1
|
Piffkó A, Yang K, Panda A, Heide J, Tesak K, Wen C, Zawieracz K, Wang L, Naccasha EZ, Bugno J, Fu Y, Chen D, Donle L, Lengyel E, Tilley DG, Mack M, Rock RS, Chmura SJ, Vokes EE, He C, Pitroda SP, Liang HL, Weichselbaum RR. Radiation-induced amphiregulin drives tumour metastasis. Nature 2025:10.1038/s41586-025-08994-0. [PMID: 40369065 DOI: 10.1038/s41586-025-08994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
The anti-tumour effect of radiotherapy beyond the treatment field-the abscopal effect-has garnered much interest1. However, the potentially deleterious effect of radiation in promoting metastasis is less well studied. Here we show that radiotherapy induces the expression of the EGFR ligand amphiregulin in tumour cells, which reprogrammes EGFR-expressing myeloid cells toward an immunosuppressive phenotype and reduces phagocytosis. This stimulates distant metastasis growth in human patients and in pre-clinical mouse tumour models. The inhibition of these tumour-promoting factors induced by radiotherapy may represent a novel therapeutic strategy to improve patient outcomes.
Collapse
Affiliation(s)
- András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Arpit Panda
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Janna Heide
- Department of Obstetrics and Gynecology/Section Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Krystyna Tesak
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Chuangyu Wen
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Katarzyna Zawieracz
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Emile Z Naccasha
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA
| | - Yanbin Fu
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Dapeng Chen
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Leonhard Donle
- Department of Obstetrics and Gynecology/Section Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Matthias Mack
- Department of Internal Medicine, University of Regensburg, Regensburg, Germany
| | - Ronald S Rock
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Everett E Vokes
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
3
|
Norris PAA, Kubes P. Innate immunity of the lungs in homeostasis and disease. Mucosal Immunol 2025:S1933-0219(25)00039-X. [PMID: 40220792 DOI: 10.1016/j.mucimm.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Humans breathe thousands of litres of non-sterile air each day containing bacteria, viruses, and fungi, as well as pollutants, allergens, and other particles. The continual exposure to foreign particles is juxtaposed with the vast surface area of the blood-air-barrier which becomes extremely thin to allow for efficient gas exchange. To prevent infection and injury, the healthy lung relies on a robust innate immune system to protect itself. Critically, this innate immune system must clear insults while maintaining immune tolerance and minimizing inflammation to avoid disrupting the lung's vital gas exchange function. In this review, we discuss how the innate immune system protects the lung from its environment.
Collapse
Affiliation(s)
- Peter A A Norris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paul Kubes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
4
|
Liu W, Zhang X, Liu J, Pu L, Ai L, Xu H, Wang G, Wang D, Song X, Zhang Y, Zhang L, Gao J, Cheng X, Wang X, Tong J, Xie X, Dong F, Zhang Y, Zhu P, Chen Z, Wu P, Shi L. An erythroid-biased FOS hi hematopoietic multipotent progenitor subpopulation contributes to adaptation to chronic hypoxia. Cell Stem Cell 2025:S1934-5909(25)00100-6. [PMID: 40220764 DOI: 10.1016/j.stem.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Hypoxia imposes notable stress on organisms and even causes tissue damage; however, the cellular and molecular mechanisms underlying hypoxic adaptation and maladaptation are elusive. Here, we performed single-cell RNA sequencing to analyze hematopoietic stem and progenitor cells (HSPCs) and erythroid cells in a mouse model of high-altitude polycythemia (HAPC) mimicking long-term high-altitude hypoxia exposure. We identified a distinct erythroid-biased multipotent progenitor subset, FOShi MPP, characterized by a unique responsiveness to interferon (IFN) signaling, which expands under hypoxia conditions. This subset rapidly responds to hypoxia during re-ascent by sustaining low methylation of erythroid-priming genes, suggesting a memory function in HSPCs for faster acclimatization. Additionally, erythroid cells in HAPC mice had active metabolic and autophagic activity, as well as abundant CD47 expression that prevented the phagocytosis of erythrocytes. Finally, CD47 blockade and/or IFNα treatments alleviated erythrocytosis in HAPC mice. These approaches might constitute promising therapeutic strategies for HAPC.
Collapse
Affiliation(s)
- Weili Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China.
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lingling Pu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hongbao Xu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Guangrui Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaona Song
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ling Zhang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaoling Cheng
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Xinxing Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Zhaoli Chen
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China.
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institute of Health Science, Tianjin 300020, China.
| |
Collapse
|
5
|
Jajosky RP, Covington ML, Liu J, Chai L, Zerra PE, Chonat S, Stowell SR, Arthur CM. CD47 regulates antigen modulation and red blood cell clearance following an incompatible transfusion. Front Immunol 2025; 16:1548548. [PMID: 40255405 PMCID: PMC12006802 DOI: 10.3389/fimmu.2025.1548548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Red blood cell (RBC) alloantibodies can result in the rapid removal of incompatible RBCs following transfusion. However, antibody-mediated clearance of RBCs is not the inevitable outcome of an incompatible transfusion. Antibody engagement can also result in the modulation of the target antigen, often rendering RBCs resistant to antibody-mediated removal. Despite this, the factors that regulate antibody-induced RBC removal or antigen modulation remain incompletely understood. Given the ability of CD47 to regulate RBC survival in general, we examined the possible role of CD47 in governing antibody-mediated RBC clearance and antigen modulation. This was achieved by crossing the well-established HEL-OVA-Duffy (HOD) mouse model with CD47 knockout (KO) mice to generate offspring that express the HOD antigen and either WT (HOD CD47 WT), heterozygote (HOD CD47 HET) or KO (HOD CD47 KO) levels of CD47. Using the commonly employed anti-HEL immunization model, our results demonstrate that while antibody engagement of HOD CD47 WT RBCs resulted in rapid antigen modulation in the absence of detectable RBC clearance, antibody binding to HOD CD47 HET RBCs did result in detectable RBC removal despite similar rates and overall levels of antigen modulation. In contrast, despite accelerated clearance of HOD CD47 KO RBCs in the absence of anti-HEL antibodies, the rate of RBC removal and antigen modulation was enhanced in the presence of anti-HEL antibodies. Taken together, these results suggest a role for CD47 in regulating the overall consequence of an incompatible RBC transfusion.
Collapse
Affiliation(s)
- Ryan P. Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Mischa L. Covington
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Jun Liu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Li Chai
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E. Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Levengood MR, Carosino CM, Zhang X, Lucas S, Ortiz DJ, Westendorf L, Chin AP, Martin AD, Wong A, Hengel SM, Sun H, Zeng W, Yumul R, Dominguez MM, Chen Y, Zheng JH, Karlsson CA, Trang VH, Senter PD, Gardai SJ. Preclinical Development of SGN-CD47M: Protease-Activated Antibody Technology Enables Selective Tumor Targeting of the Innate Immune Checkpoint Receptor CD47. Mol Cancer Ther 2025; 24:471-484. [PMID: 39463068 PMCID: PMC11962404 DOI: 10.1158/1535-7163.mct-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
CD47 is a cell-surface glycoprotein that is expressed on normal human tissues and plays a key role as a marker of self. Tumor cells have co-opted CD47 overexpression to evade immune surveillance, and thus blockade of CD47 is a highly active area of clinical exploration in oncology. However, clinical development of CD47-targeted agents has been complicated by its robust expression in normal tissues and the toxicities that arise from blocking this inhibitory signal. Furthermore, pro-phagocytic signals are not uniformly expressed in tumors, and antibody blockade alone is often not sufficient to drive antitumor activity. The inclusion of an IgG1 antibody backbone into therapeutic design has been shown to not only serve as an additional pro-phagocytic signal but also exacerbate toxicities in normal tissues. Therefore, a need persists for more selective therapeutic modalities targeting CD47. To address these challenges, we developed SGN-CD47M, a humanized anti-CD47 IgG1 mAb linked to novel masking peptides through linkers designed to be cleaved by active proteases enriched in the tumor microenvironment (TME). Masking technology has the potential to increase the amount of drug that reaches the TME while concomitantly reducing systemic toxicities. We demonstrate that SGN-CD47M is well tolerated in cynomolgus monkeys and displays a 20-fold improvement in tolerability to hematologic toxicities when compared with the unmasked antibody. SGN-CD47M also displays preferential activation in the TME that leads to robust single-agent antitumor activity. For these reasons, SGN-CD47M may have enhanced antitumor activity and improved tolerability relative to existing therapies that target the CD47-signal regulatory protein α interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hao Sun
- Pfizer, Inc., Bothell, Washington
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Mösenlechner M, Schlösser D, Braumüller S, Dörfer L, Mannes M, Kawach R, Strauss G, Schmidt CQ, Lupu L, Huber-Lang MS. INDUCTION OF EARLY PULMONARY SENESCENCE IN EXPERIMENTAL SEPSIS. Shock 2025; 63:448-455. [PMID: 39637172 PMCID: PMC11882169 DOI: 10.1097/shk.0000000000002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
ABSTRACT Background: Sepsis continues to pose a significant threat to human life and represents a substantial financial burden. In addition to replicative stress resulting from telomeric loss, recent studies have identified multiple factors contributing to cell cycle arrest. Furthermore, our understanding of pathways associated with cellular senescence, such as CD47-mediated suppression of efferocytosis, has expanded. However, beyond in vitro experiments, the impact of cell stress during complex systemic illnesses, including sepsis, remains poorly understood. Consequently, we conducted an investigation into molecular alterations related to senescence-associated pulmonary mechanisms during experimental nonpulmonary sepsis. Methods: Male C57BL/6JRj mice were anesthetized and subjected to either control conditions (sham) or cecal ligation and puncture (CLP) to induce sepsis. Twenty-four hours or 7 d after CLP, animals were killed, and blood, bronchoalveolar fluids, and lungs were harvested and analyzed for morphological and biochemical changes. Results: Histological damage in pulmonary tissue, as well as increases in plasma levels of surfactant protein D, indicated development of alveolar-focused acute lung injury after CLP. Additionally, we observed a significant upregulation of the CD47-QPCTL-SHP-1 axis in lungs of septic mice. Whereas the expression of p16, a marker primarily indicating manifested forms of senescence, was decreased after CLP, the early marker of cellular senescence, p21, was increased in the lungs during sepsis. Later, at 7 d after CLP, pulmonary expression of CD47 and QPCTL-1 was decreased, whereas SHP-1 was significantly enhanced. Conclusion: Our findings suggest an activation of senescent-associated pathways during experimental sepsis. However, expanding the experiments to other organ systems and in vivo long-term models are necessary to further evaluate the sustained mechanisms and immunopathophysiological consequences of cellular senescence triggered by septic organ injury.
