1
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
2
|
Xu Y, Dimitrion P, Cvetkovski S, Zhou L, Mi QS. Epidermal resident γδ T cell development and function in skin. Cell Mol Life Sci 2021; 78:573-580. [PMID: 32803399 PMCID: PMC11073445 DOI: 10.1007/s00018-020-03613-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022]
Abstract
Epidermal resident γδ T cells, or dendritic epidermal T cells (DETCs) in mice, are a unique and conserved population of γδ T cells enriched in the epidermis, where they serve as the regulators of immune responses and sense skin injury. Despite the great advances in the understanding of the development, homeostasis, and function of DETCs in the past decades, the origin and the underlying molecular mechanisms remain elusive. Here, we reviewed the recent research progress on DETCs, including their origin and homeostasis in the skin, especially at transcriptional and epigenetic levels, and discuss the involvement of DETCs in skin diseases.
Collapse
Affiliation(s)
- Yingping Xu
- Experimental Research Center, Dermatology Hospital of Southern Medical University, and Guangdong Provincial Dermatology Hospital, Guangzhou, China
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA
| | - Steven Cvetkovski
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
3
|
Munoz LD, Sweeney MJ, Jameson JM. Skin Resident γδ T Cell Function and Regulation in Wound Repair. Int J Mol Sci 2020; 21:E9286. [PMID: 33291435 PMCID: PMC7729629 DOI: 10.3390/ijms21239286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.
Collapse
Affiliation(s)
| | | | - Julie M. Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA; (L.D.M.); (M.J.S.)
| |
Collapse
|
4
|
Papadopoulou M, Sanchez Sanchez G, Vermijlen D. Innate and adaptive γδ T cells: How, when, and why. Immunol Rev 2020; 298:99-116. [PMID: 33146423 DOI: 10.1111/imr.12926] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
γδ T cells comprise the third cell lineage of lymphocytes that use, like αβ T cells and B cells, V(D)J gene rearrangement with the potential to generate a highly diverse T cell receptor (TCR) repertoire. There is no obvious conservation of γδ T cell subsets (based on TCR repertoire and/or function) between mice and human, leading to the notion that human and mouse γδ T cells are highly different. In this review, we focus on human γδ T cells, building on recent studies using high-throughput sequencing to analyze the TCR repertoire in various settings. We make then the comparison with mouse γδ T cell subsets highlighting the similarities and differences and describe the remarkable changes during lifespan of innate and adaptive γδ T cells. Finally, we propose mechanisms contributing to the generation of innate versus adaptive γδ T cells. We conclude that key elements related to the generation of the γδ TCR repertoire and γδ T cell activation/development are conserved between human and mice, highlighting the similarities between these two species.
Collapse
Affiliation(s)
- Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| |
Collapse
|
5
|
Morath A, Schamel WW. αβ and γδ T cell receptors: Similar but different. J Leukoc Biol 2020; 107:1045-1055. [DOI: 10.1002/jlb.2mr1219-233r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anna Morath
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM) University of Freiburg Freiburg Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Center for Chronic Immunodeficiency (CCI) Medical Center Freiburg and Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
6
|
Pui CH, Pei D, Cheng C, Tomchuck SL, Evans SN, Inaba H, Jeha S, Raimondi SC, Choi JK, Thomas PG, Dallas MH. Treatment response and outcome of children with T-cell acute lymphoblastic leukemia expressing the gamma-delta T-cell receptor. Oncoimmunology 2019; 8:1599637. [PMID: 31413907 DOI: 10.1080/2162402x.2019.1599637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/25/2023] Open
Abstract
T-cell malignancies expressing the γδ T-cell receptor (TCR) are often associated with poor prognosis. Here, we determined the clinical outcome of pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL) expressing the γδ TCR. Of 100 newly diagnosed T-ALL patients, 93 had γδ TCR analysis performed at diagnosis. Repertoire was evaluated by paired sequencing of the rearranged TCR. All patients received intensified chemotherapy and those with minimal residual disease (MRD) ≥ 1% on day 42-46 became candidates for hematopoietic cell transplantation. Of the 93 T-ALL patients, 12 (13%) had γδ T-ALL and 11 (12%) had early T-cell precursor (ETP) ALL. Compared to the remaining 70 T-ALL patients, the γδ T-ALL patients were more likely to have MRD ≥ 1% on day 15-19 (67% vs. 33%, P = 0.03) and day 42-49 (33% vs. 7%; P = 0.007) of remission induction. The 10-year overall survival for γδ T-ALL patients (66.7% ± 22.2%) were lower than that of T-ALL patients (93.3% ± 7.3%, P = 0.001). TCR analysis demonstrated a conserved clonotype. In conclusion, the data suggest that children with γδ T-ALL may have a poor response to remission induction, based on MRD levels and decreased survival than the other T-ALL patients, despite receiving risk-directed therapy.
Collapse
Affiliation(s)
- Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne L Tomchuck
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scarlett N Evans
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - Susana C Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John K Choi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mari Hashitate Dallas
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Pediatrics, University Hospital Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
7
|
Zhang B, Wu J, Jiao Y, Bock C, Dai M, Chen B, Chao N, Zhang W, Zhuang Y. Differential Requirements of TCR Signaling in Homeostatic Maintenance and Function of Dendritic Epidermal T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4282-91. [PMID: 26408667 DOI: 10.4049/jimmunol.1501220] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/01/2015] [Indexed: 01/17/2023]
Abstract
Dendritic epidermal T cells (DETCs) are generated exclusively in the fetal thymus and maintained in the skin epithelium throughout postnatal life of the mouse. DETCs have restricted antigenic specificity as a result of their exclusive usage of a canonical TCR. Although the importance of the TCR in DETC development has been well established, the exact role of TCR signaling in DETC homeostasis and function remains incompletely defined. In this study, we investigated TCR signaling in fully matured DETCs by lineage-restricted deletion of the Lat gene, an essential signaling molecule downstream of the TCR. We found that Lat deletion impaired TCR-dependent cytokine gene activation and the ability of DETCs to undergo proliferative expansion. However, linker for activation of T cells-deficient DETCs were able to maintain long-term population homeostasis, although with a reduced proliferation rate. Mice with Lat deletion in DETCs exhibited delayed wound healing accompanied by impaired clonal expansion within the wound area. Our study revealed differential requirements for TCR signaling in homeostatic maintenance of DETCs and in their effector function during wound healing.
