1
|
Hioki KA, Ryan DJ, Thesmar I, Lynch AC, Pobezinsky LA, Pobezinskaya EL. The mosquito effect: regulatory and effector T cells acquire cytoplasmic material from tumor cells through intercellular transfer. Front Immunol 2023; 14:1272918. [PMID: 38179041 PMCID: PMC10765531 DOI: 10.3389/fimmu.2023.1272918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
The phenomenon of intercellular transfer of cellular material, including membranes, cytoplasm, and even organelles, has been observed for decades. The functional impact and molecular mechanisms of such transfer in the immune system remain largely elusive due to the absence of a robust in vivo model. Here, we introduce a new tumor mouse model, where tumor cells express the soluble ultra-bright fluorescent protein ZsGreen, which allows detection and measurement of intercellular transfer of cytoplasm from tumor cells to infiltrating immune cells. We found that in addition to various types of myeloid lineage cells, a large fraction of T regulatory cells and effector CD8 T cells acquire tumor material. Based on the distribution of tumor-derived ZsGreen, the majority of T cells integrate captured cytoplasm into their own, while most myeloid cells store tumor material in granules. Furthermore, scRNA-seq analysis revealed significant alterations in transcriptomes of T cells that acquired tumor cell cytoplasm, suggesting potential impact on T cell function. We identified that the participation of T cells in intercellular transfer requires cell-cell contact and is strictly dependent on the activation status of T lymphocytes. Finally, we propose to name the described phenomenon of intercellular transfer for tumor infiltrating T cells the "mosquito effect".
Collapse
Affiliation(s)
- Kaito A. Hioki
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
- UMass Biotech Training Program (BTP), University of Massachusetts, Amherst, MA, United States
| | - Daniel J. Ryan
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Iris Thesmar
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Adam C. Lynch
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Leonid A. Pobezinsky
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| | - Elena L. Pobezinskaya
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
2
|
MacNabb BW, Kline J. MHC cross-dressing in antigen presentation. Adv Immunol 2023; 159:115-147. [PMID: 37996206 DOI: 10.1016/bs.ai.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and β2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Justin Kline
- Department of Medicine, Committee on Immunology, and Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Campos-Mora M, Jacot W, Garcin G, Depondt ML, Constantinides M, Alexia C, Villalba M. NK cells in peripheral blood carry trogocytosed tumor antigens from solid cancer cells. Front Immunol 2023; 14:1199594. [PMID: 37593736 PMCID: PMC10427869 DOI: 10.3389/fimmu.2023.1199594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023] Open
Abstract
The innate immune lymphocyte lineage natural killer (NK) cell infiltrates tumor environment where it can recognize and eliminate tumor cells. NK cell tumor infiltration is linked to patient prognosis. However, it is unknown if some of these antitumor NK cells leave the tumor environment. In blood-borne cancers, NK cells that have interacted with leukemic cells are recognized by the co-expression of two CD45 isoforms (CD45RARO cells) and/or the plasma membrane presence of tumor antigens (Ag), which NK cells acquire by trogocytosis. We evaluated solid tumor Ag uptake by trogocytosis on NK cells by performing co-cultures in vitro. We analyzed NK population subsets by unsupervised dimensional reduction techniques in blood samples from breast tumor (BC) patients and healthy donors (HD). We confirmed that NK cells perform trogocytosis from solid cancer cells in vitro. The extent of trogocytosis depends on the target cell and the antigen, but not on the amount of Ag expressed by the target cell or the sensitivity to NK cell killing. We identified by FlowSOM (Self-Organizing Maps) several NK cell clusters differentially abundant between BC patients and HD, including anti-tumor NK subsets with phenotype CD45RARO+CD107a+. These analyses showed that bona-fide NK cells that have degranulated were increased in patients and, additionally, these NK cells exhibit trogocytosis of solid tumor Ag on their surface. However, the frequency of NK cells that have trogocytosed is very low and much lower than that found in hematological cancer patients, suggesting that the number of NK cells that exit the tumor environment is scarce. To our knowledge, this is the first report describing the presence of solid tumor markers on circulating NK subsets from breast tumor patients. This NK cell immune profiling could lead to generate novel strategies to complement established therapies for BC patients or to the use of peripheral blood NK cells in the theranostic of solid cancer patients after treatment.