Collapse
Affiliation(s)
- Martin Mösenlechner
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | | | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Lena Dörfer
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Rawan Kawach
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Markus S. Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
9
|
Miller WD, Mishra AK, Sheedy CJ, Bond A, Gardner BM, Montell DJ, Morrissey MA. CD47 prevents Rac-mediated phagocytosis through Vav1 dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637707. [PMID: 39990418 PMCID: PMC11844498 DOI: 10.1101/2025.02.11.637707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
CD47 is expressed by viable cells to protect against phagocytosis. CD47 is recognized by SIRPα, an inhibitory receptor expressed by macrophages and other myeloid cells. Activated SIRPα recruits SHP-1 and SHP-2 phosphatases but the inhibitory signaling cascade downstream of these phosphatases is not clear. In this study, we used time lapse imaging to measure how CD47 impacts the kinetics of phagocytosis. We found that targets with IgG antibodies were primarily phagocytosed through a Rac-based reaching mechanism. Targets also containing CD47 were only phagocytosed through a less frequent Rho-based sinking mechanism. Hyperactivating Rac2 eliminated the suppressive effect of CD47, suggesting that CD47 prevents activation of Rac and reaching phagocytosis. During IgG-mediated phagocytosis, the tyrosine kinase Syk phosphorylates the GEF Vav, which then activates the GTPase Rac to drive F-actin rearrangement and target internalization. CD47 inhibited Vav1 phosphorylation without impacting Vav1 recruitment to the phagocytic synapse or Syk phosphorylation. Macrophages expressing a hyperactive Vav1 were no longer sensitive to CD47. Together this data suggests that Vav1 is a key target of the CD47 signaling pathway.
Collapse
Affiliation(s)
- Wyatt D Miller
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Abhinava K Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Connor J Sheedy
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Brooke M Gardner
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Denise J Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| |
Collapse
|
10
|
Lin A, Wang M, Wang Z, Lin J, Lin Z, Lin S, Lu S, Lin H, Tang H, Huang X. Expression and relationship of PD-L1, CD24, and CD47 in hepatitis B virus associated hepatocellular carcinoma. Sci Rep 2024; 14:31530. [PMID: 39732950 PMCID: PMC11682133 DOI: 10.1038/s41598-024-83145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy is the new standard treatment for advanced or metastatic hepatocellular carcinoma (HCC); however, many patients still fail to respond. This study explored the expression and prognosis of programmed death ligand 1 (PD-L1), cluster of differentiation 24 (CD24), and cluster of differentiation 47 (CD47) in patients with hepatitis B virus-associated HCC (HBV-associated HCC). We analyzed sequencing data from the Cancer Genome Atlas (TCGA) and investigated the expression of PD-L1, CD24, and CD47 in HBV-associated HCC patients by immunohistochemistry and their relationship with prognosis and clinicopathological factors. HCC data from the TCGA database show that PD-L1 was substantially correlated with various immune cells. In 67 patients with HBV-associated HCC, high PD-L1 and CD24 expression levels were related to poor overall survival (OS) and progression-free survival (PFS). PD-L1 expression was significantly associated with the staging of HBV-associated HCC (p = 0.011) and Ki67 expression (p = 0.024). Correlation analysis between variables reveals that PD-L1 was significantly positively correlated with CD24 and CD47. High expression of PD-L1 and CD24 are risk factors for poor prognosis in HBV-associated HCC patients following curative resection. PD-L1 is significantly correlated with CD24 and CD47.
Collapse
Affiliation(s)
- Aiping Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Mingxia Wang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Zhihui Wang
- Department of Thoracic Oncology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Juan Lin
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zhihui Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Shaowei Lin
- School of Public Health, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Shiyun Lu
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Hong Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Haijun Tang
- Center for Experimental Research in Clinical Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Xueping Huang
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
11
|
Zhao J, Hu S, Qi Z, Xu X, Long X, Huang A, Liu J, Cheng P. Mitochondrial metabolic reprogramming of macrophages and T cells enhances CD47 antibody-engineered oncolytic virus antitumor immunity. J Immunother Cancer 2024; 12:e009768. [PMID: 39631851 PMCID: PMC11624815 DOI: 10.1136/jitc-2024-009768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Although immunotherapy can reinvigorate immune cells to clear tumors, the response rates are poor in some patients. Here, CD47 antibody-engineered oncolytic viruses (oAd-αCD47) were employed to lyse tumors and activate immunity. The oAd-αCD47 induced comprehensive remodeling of the tumor microenvironment (TME). However, whether the acidic TME affects the antitumor immunotherapeutic effects of oncolytic viruses-αCD47 has not been clarified. METHODS To assess the impact of oAd-αCD47 treatment on the TME, we employed multicolor flow cytometry. Glucose uptake was quantified using 2NBDG, while mitochondrial content was evaluated with MitoTracker FM dye. pH imaging of tumors was performed using the pH-sensitive fluorophore SNARF-4F. Moreover, changes in the calmodulin-dependent protein kinase II (CaMKII)/cyclic AMP activates-responsive element-binding proteins (CREB) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) signaling pathway were confirmed through western blotting and flow cytometry. RESULTS Here, we identified sodium bicarbonate (NaBi) as the potent metabolic reprogramming agent that enhanced antitumor responses in the acidic TME. The combination of NaBi and oAd-αCD47 therapy significantly inhibited tumor growth and produced complete immune control in various tumor-bearing mouse models. Mechanistically, combination therapy mainly reduced the number of regulatory T cells and enriched the ratio of M1-type macrophages TAMs (M1.TAMs) to M2-type macrophages TAMs (M2.TAMs), while decreasing the abundance of PD-1+TIM3+ expression and increasing the expression of CD107a in the CD8+ T cells. Furthermore, the combination therapy enhanced the metabolic function of T cells and macrophages by upregulating PGC1α, a key regulator of mitochondrial biogenesis. This metabolic improvement contributed to a robust antitumor response. Notably, the combination therapy also promoted the generation of memory T cells, suggesting its potential as an effective neoadjuvant treatment for preventing postoperative tumor recurrence and metastasis. CONCLUSIONS Tumor acidic microenvironment impairs mitochondrial energy metabolism in macrophages and T cells inducing oAd-αCD47 immunotherapeutic resistance. NaBi improves the acidity of the TME and activates the CaMKII/CREB/PGC1α mitochondrial biosynthesis signaling pathway, which reprograms the energy metabolism of macrophages and T cells in the TME, and oral NaBi enhances the antitumor effect of oAd-αCD47.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shichuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongbing Qi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xianglin Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Long
- Department of Oncology, Guangan People’s Hospital, Sichuan, Guangan, China
| | - Anliang Huang
- Department of Pathology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Cifric S, Turi M, Folino P, Clericuzio C, Barello F, Maciel T, Anderson KC, Gulla A. DAMPening Tumor Immune Escape: The Role of Endoplasmic Reticulum Chaperones in Immunogenic Chemotherapy. Antioxid Redox Signal 2024; 41:661-674. [PMID: 38366728 DOI: 10.1089/ars.2024.0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Significance: Preclinical and clinical research in the past two decades has redefined the mechanism of action of some chemotherapeutics that are able to activate the immune system against cancer when cell death is perceived by the immune cells. This immunogenic cell death (ICD) activates antigen-presenting cells (APCs) and T cells to induce immune-mediated tumor clearance. One of the key requirements to achieve this effect is the externalization of the damage-associated molecular patterns (DAMPs), molecules released or exposed by cancer cells during ICD that increase the visibility of the cancer cells by the immune system. Recent Advances: In this review, we focus on the role of calreticulin (CRT) and other endoplasmic reticulum (ER) chaperones, such as the heat-shock proteins (HSPs) and the protein disulfide isomerases (PDIs), as surface-exposed DAMPs. Once exposed on the cell membrane, these proteins shift their role from that of ER chaperone and regulator of Ca2+ and protein homeostasis to act as an immunogenic signal for APCs, driving dendritic cell (DC)-mediated phagocytosis and T-mediated antitumor response. Critical Issues: However, cancer cells exploit several mechanisms of resistance to immune attack, including subverting the exposure of ER chaperones on their surface to avoid immune recognition. Future Directions: Overcoming these mechanisms of resistance represents a potential therapeutic opportunity to improve cancer treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- Selma Cifric
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcello Turi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pietro Folino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Cole Clericuzio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tallya Maciel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
13
|
DeVries SA, Dimovasili C, Medalla M, Moore TL, Rosene DL. Dysregulated C1q and CD47 in the aging monkey brain: association with myelin damage, microglia reactivity, and cognitive decline. Front Immunol 2024; 15:1426975. [PMID: 39399501 PMCID: PMC11466761 DOI: 10.3389/fimmu.2024.1426975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Normal aging, though lacking widespread neurodegeneration, is nevertheless characterized by cognitive impairment in learning, memory, and executive function. The aged brain is spared from neuron loss, but white matter is lost and damage to myelin sheaths accumulates. This myelin damage is strongly associated with cognitive impairment. Although the cause of the myelin damage is not known, microglia dysregulation is a likely contributor. Immunologic proteins interact with microglial receptors to modulate microglia-mediated phagocytosis, which mediates myelin damage clearance and turn-over. Two such proteins, "eat me" signal C1q and "don't eat me" signal CD47, act in opposition with microglia. Both C1q and CD47 have been implicated in Multiple Sclerosis, a demyelinating disease, but whether they play a role in age-related myelin pathology is currently unknown. The present study investigates C1q and CD47 in relation to age-related myelin degeneration using multilabel immunofluorescence, RNAscope, and confocal microscopy in the cingulum bundle of male and female rhesus monkeys across the lifespan. Our findings showed significant age-related elevation in C1q localized to myelin basic protein, and this increase is associated with more severe cognitive impairment. In contrast, CD47 localization to myelin decreased in middle age and oligodendrocyte expression of CD47 RNA decreased with age. Lastly, microglia reactivity increased with age in association with the changes in C1q and CD47. Together, these results suggest disruption in the balance of "eat me" and "don't eat me" signals during normal aging, biasing microglia toward increased reactivity and phagocytosis of myelin, resulting in cognitive deficits.
