.xcrm.2024.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Indoleamine-2,3-dioxygenase (IDO)1 degrades tryptophan, obtained through dietary intake, into immunoregulatory metabolites of the kynurenine pathway. Deficiency or blockade of IDO1 results in the enhancement of autoimmune severity in rodent models and increased susceptibility to developing autoimmunity in humans. Despite this, therapeutic modalities that leverage IDO1 for the treatment of autoimmunity remain limited. Here, we use messenger (m)RNA formulated in lipid nanoparticles (LNPs) to deliver a human IDO1 variant containing the myristoylation site of Src to anchor the protein to the inner face of the plasma membrane. This membrane-anchored IDO1 has increased protein production, leading to increased metabolite changes, and ultimately ameliorates disease in three models of T cell-mediated autoimmunity: experimental autoimmune encephalomyelitis (EAE), rat collagen-induced arthritis (CIA), and acute graft-versus-host disease (aGVHD). The efficacy of IDO1 is correlated with hepatic expression and systemic tryptophan depletion. Thus, the delivery of membrane-anchored IDO1 by mRNA suppresses the immune response in several well-characterized models of autoimmunity.
Collapse
MESH Headings
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Animals
- Autoimmunity
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Rats
- Tryptophan/metabolism
- Graft vs Host Disease/immunology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Mice
- Nanoparticles/chemistry
- Female
Collapse
Affiliation(s)
- Laurie L Kenney
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA.
| | - Rebecca Suet-Yan Chiu
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Michelle N Dutra
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Alexandra Wactor
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Chris Honan
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Lukas Shelerud
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Kelly Yu
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Joseph D Ferrari
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Kate L Jeffrey
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Eric Huang
- Moderna Genomics, Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Paul L Stein
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| |
Collapse
|
34
|
De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 2024; 24:654-669. [PMID: 38649722 PMCID: PMC11365797 DOI: 10.1038/s41577-024-01026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Accumulating evidence suggests that metabolic rewiring in malignant cells supports tumour progression not only by providing cancer cells with increased proliferative potential and an improved ability to adapt to adverse microenvironmental conditions but also by favouring the evasion of natural and therapy-driven antitumour immune responses. Here, we review cancer cell-intrinsic and cancer cell-extrinsic mechanisms through which alterations of metabolism in malignant cells interfere with innate and adaptive immune functions in support of accelerated disease progression. Further, we discuss the potential of targeting such alterations to enhance anticancer immunity for therapeutic purposes.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
35
|
Zhang JY, Su YH, Wang X, Yao X, Du JZ. Recent Progress on Nanomedicine-Mediated Repolarization of Tumor-Associated Macrophages for Cancer Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2001. [PMID: 39425549 DOI: 10.1002/wnan.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme. The reprogramming of M2-like TAMs toward a tumoricidal M1 phenotype is of particular interest for the restoration of antitumor immunity in cancer immunotherapy. Notably, nanomedicines have shown great potential for cancer therapy due to their unique structures and properties. This review will briefly describe the biological features and roles of TAMs in tumor, and then discuss recent advances in nanomedicine-mediated repolarization of TAMs for cancer immunotherapy. Finally, perspectives on nanomedicine-mediated repolarization of TAMs for effective cancer immunotherapy are also presented.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Yun-He Su
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xu Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
36
|
Jiang K, Wang Q, Chen XL, Wang X, Gu X, Feng S, Wu J, Shang H, Ba X, Zhang Y, Tang K. Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies. Int J Nanomedicine 2024; 19:8847-8882. [PMID: 39220190 PMCID: PMC11366248 DOI: 10.2147/ijn.s458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Long Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shuangshuang Feng
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
37
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
38
|
Bao R, Qu H, Li B, Cheng K, Miao Y, Wang J. The role of metabolic reprogramming in immune escape of triple-negative breast cancer. Front Immunol 2024; 15:1424237. [PMID: 39192979 PMCID: PMC11347331 DOI: 10.3389/fimmu.2024.1424237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has become a thorny problem in the treatment of breast cancer because of its high invasiveness, metastasis and recurrence. Although immunotherapy has made important progress in TNBC, immune escape caused by many factors, especially metabolic reprogramming, is still the bottleneck of TNBC immunotherapy. Regrettably, the mechanisms responsible for immune escape remain poorly understood. Exploring the mechanism of TNBC immune escape at the metabolic level provides a target and direction for follow-up targeting or immunotherapy. In this review, we focus on the mechanism that TNBC affects immune cells and interstitial cells through hypoxia, glucose metabolism, lipid metabolism and amino acid metabolism, and changes tumor metabolism and tumor microenvironment. This will help to find new targets and strategies for TNBC immunotherapy.