Collapse
Affiliation(s)
| | - William Jacot
- Institut du Cancer de Montpellier (ICM) Val d’Aurelle, Montpellier University, INSERM U1194, Montpellier, France
| | | | | | | | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
| |
Collapse
|
4
|
Mattei F, Andreone S, Spadaro F, Noto F, Tinari A, Falchi M, Piconese S, Afferni C, Schiavoni G. Trogocytosis in innate immunity to cancer is an intimate relationship with unexpected outcomes. iScience 2022; 25:105110. [PMID: 36185368 PMCID: PMC9515589 DOI: 10.1016/j.isci.2022.105110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Trogocytosis is a cellular process whereby a cell acquires a membrane fragment from a donor cell in a contact-dependent manner allowing for the transfer of surface proteins with functional integrity. It is involved in various biological processes, including cell-cell communication, immune regulation, and response to pathogens and cancer cells, with poorly defined molecular mechanisms. With the exception of eosinophils, trogocytosis has been reported in most immune cells and plays diverse roles in the modulation of anti-tumor immune responses. Here, we report that eosinophils acquire membrane fragments from tumor cells early after contact through the CD11b/CD18 integrin complex. We discuss the impact of trogocytosis in innate immune cells on cancer progression in the context of the evidence that eosinophils can engage in trogocytosis with tumor cells. We also discuss shared and cell-specific mechanisms underlying this process based on in silico modeling and provide a hypothetical molecular model for the stabilization of the immunological synapse operating in granulocytes and possibly other innate immune cells that enables trogocytosis. Trogocytosis in innate immune cells can regulate immune responses to cancer Eosinophils engage in trogocytosis with tumor cells via CD11b/CD18 integrin complex CD11b/CD18 integrin, focal adhesion molecules and actin network enable trogocytosis
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Spadaro
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Corresponding author
| |
Collapse
|
5
|
Hasim MS, Marotel M, Hodgins JJ, Vulpis E, Makinson OJ, Asif S, Shih HY, Scheer AK, MacMillan O, Alonso FG, Burke KP, Cook DP, Li R, Petrucci MT, Santoni A, Fallon PG, Sharpe AH, Sciumè G, Veillette A, Zingoni A, Gray DA, McCurdy A, Ardolino M. When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. SCIENCE ADVANCES 2022; 8:eabj3286. [PMID: 35417234 PMCID: PMC9007500 DOI: 10.1126/sciadv.abj3286] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/23/2022] [Indexed: 05/12/2023]
Abstract
Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.
Collapse
Affiliation(s)
- Mohamed S. Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Marie Marotel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan J. Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Elisabetta Vulpis
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Olivia J. Makinson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sara Asif
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Han-Yun Shih
- Neuro-Immune Regulome Unit, National Eye Institute, NIH, Bethesda, MD, USA
| | - Amit K. Scheer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Olivia MacMillan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Felipe G. Alonso
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kelly P. Burke
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rui Li
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnology and Hematology, “Sapienza” University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - André Veillette
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Douglas A. Gray
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Arleigh McCurdy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Zhao S, Zhang L, Xiang S, Hu Y, Wu Z, Shen J. Gnawing Between Cells and Cells in the Immune System: Friend or Foe? A Review of Trogocytosis. Front Immunol 2022; 13:791006. [PMID: 35185886 PMCID: PMC8850298 DOI: 10.3389/fimmu.2022.791006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Trogocytosis occurs when one cell contacts and quickly nibbles another cell and is characterized by contact between living cells and rapid transfer of membrane fragments with functional integrity. Many immune cells are involved in this process, such as T cells, B cells, NK cells, APCs. The transferred membrane molecules including MHC molecules, costimulatory molecules, receptors, antigens, etc. An increasing number of studies have shown that trogocytosis plays an important role in the immune system and the occurrence of relevant diseases. Thus, whether trogocytosis is a friend or foe of the immune system is puzzling, and the precise mechanism underlying it has not yet been fully elucidated. Here, we provide an integrated view of the acquired findings on the connections between trogocytosis and the immune system.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
7
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
8
|
Yamanishi Y, Miyake K, Iki M, Tsutsui H, Karasuyama H. Recent advances in understanding basophil-mediated Th2 immune responses. Immunol Rev 2018; 278:237-245. [PMID: 28658549 DOI: 10.1111/imr.12548] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
Basophils, the least common granulocytes, represent only ~0.5% of peripheral blood leukocytes. Because of the small number and some similarity with mast cells, the functional significance of basophils remained questionable for a long time. Recent studies using newly-developed analytical tools have revealed crucial and non-redundant roles for basophils in various immune responses, particularly Th2 immunity including allergy and protective immunity against parasitic infections. In this review, we discuss the mechanisms how basophils mediate Th2 immune responses and the nature of basophil-derived factors involved in them. Activated basophils release serine proteases, mouse mast cell protease 8 (mMCP-8), and mMCP-11, that are preferentially expressed by basophils rather than mast cells in spite of their names. These proteases elicit microvascular hyperpermeability and leukocyte infiltration in affected tissues, leading to inflammation. Basophil-derived IL-4 also contributes to eosinophil infiltration while it acts on tissue-infiltrating inflammatory monocytes to promote their differentiation into M2 macrophages that in turn dampen inflammation. Although basophils produce little or no MHC class II (MHC-II) proteins, they can acquire peptide-MHC-II complexes from dendritic cells via trogocytosis and present them together with IL-4 to naive CD4 T cells, leading to Th2 cell differentiation. Thus, basophils contribute to Th2 immunity at various levels.
Collapse
Affiliation(s)
- Yoshinori Yamanishi
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Kensuke Miyake
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Misako Iki
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Hidemitsu Tsutsui
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University (TMDU), Graduate School of Medical and Dental Sciences, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Trogocytosis is a rapid contact-dependent process by which lymphocytes acquire membrane patches from the target cells ('donor' cells) with which they interact and this phenomenon has been shown to occur in various immune cells. The surface molecules acquired through trogocytosis are functionally incorporated in the 'acceptor' cells transiently. We had previously demonstrated that trogocytosis can be utilized in place of gene transfer to engineer surface receptor expression on NK cells for adoptive immunotherapy applications. In this chapter, we describe detailed protocol for trogocytosis-co-culture of NK cell with the donor cell line, phenotypic assessment of receptor uptake and persistence, and assessment of NK cell function (migration) following receptor acquisition.