Collapse
Affiliation(s)
- Sarah A. DeVries
- Laboratory for Cognitive Neurobiology, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Neural Circuits and Ultrastructure, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Tara L. Moore
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Laboratory of Interventions for Cortical Injury and Cognitive Decline, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Douglas L. Rosene
- Laboratory for Cognitive Neurobiology, Dept of Anatomy & Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
14
|
de Deus JL, Faborode OS, Nandi S. Synaptic Pruning by Microglia: Lessons from Genetic Studies in Mice. Dev Neurosci 2024:1-21. [PMID: 39265565 DOI: 10.1159/000541379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Neural circuits are subjected to refinement throughout life. The dynamic addition and elimination (pruning) of synapses are necessary for maturation of neural circuits and synaptic plasticity. Due to their phagocytic nature, microglia have been considered as the primary mediators of synaptic pruning. Synaptic pruning can strengthen an active synapse by removing excess weaker synapses during development. Inappropriate synaptic pruning can often influence a disease outcome or an injury response. SUMMARY This review offers a focused discussion on microglial roles in synaptic pruning, based on the evidence gathered from genetic manipulations in mice. Genetically labeled microglia and synapses often allow assessment of their interactions in real time. Further manipulations involving synaptically localized molecules, neuronally or glial-derived diffusible factors, and their respective cognate receptors in microglia provide critical evidence in support of a direct role of microglia in synaptic pruning. KEY MESSAGE We discuss microglial contact-dependent "eat-me," "don't-eat-me," and "find-me" signals, as well as recently identified noncontact pruning, under the contexts of neural circuit, brain region, developmental window, and an injury or a disease state.
Collapse
Affiliation(s)
- Junia Lara de Deus
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | | | - Sayan Nandi
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
15
|
Marin-Lopez A, Huck JD, Esterly AT, Azcutia V, Rosen C, Garcia-Milian R, Sefik E, Vidal-Pedrola G, Raduwan H, Chen TY, Arora G, Halene S, Shaw AC, Palm NW, Flavell RA, Parkos CA, Thangamani S, Ring AM, Fikrig E. The human CD47 checkpoint is targeted by an immunosuppressive Aedes aegypti salivary factor to enhance arboviral skin infectivity. Sci Immunol 2024; 9:eadk9872. [PMID: 39121194 PMCID: PMC11924945 DOI: 10.1126/sciimmunol.adk9872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/11/2024]
Abstract
The Aedes aegypti mosquito is a vector of many infectious agents, including flaviviruses such as Zika virus. Components of mosquito saliva have pleomorphic effects on the vertebrate host to enhance blood feeding, and these changes also create a favorable niche for pathogen replication and dissemination. Here, we demonstrate that human CD47, which is known to be involved in various immune processes, interacts with a 34-kilodalton mosquito salivary protein named Nest1. Nest1 is up-regulated in blood-fed female A. aegypti and facilitates Zika virus dissemination in human skin explants. Nest1 has a stronger affinity for CD47 than its natural ligand, signal regulatory protein α, competing for binding at the same interface. The interaction between Nest1 with CD47 suppresses phagocytosis by human macrophages and inhibits proinflammatory responses by white blood cells, thereby suppressing antiviral responses in the skin. This interaction elucidates how an arthropod protein alters the human response to promote arbovirus infectivity.
Collapse
Affiliation(s)
- Alejandro Marin-Lopez
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John D Huck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Allen T Esterly
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Veronica Azcutia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Connor Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gemma Vidal-Pedrola
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Xiao L, Zhang L, Guo C, Xin Q, Gu X, Jiang C, Wu J. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity. Cancer Commun (Lond) 2024; 44:791-832. [PMID: 38923737 PMCID: PMC11260773 DOI: 10.1002/cac2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.
Collapse
Affiliation(s)
- Lingjun Xiao
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Louqian Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Ciliang Guo
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| |
Collapse
|
17
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
18
|
Lu Q, Li H, Wu Z, Zhu Z, Zhang Z, Yang D, Tong A. BCMA/CD47-directed universal CAR-T cells exhibit excellent antitumor activity in multiple myeloma. J Nanobiotechnology 2024; 22:279. [PMID: 38783333 PMCID: PMC11112799 DOI: 10.1186/s12951-024-02512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND BCMA-directed autologous chimeric antigen receptor T (CAR-T) cells have shown excellent clinical efficacy in relapsed or refractory multiple myeloma (RRMM), however, the current preparation process for autologous CAR-T cells is complicated and costly. Moreover, the upregulation of CD47 expression has been observed in multiple myeloma, and anti-CD47 antibodies have shown remarkable results in clinical trials. Therefore, we focus on the development of BCMA/CD47-directed universal CAR-T (UCAR-T) cells to improve these limitations. METHODS In this study, we employed phage display technology to screen nanobodies against BCMA and CD47 protein, and determined the characterization of nanobodies. Furthermore, we simultaneously disrupted the endogenous TRAC and B2M genes of T cells using CRISPR/Cas9 system to generate TCR and HLA double knock-out T cells, and developed BCMA/CD47-directed UCAR-T cells and detected the antitumor activity in vitro and in vivo. RESULTS We obtained fourteen and one specific nanobodies against BCMA and CD47 protein from the immunized VHH library, respectively. BCMA/CD47-directed UCAR-T cells exhibited superior CAR expression (89.13-98.03%), and effectively killing primary human MM cells and MM cell lines. BCMA/CD47-directed UCAR-T cells demonstrated excellent antitumor activity against MM and prolonged the survival of tumor-engrafted NCG mice in vivo. CONCLUSIONS This work demonstrated that BCMA/CD47-directed UCAR-T cells exhibited potent antitumor activity against MM in vitro and in vivo, which provides a potential strategy for the development of a novel "off-the-shelf" cellular immunotherapies for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiguo Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhixiong Zhu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Aiping Tong
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
19
|
Du R, Tripathi S, Najem H, Brat DJ, Lukas RV, Zhang P, Heimberger AB. Glioblastoma Phagocytic Cell Death: Balancing the Opportunities for Therapeutic Manipulation. Cells 2024; 13:823. [PMID: 38786045 PMCID: PMC11119757 DOI: 10.3390/cells13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Macrophages and microglia are professional phagocytes that sense and migrate toward "eat-me" signals. The role of phagocytic cells is to maintain homeostasis by engulfing senescent or apoptotic cells, debris, and abnormally aggregated macromolecules. Usually, dying cells send out "find-me" signals, facilitating the recruitment of phagocytes. Healthy cells can also promote or inhibit the phagocytosis phenomenon of macrophages and microglia by tuning the balance between "eat-me" and "don't-eat-me" signals at different stages in their lifespan, while the "don't-eat-me" signals are often hijacked by tumor cells as a mechanism of immune evasion. Using a combination of bioinformatic analysis and spatial profiling, we delineate the balance of the "don't-eat-me" CD47/SIRPα and "eat-me" CALR/STC1 ligand-receptor interactions to guide therapeutic strategies that are being developed for glioblastoma sequestered in the central nervous system (CNS).