Collapse
Affiliation(s)
- Ruochen Bao
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Hongtao Qu
- Emergency Department of Yantai Mountain Hospital, Yantai, China
| | - Baifeng Li
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Kai Cheng
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 Medical College of Binzhou Medical University, Yantai, China
| | - Jiangtao Wang
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| |
Collapse
|
39
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
40
|
Espelage L, Wagner N, Placke JM, Ugurel S, Tasdogan A. The Interplay between Metabolic Adaptations and Diet in Cancer Immunotherapy. Clin Cancer Res 2024; 30:3117-3127. [PMID: 38771898 DOI: 10.1158/1078-0432.ccr-22-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.
Collapse
Affiliation(s)
- Lena Espelage
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Natalie Wagner
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
41
|
Rüsing S, Welz L, Pfitzer C, Harris DM, Röcken C, Rosenstiel P, Nikolaus S, Tran F, Schreiber S, Aden K, Sievers LK. Decreased Serum Tryptophan and Severe Ulcerative Damage of Colon Mucosa Identify Inflammatory Bowel Disease Patients With High Risk of Cytomegalovirus Colitis. Clin Transl Gastroenterol 2024; 15:e00731. [PMID: 38934504 PMCID: PMC11346877 DOI: 10.14309/ctg.0000000000000731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Patients with inflammatory bowel disease (IBD) are predisposed to the reactivation of viral infections such as cytomegalovirus (CMV). Clinical discrimination of disease flares and colonic CMV reactivation is difficult in patients with established diagnosis of IBD, and there are no reliable noninvasive diagnostic tools yet. Furthermore, the influence of novel therapeutics including biologicals and Janus kinase inhibitors on the risk of CMV colitis is unclear. The goal of this study was to identify risk factors and clinical determinants of CMV colitis that could serve as minimally invasive markers both for active CMV colitis and relapse. METHODS To this end, a retrospective analysis of 376 patients with suspected or confirmed CMV colitis 2016-2023 was performed. RESULTS Previous administration of systemic steroids increased the odds of CMV colitis to OR 4.6. Biologicals did not change the incidence of CMV colitis but decreased the OR of a relapse to 0.13. Clinical parameters such as severely bloody diarrhea, intense microscopic ulcerative damage, and decreased serum tryptophan correlated with detection of CMV. Importantly, persistent decrease of tryptophan was observed in patients with CMV relapse. Furthermore, tryptophan degradation through the kynurenine pathway was increased in CMV-positive patients. DISCUSSION Taken together, we identify decreased serum tryptophan as a novel potential minimally invasive marker to aid identification of IBD patients with active CMV colitis and at high risk for relapse.