Collapse
|
10
|
Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc Natl Acad Sci U S A 2017; 114:1111-1116. [PMID: 28096423 DOI: 10.1073/pnas.1615973114] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Th2 immunity plays important roles in both protective and allergic responses. Nevertheless, the nature of antigen-presenting cells responsible for Th2 cell differentiation remains ill-defined compared with the nature of the cells responsible for Th1 and Th17 cell differentiation. Basophils have attracted attention as a producer of Th2-inducing cytokine IL-4, whereas their MHC class II (MHC-II) expression and function as antigen-presenting cells are matters of considerable controversy. Here we revisited the MHC-II expression on basophils and explored its functional relevance in Th2 cell differentiation. Basophils generated in vitro from bone marrow cells in culture with IL-3 plus GM-CSF displayed MHC-II on the cell surface, whereas those generated in culture with IL-3 alone did not. Of note, these MHC-II-expressing basophils showed little or no transcription of the corresponding MHC-II gene. The GM-CSF addition to culture expanded dendritic cells (DCs) other than basophils. Coculture of basophils and DCs revealed that basophils acquired peptide-MHC-II complexes from DCs via cell contact-dependent trogocytosis. The acquired complexes, together with CD86, enabled basophils to stimulate peptide-specific T cells, leading to their proliferation and IL-4 production, indicating that basophils can function as antigen-presenting cells for Th2 cell differentiation. Transfer of MHC-II from DCs to basophils was also detected in draining lymph nodes of mice with atopic dermatitis-like skin inflammation. Thus, the present study defined the mechanism by which basophils display MHC-II on the cell surface and appears to reconcile some discrepancies observed in previous studies.
Collapse
|
11
|
Boudreau JE, Liu XR, Zhao Z, Zhang A, Shultz LD, Greiner DL, Dupont B, Hsu KC. Cell-Extrinsic MHC Class I Molecule Engagement Augments Human NK Cell Education Programmed by Cell-Intrinsic MHC Class I. Immunity 2016; 45:280-91. [PMID: 27496730 DOI: 10.1016/j.immuni.2016.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/23/2016] [Accepted: 05/22/2016] [Indexed: 11/19/2022]
Abstract
The effector potential of NK cells is counterbalanced by their sensitivity to inhibition by "self" MHC class I molecules in a process called "education." In humans, interactions between inhibitory killer immunoglobulin-like receptors (KIR) and human MHC (HLA) mediate NK cell education. In HLA-B(∗)27:05(+) transgenic mice and in patients undergoing HLA-mismatched hematopoietic cell transplantation (HCT), NK cells derived from human CD34(+) stem cells were educated by HLA from both donor hematopoietic cells and host stromal cells. Furthermore, mature human KIR3DL1(+) NK cells gained reactivity after adoptive transfer to HLA-B(∗)27:05(+) mice or bone marrow chimeric mice where HLA-B(∗)27:05 was restricted to either the hematopoietic or stromal compartment. Silencing of HLA in primary NK cells diminished NK cell reactivity, while acquisition of HLA from neighboring cells increased NK cell reactivity. Altogether, these findings reveal roles for cell-extrinsic HLA in driving NK cell reactivity upward, and cell-intrinsic HLA in maintaining NK cell education.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiao-Rong Liu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zeguo Zhao
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Zhang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Bo Dupont
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
12
|
Kadri N, Wagner AK, Ganesan S, Kärre K, Wickström S, Johansson MH, Höglund P. Dynamic Regulation of NK Cell Responsiveness. Curr Top Microbiol Immunol 2016; 395:95-114. [PMID: 26658943 DOI: 10.1007/82_2015_485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Natural killer (NK) cells deliver cytotoxic granules and immunomodulatory cytokines in response to transformed and virally infected cells. NK cell functions are under the control of a large number of germline-encoded receptors that recognize various ligands on target cells, but NK cells also respond to cytokines in the surrounding environment. The interaction between NK cell receptors and their ligands delivers either inhibitory or activating signals. The cytokine milieu further shapes NK cell responses, either directly or by influencing the way inhibitory or activating signals are perceived by NK cells. In this review, we discuss how NK cell function is controlled by inhibitory receptors and MHC-I molecules, how activating receptors contribute to NK cell education, and finally, how cytokines secreted by the surrounding cells affect NK cell responsiveness. Inputs at these three levels involve different cell types and are seamlessly integrated to form a functional NK cell population.
Collapse
Affiliation(s)
- Nadir Kadri
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sridharan Ganesan
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Stina Wickström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Maria H Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 141 86, Stockholm, Sweden.
| |
Collapse
|
13
|
Kadri N, Thanh TL, Höglund P. Selection, tuning, and adaptation in mouse NK cell education. Immunol Rev 2016; 267:167-77. [PMID: 26284477 DOI: 10.1111/imr.12330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural killer (NK) cells recognize transformed cells with an array of germline-encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind major histocompatibility complex class I (MHC-I) molecules, providing a mechanism by which NK cells maintain self-tolerance yet eliminate cells expressing reduced levels of MHC-I. Additionally, MHC-I molecules are required for NK cell education, a process in which NK cells acquire responsiveness. In this review, we discuss three facets of MHC class I-dependent education of mouse NK cells: skewing of the inhibitory receptor repertoire, induction of functional responsiveness, and tuning in response to changes in MHC-I expression. We discuss prevailing models for education such as licensing and disarming and propose a model for positive selection of 'useful' NK cell subsets. Furthermore, we argue that both repertoire skewing and functional NK cell education may be altered in mature NK cells subject to changes in MHC-I input and suggest that this process may provide increased dynamics to the NK cell system.