Collapse
Affiliation(s)
- Ruochen Du
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Daniel J. Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Rimas V. Lukas
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.D.); (S.T.); (H.N.); (P.Z.)
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
20
|
Chen L, Zhao X, Liu X, Ouyang Y, Xu C, Shi Y. Development of small molecule drugs targeting immune checkpoints. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0034. [PMID: 38727005 PMCID: PMC11131045 DOI: 10.20892/j.issn.2095-3941.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are used to relieve and refuel anti-tumor immunity by blocking the interaction, transcription, and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints. Thousands of small molecule drugs or biological materials, especially antibody-based ICIs, are actively being studied and antibodies are currently widely used. Limitations, such as anti-tumor efficacy, poor membrane permeability, and unneglected tolerance issues of antibody-based ICIs, remain evident but are thought to be overcome by small molecule drugs. Recent structural studies have broadened the scope of candidate immune checkpoint molecules, as well as innovative chemical inhibitors. By way of comparison, small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features. Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions, including immune regulation, anti-angiogenesis, and cell cycle regulation. In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins, which will lay the foundation for further exploration.
Collapse
Affiliation(s)
- Luoyi Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinchen Zhao
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaowei Liu
- Institute for Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
21
|
DeVries SA, Conner B, Dimovasili C, Moore TL, Medalla M, Mortazavi F, Rosene DL. Immune proteins C1q and CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive impairment. GeroScience 2024; 46:2503-2519. [PMID: 37989825 PMCID: PMC10828237 DOI: 10.1007/s11357-023-01014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.
Collapse
Affiliation(s)
- Sarah A DeVries
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA.
| | - Bryce Conner
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Maria Medalla
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
22
|
Vaccaro K, Allen J, Whitfield TW, Maoz A, Reeves S, Velarde J, Yang D, Meglan A, Ribeiro J, Blandin J, Phan N, Bell GW, Hata AN, Weiskopf K. Targeted therapies prime oncogene-driven lung cancers for macrophage-mediated destruction. J Clin Invest 2024; 134:e169315. [PMID: 38483480 PMCID: PMC11060739 DOI: 10.1172/jci169315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Macrophage immune checkpoint inhibitors, such as anti-CD47 antibodies, show promise in clinical trials for solid and hematologic malignancies. However, the best strategies to use these therapies remain unknown, and ongoing studies suggest they may be most effective when used in combination with other anticancer agents. Here, we developed an unbiased, high-throughput screening platform to identify drugs that render lung cancer cells more vulnerable to macrophage attack, and we found that therapeutic synergy exists between genotype-directed therapies and anti-CD47 antibodies. In validation studies, we found that the combination of genotype-directed therapies and CD47 blockade elicited robust phagocytosis and eliminated persister cells in vitro and maximized antitumor responses in vivo. Importantly, these findings broadly applied to lung cancers with various RTK/MAPK pathway alterations - including EGFR mutations, ALK fusions, or KRASG12C mutations. We observed downregulation of β2-microglobulin and CD73 as molecular mechanisms contributing to enhanced sensitivity to macrophage attack. Our findings demonstrate that dual inhibition of the RTK/MAPK pathway and the CD47/SIRPa axis is a promising immunotherapeutic strategy. Our study provides strong rationale for testing this therapeutic combination in patients with lung cancers bearing driver mutations.
Collapse
Affiliation(s)
- Kyle Vaccaro
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Juliet Allen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Troy W. Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Asaf Maoz
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sarah Reeves
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - José Velarde
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Dian Yang
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Anna Meglan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Juliano Ribeiro
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jasmine Blandin
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Nicole Phan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kipp Weiskopf
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
23
|
Gracia-Hernandez M, Yende AS, Gajendran N, Alahmadi Z, Li X, Munoz Z, Tan K, Noonepalle S, Shibata M, Villagra A. Targeting HDAC6 improves anti-CD47 immunotherapy. J Exp Clin Cancer Res 2024; 43:60. [PMID: 38414061 PMCID: PMC10898070 DOI: 10.1186/s13046-024-02982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Cancer cells can overexpress CD47, an innate immune checkpoint that prevents phagocytosis upon interaction with signal regulatory protein alpha (SIRPα) expressed in macrophages and other myeloid cells. Several clinical trials have reported that CD47 blockade reduces tumor growth in hematological malignancies. However, CD47 blockade has shown modest results in solid tumors, including melanoma. Our group has demonstrated that histone deacetylase 6 inhibitors (HDAC6is) have immunomodulatory properties, such as controlling macrophage phenotype and inflammatory properties. However, the molecular and cellular mechanisms controlling these processes are not fully understood. In this study, we evaluated the role of HDAC6 in regulating the CD47/SIRPα axis and phagocytosis in macrophages. METHODS We tested the role of HDAC6is, especially Nexturastat A, in regulating macrophage phenotype and phagocytic function using bone marrow-derived macrophages and macrophage cell lines. The modulation of the CD47/SIRPα axis and phagocytosis by HDAC6is was investigated using murine and human melanoma cell lines and macrophages. Phagocytosis was evaluated via coculture assays of macrophages and melanoma cells by flow cytometry and immunofluorescence. Lastly, to evaluate the antitumor activity of Nexturastat A in combination with anti-CD47 or anti-SIRPα antibodies, we performed in vivo studies using the SM1 and/or B16F10 melanoma mouse models. RESULTS We observed that HDAC6is enhanced the phenotype of antitumoral M1 macrophages while decreasing the protumoral M2 phenotype. In addition, HDAC6 inhibition diminished the expression of SIRPα, increased the expression of other pro-phagocytic signals in macrophages, and downregulated CD47 expression in mouse and human melanoma cells. This regulatory role on the CD47/SIRPα axis translated into enhanced antitumoral phagocytic capacity of macrophages treated with Nexturastat A and anti-CD47. We also observed that the systemic administration of HDAC6i enhanced the in vivo antitumor activity of anti-CD47 blockade in melanoma by modulating macrophage and natural killer cells in the tumor microenvironment. However, Nexturastat A did not enhance the antitumor activity of anti-SIRPα despite its modulation of macrophage populations in the SM1 tumor microenvironment. CONCLUSIONS Our results demonstrate the critical regulatory role of HDAC6 in phagocytosis and innate immunity for the first time, further underscoring the use of these inhibitors to potentiate CD47 immune checkpoint blockade therapeutic strategies.
Collapse
Affiliation(s)
- Maria Gracia-Hernandez
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Ashutosh S Yende
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, USA
| | - Nithya Gajendran
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Zubaydah Alahmadi
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Xintang Li
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Zuleima Munoz
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Karen Tan
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Satish Noonepalle
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA
| | - Maho Shibata
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, USA
| | - Alejandro Villagra
- Oncology Department, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
24
|
Lai J, Pan Q, Chen G, Liu Y, Chen C, Pan Y, Liu L, Zeng B, Yu L, Xu Y, Tang J, Yang Y, Rao L. Triple Hybrid Cellular Nanovesicles Promote Cardiac Repair after Ischemic Reperfusion. ACS NANO 2024; 18:4443-4455. [PMID: 38193813 DOI: 10.1021/acsnano.3c10784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The management of myocardial ischemia/reperfusion (I/R) damage in the context of reperfusion treatment remains a significant hurdle in the field of cardiovascular disorders. The injured lesions exhibit distinctive features, including abnormal accumulation of necrotic cells and subsequent inflammatory response, which further exacerbates the impairment of cardiac function. Here, we report genetically engineered hybrid nanovesicles (hNVs), which contain cell-derived nanovesicles overexpressing high-affinity SIRPα variants (SαV-NVs), exosomes (EXOs) derived from human mesenchymal stem cells (MSCs), and platelet-derived nanovesicles (PLT-NVs), to facilitate the necrotic cell clearance and inhibit the inflammatory responses. Mechanistically, the presence of SαV-NVs suppresses the CD47-SIRPα interaction, leading to the promotion of the macrophage phagocytosis of dead cells, while the component of EXOs aids in alleviating inflammatory responses. Moreover, the PLT-NVs endow hNVs with the capacity to evade immune surveillance and selectively target the infarcted area. In I/R mouse models, coadministration of SαV-NVs and EXOs showed a notable synergistic effect, leading to a significant enhancement in the left ventricular ejection fraction (LVEF) on day 21. These findings highlight that the hNVs possess the ability to alleviate myocardial inflammation, minimize infarct size, and improve cardiac function in I/R models, offering a simple, safe, and robust strategy in boosting cardiac repair after I/R.