Collapse
Affiliation(s)
- Sophia Rüsing
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lina Welz
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Constanze Pfitzer
- Department of Congenital Heart Disease/Paediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Danielle Monica Harris
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florian Tran
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Laura Katharina Sievers
- Department of Internal Medicine I, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
42
|
Wiśnicki K, Donizy P, Kuriata-Kordek M, Uchmanowicz I, Zachciał J, Hałoń A, Janczak D, Banasik M. Interstitial Foci Expression of Indoleamine 2,3-Dioxygenase 1: A Potential Biomarker for Kidney Transplant Rejection. J Clin Med 2024; 13:4265. [PMID: 39064305 PMCID: PMC11277928 DOI: 10.3390/jcm13144265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Kidney transplantation is the best therapy for patients with end-stage renal disease, but the risk of rejection complicates it. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme involved in immune response modulation, has been suggested to play a role in transplant immunological injury. The aim of the study was to explore the expression of IDO1 in the interstitial foci of transplanted kidneys and its potential association with rejection episodes. (2) Methods: This retrospective study analysed kidney transplant biopsies from 121 patients, focusing on IDO1 expression in interstitial foci. Immunohistochemistry was used to detect IDO1, and patients were categorised based on IDO1 presence (IDO1-IF positive or negative). The incidence of rejection was compared between these groups. (3) Results: Patients with IDO1 expression in interstitial foci (IDO1-IF(+)) exhibited higher incidences of rejection 46/80 (57.5%) vs. 10/41 (24.34%) patients compared to IDO1-IF(-) patients, which was statistically significant with p = 0.0005. The analysis of antibody-mediated rejection showed that IDO1-IF(+) patients developed AMR at 12/80 (15%), while only 1 IDO1-IF(-) negative patient did (2,44%), with p = 0.035. T-cell-mediated rejection was also more common in IDO1-IF(+) patients 43/80 (53.75%) than in IDO1-IF(-) patients 7/41 (17.07%), with p = 0.0001. (4) Conclusions: IDO1 expression in interstitial foci of renal transplant biopsies is associated with a higher incidence of rejection, suggesting that IDO1 could serve as a potential biomarker for transplant rejection. These findings highlight the importance of IDO1 in immune regulation and its potential utility in improving the management of kidney transplant recipients.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Magdalena Kuriata-Kordek
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Izabella Uchmanowicz
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Justyna Zachciał
- Department of Nursing and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.U.); (J.Z.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.D.); (A.H.)
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
43
|
Ni M, Cui J, Yang X, Ding Y, Zhao P, Hu T, Zhan Y, Kang Q, Hu X, Zhao J, Xu Y, Chen L, Liu M, Zhao M, Zhang F, Huang S, Li Y, Yang X, Zhang L, Zhang T, Deng B, Yang B, Lu D, Wang J. Dual roles of CD11b +CD33 +HLA-DR -/lowCD14 - myeloid-derived suppressor cells with a granulocytic morphology following allogeneic hematopoietic stem cell transplantation: from inflammation promoters to immune suppressors within 90 days. Front Immunol 2024; 15:1403272. [PMID: 39040102 PMCID: PMC11260618 DOI: 10.3389/fimmu.2024.1403272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Granulocytic myeloid-derived suppressor cells (G-MDSCs) show fast recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) constituting the major part of peripheral blood in the early phase. Although G-MDSCs mediate immune suppression through multiple mechanisms, they may also promote inflammation under specific conditions. Methods G-MDSCs were isolated from 82 patients following allo-HSCT within 90 days after allo-HSCT, and their interactions with autologous CD3+ T-cells were examined. T-cell proliferation was assessed by flow cytometry following CFSE staining, while differentiation and interferon-γ secretion were characterized using chemokine receptor profiling and ELISpot assays, respectively. NK cell cytotoxicity was evaluated through co-culture with K562 cells. An aGVHD xenogeneic model in humanized mice was employed to study the in vivo effects of human leukocytes. Furthermore, transcriptional alterations in G-MDSCs were analyzed via RNA sequencing to investigate functional transitions. Results G-MDSCs promoted inflammation in the early-stage, by facilitating cytokine secretion and proliferation of T cells, as well as their differentiation into pro-inflammatory T helper subsets. At day 28, patients with a higher number of G-MDSCs exhibited an increased risk of developing grades II-IV aGvHD. Besides, adoptive transfer of G-MDSCs from patients at day 28 into humanized mice exacerbated aGvHD. However, at day 90, G-MDSCs led to immunosuppression, characterized by upregulated expression of indoleamine 2,3-dioxygenase gene and interleukin-10 secretion, coupled with the inhibition of T cell proliferation. Furthermore, transcriptional analysis of G-MDSCs at day 28 and day 90 revealed that 1445 genes were differentially expressed. These genes were associated with various pathways, revealing the molecular signatures of early post-transplant differentiation in G-MDSCs. In addition, genes linked to the endoplasmic reticulum stress were upregulated in patients without aGvHD. The acquisition of immunosuppressive function by G-MDSCs may depend on the activation of CXCL2 and DERL1 genes. Conclusion Our findings revealed the alteration in the immune characteristics of G-MDSCs within the first 90 days post-allo-HSCT. Moreover, the quantity of G-MDSCs at day 28 may serve as a predictive indicator for the development of aGvHD.