Collapse
Affiliation(s)
- Nadir Kadri
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thuy Luu Thanh
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
López-Cobo S, Romera-Cárdenas G, García-Cuesta EM, Reyburn HT, Valés-Gómez M. Transfer of the human NKG2D ligands UL16 binding proteins (ULBP) 1-3 is related to lytic granule release and leads to ligand retransfer and killing of ULBP-recipient natural killer cells. Immunology 2015; 146:70-80. [PMID: 25980678 DOI: 10.1111/imm.12482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 01/16/2023] Open
Abstract
After immune interactions, membrane fragments can be transferred between cells. This fast transfer of molecules is transient and shows selectivity for certain proteins; however, the constraints underlying acquisition of a protein are unknown. To characterize the mechanism and functional consequences of this process in natural killer (NK) cells, we have compared the transfer of different NKG2D ligands. We show that human NKG2D ligands can be acquired by NK cells with different efficiencies. The main findings are that NKG2D ligand transfer is related to immune activation and receptor-ligand interaction and that NK cells acquire these proteins during interactions with target cells that lead to degranulation. Our results further demonstrate that NK cells that have acquired NKG2D ligands can stimulate activation of autologous NK cells. Surprisingly, NK cells can also re-transfer the acquired molecule to autologous effector cells during this immune recognition that leads to their death. These data demonstrate that transfer of molecules occurs as a consequence of immune recognition and imply that this process might play a role in homeostatic tuning-down of the immune response or be used as marker of interaction.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Romera-Cárdenas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
15
|
Abstract
Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC.
Collapse
Affiliation(s)
- Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
16
|
Bessoles S, Grandclément C, Alari-Pahissa E, Gehrig J, Jeevan-Raj B, Held W. Adaptations of Natural Killer Cells to Self-MHC Class I. Front Immunol 2014; 5:349. [PMID: 25101089 PMCID: PMC4106420 DOI: 10.3389/fimmu.2014.00349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/08/2014] [Indexed: 11/24/2022] Open
Abstract
Natural Killer (NK) cells use germ line encoded receptors to detect diseased host cells. Despite the invariant recognition structures, NK cells have a significant ability to adapt to their surroundings, such as the presence or absence of MHC class I molecules. It has been assumed that this adaptation occurs during NK cell development, but recent findings show that mature NK cells can also adapt to the presence or absence of MHC class I molecules. Here, we summarize how NK cells adjust to changes in the expression of MHC class I molecules. We propose an extension of existing models, in which MHC class I recognition during NK cell development sequentially instructs and maintains NK cell function. The elucidation of the molecular basis of the two effects may identify ways to improve the fitness of NK cells and to prevent the loss of NK cell function due to persistent alterations in their environment.
Collapse
Affiliation(s)
- Stéphanie Bessoles
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Camille Grandclément
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Elisenda Alari-Pahissa
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Jasmine Gehrig
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Beena Jeevan-Raj
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Werner Held
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
17
|
MHC-dependent inhibition of uterine NK cells impedes fetal growth and decidual vascular remodelling. Nat Commun 2014; 5:3359. [PMID: 24577131 PMCID: PMC3948146 DOI: 10.1038/ncomms4359] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/30/2014] [Indexed: 11/23/2022] Open
Abstract
NK cells express variable receptors that engage polymorphic MHC class I molecules and regulate their function. Maternal NK cells accumulate at the maternal-fetal interface and can interact with MHC class I molecules from both parents. The relative contribution of the two sets of parental MHC molecules to uterine NK cell function is unknown. Here we show that, in mice, maternal and not paternal MHC educates uterine NK cells to mature and acquire functional competence. The presence of an additional MHC allele that binds more inhibitory than activating NK cell receptors results in suppressed NK cell function, compromised uterine arterial remodelling and reduced fetal growth. Notably, reduced fetal growth occurs irrespectively of the parental origin of the inhibitory MHC. This provides biological evidence for the impact of MHC-dependent NK inhibition as a risk factor for human pregnancy-related complications associated with impaired arterial remodelling.
NK cells are involved in remodelling of the uterine vasculature during pregnancy and the extent of this process is influenced by the combination of maternal NK cell receptors and MHC-I of the fetus. Here, the authors provide further insights into how the presence of MHC-I from each parent differentially affects NK cell function.
Collapse
|
18
|
Natural killer cell licensing in mice with inducible expression of MHC class I. Proc Natl Acad Sci U S A 2013; 110:E4232-7. [PMID: 24145414 DOI: 10.1073/pnas.1318255110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mouse natural killer (NK) cells acquire effector function by an education process termed "licensing" mediated by inhibitory Ly49 receptors which recognize self-MHC class I. Ly49 receptors can bind to MHC class I on targets (in trans) and also to MHC class I on the NK-cell surface (in cis). Which of these interactions regulates NK-cell licensing is not yet clear. Moreover, there are no clear phenotypic differences between licensed and unlicensed NK cells, perhaps because of the previously limited ability to study NK cells with synchronized licensing. Here, we produced MHC class I-deficient mice with inducible MHC class I consisting of a single-chain trimer (SCT), ovalbumin peptide-β2 microgloblin-H2K(b) (SCT-K(b)). Only NK cells with a Ly49 receptor with specificity for SCT-K(b) were licensed after MHC class I induction. NK cells were localized consistently in red pulp of the spleen during induced NK-cell licensing, and there were no differences in maturation or activation markers on recently licensed NK cells. Although MHC class I-deficient NK cells were licensed in hosts following SCT-K(b) induction, NK cells were not licensed after induced SCT-K(b) expression on NK cells themselves in MHC class I-deficient hosts. Furthermore, hematopoietic cells with induced SCT-K(b) licensed NK cells more efficiently than stromal cells. These data indicate that trans interaction with MHC class I on hematopoietic cells regulates NK-cell licensing, which is not associated with other obvious phenotypic changes.