Collapse
Affiliation(s)
- Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
25
|
Zhang Y, Qiang Y, Li H, Li G, Lu L, Dao M, Karniadakis GE, Popel AS, Zhao C. Signaling-biophysical modeling unravels mechanistic control of red blood cell phagocytosis by macrophages in sickle cell disease. PNAS NEXUS 2024; 3:pgae031. [PMID: 38312226 PMCID: PMC10833451 DOI: 10.1093/pnasnexus/pgae031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Red blood cell (RBC) aging manifests through progressive changes in cell morphology, rigidity, and expression of membrane proteins. To maintain the quality of circulating blood, splenic macrophages detect the biochemical signals and biophysical changes of RBCs and selectively clear them through erythrophagocytosis. In sickle cell disease (SCD), RBCs display alterations affecting their interaction with macrophages, leading to aberrant phagocytosis that may cause life-threatening spleen sequestration crises. To illuminate the mechanistic control of RBC engulfment by macrophages in SCD, we integrate a system biology model of RBC-macrophage signaling interactions with a biophysical model of macrophage engulfment, as well as in vitro phagocytosis experiments using the spleen-on-a-chip technology. Our modeling framework accurately predicts the phagocytosis dynamics of RBCs under different disease conditions, reveals patterns distinguishing normal and sickle RBCs, and identifies molecular targets including Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP1) and cluster of differentiation 47 (CD47)/signal regulatory protein α (SIRPα) as therapeutic targets to facilitate the controlled clearance of sickle RBCs in the spleen.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Guansheng Li
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Lu Lu
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
26
|
Deng Z, Loyher PL, Lazarov T, Li L, Shen Z, Bhinder B, Yang H, Zhong Y, Alberdi A, Massague J, Sun JC, Benezra R, Glass CK, Elemento O, Iacobuzio-Donahue CA, Geissmann F. The nuclear factor ID3 endows macrophages with a potent anti-tumour activity. Nature 2024; 626:864-873. [PMID: 38326607 PMCID: PMC10881399 DOI: 10.1038/s41586-023-06950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.
Collapse
Affiliation(s)
- Zihou Deng
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Li Li
- Graduate Center, City University of New York, New York, NY, USA
| | - Zeyang Shen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Zhong
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joan Massague
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher K Glass
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell, New York, NY, USA
| | | | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
27
|
Zhao P, Xie L, Yu L, Wang P. Targeting CD47-SIRPα axis for Hodgkin and non-Hodgkin lymphoma immunotherapy. Genes Dis 2024; 11:205-217. [PMID: 37588232 PMCID: PMC10425755 DOI: 10.1016/j.gendis.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
The interaction between cluster of differentiation 47 (CD47) and signal regulatory protein α (SIRPα) protects healthy cells from macrophage attack, which is crucial for maintaining immune homeostasis. Overexpression of CD47 occurs widely across various tumor cell types and transmits the "don't eat me" signal to macrophages to avoid phagocytosis through binding to SIRPα. Blockade of the CD47-SIRPα axis is therefore a promising approach for cancer treatment. Lymphoma is the most common hematological malignancy and is an area of unmet clinical need. This review mainly described the current strategies targeting the CD47-SIRPα axis, including antibodies, SIRPα Fc fusion proteins, small molecule inhibitors, and peptides both in preclinical studies and clinical trials with Hodgkin lymphoma and non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Longyan Xie
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ping Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
28
|
Zhang X, Lin Y, Xin J, Zhang Y, Yang K, Luo Y, Wang B. Red blood cells in biology and translational medicine: natural vehicle inspires new biomedical applications. Theranostics 2024; 14:220-248. [PMID: 38164142 PMCID: PMC10750198 DOI: 10.7150/thno.87425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
Red blood cells (RBCs) are the most abundant cell type in the blood, and play a critical role in oxygen transport. With the development of nanobiotechnology and synthetic biology, scientists have found multiple ways to take advantage of the characteristics of RBCs, such as their long circulation time, to construct universal RBCs, develop drug delivery systems, and transform cell therapies for cancer and other diseases. This article reviews the component and aging mystery of RBCs, the methods for the applied universal RBCs, and the application prospects of RBCs, such as the engineering modification of RBCs used in cytopharmaceuticals for drug delivery and immunotherapy. Finally, we summarize some perspectives on the biological features of RBCs and provide further insights into translational medicine.
Collapse
Affiliation(s)
- Xueyun Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310009
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China, 310058
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yindan Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310009
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310009
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China, 310029
| | - Ying Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310009
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China, 310029
| | | | - Yan Luo
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China, 310058
- Department of Biochemistry & Cancer Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310009
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China, 310029
- Cancer Center, Zhejiang University, Hangzhou, China, 310029
| |
Collapse
|
29
|
Du EJ, Muench MO. A Monocytic Barrier to the Humanization of Immunodeficient Mice. Curr Stem Cell Res Ther 2024; 19:959-980. [PMID: 37859310 PMCID: PMC10997744 DOI: 10.2174/011574888x263597231001164351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells - monocytes, macrophages, and dendritic cells - in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.
Collapse
Affiliation(s)
- Emily J. Du
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
| | - Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
30
|
Shaik SM, Cao Y, Gogola JV, Dodiya HB, Zhang X, Boutej H, Han W, Kriz J, Sisodia SS. Translational profiling identifies sex-specific metabolic and epigenetic reprogramming of cortical microglia/macrophages in APPPS1-21 mice with an antibiotic-perturbed-microbiome. Mol Neurodegener 2023; 18:95. [PMID: 38104136 PMCID: PMC10725591 DOI: 10.1186/s13024-023-00668-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Microglia, the brain-resident macrophages perform immune surveillance and engage with pathological processes resulting in phenotype changes necessary for maintaining homeostasis. In preceding studies, we showed that antibiotic-induced perturbations of the gut microbiome of APPPS1-21 mice resulted in significant attenuation in Aβ amyloidosis and altered microglial phenotypes that are specific to male mice. The molecular events underlying microglial phenotypic transitions remain unclear. Here, by generating 'APPPS1-21-CD11br' reporter mice, we investigated the translational state of microglial/macrophage ribosomes during their phenotypic transition and in a sex-specific manner. METHODS Six groups of mice that included WT-CD11br, antibiotic (ABX) or vehicle-treated APPPS1-21-CD11br males and females were sacrificed at 7-weeks of age (n = 15/group) and used for immunoprecipitation of microglial/macrophage polysomes from cortical homogenates using anti-FLAG antibody. Liquid chromatography coupled to tandem mass spectrometry and label-free quantification was used to identify newly synthesized peptides isolated from polysomes. RESULTS We show that ABX-treatment leads to decreased Aβ levels in male APPPS1-21-CD11br mice with no significant changes in females. We identified microglial/macrophage polypeptides involved in mitochondrial dysfunction and altered calcium signaling that are associated with Aβ-induced oxidative stress. Notably, female mice also showed downregulation of newly-synthesized ribosomal proteins. Furthermore, male mice showed an increase in newly-synthesized polypeptides involved in FcγR-mediated phagocytosis, while females showed an increase in newly-synthesized polypeptides responsible for actin organization associated with microglial activation. Next, we show that ABX-treatment resulted in substantial remodeling of the epigenetic landscape, leading to a metabolic shift that accommodates the increased bioenergetic and biosynthetic demands associated with microglial polarization in a sex-specific manner. While microglia in ABX-treated male mice exhibited a metabolic shift towards a neuroprotective phenotype that promotes Aβ clearance, microglia in ABX-treated female mice exhibited loss of energy homeostasis due to persistent mitochondrial dysfunction and impaired lysosomal clearance that was associated with inflammatory phenotypes. CONCLUSIONS Our studies provide the first snapshot of the translational state of microglial/macrophage cells in a mouse model of Aβ amyloidosis that was subject to ABX treatment. ABX-mediated changes resulted in metabolic reprogramming of microglial phenotypes to modulate immune responses and amyloid clearance in a sex-specific manner. This microglial plasticity to support neuro-energetic homeostasis for its function based on sex paves the path for therapeutic modulation of immunometabolism for neurodegeneration.