Collapse
Affiliation(s)
- Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yiqun Jiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Cheryl Bock
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Meifang Dai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Benny Chen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Nelson Chao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Department of Medicine, Duke University Medical Center, Durham, NC 27710; and Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
8
|
Blanco R, Borroto A, Schamel W, Pereira P, Alarcon B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci Signal 2014; 7:ra115. [DOI: 10.1126/scisignal.2005650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Nakamura M, Shibata K, Hatano S, Sato T, Ohkawa Y, Yamada H, Ikuta K, Yoshikai Y. A genome-wide analysis identifies a notch-RBP-Jκ-IL-7Rα axis that controls IL-17-producing γδ T cell homeostasis in mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:243-51. [PMID: 25429074 DOI: 10.4049/jimmunol.1401619] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch signaling is an important regulator for the development and function of both αβ and γδ T cells, whereas roles of Notch signaling in T cell maintenance remain unclear. We reported previously that the Notch-Hes1 pathway was involved in the intrathymic development of naturally occurring IL-17-producing (IL-17(+)) γδ T cells. To gain insight into additional roles for the Notch axis in the homeostasis of γδ T cells, we performed a genome-wide analysis of Notch target genes and identified the novel promoter site of IL-7Rα driven by the Notch-RBP-Jκ pathway. Constitutive Notch signaling had the potential to induce IL-7Rα expression on γδ T cells in vivo, as well as in vitro, whereas conditional deletion of RBP-Jκ abrogated IL-7Rα expression, but not Hes1 expression, by γδ T cells and selectively reduced the pool size of IL-7Rα(high) IL-17(+) γδ T cells in the periphery. In the absence of IL-7Rα-mediated signaling, IL-17(+) γδ T cells were barely maintained in adult mice. Addition of exogenous IL-7 in vitro selectively expanded IL-17(+) γδ T cells. Thus, our results revealed a novel role for the Notch-RBP-Jκ-IL-7Rα axis that is independent of Hes1 for homeostasis of IL-17(+) γδ T cells.
Collapse
Affiliation(s)
- Masataka Nakamura
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kensuke Shibata
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Shinya Hatano
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Epigenetics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; and
| | - Hisakata Yamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Ferrero I, Koch U, Claudinot S, Favre S, Radtke F, Luther SA, MacDonald HR. DL4-mediated Notch signaling is required for the development of fetal αβ and γδ T cells. Eur J Immunol 2013; 43:2845-53. [PMID: 23881845 DOI: 10.1002/eji.201343527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/13/2013] [Accepted: 07/18/2013] [Indexed: 11/09/2022]
Abstract
T-cell development depends upon interactions between thymocytes and thymic epithelial cells (TECs). The engagement of delta-like 4 (DL4) on TECs by Notch1 expressed by blood-borne BM-derived precursors is essential for T-cell commitment in the adult thymus. In contrast to the adult, the earliest T-cell progenitors in the embryo originate in the fetal liver and migrate to the nonvascularized fetal thymus via chemokine signals. Within the fetal thymus, some T-cell precursors undergo programmed TCRγ and TCRδ rearrangement and selection, giving rise to unique γδ T cells. Despite these fundamental differences between fetal and adult T-cell lymphopoiesis, we show here that DL4-mediated Notch signaling is essential for the development of both αβ and γδ T-cell lineages in the embryo. Deletion of the DL4 gene in fetal TECs results in an early block in αβ T-cell development and a dramatic reduction of all γδ T-cell subsets in the fetal thymus. In contrast to the adult, no dramatic deviation of T-cell precursors to alternative fates was observed in the fetal thymus in the absence of Notch signaling. Taken together, our data reveal a common requirement for DL4-mediated Notch signaling in fetal and adult thymopoiesis.
Collapse
Affiliation(s)
- Isabel Ferrero
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
T cells employ a cell surface heterodimeric molecule, the T cell receptor (TCR), to recognize specific antigens (Ags) presented by major histocompatibility complex (MHC) molecules and carry out adaptive immune responses. Most T cells possess a TCR with an α and a β chain. However, a TCR constituted by a γ and a δ chain has been described, defining a novel subset of T cells. γδ TCRs specific for a wide variety of ligands, including bacterial phosphoantigens, nonclassical MHC-I molecules and unprocessed proteins, have been found, greatly expanding the horizons of T cell immune recognition. This review aims to provide background in γδ T cell history and function in mouse and man, as well as to provide a critical view of some of the latest developments on this still enigmatic class of immune cells.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Molecular and Cellular Biology and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Abstract
Murine γδ T cells develop as the first T-cell lineage within the fetal thymus and disproportionately localize in mucosal tissues such as lung, skin, uterus, and intestine of adult mice. These unique developmental features and distribution patterns of γδ T cells enable rapid functioning against various insults from pathogens. γδ T cells are also able to respond to local inflammation and consequently regulate the pathogenesis of autoimmune disorders and development of tumors in mice and humans. Hence, it is clinically important to understand the mechanisms that regulate γδ T cell functions. Recent evidence has shown that generations of effector γδ T cell subsets producing IFN-γ, IL-4, and IL-17 are programmed in the murine thymus before their migration to peripheral tissues. This review outlines our current understanding of the development and function of γδ T cells as they influence both innate and acquired immunity.
Collapse
Affiliation(s)
- Kensuke Shibata
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Prinz I. Dynamics of the interaction of γδ T cells with their neighbors in vivo. Cell Mol Life Sci 2011; 68:2391-8. [PMID: 21584813 PMCID: PMC11114905 DOI: 10.1007/s00018-011-0701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/15/2022]
Abstract
γδ T cells are a diverse component of the immune system in humans and mice with presumably important but still largely unknown functions. Understanding the dynamic interaction of γδ T cells with their neighbors should help to understand their physiological role. This review addresses recent advances and strategies to visualize the dynamic interactions of γδ T cells with their neighbors in vivo. Current knowledge regarding the dynamic contacts of tissue resident γδ T cells and epithelial cells, but also of the communication between circulating γδ T cells and DCs, monocytes and FoxP3(+) regulatory T cells is revisited with emphasis on the role of γδ T cell motility.