Collapse
|
19
|
Alhajjat AM, Strong BS, Durkin ET, Turner LE, Wadhwani RK, Midura EF, Keswani SG, Shaaban AF. Trogocytosis as a mechanistic link between chimerism and prenatal tolerance. CHIMERISM 2013; 4:126-31. [PMID: 24121538 DOI: 10.4161/chim.26666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In utero hematopoietic cellular transplantation (IUHCT) holds great promise for the treatment of congenital diseases of cellular dysfunction such as sickle cell disease, immunodeficiency disorders and inherited metabolic disorders. However, repeated failures in clinical cases of IUHCT that do not involve an immunodeficiency disease force a closer examination of the fetal immune system. While the mechanisms regulating T cell tolerance have been previously studied, the educational mechanisms leading to NK cell tolerance in prenatal chimeras remain unknown. As a low level of donor cells (1.8%) is required to induce and maintain this tolerance, it is likely that these mechanisms employ indirect host-donor interaction. This report examines donor-to-host MHC transfer (trogocytosis) as an intrinsic mechanism regulating the development and maintenance of NK cell tolerance in prenatal chimeras. The findings demonstrate that phenotypically tolerant host NK cells express low levels of transferred donor MHC antigens during development and later as mature cytotoxic lymphocytes. Further study is needed to understand how the cis-recognition of transferred donor MHC ligand influences the selection and maintenance of tolerant NK cells in prenatal chimeras.
Collapse
Affiliation(s)
- Amir M Alhajjat
- Department of Surgery; University of Iowa Carver College of Medicine; Iowa City, IA USA
| | - Beverly S Strong
- Department of Surgery; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Emily T Durkin
- Department of Surgery; Boston Children's Hospital; Boston, MA USA
| | - Lucas E Turner
- Department of Surgery; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Ram K Wadhwani
- Department of Surgery; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Emily F Midura
- Department of Surgery; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Sundeep G Keswani
- Department of Surgery; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| | - Aimen F Shaaban
- Department of Surgery; Cincinnati Children's Hospital Medical Center; Cincinnati, OH USA
| |
Collapse
|
20
|
Bessoles S, Angelov GS, Back J, Leclercq G, Vivier E, Held W. Education of murine NK cells requires both cis and trans recognition of MHC class I molecules. THE JOURNAL OF IMMUNOLOGY 2013; 191:5044-51. [PMID: 24098052 DOI: 10.4049/jimmunol.1301971] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although NK cells use invariant receptors to identify diseased cells, they nevertheless adapt to their environment, including the presence of certain MHC class I (MHC-I) molecules. This NK cell education, which is mediated by inhibitory receptors specific for MHC-I molecules, changes the responsiveness of activating NK cell receptors (licensing) and modifies the repertoire of MHC-I receptors used by NK cells. The fact that certain MHC-I receptors have the unusual capacity to recognize MHC-I molecules expressed by other cells (trans) and by the NK cell itself (cis) has raised the question regarding possible contributions of the two types of interactions to NK cell education. Although the analysis of an MHC-I receptor variant suggested a role for cis interaction for NK cell licensing, adoptive NK cell transfer experiments supported a key role for trans recognition. To reconcile some of these findings, we have analyzed the impact of cell type-specific deletion of an MHC-I molecule and of a novel MHC-I receptor variant on the education of murine NK cells when these mature under steady-state conditions in vivo. We find that MHC-I expression by NK cells (cis) and by T cells (trans), and MHC-I recognition in cis and in trans, are both needed for NK cell licensing. Unexpectedly, modifications of the MHC-I receptor repertoire are chiefly dependent on cis binding, which provides additional support for an essential role for this unconventional type of interaction for NK cell education. These data suggest that two separate functions of MHC-I receptors are needed to adapt NK cells to self-MHC-I.
Collapse
Affiliation(s)
- Stéphanie Bessoles
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Osborne DG, Wetzel SA. Trogocytosis results in sustained intracellular signaling in CD4(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4728-39. [PMID: 23066151 DOI: 10.4049/jimmunol.1201507] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cells capture membrane and membrane-bound molecules from APCs directly from the immunological synapse in a process termed trogocytosis. The function and biological consequences of trogocytosis are largely unknown. In this study, we examine the biological significance of this phenomenon on the trogocytosis-positive T cell. We used murine fibroblasts expressing GFP-tagged I-E(k) molecules loaded with a covalently attached antigenic peptide (moth cytochrome c 88-103) to present Ag to primary TCR transgenic T cells. Using a combination of high-resolution light microscopy and flow cytometry, we show that the trogocytosed molecules are retained on the surface of the T cell in association with the TCR and elevated phosphorylated ZAP-70, phosphorylated tyrosine, and phosphorylated ERK 1/2. Through the use of the Src inhibitor PP2, we demonstrate that trogocytosed molecules directly sustain TCR signaling. In addition, after removal of APC, trogocytosis-positive cells preferentially survive in culture over several days. These novel findings suggest that trogocytosed molecules continue to engage their receptors on the T cell surface and sustain intracellular signaling leading to selective survival of these cells.