Collapse
Affiliation(s)
- Ming Ni
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Cui
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Yuntian Ding
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Peng Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tianzhen Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun Zhan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Kang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiuying Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiangyuan Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yao Xu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Min Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Mei Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shisi Huang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ya Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xueying Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Luxin Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bo Deng
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Yang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Deqin Lu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
44
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
45
|
Zhang W, Lai Z, Liang X, Yuan Z, Yuan Y, Wang Z, Peng P, Xia L, Yang X, Li Z. Metabolomic biomarkers for benign conditions and malignant ovarian cancer: Advancing early diagnosis. Clin Chim Acta 2024; 560:119734. [PMID: 38777245 DOI: 10.1016/j.cca.2024.119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is a major global cause of death among gynecological cancers, with a high mortality rate. Early diagnosis, distinguishing between benign conditions and early malignant OC forms, is vital for successful treatment. This research investigates serum metabolites to find diagnostic biomarkers for early OC identification. METHODS Metabolomic profiles derived from the serum of 60 patients with benign conditions and 60 patients with malignant OC were examined using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Comparative analysis revealed differential metabolites linked to OC, aiding biomarker identification for early-diagnosis of OC via machine learning features. The predictive ability of these biomarkers was evaluated against the traditional biomarker, cancer antigen 125 (CA125). RESULTS 84 differential metabolites were identified, including 2-Thiothiazolidine-4-carboxylic acid (TTCA), Methionyl-Cysteine, and Citrulline that could serve as potential biomarkers to identify benign conditions and malignant OC. In the diagnosis of early-stage OC, the area under the curve (AUC) for Citrulline was 0.847 (95 % Confidence Interval (CI): 0.719-0.974), compared to 0.770 (95 % CI: 0.596-0.944) for TTCA, and 0.754 for Methionine-Cysteine (95 % CI: 0.589-0.919). These metabolites demonstrate a superior diagnostic capability relative to CA125, which has an AUC of 0.689 (95 % CI: 0.448-0.931). Among these biomarkers, Citrulline stands out as the most promising. Additionally, in the diagnosis of benign conditions and malignant OC, using logistic regression to combine potential biomarkers with CA125 has an AUC of 0.987 (95 % CI: 0.9708-1) has been proven to be more effective than relying solely on the traditional biomarker CA125 with an AUC of 0.933 (95 % CI: 0.870-0.996). Furthermore, among all the differential metabolites, lipid metabolites dominate, significantly impacting glycerophospholipid metabolism pathway. CONCLUSION The discovered serum metabolite biomarkers demonstrate excellent diagnostic performance for distinguishing between benign conditions and malignant OC and for early diagnosis of malignant OC.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Xiaoyue Liang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing 100730, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yize Yuan
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhigang Wang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing 100730, China.
| | - Liangyu Xia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing 100730, China.