Collapse
MESH Headings
- Animals
- Cell Communication/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Mice
- Microscopy, Confocal/methods
- Microscopy, Fluorescence, Multiphoton/methods
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany, Prinz.
| |
Collapse
|
14
|
Barbee SD, Woodward MJ, Turchinovich G, Mention JJ, Lewis JM, Boyden LM, Lifton RP, Tigelaar R, Hayday AC. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc Natl Acad Sci U S A 2011; 108:3330-5. [PMID: 21300860 PMCID: PMC3044407 DOI: 10.1073/pnas.1010890108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
αβ T-cell repertoire selection is mediated by peptide-MHC complexes presented by thymic epithelial or myeloid cells, and by lipid-CD1 complexes expressed by thymocytes. γδ T-cell repertoire selection, by contrast, is largely unresolved. Mice mutant for Skint-1, a unique Ig superfamily gene, do not develop canonical Vγ5Vδ1(+) dendritic epidermal T cells. This study shows that transgenic Skint-1, across a broad range of expression levels, precisely and selectively determines the Vγ5Vδ1(+) dendritic epidermal T-cell compartment. Skint-1 is expressed by medullary thymic epithelial cells, and unlike lipid-CD1 complexes, must be expressed by stromal cells to function efficiently. Its unusual transmembrane-cytoplasmic regions severely limit cell surface expression, yet increasing this or, conversely, retaining Skint1 intracellularly markedly compromises function. Each Skint1 domain appears nonredundant, including a unique decamer specifying IgV-domain processing. This investigation of Skint-1 biology points to complex events underpinning the positive selection of an intraepithelial γδ repertoire.
Collapse
Affiliation(s)
- Susannah D. Barbee
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Martin J. Woodward
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Jean-Jacques Mention
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | | | - Lynn M. Boyden
- Genetics and
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Richard P. Lifton
- Genetics and
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06511
| | | | - Adrian C. Hayday
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| |
Collapse
|
15
|
PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin. Nat Commun 2011; 2:161. [PMID: 21245842 PMCID: PMC3105307 DOI: 10.1038/ncomms1162] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 12/08/2010] [Indexed: 01/04/2023] Open
Abstract
Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3PAR2/+), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases. The activity of serine proteases, including CAP1/Prss8, is altered in some human skin disorders; however, the downstream effectors of these proteins are relatively unknown. Here, using animal models, the authors show that protease-activated receptor-2 is a critical component of the CAP1/Prss8 signalling cascade.
Collapse
|
16
|
Jin Y, Xia M, Sun A, Saylor CM, Xiong N. CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. THE JOURNAL OF IMMUNOLOGY 2010; 185:5723-31. [PMID: 20937851 DOI: 10.4049/jimmunol.1001612] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Unlike conventional αβ T cells, which preferentially reside in secondary lymphoid organs for adaptive immune responses, various subsets of unconventional T cells, such as the γδ T cells with innate properties, preferentially reside in epithelial tissues as the first line of defense. However, mechanisms underlying their tissue-specific development are not well understood. We report in this paper that among different thymic T cell subsets fetal thymic precursors of the prototypic skin intraepithelial Vγ3(+) T lymphocytes (sIELs) were selected to display a unique pattern of homing molecules, including a high level of CCR10 expression that was important for their development into sIELs. In fetal CCR10-knockout mice, the Vγ3(+) sIEL precursors developed normally in the thymus but were defective in migrating into the skin. Although the earlier defect in skin-seeding by sIEL precursors was partially compensated for by their normal expansion in the skin of adult CCR10-knockout mice, the Vγ3(+) sIELs displayed abnormal morphology and increasingly accumulated in the dermal region of the skin. These findings provide definite evidence that CCR10 is important in sIEL development by regulating the migration of sIEL precursors and their maintenance in proper regions of the skin and support the notion that unique homing properties of different thymic T cell subsets play an important role in their peripheral location.
Collapse
Affiliation(s)
- Yan Jin
- Center for Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
17
|
Holtmeier W, Gille J, Zeuzem S, Sinkora M. Distribution and development of the postnatal murine Vδ1 T-cell receptor repertoire. Immunology 2010; 131:192-201. [PMID: 20465568 PMCID: PMC2967265 DOI: 10.1111/j.1365-2567.2010.03290.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 12/27/2022] Open
Abstract
Murine γ/δ T cells express canonical Vγ5Vδ1 chains in the epidermis and Vγ6Vδ1 chains at reproductive sites. Both subsets carry an identical Vδ1-Dδ2-Jδ2 chain which completely lacks junctional diversity. These cells are thought to monitor tissue integrity via recognition of stress-induced self antigens. In this study, we showed by reverse transcription-polymerase chain reaction (RT-PCR), complementarity determining region 3 (CDR3) spectratyping and sequencing of the junctional regions of Vδ1 chains from C57BL/6 mice (aged 1 day to 14 months) that the canonical Vδ1-Dδ2-Jδ2 chain is also consistently present at other sites such as the thymus, gut, lung, liver, spleen and peripheral blood. In addition, we found multiple Vδ1 chains with fetal type rearrangements which were also shared among organs and among animals. These Vδ1 chains were typically characterized by a conserved amino acid motif, 'GGIRA'. Furthermore, by analysing the early postnatal period at days 10 and 16, we demonstrated that the diversification of the thymic Vδ1 repertoire is not paralleled by a diversification of extrathymic Vδ1+γ/δ T cells. This indicates that only fetal type rearrangements survive at extrathymic sites. In conclusion, γ/δ T cells expressing the canonical Vδ1-Dδ2-Jδ2 chain are not unique to the skin and reproductive sites. Furthermore, we found other γ/δ T cells expressing fetal type Vδ1 chains which were shared among different organs and animals. Thus, γ/δ T cells expressing conserved Vδ1 chains are likely to have important functions. We suggest a model in which this subset continuously recirculates throughout the organism and rapidly responds to stress-induced self antigens.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Amino Acid Sequence/genetics
- Animals
- Animals, Newborn
- Base Sequence/genetics
- Cloning, Molecular
- Complementarity Determining Regions/genetics
- Fetus/immunology
- Gene Expression/genetics
- Gene Expression/immunology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/immunology
- Immune System/cytology
- Immune System/growth & development
- Immune System/immunology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/immunology
- Skin/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Wolfgang Holtmeier
- Medizinische Klinik I, Division of Gastroenterology, Johann Wolfgang Goethe-Universität, Frankfurt Am Main, Germany.