Collapse
Affiliation(s)
- Douglas G Osborne
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
22
|
Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4+ T cells. Proc Natl Acad Sci U S A 2011; 108:18360-5. [PMID: 22042851 DOI: 10.1073/pnas.1110584108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells contribute to not only innate but also to adaptive immunity by interacting with dendritic cells (DCs) and T cells. All activated human NK cells express HLA-DR and can initiate MHCII-dependent CD4(+) T-cell proliferation; however, the expression of MHCII by mouse NK cells and its functional significance are controversial. In this study, we show that NK-DC interactions result in the emergence of MHCII-positive NK cells. Upon in vitro or in vivo activation, mouse conventional NK cells did not induce MHCII transcripts, but rapidly acquired MHCII protein from DCs. MHCII H2-Ab1-deficient NK cells turned I-A(b)-positive when adoptively transferred into wild-type mice or when cultured with WT splenic DCs. NK acquisition of MHCII was mediated by intercellular membrane transfer called "trogocytosis," but not upon DAP10/12- and MHCI-binding NK cell receptor signaling. MHCII-dressed NK cells concurrently acquired costimulatory molecules such as CD80 and CD86 from DCs; however, their expression did not reach functional levels. Therefore, MHCII-dressed NK cells inhibited DC-induced CD4(+) T-cell responses rather than activated CD4(+) T cells by competitive antigen presentation. In a mouse model for delayed-type hypersensitivity, adoptive transfer of MHCII-dressed NK cells attenuated footpad swelling. These results suggest that MHCII-dressed NK cells generated through NK-DC interactions regulate T cell-mediated immune responses.
Collapse
|
23
|
Elliott JM, Yokoyama WM. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol 2011; 32:364-72. [PMID: 21752715 DOI: 10.1016/j.it.2011.06.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/28/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells, like B and T lymphocytes, are potent effector cells that are crucial for immunity to tumors and infections. These effector responses must be controlled to avoid inadvertent attack against normal self. Yet, the mechanisms that guide NK cell tolerance differ from those guiding T and B cell tolerance. Here, we discuss how NK cells are licensed by self-MHC class I molecules through their inhibitory receptors which results in NK cell functional competence to be triggered through their activation receptors. We discuss recent data with respect to issues related to licensing, thereby providing a framework for unifying concepts on NK cell education.
Collapse
Affiliation(s)
- Julie M Elliott
- Immunology Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Campus Box 8045, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
24
|
Brown K, Sacks SH, Wong W. Coexpression of donor peptide/recipient MHC complex and intact donor MHC: evidence for a link between the direct and indirect pathways. Am J Transplant 2011; 11:826-31. [PMID: 21401861 DOI: 10.1111/j.1600-6143.2011.03437.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
T lymphocytes recognize foreign antigens presented by donor or recipient cells through the direct and indirect pathways respectively. This raises the question of how directly and indirectly activated T cells interact. A 4-cell model involving the interaction of CD4(+) and CD8(+) T cells recognizing major histocompatibility complex (MHC) class II on recipient antigen presenting cell (APC), and MHC class I on donor APC, has been proposed. However, this would require complex co-ordination between all the participating cell types. The semidirect pathway of alloantigen presentation suggests a simpler mechanism. Although exchange of MHC class II molecules between donor and recipient cells has been described, coexpression of recipient MHC molecules presenting donor derived allopeptides (indirect presentation) and donor MHC (direct presentation) on the same cell, a key requirement for the semidirect alloantigen presentation pathway, has not been demonstrated. We have used a mouse transplantation model to demonstrate the presence of cells expressing both donor MHC class I/II molecules, and a donor MHC class II peptide in the context of a recipient MHC class II molecule. This would allow indirectly activated CD4(+) T cells to regulate directly activated CD4(+) T cells, or to help directly activated CD8(+) T cells, thus providing physical evidence for the semidirect pathway.
Collapse
Affiliation(s)
- K Brown
- MRC Centre for Transplantation, King's College London, School of Medicine at Guy's, King's and St. Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
25
|
HoWangYin KY, Caumartin J, Favier B, Daouya M, Yaghi L, Carosella ED, LeMaoult J. Proper regrafting of Ig-like transcript 2 after trogocytosis allows a functional cell-cell transfer of sensitivity. THE JOURNAL OF IMMUNOLOGY 2011; 186:2210-8. [PMID: 21242521 DOI: 10.4049/jimmunol.1000547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The acquisition by T cells of exogenous ligands originally expressed by APC has been already described. However, reports essentially focused on the outward signaling of acquired ligands and their effects on surroundings cells. We investigated the function of transferred receptors (not ligands) on the T cells that acquired them (not on cells they interact with). We show that inhibitory Ig-like transcript 2 receptors efficiently transfer from monocytes to autologous T cells by trogocytosis and integrate within the plasma membrane of the acquirer T cells. Furthermore, the acquired receptors can access compatible signaling machinery within acquirer T cells and use it to signal and alter the functions of their new host cells. These data are a formal demonstration that a transferred molecule may send signals to its new host cell. We also provide evidence that sensitivity to modulatory molecules can be acquired from other cells and introduce the notion of intercellular transfer of sensitivities.