| | - XiaoLin Yang
- Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
46
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
47
|
Nkandeu DS, Joubert AM, Serem JC, Bipath P, Hlophe YN. An exploratory study on the effect of kynurenine metabolites on sEnd-2 endothelioma cells. Cell Biochem Funct 2024; 42:e4065. [PMID: 38807444 DOI: 10.1002/cbf.4065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement. Kynurenine metabolites which include l-kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid have been shown to inhibit T-cell proliferation resulting in a decrease in cell growth of natural killer cells and T cells. Furthermore, metabolites such as l-kynurenine have been shown to inhibit proliferation of melanoma cells in vitro. Considering these metabolite properties, the present study aimed to explore the in vitro effects of l-kynurenine, quinolinic acid and kynurenic acid on endothelioma sEnd-2 cells and on endothelial (EA. hy926 cells) (control cell line). The in vitro effect at 24, 48, and 72 h exposure to a range of 1-4 mM of the respective kynurenine metabolites on the two cell lines in terms of cell morphology, cell cycle progression and induction of apoptosis was assessed. The half inhibitory concentration (IC50), as determined using nonlinear regression, for l-kynurenine, quinolinic acid and kynurenic acid was 9.17, 15.56, and 535.40 mM, respectively. Optical transmitted light differential interference contrast and hematoxylin and eosin staining revealed cells blocked in metaphase, formation of apoptotic bodies and compromised cell density in l-kynurenine-treated cells. A statistically significant increase in the number of cells present in the sub-G1 phase was observed in l-kynurenine-treated sample. To our knowledge, this was the first in vitro study conducted to investigate the mechanism of action of kynurenine metabolites on endothelioma sEnd-2 cells. It can be concluded that l-kynurenine exerts an antiproliferative effect on the endothelioma sEnd-2 cell line by decreasing cell growth and proliferation as well as a metaphase block. These hallmarks suggest cell death via apoptosis. Further research will be conducted on l-kynurenine to assess the effect on cell adhesion in vitro and in vivo as cell-cell adhesion has been shown to increase metastasis to distant organs therefore, the inhibition of adhesion may lead to a decrease in metastasis.
Collapse
Affiliation(s)
- Danielle Sandra Nkandeu
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
48
|
Emmanuel T, Ignatov B, Bertelsen T, Litman T, Nielsen MM, Brent MB, Touborg T, Rønsholdt AB, Petersen A, Boye M, Kaaber I, Sortebech D, Lybæk D, Steiniche T, Bregnhøj A, Eidsmo L, Iversen L, Johansen C. Secukinumab and Dead Sea Climatotherapy Impact Resolved Psoriasis Skin Differently Potentially Affecting Disease Memory. Int J Mol Sci 2024; 25:6086. [PMID: 38892277 PMCID: PMC11172747 DOI: 10.3390/ijms25116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Secukinumab and Dead Sea treatment result in clear skin for many psoriasis patients, through distinct mechanisms. However, recurrence in the same areas after treatments suggests the existence of a molecular scar. We aimed to compare the molecular and genetic differences in psoriasis patients who achieved complete response from secukinumab and Dead Sea climatotherapy treatments. We performed quantitative immunohistochemical and transcriptomic analysis, in addition to digital spatial profiling of skin punch biopsies. Histologically, both treatments resulted in a normalization of the lesional skin to a level resembling nonlesional skin. Interestingly, the transcriptome was not normalized by either treatments. We revealed 479 differentially expressed genes between secukinumab and Dead Sea climatotherapy at the end of treatment, with a psoriasis panel identifying SERPINB4, SERPINB13, IL36G, IL36RN, and AKR1B10 as upregulated in Dead Sea climatotherapy compared with secukinumab. Using digital spatial profiling, pan-RAS was observed to be differentially expressed in the microenvironment surrounding CD103+ cells, and IDO1 was differentially expressed in the dermis when comparing the two treatments. The differences observed between secukinumab and Dead Sea climatotherapy suggest the presence of a molecular scar, which may stem from mechanistically different pathways and potentially contribute to disease recurrence. This may be important for determining treatment response duration and disease memory.