Collapse
Affiliation(s)
- Shabana M Shaik
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yajun Cao
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Joseph V Gogola
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hemraj B Dodiya
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Xulun Zhang
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hejer Boutej
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - Weinong Han
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | | |
Collapse
|
31
|
Chen S, Zhan S, Ding S, Zhang Q, Xuan H, Zhang X, Cao L. B7-H3 and CD47 co-expression in gastric cancer is a predictor of poor prognosis and potential targets for future dual-targeting immunotherapy. J Cancer Res Clin Oncol 2023; 149:16609-16621. [PMID: 37715830 DOI: 10.1007/s00432-023-05408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent types of cancer worldwide. B7-H3, an immune checkpoint molecule with promising potential, has been found to be overexpressed in various cancers. CD47 is an anti-phagocytic molecule that interacts with the signal regulatory protein alpha (SIRPα) to affect phagocytes. The relationship between the expression of B7-H3 and CD47, two potential therapeutic targets found in tumor cells, remains unknown. In this study, our objective is to investigate the clinical significance of co-expression of B7-H3 and CD47, as well as the potential therapeutic value of combination therapy in GC. METHODS We utilized immunohistochemistry (IHC) to assess the expression of B7-H3, CD47, CD68, CD86 and CD163 in tissue microarrays obtained from 268 GC patients who underwent surgeries. Western blotting was employed to assess the protein level of B7-H3 and CD47 in GC tissues. The co-localization of B7-H3/CD47 and CD68 in GC tissues was determined using multiplex immunohistochemistry (m-IHC). We further verified the relationship between B7-H3/CD47 and macrophage infiltration via flow cytometry. To estimate the clinical outcomes of patients from different subgroups, we employed the Kaplan-Meier curve and the Cox model. RESULTS Among the 268 GC cases, a total of 180 cases exhibited positive expression of B7-H3, while 122 cases showed positive expression of CD47. In fresh GC clinical tissues, B7-H3 and CD47 protein level was also higher in tumor tissue than in adjacent normal tissue. Remarkably, 91 cases demonstrated co-expression of B7-H3 and CD47. We observed a significant correlation between B7-H3 expression and tumor stage (P = 0.001), differentiation (P = 0.045), and depth (P = 0.003). Additionally, there was a significant association between B7-H3 and CD47 expression (P = 0.018). The percentage of B7-H3 and CD47 double positive cells in fresh GC tumor tissues were elevated compared with control adjacent tissues regardless of CD45- or CD45+ cells (P = 0.0029, P = 0.0012). Patients with high B7-H3 or CD47 expression had significantly lower overall survival (OS) rates compared to those with low expression levels (P = 0.0176 or P = 0.0042). Surprisingly, patients with combined high expression of B7-H3 and CD47 exhibited a considerably worse prognosis than others (P = 0.0007). Univariate analysis revealed that cases with high expression of B7-H3, CD47, or both had significantly higher hazard ratios (HR) than cases with low expression of these markers. Furthermore, the results of multivariate analysis indicated that B7-H3/CD47 co-expression and CD47 expression alone are independent prognostic factors for overall survival. Moreover, significant correlations were observed between B7-H3 and CD68 expression, CD47 and CD68 expression, as well as B7-H3/CD47 co-expression and CD68 expression in GC patients (P < 0.001, P = 0.003, and P < 0.001). Flow cytometry test showed that the percentage of CD68-positive cells but not CD86-positive cells among B7-H3-positive or CD47-positive immune cells in GC tumor tissue was elevated significantly compared with adjacent tissue. CONCLUSION Our findings demonstrated a correlation between B7-H3 expression and CD47 expression in GC patient tissues. Co-expression of B7-H3 and CD47 can serve as an indicator of poor prognosis in GC patients. In GC tumor tissue, but not adjacent tissue, B7-H3 and CD47 expression was accompanied with macrophage infiltration.
Collapse
Affiliation(s)
- Siji Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
| | - Shenghua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Sisi Ding
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
| | - Qiange Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
| | - Hanqin Xuan
- Department of Pathology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China
| | - Lei Cao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 178 Ganjiang East Road, Suzhou, 215006, China.
| |
Collapse
|
32
|
Aizaz M, Khan A, Khan F, Khan M, Musad Saleh EA, Nisar M, Baran N. The cross-talk between macrophages and tumor cells as a target for cancer treatment. Front Oncol 2023; 13:1259034. [PMID: 38033495 PMCID: PMC10682792 DOI: 10.3389/fonc.2023.1259034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Macrophages represent an important component of the innate immune system. Under physiological conditions, macrophages, which are essential phagocytes, maintain a proinflammatory response and repair damaged tissue. However, these processes are often impaired upon tumorigenesis, in which tumor-associated macrophages (TAMs) protect and support the growth, proliferation, and invasion of tumor cells and promote suppression of antitumor immunity. TAM abundance is closely associated with poor outcome of cancer, with impediment of chemotherapy effectiveness and ultimately a dismal therapy response and inferior overall survival. Thus, cross-talk between cancer cells and TAMs is an important target for immune checkpoint therapies and metabolic interventions, spurring interest in it as a therapeutic vulnerability for both hematological cancers and solid tumors. Furthermore, targeting of this cross-talk has emerged as a promising strategy for cancer treatment with the antibody against CD47 protein, a critical macrophage checkpoint recognized as the "don't eat me" signal, as well as other metabolism-focused strategies. Therapies targeting CD47 constitute an important milestone in the advancement of anticancer research and have had promising effects on not only phagocytosis activation but also innate and adaptive immune system activation, effectively counteracting tumor cells' evasion of therapy as shown in the context of myeloid cancers. Targeting of CD47 signaling is only one of several possibilities to reverse the immunosuppressive and tumor-protective tumor environment with the aim of enhancing the antitumor response. Several preclinical studies identified signaling pathways that regulate the recruitment, polarization, or metabolism of TAMs. In this review, we summarize the current understanding of the role of macrophages in cancer progression and the mechanisms by which they communicate with tumor cells. Additionally, we dissect various therapeutic strategies developed to target macrophage-tumor cell cross-talk, including modulation of macrophage polarization, blockade of signaling pathways, and disruption of physical interactions between leukemia cells and macrophages. Finally, we highlight the challenges associated with tumor hypoxia and acidosis as barriers to effective cancer therapy and discuss opportunities for future research in this field.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Aakif Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faisal Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Maryum Nisar
- School of Interdisciplinary Engineering & Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
33
|
Patel SA, Bello E, Wilks A, Gerber JM, Sadagopan N, Cerny J. Harnessing autologous immune effector mechanisms in acute myeloid leukemia: 2023 update of trials and tribulations. Leuk Res 2023; 134:107388. [PMID: 37729719 PMCID: PMC10947503 DOI: 10.1016/j.leukres.2023.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Numerous recent advances have been made in therapeutic approaches toward acute myeloid leukemia (AML). Since 2017, we have seen eleven novel Food & Drug Administration (FDA)-approved medications for AML, all of which extend beyond the classical cytarabine-based cytostatic chemotherapy. In the recent two decades, the role of immune surveillance in AML has been intensively investigated. The power of one's own innate and adaptive immunity has been harnessed pharmacologically toward the goal of clearance of AML cells. Specifically, pre-clinical studies have shown great promise for antibodies that disinhibit T cells and macrophages by blocking checkpoint receptors within the immunologic synapse, thereby resulting in the elimination of AML cells. Anti-CD33 CAR-T therapies and anti-CD3/CD123 bispecific antibodies have also exhibited encouraging results in pre-clinical and early clinical studies. However, despite these translational efforts, we currently have no immune-based therapies for AML on the market, with the exception of gemtuzumab ozogamicin. In this focused review, we discuss molecular target validation and the most relevant clinical updates for immune-based experimental therapeutics including anti-CD47 monoclonal antibodies, CAR-T therapies, and bispecific T cell engagers. We highlight barriers to the clinical translation of these therapies in AML, and we propose solutions to optimize the manufacturing and delivery of the most novel immune-based therapies in the pipeline.
Collapse
Affiliation(s)
- Shyam A Patel
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA
| | - Elisa Bello
- UMass Chan Medical School, Worcester, MA, USA
| | - Andrew Wilks
- Dept. of Medicine - Division of Hematology and Medical Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan M Gerber
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA
| | - Narayanan Sadagopan
- MedStar Health - Georgetown/Washington Hospital Center Hematology and Medical Oncology, Washington, DC, USA
| | - Jan Cerny
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Gitik M, Elberg G, Reichert F, Tal M, Rotshenker S. Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages. J Neuroinflammation 2023; 20:243. [PMID: 37872624 PMCID: PMC10594853 DOI: 10.1186/s12974-023-02929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS Using CD47 null (CD47-/-) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47-/- mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47-/- mice. Furthermore, CD47-deleted macrophages from CD47-/- mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS).
Collapse
Affiliation(s)
- Miri Gitik
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
- Genomic Research Branch, Division of Neuroscience and Basic Behavioral Science (DNBBS), National Institute of Mental Health (NIMH), NIH, Rockville, USA
| | - Gerard Elberg
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Fanny Reichert
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Michael Tal
- Medical Neurobiology, Faculties of Medicine and Dentistry, Center for Research on Pain, Hebrew University, Jerusalem, Israel
| | - Shlomo Rotshenker
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
35
|
Wilmink M, Spalinger MR. SKAP2-A Molecule at the Crossroads for Integrin Signalling and Immune Cell Migration and Function. Biomedicines 2023; 11:2788. [PMID: 37893161 PMCID: PMC10603853 DOI: 10.3390/biomedicines11102788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Src-kinase associated protein 2 (SKAP2) is an intracellular scaffolding protein that is broadly expressed in immune cells and is involved in various downstream signalling pathways, including, but not limited to, integrin signalling. SKAP2 has a wide range of binding partners and fine-tunes the rearrangement of the cytoskeleton, thereby regulating cell migration and immune cell function. Mutations in SKAP2 have been associated with several inflammatory disorders such as Type 1 Diabetes and Crohn's disease. Rodent studies showed that SKAP2 deficient immune cells have diminished pathogen clearance due to impaired ROS production and/or phagocytosis. However, there is currently no in-depth understanding of the functioning of SKAP2. Nevertheless, this review summarises the existing knowledge with a focus of its role in signalling cascades involved in cell migration, tissue infiltration and immune cell function.
Collapse
Affiliation(s)
| | - Marianne Rebecca Spalinger
- Department for Gastroenterology and Hepatology, University Hospital Zürich, Sternwartstrasse 14, 8091 Zürich, Switzerland;
| |
Collapse
|
36
|
Abstract
Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.