| | | | | | | |
Collapse
|
18
|
Xia M, Qi Q, Jin Y, Wiest DL, August A, Xiong N. Differential roles of IL-2-inducible T cell kinase-mediated TCR signals in tissue-specific localization and maintenance of skin intraepithelial T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6807-14. [PMID: 20483745 DOI: 10.4049/jimmunol.1000453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-specific innate-like gammadelta T cells are important components of the immune system critical for the first line of defense, but mechanisms underlying their tissue-specific development are poorly understood. Our study with prototypical skin-specific intraepithelial gammadeltaT lymphocytes (sIELs) found that among different thymic gammadelta T cell subsets fetal thymic precursors of sIELs specifically acquire a unique skin-homing property after positive selection, suggesting an important role of the TCR selection signaling in "programming" them for tissue-specific development. In this study, we identified IL-2-inducible T cell kinase (ITK) as a critical signal molecule regulating the acquirement of the skin-homing property by the fetal thymic sIEL precursors. In ITK knockout mice, the sIEL precursors could not undergo positive selection-associated upregulation of thymus-exiting and skin-homing molecules sphingosine-1-phosphate receptor 1 and CCR10 and accumulated in the thymus. However, the survival and expansion of sIELs in the skin did not require ITK-transduced TCR signaling, whereas its persistent activation impaired sIEL development by inducing apoptosis. These findings provide insights into molecular mechanisms underlying differential requirements of TCR signaling in peripheral localization and maintenance of the tissue-specific T cells.
Collapse
Affiliation(s)
- Mingcan Xia
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
19
|
Uche UN, Huber CR, Raulet DH, Xiong N. Recombination signal sequence-associated restriction on TCRdelta gene rearrangement affects the development of tissue-specific gammadelta T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4931-9. [PMID: 19801518 DOI: 10.4049/jimmunol.0901859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assembly of TCRalpha and TCRdelta genes from the TCRalpha/delta locus is tightly controlled for the proper generation of alphabeta and gammadelta T cells. Of >100 shared variable gene segments in the TCRalpha/delta locus, only a few are predominantly used for the TCRdelta gene assembly, while most are for TCRalpha. However, the importance and mechanisms of the selective variable gene rearrangement for T cell development are not fully understood. We report herein that the development of a tissue-specific gammadelta T cell population is critically affected by recombination signal sequence-associated restriction on the variable gene usage for TCRdelta assembly. We found that the development of substitute skin gammadelta T cells in mice deficient of the TCRgamma3 gene, which is used in wild-type skin gammadelta T cells, was drastically affected by the strain background. A Vgamma2(+) skin gammadelta T cell population developed in mice of the B6 but not the 129 strain backgrounds, due to a difference in the rearrangement of endogenous Vdelta7(+) TCRdelta genes, which paired with the Vgamma2(+) TCRgamma gene to generate the Vgamma2/Vdelta7(+) skin gammadelta T cell precursors in fetal thymi of the B6 background mice. The defective TCRdelta rearrangement of the 129-"Vdelta7" gene was associated with specific variations in its recombination signal sequence, which renders it poorly compatible for rearrangement to Ddelta genes. These findings provide the first direct evidence that recombination signal sequence-associated restriction on the variable gene usage for TCRalpha/delta gene assembly plays an important role in T cell development.
Collapse
Affiliation(s)
- Uzodinma N Uche
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, Center for Molecular Immunology and Infectious Diseases, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
20
|
Leandersson K, Jaensson E, Ivars F. T cells developing in fetal thymus of T-cell receptor alpha-chain transgenic mice colonize gammadelta T-cell-specific epithelial niches but lack long-term reconstituting potential. Immunology 2007; 119:134-42. [PMID: 16925528 PMCID: PMC1782331 DOI: 10.1111/j.1365-2567.2006.02415.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gammadelta T cells generated during mouse fetal development are absolutely dependent on their invariant T-cell receptors (TCRs) for their function. However, there is little information on whether the epithelial homing properties of fetal T cells might also be developmentally induced by factors unrelated to TCR specificity. We have previously described TCR alpha-chain transgenic (2B4 TCR-alpha TG) mice, in which the transgenic TCR alpha-chain is expressed early, already at embryonic day 14 (E14). These mice have a large population of 'gammadelta T-cell-like' CD4- CD8- (double-negative; DN) alphabeta T cells, some of which develop during E14-E18 contemporarily to intraepithelial lymphocytes (IELs) expressing invariant TCR-gammadelta. Using the 2B4 TCR-alpha TG mouse model we have been able to more precisely study the impact of a variant TCR expression on IEL development and homing. In this study we show that TCR-alpha TG and TCR-alpha TG crossed to TCR-delta-deficient mice (TCR-alpha TG x TCR-delta-/-) carry TG TCR-alpha+ dendritic epidermal T cells (DETCs) and TCR-alpha TG+ IELs in the small intestine. The TG+ DETCs develop and seed the epidermis with similar kinetics as Vgamma5+ DETCs of normal mice, in contrast to the TCR-alphabeta+ DETCs found in TCR-delta-/- mice. However, whereas the intestinal TCR-alpha TG+ IELs persist in old mice (> 20 months), the TCR-alpha TG+ DETCs do not. The data in this study indicate that the timing of TCR expression and thereby development during ontogeny regulates the specific homing potential for fetal T cells but not their subsequent functions and properties.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Animals, Newborn
- Cell Movement
- Cell Proliferation
- Epidermis/immunology
- Flow Cytometry
- Gestational Age
- Intestinal Mucosa/embryology
- Intestinal Mucosa/immunology
- Intestine, Small/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thymus Gland/embryology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Karin Leandersson
- Experimental Pathology, Department of Laboratory Medicine, Malmö University Hospital, Lund University, Sweden.