Collapse
Affiliation(s)
- Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Borislav Ignatov
- Department of Medicine, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden; (B.I.); (D.S.); (L.E.)
| | - Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Thomas Litman
- Department of Immunology and Microbiology, Copenhagen University, 2200 Copenhagen, Denmark;
| | - Morten Muhlig Nielsen
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Toke Touborg
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Anders Benjamin Rønsholdt
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Annita Petersen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Mette Boye
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Ida Kaaber
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Daniel Sortebech
- Department of Medicine, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden; (B.I.); (D.S.); (L.E.)
| | - Dorte Lybæk
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Torben Steiniche
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Liv Eidsmo
- Department of Medicine, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden; (B.I.); (D.S.); (L.E.)
- LEO Foundation Skin Immunology Research Center, 2200 Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| |
Collapse
|
49
|
Ngai D, Sukka SR, Tabas I. Crosstalk between efferocytic myeloid cells and T-cells and its relevance to atherosclerosis. Front Immunol 2024; 15:1403150. [PMID: 38873597 PMCID: PMC11169609 DOI: 10.3389/fimmu.2024.1403150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
The interplay between myeloid cells and T-lymphocytes is critical to the regulation of host defense and inflammation resolution. Dysregulation of this interaction can contribute to the development of chronic inflammatory diseases. Important among these diseases is atherosclerosis, which refers to focal lesions in the arterial intima driven by elevated apolipoprotein B-containing lipoproteins, notably low-density lipoprotein (LDL), and characterized by the formation of a plaque composed of inflammatory immune cells, a collection of dead cells and lipids called the necrotic core, and a fibrous cap. As the disease progresses, the necrotic core expands, and the fibrous cap becomes thin, which increases the risk of plaque rupture or erosion. Plaque rupture leads to a rapid thrombotic response that can give rise to heart attack, stroke, or sudden death. With marked lowering of circulating LDL, however, plaques become more stable and cardiac risk is lowered-a process known as atherosclerosis regression. A critical aspect of both atherosclerosis progression and regression is the crosstalk between innate (myeloid cells) and adaptive (T-lymphocytes) immune cells. Myeloid cells are specialized at clearing apoptotic cells by a process called efferocytosis, which is necessary for inflammation resolution. In advanced disease, efferocytosis is impaired, leading to secondary necrosis of apoptotic cells, inflammation, and, most importantly, defective tissue resolution. In regression, efferocytosis is reawakened aiding in inflammation resolution and plaque stabilization. Here, we will explore how efferocytosing myeloid cells could affect T-cell function and vice versa through antigen presentation, secreted factors, and cell-cell contacts and how this cellular crosstalk may contribute to the progression or regression of atherosclerosis.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Santosh R. Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
50
|
Tornyi I, Horváth I. Role of Complement Components in Asthma: A Systematic Review. J Clin Med 2024; 13:3044. [PMID: 38892755 PMCID: PMC11172655 DOI: 10.3390/jcm13113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Asthma is a chronic inflammatory airway disease characterized by recurrent symptoms in response to a wide range of external stimuli, including allergens, viral infections, and air pollution together with internal host-derived danger signals. The disease is traditionally associated with adaptive immune responses; recent research emphasizes the critical role of innate immunity in its pathogenesis. The complement system, activated as part of the defense mechanisms, plays a crucial role in bridging innate to adaptive immunity. While experimental models demonstrate complement cascade activation in asthma, human studies remain limited. Methods: This systematic review summarizes existing literature on the complement system in asthma patients, gathering data from PubMed, Web of Science, Scopus, and Google Scholar. The protocol was registered in the OSF. Results: Out of 482 initially identified articles, only 24 met the eligibility criteria, revealing disparities in sample origin, methodologies, and populations. Despite observed heterogeneity, a consistent result was found in the elevation of complement regulatory proteins, such as complement Factor H, in samples from patients with asthma compared to those from healthy subjects. Conclusions: The increased level of regulatory proteins, such as Factor H and I highlight that these may influence asthma pathophysiology. The role of complement factors as potential biomarkers of asthma activity and severity needs further evaluation.
Collapse
Affiliation(s)
- Ilona Tornyi
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó Horváth
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| |
Collapse
|