Collapse
Affiliation(s)
- Jeffrey D Zhu
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Sharma Pooja Tarachand
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Qudrat Abdulwahab
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
37
|
Chen EC, Garcia JS. Immunotherapy for Acute Myeloid Leukemia: Current Trends, Challenges, and Strategies. Acta Haematol 2023; 147:198-218. [PMID: 37673048 DOI: 10.1159/000533990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND In the past decade, there have been significant breakthroughs in immunotherapies for B-cell lymphoid malignancies and multiple myeloma, but progress has been much less for acute myeloid leukemia (AML). Nevertheless, challenge begets innovation and several therapeutic strategies are under investigation. SUMMARY In this review, we review the state of the art in AML immunotherapy including CD33- and CD123-targeted agents, immune checkpoint inhibition, and adoptive cell therapy strategies. We also share conceptual frameworks for approaching the growing catalog of investigational AML immunotherapies and propose future directions for the field. KEY MESSAGES Immunotherapies for AML face significant challenges but novel strategies are in development.
Collapse
Affiliation(s)
- Evan C Chen
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Dooling LJ, Andrechak JC, Hayes BH, Kadu S, Zhang W, Pan R, Vashisth M, Irianto J, Alvey CM, Ma L, Discher DE. Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nat Biomed Eng 2023; 7:1081-1096. [PMID: 37095318 PMCID: PMC10791169 DOI: 10.1038/s41551-023-01031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
In solid tumours, the abundance of macrophages is typically associated with a poor prognosis. However, macrophage clusters in tumour-cell nests have been associated with survival in some tumour types. Here, by using tumour organoids comprising macrophages and cancer cells opsonized via a monoclonal antibody, we show that highly ordered clusters of macrophages cooperatively phagocytose cancer cells to suppress tumour growth. In mice with poorly immunogenic tumours, the systemic delivery of macrophages with signal-regulatory protein alpha (SIRPα) genetically knocked out or else with blockade of the CD47-SIRPα macrophage checkpoint was combined with the monoclonal antibody and subsequently triggered the production of endogenous tumour-opsonizing immunoglobulin G, substantially increased the survival of the animals and helped confer durable protection from tumour re-challenge and metastasis. Maximizing phagocytic potency by increasing macrophage numbers, by tumour-cell opsonization and by disrupting the phagocytic checkpoint CD47-SIRPα may lead to durable anti-tumour responses in solid cancers.
Collapse
Affiliation(s)
- Lawrence J Dooling
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C Andrechak
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Brandon H Hayes
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddhant Kadu
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - William Zhang
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruby Pan
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Manasvita Vashisth
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Cory M Alvey
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA
| | - Leyuan Ma
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA.
- Physical Sciences-Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Hsu M, Martin TC, Vyas NS, Desman G, Mendelson K, Horst B, Parsons RE, Celebi JT. B7-H3 drives immunosuppression and Co-targeting with CD47 is a new therapeutic strategy in β-catenin activated melanomas. Pigment Cell Melanoma Res 2023; 36:407-415. [PMID: 37086018 DOI: 10.1111/pcmr.13091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
In melanoma, immune cell infiltration into the tumor is associated with better patient outcomes and response to immunotherapy. T-cell non-inflamed tumors (cold tumors) are associated with tumor cell-intrinsic Wnt/β-catenin activation, and are typically resistant to anti-PD-1 alone or in combination with anti-CTLA-4 therapy. Reversal of the 'cold tumor' phenotype and identifying new effective immunotherapies are challenges. We sought to investigate the role of a newer immunotherapy agent, B7-H3, in this setting. RNA sequencing was used to identify co-targeting strategies upon B7-H3 inhibition in a well-defined preclinical melanoma model driven by β-catenin. We found that immune checkpoint molecule B7-H3 confers a suppressive tumor microenvironment by modulating antiviral signals and innate immunity. B7-H3 inhibition led to an inflamed microenvironment, up-regulation of CD47/SIRPa signaling, and together with blockade of the macrophage checkpoint CD47 resulted in additive antitumor responses. We found that the antitumor effects of the B7-H3/CD47 antibody combination were dependent on cytokine signaling pathways (CCR5/CCL5 and IL4).
Collapse
Affiliation(s)
- Min Hsu
- Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Tiphaine C Martin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nikki S Vyas
- Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Garrett Desman
- Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Karen Mendelson
- Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Basil Horst
- Department of Pathology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julide Tok Celebi
- Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
40
|
Xie D, Feng Z, Yang W, Wang Y, Li R, Zhang S, Zhou Z. A mAb to SIRPα downregulates the priming of naive CD4 + T cell in Primary immune thrombocytopenia. Cell Immunol 2023; 391-392:104757. [PMID: 37660478 DOI: 10.1016/j.cellimm.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
SIRPα is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on monocytes, dendritic cells, and macrophages. Studies recently showed that SIRPα is essential for priming of CD4 + T cells by DCs and for development of Th17 cell-mediated autoimmune diseases. We have now further evaluated the importance of SIRPα and that of its ligand CD47 in primary immune thrombocytopenia (ITP). In this study, we show that there was a low expression state of SIRPα on the surface of monocytes. Treatment of cells culture from ITP patients with a mAb to SIRPα that blocks the binding of SIRPα to CD47 downregulated the ITP response. The abilities of monocytes from ITP patients to stimulate an allogenic MLR were reduced. The proliferation of, and production of IL-2, by CD4 + T cells from ITP patients were inhibited, the Treg cell numbers and the production of IL-10 pairs were upregulated, and the production of TGF-β not was inhibited, by a mAb to SIRPα. Moreover, a mAb to SIRPα, the expression of HLA-DR and CD86 were markedly inhibited and the expression of CD80 was slightly upregulated, on the surface of CD14 + monocytes from ITP patients as compared with healthy subjects. However, blockade of SIRPα increased the secretion of TLR-dependent cytokines TNF-α, IL-6 and IL-1β by PBMCs, which may be considered as a reserve in response to danger signals. These results suggest that SIRPα on monocytes is essential for the priming of naive T cells and the development of ITP. Therefore, SIRPα is a potential therapeutic target for ITP and other autoimmune diseases.
Collapse
Affiliation(s)
- Dongmei Xie
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhihui Feng
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wen Yang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yacan Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Renxia Li
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Shiqi Zhang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zeping Zhou
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China.
| |
Collapse
|
41
|
Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks. Front Immunol 2023; 14:1212476. [PMID: 37691932 PMCID: PMC10484345 DOI: 10.3389/fimmu.2023.1212476] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Immunotherapy has ushered in a new era in cancer treatment, and cancer immunotherapy continues to be rejuvenated. The clinical goal of cancer immunotherapy is to prime host immune system to provide passive or active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs) play an immunomodulatory role in tumor microenvironment (TME) which is closely related to immune escape of tumor cells, thus influence tumor progress. Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs), cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and promise. In this review, we will summarize the recent research advances in tumor immunotherapy, including the molecular mechanisms and clinical effects as well as limitations of immunotherapy.
Collapse
Affiliation(s)
- Rui Rui
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
42
|
Komori S, Saito Y, Nishimura T, Respatika D, Endoh H, Yoshida H, Sugihara R, Iida-Norita R, Afroj T, Takai T, Oduori OS, Nitta E, Kotani T, Murata Y, Kaneko Y, Nitta R, Ohnishi H, Matozaki T. CD47 promotes peripheral T cell survival by preventing dendritic cell-mediated T cell necroptosis. Proc Natl Acad Sci U S A 2023; 120:e2304943120. [PMID: 37549290 PMCID: PMC10440595 DOI: 10.1073/pnas.2304943120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Conventional dendritic cells (cDCs) are required for peripheral T cell homeostasis in lymphoid organs, but the molecular mechanism underlying this requirement has remained unclear. We here show that T cell-specific CD47-deficient (Cd47 ΔT) mice have a markedly reduced number of T cells in peripheral tissues. Direct interaction of CD47-deficient T cells with cDCs resulted in activation of the latter cells, which in turn induced necroptosis of the former cells. The deficiency and cell death of T cells in Cd47 ΔT mice required expression of its receptor signal regulatory protein α on cDCs. The development of CD4+ T helper cell-dependent contact hypersensitivity and inhibition of tumor growth by cytotoxic CD8+ T cells were both markedly impaired in Cd47 ΔT mice. CD47 on T cells thus likely prevents their necroptotic cell death initiated by cDCs and thereby promotes T cell survival and function.
Collapse
Affiliation(s)
- Satomi Komori
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Taichi Nishimura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Datu Respatika
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
- Division of Reconstruction, Oculoplasty, and Oncology, Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta55281, Indonesia
| | - Hiromi Endoh
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Risa Sugihara
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Rie Iida-Norita
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Tania Afroj
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Tomoko Takai
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Okechi S. Oduori
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Yoriaki Kaneko
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma371-8511, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma371-8514, Japan
| | - Takashi Matozaki
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| |
Collapse
|
43
|
Lee DY, Amirthalingam S, Lee C, Rajendran AK, Ahn YH, Hwang NS. Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles. NANOSCALE ADVANCES 2023; 5:3834-3856. [PMID: 37496613 PMCID: PMC10368001 DOI: 10.1039/d3na00198a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Gene therapy is a promising approach for the treatment of many diseases. However, the effective delivery of the cargo without degradation in vivo is one of the major hurdles. With the advent of lipid nanoparticles (LNPs) and cell-derived nanovesicles (CDNs), gene delivery holds a very promising future. The targeting of these nanosystems is a prerequisite for effective transfection with minimal side-effects. In this review, we highlight the emerging strategies utilized for the effective targeting of LNPs and CDNs, and we summarize the preparation methodologies for LNPs and CDNs. We have also highlighted the non-ligand targeting of LNPs toward certain organs based on their composition. It is highly expected that continuing the developments in the targeting approaches of LNPs and CDNs for the delivery system will further promote them in clinical translation.