Collapse
Affiliation(s)
- Kiave-Yune HoWangYin
- Commissariat a l'Energie Atomique, Institut d'Imagerie BioMedicale, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Guseva NV, Fullenkamp CA, Naumann PW, Shey MR, Ballas ZK, Houtman JCD, Forbes CA, Scalzo AA, Heusel JW. Glycosylation contributes to variability in expression of murine cytomegalovirus m157 and enhances stability of interaction with the NK-cell receptor Ly49H. Eur J Immunol 2010; 40:2618-31. [PMID: 20662096 DOI: 10.1002/eji.200940134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NK cell-mediated resistance to murine cytomegalovirus (MCMV) is controlled by allelic Ly49 receptors, including activating Ly49H (C57BL/6 strain) and inhibitory Ly49I (129 strain), which specifically recognize MCMV m157, a glycosylphosphatidylinositol-linked protein with homology to MHC class I. Although the Ly49 receptors retain significant homology to classic carbohydrate-binding lectins, the role of glycosylation in ligand binding is unclear. Herein, we show that m157 is expressed in multiple, differentially N-glycosylated isoforms in m157-transduced or MCMV-infected cells. We used site-directed mutagenesis to express single and combinatorial asparagine (N)-to-glutamine (Q) mutations at N178, N187, N213, and N267 in myeloid and fibroblast cell lines. Progressive loss of N-linked glycans led to a significant reduction of total cellular m157 abundance, although all variably glycosylated m157 isoforms were expressed at the cell surface and retained the capacity to activate Ly49H(B6) and Ly49I(129) reporter cells and Ly49H(+) NK cells. However, the complete lack of N-linked glycans on m157 destabilized the m157-Ly49H interaction and prevented physical transfer of m157 to Ly49H-expressing cells. Thus, glycosylation on m157 enhances expression and binding to Ly49H, factors that may impact the interaction between NK cells and MCMV in vivo where receptor-ligand interactions are more limiting.
Collapse
Affiliation(s)
- Natalya V Guseva
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brodin P, Lakshmikanth T, Mehr R, Johansson MH, Duru AD, Achour A, Salmon-Divon M, Kärre K, Höglund P, Johansson S. Natural killer cell tolerance persists despite significant reduction of self MHC class I on normal target cells in mice. PLoS One 2010; 5. [PMID: 20957233 PMCID: PMC2949391 DOI: 10.1371/journal.pone.0013174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A major group of murine inhibitory receptors on Natural Killer (NK) cells belong to the Ly49 receptor family and recognize MHC class I molecules. Infected or transformed target cells frequently downmodulate MHC class I molecules and can thus avoid CD8(+) T cell attack, but may at the same time develop NK cell sensitivity, due to failure to express inhibitory ligands for Ly49 receptors. The extent of MHC class I downregulation needed on normal cells to trigger NK cell effector functions is not known. METHODOLOGY/PRINCIPAL FINDINGS In this study, we show that cells expressing MHC class I to levels well below half of the host level are tolerated in an in vivo assay in mice. Hemizygous expression (expression from only one allele) of MHC class I was sufficient to induce Ly49 receptor downmodulation on NK cells to a similar degree as homozygous expression, despite a strongly reduced cell surface level of MHC class I. Co-expression of weaker MHC class I ligands in the host did not have any further effect on the degree of Ly49 downmodulation. Furthermore, a single MHC class I allele could downmodulate up to three Ly49 receptors on individual NK cells. Only when NK cells simultaneously expressed several Ly49 receptors and hemizygous MHC class I levels, a putative threshold for Ly49 downmodulation was reached. CONCLUSION Collectively, our findings suggest that in interactions between NK cells and normal untransformed cells, MHC class I molecules are in most cases expressed in excess compared to what is functionally needed to ensure self tolerance and to induce maximal Ly49 downmodulation. We speculate that the reason for this is to maintain a safety margin for otherwise normal, autologous cells over a range of MHC class I expression levels, in order to ensure robustness in NK cell tolerance.
Collapse
Affiliation(s)
- Petter Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria H. Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Adil Doganay Duru
- Department of Medicine, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Sweden
| | - Adnane Achour
- Department of Medicine, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Sweden
| | - Mali Salmon-Divon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- European Molecular Biology Laboratory (EMBL) European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Johansson
- Department of Applied Physics, Experimental Biomolecular Physics, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
28
|
Membrane redistributions through multi-intercellular exchanges and serial trogocytosis. Cell Res 2010; 20:1239-51. [PMID: 20877312 DOI: 10.1038/cr.2010.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Trogocytosis is a rapid transfer between cells of membranes and associated proteins. Trogocytic exchanges have been investigated between different cell types, mainly in two-cell systems, involving one donor and one acceptor cell type. Here, we studied trogocytosis in a more complex system, involving not only several immune cell subsets but also multiple tumor cells. We show that CD4(+) T cells, CD8(+) T cells and monocytes can acquire membrane patches and the intact proteins they contain from different tumor cells by multiple simultaneous trogocytoses. The trogocytic capabilities of CD4(+) and CD8(+) T cells were found to be similar, but inferior to that of autologous monocytes. Activated peripheral-blood mononuclear cells (PBMCs) may also exchange membranes between themselves in an all-autologous system. For this reason, monocytes are capable of acquiring membranes from multiple tumor cell sources, and transfer them again to autologous T cells, along with some of their own membranes (serial trogocytosis). Our data illustrate the extent of membrane exchanges between autologous activated immune effector cells and their environment, and how the cellular content of the local environment, including "bystander" cells, may impact the functions of immune effector cells.