| | | | | |
Collapse
|
21
|
Abstract
Two main lineages of T cells develop in the thymus: those that express the alphabeta T-cell receptor (TCR) and those that express the gammadelta TCR. Whereas the development, selection, and peripheral localization of newly differentiated alphabeta T cells are understood in some detail, these processes are less well characterized in gammadelta T cells. This review describes research carried out in this laboratory and others, which addresses several key aspects of gammadelta T-cell development, including the decision of precursor cells to differentiate into the gammadelta versus alphabeta lineage, the ordered differentiation over the course of ontogeny of functional gammadelta T-cell subsets expressing distinct TCR structures, programming of ordered Vgamma gene rearrangement in the thymus, including a molecular switch that ensures appropriate Vgamma rearrangements at the appropriate stage of development, positive selection in the thymus of gammadelta T cells destined for the epidermis, and the acquisition by developing gammadelta T cells of cues that determine their correct localization in the periphery. This research suggests a coordination of molecularly programmed events and cellular selection, which enables specialization of the thymus for production of distinct T-cell subsets at different stages of development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Humans
- Lymphocyte Activation/immunology
- Mice
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Na Xiong
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | | |
Collapse
|
22
|
Abstract
The specificities of lymphocytes for antigen are generated by a quasi-random process of gene rearrangement that often results in non-functional or autoreactive antigen receptors. Regulation of lymphocyte specificities involves not only the elimination of cells that display 'unsuitable' receptors for antigen but also the active genetic correction of these receptors by secondary recombination of the DNA. As I discuss here, an important mechanism for the genetic correction of antigen receptors is ongoing recombination, which leads to receptor editing. Receptor editing is probably an adaptation that is necessitated by the high probability of receptor autoreactivity. In both B cells and T cells, the genes that encode the two chains of the antigen receptor seem to be specialized to promote, on the one hand, the generation of diverse specificities and, on the other hand, the regulation of these specificities through efficient editing.
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, Mail Drop IMM-29, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
23
|
|
24
|
Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M, Malissen B. Visualization of the earliest steps of γδ T cell development in the adult thymus. Nat Immunol 2006; 7:995-1003. [PMID: 16878135 DOI: 10.1038/ni1371] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/06/2006] [Indexed: 01/15/2023]
Abstract
The checkpoint in gammadelta cell development that controls successful T cell receptor (TCR) gene rearrangements remains poorly characterized. Using mice expressing a reporter gene 'knocked into' the Tcrd constant region gene, we have characterized many of the events that mark the life of early gammadelta cells in the adult thymus. We identify the developmental stage during which the Tcrd locus 'opens' in early T cell progenitors and show that a single checkpoint controls gammadelta cell development during the penultimate CD4- CD8- stage. Passage through this checkpoint required the assembly of gammadelta TCR heterodimers on the cell surface and signaling via the Lat adaptor protein. In addition, we show that gammadelta selection triggered a phase of sustained proliferation similar to that induced by the pre-TCR.
Collapse
Affiliation(s)
- Immo Prinz
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Institut National de la Santé et de la Recherche Médicale, U631, Marseille, France
| | | | | | | | | | | |
Collapse
|
25
|
Lewis JM, Girardi M, Roberts SJ, Barbee SD, Hayday AC, Tigelaar RE. Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal determinant. Nat Immunol 2006; 7:843-50. [PMID: 16829962 DOI: 10.1038/ni1363] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 06/15/2006] [Indexed: 11/09/2022]
Abstract
Intraepithelial lymphocytes constitute a group of T cells that express mainly monospecific or oligoclonal T cell receptors (TCRs). Like adaptive TCR alphabeta+ T cells, intraepithelial lymphocytes, a subset enriched in TCR gammadelta+ T cells, are proposed to be positively selected by thymically expressed self agonists, yet no direct evidence for this exists at present. Mouse dendritic epidermal T cells are prototypic intraepithelial lymphocytes, displaying an almost monoclonal TCR gammadelta+ repertoire. Here we describe an FVB substrain of mice in which this repertoire was uniquely depleted, resulting in cutaneous pathology. This phenotype was due to failure of dendritic epidermal T cell progenitors to mature because of a heritable defect in a dominant gene used by the thymic stroma to 'educate' the natural, skin-associated intraepithelial lymphocyte repertoire to be of physiological use.
Collapse
Affiliation(s)
- Julia M Lewis
- Department of Dermatology and Yale Skin Disease Research Core Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | | | | | | | | | |
Collapse
|
26
|
Nitahara A, Shimura H, Ito A, Tomiyama K, Ito M, Kawai K. NKG2D Ligation without T Cell Receptor Engagement Triggers Both Cytotoxicity and Cytokine Production in Dendritic Epidermal T Cells. J Invest Dermatol 2006; 126:1052-8. [PMID: 16484989 DOI: 10.1038/sj.jid.5700112] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
NKG2D is an activating receptor that recognizes self-ligands induced on stressed, infected, or transformed cells. In mice, two NKG2D isoforms (NKG2D-S (short) and NKG2D-L (long)) that associate differentially with DAP10 and DAP12 adaptor proteins exist. Differential expression of these isoforms and adaptor proteins depending on the activating state and cell types determines distinct functional outcomes of NKG2D ligation: direct activation of cytotoxicity in natural killer (NK) cells and cytokine production in activated NK cells, but only costimulation in activated CD8+ T cells. Intraepithelial gammadelta T cells of the mouse skin, termed dendritic epidermal T cells (DETCs), were also shown to express NKG2D, but the NKG2D isoform(s) expressed in DETCs have not been determined. Furthermore, functional outcomes of NKG2D ligation in DETCs are largely unknown, although costimulation of DETC-mediated cytotoxicity by NKG2D was demonstrated. Here, we show that DETCs constitutively express NKG2D-S, NKG2D-L, DAP10, and DAP12 transcripts as well as cell surface NKG2D protein. Blocking of NKG2D inhibited DETC-mediated cytotoxicity against target cells that do not express T cell receptor ligands. Cross-linking of NKG2D on DETCs induced IFN-gamma production. These findings demonstrate that DETCs constitutively express NKG2D that acts as a primary activating receptor, and indicate its important role in cutaneous immune surveillance.