Collapse
Affiliation(s)
- Dong-Yup Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Young-Hyun Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University Seoul 08826 Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University Seoul 08826 Republic of Korea
- Institute of Engineering Research, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
44
|
Xu S, Wang C, Yang L, Wu J, Li M, Xiao P, Xu Z, Xu Y, Wang K. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy. Front Immunol 2023; 14:1199631. [PMID: 37313405 PMCID: PMC10258331 DOI: 10.3389/fimmu.2023.1199631] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Unprecedented breakthroughs have been made in cancer immunotherapy in recent years. Particularly immune checkpoint inhibitors have fostered hope for patients with cancer. However, immunotherapy still exhibits certain limitations, such as a low response rate, limited efficacy in certain populations, and adverse events in certain tumors. Therefore, exploring strategies that can improve clinical response rates in patients is crucial. Tumor-associated macrophages (TAMs) are the predominant immune cells that infiltrate the tumor microenvironment and express a variety of immune checkpoints that impact immune functions. Mounting evidence indicates that immune checkpoints in TAMs are closely associated with the prognosis of patients with tumors receiving immunotherapy. This review centers on the regulatory mechanisms governing immune checkpoint expression in macrophages and strategies aimed at improving immune checkpoint therapies. Our review provides insights into potential therapeutic targets to improve the efficacy of immune checkpoint blockade and key clues to developing novel tumor immunotherapies.
Collapse
Affiliation(s)
- Shumin Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenyang Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lingge Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jiaji Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengshu Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Peng Xiao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
45
|
Li SY, Guo YL, Tian JW, Zhang HJ, Li RF, Gong P, Yu ZL. Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages. Cancers (Basel) 2023; 15:2717. [PMID: 37345054 DOI: 10.3390/cancers15102717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.
Collapse
Affiliation(s)
- Si-Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yong-Lin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jia-Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - He-Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
46
|
Hirai H, Hong J, Fujii W, Sanjoba C, Goto Y. Leishmania Infection-Induced Proteolytic Processing of SIRPα in Macrophages. Pathogens 2023; 12:pathogens12040593. [PMID: 37111479 PMCID: PMC10146913 DOI: 10.3390/pathogens12040593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The shedding of cell surface receptors may bring synergistic outcomes through the loss of receptor-mediated cell signaling and competitive binding of the shed soluble receptor to its ligand. Thus, soluble receptors have both biological importance and diagnostic importance as biomarkers in immunological disorders. Signal regulatory protein α (SIRPα), one of the receptors responsible for the 'don't-eat-me' signal, is expressed by myeloid cells where its expression and function are in part regulated by proteolytic cleavage. However, reports on soluble SIRPα as a biomarker are limited. We previously reported that mice with experimental visceral leishmaniasis (VL) manifest anemia and enhanced hemophagocytosis in the spleen accompanied with decreased SIRPα expression. Here, we report increased serum levels of soluble SIRPα in mice infected with Leishmania donovani, a causative agent of VL. Increased soluble SIRPα was also detected in a culture supernatant of macrophages infected with L. donovani in vitro, suggesting the parasite infection promotes ectodomain shedding of SIRPα on macrophages. The release of soluble SIRPα was partially inhibited by an ADAM proteinase inhibitor in both LPS stimulation and L. donovani infection, suggesting a shared mechanism for cleavage of SIRPα in both cases. In addition to the ectodomain shedding of SIRPα, both LPS stimulation and L. donovani infection induced the loss of the cytoplasmic region of SIRPα. Although the effects of these proteolytic processes or changes in SIRPα still remain unclear, these proteolytic regulations on SIRPα during L. donovani infection may explain hemophagocytosis and anemia induced by infection, and serum soluble SIRPα may serve as a biomarker for hemophagocytosis and anemia in VL and the other inflammatory disorders.
Collapse
Affiliation(s)
- Hana Hirai
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jing Hong
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
47
|
Fu P, Zhang M, Wu M, Zhou W, Yin X, Chen Z, Dan C. Research progress of endogenous hematoma absorption after intracerebral hemorrhage. Front Neurol 2023; 14:1115726. [PMID: 36970539 PMCID: PMC10036389 DOI: 10.3389/fneur.2023.1115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Non-traumatic intraparenchymal brain hemorrhage is referred to as intracerebral hemorrhage (ICH). Although ICH is associated with a high rate of disability and case fatality, active intervention can significantly lower the rate of severe disability. Studies have shown that the speed of hematoma clearance after ICH determines the patient's prognosis. Following ICH, depending on the hematoma volume and mass effect, either surgical- or medication-only conservative treatment is chosen. The goal of promoting endogenous hematoma absorption is more relevant because surgery is only appropriate for a small percentage of patients, and open surgery can cause additional trauma to patients. The primary method of removing hematoma after ICH in the future will involve understanding how to produce and manage macrophage/microglial endogenous phagocytic hematomas. Therefore, it is necessary to elucidate the regulatory mechanisms and key targets for clinical purposes.
Collapse
Affiliation(s)
- Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weixin Zhou
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuanjun Dan
- Emergency Department, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
48
|
Vaccaro K, Allen J, Whitfield TW, Maoz A, Reeves S, Velarde J, Yang D, Phan N, Bell GW, Hata AN, Weiskopf K. Targeted therapies prime oncogene-driven lung cancers for macrophage-mediated destruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531059. [PMID: 36945559 PMCID: PMC10028834 DOI: 10.1101/2023.03.03.531059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Macrophage immune checkpoint inhibitors, such as anti-CD47 antibodies, show promise in clinical trials for solid and hematologic malignancies. However, the best strategies to use these therapies remain unknown and ongoing studies suggest they may be most effective when used in combination with other anticancer agents. Here, we developed a novel screening platform to identify drugs that render lung cancer cells more vulnerable to macrophage attack, and we identified therapeutic synergy exists between genotype-directed therapies and anti-CD47 antibodies. In validation studies, we found the combination of genotype-directed therapies and CD47 blockade elicited robust phagocytosis and eliminated persister cells in vitro and maximized anti-tumor responses in vivo. Importantly, these findings broadly applied to lung cancers with various RTK/MAPK pathway alterations-including EGFR mutations, ALK fusions, or KRASG12C mutations. We observed downregulation of β2-microglobulin and CD73 as molecular mechanisms contributing to enhanced sensitivity to macrophage attack. Our findings demonstrate that dual inhibition of the RTK/MAPK pathway and the CD47/SIRPa axis is a promising immunotherapeutic strategy. Our study provides strong rationale for testing this therapeutic combination in patients with lung cancers bearing driver mutations.
Collapse
Affiliation(s)
- Kyle Vaccaro
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Juliet Allen
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Troy W. Whitfield
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Asaf Maoz
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute; Boston, MA 02115, USA
| | - Sarah Reeves
- Massachusetts General Hospital Cancer Center; Boston, MA 02129, USA
| | - José Velarde
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Dian Yang
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Nicole Phan
- Massachusetts General Hospital Cancer Center; Boston, MA 02129, USA
| | - George W. Bell
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center; Boston, MA 02129, USA
| | - Kipp Weiskopf
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute; Boston, MA 02115, USA
| |
Collapse
|
49
|
Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel) 2023; 15:polym15051313. [PMID: 36904554 PMCID: PMC10007405 DOI: 10.3390/polym15051313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.
Collapse
|
50
|
Wei XF, Gong YM, Xia JY, Liu MZ, Li PF, Wang GX, Zhu B. Biomimetic nanovaccine based on erythrocyte membrane enhances immune response and protection against tilapia lake virus. Virology 2023; 580:41-49. [PMID: 36746063 DOI: 10.1016/j.virol.2023.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
An infectious disease emerged in recent years, Tilapia Lake Virus Disease (TiLVD), has severely restricted the development of global tilapia industry. Vaccination has proved potential strategy to prevent its causative agent Tilapia Lake Virus (TiLV) infectious. However, the response intensity of subunit vaccine is limited by its low immunogenicity, thus inclusion of adjuvants is required. Thus, we prepared a biomimetic nano-system (Cs-S2@M-M) with a particle size of ∼100 nm and an encapsulation efficiency of about 79.15% based on erythrocyte membrane. The immune response was detected after intramuscular injection to assess the effectiveness of the vaccine. The biomimetic system significantly up-regulates the expression of immune genes, enhances the activity of non-specific immune-related enzymes (P < 0.05) and improved relative percentage survival by 17.4%-26.1% in TiLV challenge. The biomimetic nano-system based on erythrocyte membrane induced significant immune response in tilapia and enhanced protection against TiLV, promising as a model for fish vaccines.
Collapse
Affiliation(s)
- Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Ming-Zhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China
| | - Peng-Fei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, 530007, China.
| |
Collapse
|