Collapse
Affiliation(s)
- Ayano Nitahara
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata 9512-8510, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Pennington DJ, Silva-Santos B, Hayday AC. Gammadelta T cell development--having the strength to get there. Curr Opin Immunol 2005; 17:108-15. [PMID: 15766668 DOI: 10.1016/j.coi.2005.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gammadelta T cells play critical roles in immune regulation, tumour surveillance and specific primary immune responses. Mature gammadelta cells derive from thymic precursors that also generate alphabeta T cells. Recent reports have highlighted the impact of the strength of signal received via the T cell receptor on T cell lineage commitment, and the importance of cross-talk between committed alphabeta thymocytes and bipotential progenitors for normal gammadelta T cell differentiation. Studies on T cell receptor-mediated selection of gammadelta cells have supported the view that these unconventional T cells are positively rather than negatively selected on cognate self antigen.
Collapse
Affiliation(s)
- Daniel J Pennington
- Peter Gorer Department of Immunobiology, Guy's King's St. Thomas' Medical School, King's College, Guy's Hospital, London SE1 9RT, UK.
| | | | | |
Collapse
|
28
|
Boucontet L, Sepúlveda N, Carneiro J, Pereira P. Mechanisms controlling termination of V-J recombination at the TCRgamma locus: implications for allelic and isotypic exclusion of TCRgamma chains. THE JOURNAL OF IMMUNOLOGY 2005; 174:3912-9. [PMID: 15778346 DOI: 10.4049/jimmunol.174.7.3912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Analyses of Vgamma-Jgamma rearrangements producing the most commonly expressed TCRgamma chains in over 200 gammadelta TCR(+) thymocytes showed that assembly of TCRgamma V-region genes display properties of allelic exclusion. Moreover, introduction of functionally rearranged TCRgamma and delta transgenes results in a profound inhibition of endogenous TCRgamma rearrangements in progenitor cells. The extent of TCRgamma rearrangements in these cells is best explained by a model in which initiation of TCRgamma rearrangements at both alleles is asymmetric, occurs at different frequencies depending on the V or J segments involved, and is terminated upon production of a functional gammadelta TCR. Approximately 10% of the cells studied contained two functional TCRgamma chains involving different V and Jgamma gene segments, thus defining a certain degree of isotypic inclusion. However, these cells are isotypically excluded at the level of cell surface expression possibly due to pairing restrictions between different TCRgamma and delta chains.
Collapse
Affiliation(s)
- Laurent Boucontet
- Unité du Développement des Lymphocytes, Centre National de la Recherche Scientifique Unité de Recherche Associée 1961, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
29
|
Abstract
LAT (linker for activation of T cells) is an integral membrane adaptor protein that constitutes in T cells a major substrate of the ZAP-70 protein tyrosine kinase. LAT coordinates the assembly of a multiprotein signaling complex through phosphotyrosine-based motifs present within its intracytoplasmic segment. The resulting "LAT signalosome" links the TCR to the main intracellular signalling pathways that regulate T-cell development and T-cell function. Early studies using transformed T-cell lines suggested that LAT acts primarily as a positive regulator of T-cell receptor (TCR) signalling. The partial or complete inhibition of T-cell development observed in several mouse lines harboring mutant forms of LAT was congruent with that view. More recently, LAT "knock-ins" harboring point mutations in the four COOH-terminal tyrosine residues, were found to develop lymphoproliferative disorders involving polyclonal T cells that produced high amounts of T helper-type 2 (Th2) cytokines. This unexpected finding revealed that LAT also constitutes a negative regulator of TCR signalling and T-cell homeostasis. Although LAT is also expressed in mast cells, natural killer cells, megakaryocytes, platelets, and early B cells, the present review specifically illustrates the role LAT plays in the development and function of mouse T cells. As discussed, the available data underscore that a novel immunopathology proper to defective LAT signalosome is taking shape.
Collapse
Affiliation(s)
- Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Université de la Méditerranée, Parc Scientifique de Luminy, Case 906, 13288 Marseille Cedex 9, France
| | | | | |
Collapse
|
30
|
Xiong N, Kang C, Raulet DH. Positive selection of dendritic epidermal gammadelta T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 2004; 21:121-31. [PMID: 15345225 DOI: 10.1016/j.immuni.2004.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/06/2004] [Accepted: 05/12/2004] [Indexed: 01/17/2023]
Abstract
The role of cellular selection in the development of gammadelta T cells remains unclear. Knockout mice lacking a subset of Vgamma genes, including Vgamma3, contain abundant gammadelta T cells but are devoid of dendritic epidermal gammadeltaT cells (DETCs), which normally express an invariant Vgamma3/Vdelta1 gammadelta TCR. A rearranged Vgamma2 transgene restored DETC development, but the restored DETCs selectively expressed a unique Vdelta gene other than Vdelta1, indicating that DETC development involves TCR-based selection. In both normal and transgenic/knockout mice, specific DETC precursors in the fetal thymus were activated and expressed the IL-15 receptor beta chain, skin-homing receptors, and thymic exiting receptors. In vitro activation of irrelevant precursors also led to upregulation of the skin-homing receptor, providing an explanation for how thymic selection is coordinated with development of epidermal gammadelta T cells.
Collapse
Affiliation(s)
- Na Xiong
- Department of Molecular and Cell Biology, 489 Life Sciences Addition, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
31
|
Couedel C, Lippert E, Bernardeau K, Bonneville M, Davodeau F. Allelic exclusion at the TCR delta locus and commitment to gamma delta lineage: different modalities apply to distinct human gamma delta subsets. THE JOURNAL OF IMMUNOLOGY 2004; 172:5544-52. [PMID: 15100297 DOI: 10.4049/jimmunol.172.9.5544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of a beta-chain, as a pre-TCR, in T cell precursors prevents further rearrangements on the alternate beta allele through a strict allelic exclusion process and enables precursors to undergo differentiation. However, whether allelic exclusion applies to the TCR delta locus is unknown and the role of the gamma delta TCR in gamma delta lineage commitment is still unclear. Through the analysis of the rearrangement status of the TCR gamma, delta, and beta loci in human gamma delta T cell clones, expressing either the TCR V delta 1 or V delta 2 variable regions, we show that the rate of partial rearrangements at the delta locus is consistent with an allelic exclusion process. The overrepresentation of clones with two functional TCR gamma chains indicates that a gamma delta TCR selection process is required for the commitment of T cell precursors to the gamma delta lineage. Finally, while complete TCR beta rearrangements were observed in several V delta 2 T cell clones, these were seldom found in V delta 1 cells. This suggests a competitive alpha beta/gamma delta lineage commitment in the former subset and a precommitment to the gamma delta lineage in the latter. We propose that these distinct behaviors are related to the developmental stage at which rearrangements occur, as suggested by the patterns of accessibility to recombination sites that characterize the V delta 1 and V delta 2 subsets.
Collapse
MESH Headings
- Adult
- Alleles
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Cell Lineage/genetics
- Cell Lineage/immunology
- Clone Cells
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/genetics
- Genetic Markers/immunology
- Humans
- Infant, Newborn
- Reading Frames/genetics
- Reading Frames/immunology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic/immunology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Chrystelle Couedel
- Institut National de la Santé et de la Recherche Médicale Unité 463, Institut de Biologie, Nantes, France
| | | | | | | | | |
Collapse
|
32
|
Jameson JM, Cauvi G, Witherden DA, Havran WL. A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. THE JOURNAL OF IMMUNOLOGY 2004; 172:3573-9. [PMID: 15004158 DOI: 10.4049/jimmunol.172.6.3573] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unique population of T lymphocytes, designated dendritic epidermal T cells (DETC), homes to the murine epidermis during fetal development. DETC express a canonical gammadelta TCR, Vgamma3/Vdelta1, which recognizes Ag expressed on damaged, stressed, or transformed keratinocytes. Recently, DETC were shown to play a key role in the complex process of wound repair. To examine the role of the DETC TCR in DETC localization to the epidermis, maintenance in the skin, and activation in vivo, we analyzed DETC in the TCRdelta(-/-) mouse. Unlike previous reports in which the TCRdelta(-/-) skin was found to be devoid of any DETC, we discovered that TCRdelta(-/-) mice have alphabeta TCR-expressing DETC with a polyclonal Vbeta chain repertoire. The alphabeta DETC are not retained over the life of the animal, suggesting that the gammadelta TCR is critical for the maintenance of DETC in the skin. Although the alphabeta DETC can be activated in response to direct stimulation, they do not respond to keratinocyte damage. Our results suggest that a keratinocyte-responsive TCR is necessary for DETC activation in response to keratinocyte damage and for DETC maintenance in the epidermis.
Collapse
MESH Headings
- Animals
- Cell Division/genetics
- Cell Division/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epidermis/immunology
- Epidermis/metabolism
- Epidermis/pathology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Immunity, Cellular/genetics
- Immunophenotyping
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Wound Healing/genetics
- Wound Healing/immunology
Collapse
Affiliation(s)
- Julie M Jameson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
33
|
Nuñez-Cruz S, Aguado E, Richelme S, Chetaille B, Mura AM, Richelme M, Pouyet L, Jouvin-Marche E, Xerri L, Malissen B, Malissen M. LAT regulates gammadelta T cell homeostasis and differentiation. Nat Immunol 2003; 4:999-1008. [PMID: 12970761 DOI: 10.1038/ni977] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 08/14/2003] [Indexed: 12/29/2022]
Abstract
LAT (linker for activation of T cells) is essential for T cell receptor signaling. Mice homozygous for a mutation of the three C-terminal LAT tyrosine residues showed a block in alphabeta T cell development and a partially impaired gammadelta T cell development. Without intentional immunization, they accumulated gammadelta T cells in the spleen and lymph nodes that chronically produced T helper type 2 cytokines in large amounts, and caused the maturation of plasma cells secreting immunoglobulin E (IgE) and IgG1. These effects are very similar to that triggered in the alphabeta lineage by a mutation involving a distinct LAT tyrosine. Thus, LAT is an essential regulator of T cell homeostasis and terminal differentiation.
Collapse
Affiliation(s)
- Selene Nuñez-Cruz
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique-Université de la Méditerranée, Parc Scientifique de Luminy, Case 906, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ichinohe T, Ichimiya S, Kishi A, Tamura Y, Kondo N, Ueda G, Torigoe T, Yamaguchi A, Hiratsuka H, Hirai I, Kohama GI, Sato N. T-cell receptor variable gamma chain gene expression in the interaction between rat gammadelta-type T cells and heat-shock protein 70-like molecule. Microbiol Immunol 2003; 47:351-7. [PMID: 12825896 DOI: 10.1111/j.1348-0421.2003.tb03406.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported that rat T-cell receptor (TCR) Vdelta6 of T-cell hybridomas was preferentially involved in recognition of the cell surface-expressed 70 kDa rat heat-shock cognate (hsc70, a constitutively expressed member of the hsp 70 family) protein-like molecule (#067 molecule). In the present study, we analyzed usage of the TCR Vgamma family of #067-restricted T-cell hybridomas. Our data indicated that most of these hybridomas expressed transcripts of TCR Vgamma1 and/or Vgamma2. However, some of the Vgamma2 transcripts were out-of-frame, suggesting that the TCR Vgamma1 family may be important for the recognition of #067-defined molecules. TCR Vgamma1 transcripts were detected in not only #067-restricted T-cell hybridomas, but #067-non restricted ones as well. However, V-J nucleotide sequences of #067-restricted and #067-non restricted T-cell hybridomas suggested that #067-restricted T-cell hybridomas showed limited insertion of nucleotide stretch as compared with #067-non restricted ones. In terms of amino acids, only one amino acid was added in #067-restricted T-cell hybridomas, whereas two or three amino acids were added in #067-non restricted ones. These data suggest that the heterodimer of the TCR relatively short stretch form of Vgamma1 molecule and TCR Vdelta6 may participate in recognition of the #067 molecule.
Collapse
Affiliation(s)
- Takashi Ichinohe
- Department of Pathology, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
For a T-cell subset to be classified as immunoregulatory, it might reasonably be predicted that in its absence, animals would experience pathological immune dysregulation. Moreover, reconstitution of the subset should restore normal immune regulation. So far, these criteria have been satisfied by only a few of the candidate regulatory T-cell subsets, but among them is the intraepithelial gammadelta T-cell receptor (TCR)+ subset of mouse skin. In this article, we look at immunoregulatory gammadelta T cells, and the growing evidence for tissue-associated immunoregulation mediated by both gammadelta T cells and alphabeta T cells.
Collapse
MESH Headings
- Animals
- Epithelium/immunology
- Lymphocyte Subsets/immunology
- Mice
- Receptors, Antigen, T-Cell, alpha-beta
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Skin/immunology
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Adrian Hayday
- Peter Gorer Department of Immunobiology, Guy's, King's and StThomas' Medical School, King's College, London SE1 9RT, UK.
| | | |
Collapse
|
36
|
Abstract
Gammadelta T cells remain an enigma. They are capable of generating more unique antigen receptors than alphabeta T cells and B cells combined, yet their repertoire of antigen receptors is dominated by specific subsets that recognize a limited number of antigens. A variety of sometimes conflicting effector functions have been ascribed to them, yet their biological function(s) remains unclear. On the basis of studies of gammadelta T cells in infectious and autoimmune diseases, we argue that gammadelta T cells perform different functions according to their tissue distribution, antigen-receptor structure and local microenvironment; we also discuss how and at what stage of the immune response they become activated.
Collapse
Affiliation(s)
- Simon R Carding
- School of Biochemistry and Molecular Biology, The University of Leeds, West Yorkshire, UK.
| | | |
Collapse
|
37
|
Lee HC, Tomiyama K, Ye SK, Kawai K, Ikuta K. Seeding of dendritic epidermal T cells in the neonatal skin is reduced in 129 strain of mice. Immunol Lett 2002; 81:211-6. [PMID: 11947927 DOI: 10.1016/s0165-2478(02)00007-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Precursors for Thy-1(+) dendritic epidermal T cells (DETC) develop as Vgamma3(+) T cells in the fetal thymus and become distributed in the adult skin. DETC are variably distributed from site to site and from strain to strain. To elucidate the basis of strain variation, we first compared the density of DETC in the ear epidermis among different mouse strains. In the ear epidermis, we detected the highest level of DETC in C57BL/6 mice, intermediate levels in C3H and CBA/J mice, and the lowest levels in other strains including BALB/c and 129 mice. Although BALB/c and 129+Ter/Sv mice showed higher levels of DETC in the abdomen than in the ear, the levels were significantly lower than C57BL/6 mice. Furthermore, in neonatal abdominal epidermis we detected considerably lower numbers of DETC in BALB/c and 129+Ter/Sv mice than in C57BL/6 mice. In contrast, Vgamma3(+) DETC precursors in the fetal thymus are rather increased in 129+Ter/Sv mice. These results suggest that fewer DETC precursors are seeded in the neonatal skin of BALB/c and 129+Ter/Sv mice and that their expansion in the skin during neonatal to adult stages does not reach the levels in C57BL/6 mice.
Collapse
Affiliation(s)
- Hai-Chon Lee
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
38
|
Girardi M, Lewis J, Glusac E, Filler RB, Geng L, Hayday AC, Tigelaar RE. Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med 2002; 195:855-67. [PMID: 11927630 PMCID: PMC2193718 DOI: 10.1084/jem.20012000] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Revised: 02/05/2002] [Accepted: 02/20/2002] [Indexed: 11/04/2022] Open
Abstract
The function of the intraepithelial lymphocyte (IEL) network of T cell receptor (TCR) gammadelta(+) (Vgamma5(+)) dendritic epidermal T cells (DETC) was evaluated by examining several mouse strains genetically deficient in gammadelta T cells (delta(-/-) mice), and in delta(-/-) mice reconstituted with DETC or with different gammadelta cell subpopulations. NOD.delta(-/-) and FVB.delta(-/-) mice spontaneously developed localized, chronic dermatitis, whereas interestingly, the commonly used C57BL/6.delta(-/-) strain did not. Genetic analyses indicated a single autosomal recessive gene controlled the dermatitis susceptibility of NOD.delta(-/-) mice. Furthermore, allergic and irritant contact dermatitis reactions were exaggerated in FVB.delta(-/-), but not in C57BL/6.delta(-/-) mice. Neither spontaneous nor augmented irritant dermatitis was observed in FVB.beta(-/-) delta(-/-) mice lacking all T cells, indicating that alphabeta T cell-mediated inflammation is the target for gammadelta-mediated down-regulation. Reconstitution studies demonstrated that both spontaneous and augmented irritant dermatitis in FVB.delta(-/-) mice were down-regulated by Vgamma5(+) DETC, but not by epidermal T cells expressing other gammadelta TCRs. This study demonstrates that functional impairment at an epithelial interface can be specifically attributed to absence of the local TCR-gammadelta(+) IEL subset and suggests that systemic inflammatory reactions may more generally be subject to substantial regulation by local IELs.
Collapse
MESH Headings
- Animals
- Dendritic Cells/immunology
- Dermatitis/genetics
- Dermatitis/immunology
- Dermatitis/pathology
- Genes, Recessive
- Genes, T-Cell Receptor delta
- Inflammation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Skin/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- Michael Girardi
- Department of Dermatology and the Yale Skin Diseases Research Core Center, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|