Collapse
|
29
|
Elliott JM, Wahle JA, Yokoyama WM. MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. ACTA ACUST UNITED AC 2010; 207:2073-9. [PMID: 20819924 PMCID: PMC2947074 DOI: 10.1084/jem.20100986] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In MHC class I-deficient hosts, natural killer (NK) cells are hyporesponsive to cross-linking of activation receptors. Functional competence requires engagement of a self-major histocompatability complex (MHC) class I-specific inhibitory receptor, a process referred to as "licensing." We previously suggested that licensing is developmentally determined in the bone marrow. In this study, we find that unlicensed mature MHC class I-deficient splenic NK cells show gain-of-function and acquire a licensed phenotype after adoptive transfer into wild-type (WT) hosts. Transferred NK cells produce WT levels of interferon-γ after engagement of multiple activation receptors, and degranulate at levels equivalent to WT NK cells upon coincubation with target cells. Only NK cells expressing an inhibitory Ly49 receptor specific for a cognate host MHC class I molecule show this gain-of-function. Therefore, these findings, which may be relevant to clinical bone marrow transplantation, suggest that neither exposure to MHC class I ligands during NK development in the BM nor endogenous MHC class I expression by NK cells themselves is absolutely required for licensing.
Collapse
Affiliation(s)
- Julie M Elliott
- Division of Biology and Biomedical Sciences, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
30
|
Abstract
Adaptive immunity has traditionally been considered a unique feature of vertebrate physiology. Unlike innate immune responses, which remain essentially unchanged upon exposure to a recurrent challenge with the same stimulus, adaptive immune cells possess the ability to learn and remember. Thus, secondary adaptive responses to a previously encountered challenge are qualitatively and/or quantitatively distinct from those elicited by a primary encounter. Besides this capacity to acquire long-lived memory, the second cardinal feature of adaptive immunity is antigen specificity. It has been generally believed that only T and B cells can develop antigen-specific immunologic memory, because these lymphocytes uniquely express recombination-activating gene (RAG) proteins, which are necessary for somatic rearrangement of V(D)J gene segments to assemble diverse antigen-specific receptors. However, recent work has uncovered discrete subsets of murine natural killer (NK) cells capable of mediating long-lived, antigen-specific recall responses to a variety of hapten-based contact sensitizers. These NK cells appear to use distinct, RAG-independent mechanisms to generate antigen specificity. Murine NK cells have also recently been shown to develop memory upon viral infection. Here, we review recent evidence indicating that at least some NK cells are capable of mediating what appears to be adaptive immunity and discuss potential mechanisms that may contribute to RAG-independent generation of antigenic diversity and longevity.
Collapse
Affiliation(s)
- Silke Paust
- Department of Pathology and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
31
|
Brown K, Fidanboylu M, Wong W. Intercellular exchange of surface molecules and its physiological relevance. Arch Immunol Ther Exp (Warsz) 2010; 58:263-72. [PMID: 20508995 DOI: 10.1007/s00005-010-0085-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/11/2010] [Indexed: 12/31/2022]
Abstract
For many decades, cellular immunologists have relied on the expression of various cell surface molecules to divide cells into different types and subtypes to study their function. However, in recent years, a large and fast-expanding body of work has described the transfer of surface molecules, including MHC class I and II molecules, between cells, both in vitro and in vivo. The function of this process is still largely unknown, but it is likely to have a significant role in the control of the immune system. It is also likely that this process takes place in a regulated rather than stochastic manner, thus providing another way for the immune system to orchestrate its function. In this review we will summarize the key findings so far, examining the mechanisms of transfer, the consequences of this transfer as shown by in vitro experiments, and possible consequences for the wider immune response.
Collapse
Affiliation(s)
- Kathryn Brown
- MRC Centre for Transplantation, King's College London, School of Medicine at Guy's, King's and St. Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
32
|
Jonsson AH, Yang L, Kim S, Taffner SM, Yokoyama WM. Effects of MHC class I alleles on licensing of Ly49A+ NK cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:3424-32. [PMID: 20194719 DOI: 10.4049/jimmunol.0904057] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune lymphocytes that can react to cells lacking self-MHC class I. However, NK cells that cannot engage self-MHC through an inhibitory receptor are resistant to stimulation through their activation receptors. To become licensed (i.e., functionally competent to be triggered through its activation receptors), an NK cell must engage host MHC class I via a MHC class I-specific inhibitory receptor, such as a member of the murine Ly49 family. To explore potential determinants of NK cell licensing on a single Ly49 receptor, we have investigated the relative licensing impacts of the b, d, k, q, r, and s H2 haplotypes on Ly49A(+) NK cells. The results indicate that licensing is essentially analog but is saturated by moderate-binding MHC class I ligands. Interestingly, licensing exhibited a strong inverse correlation with a measure of cis engagement of Ly49A. Finally, licensing of Ly49A(+) NK cells was found to be less sensitive to MHC class I engagement than Ly49A-mediated effector inhibition, suggesting that licensing establishes a margin of safety against NK cell autoreactivity.
Collapse
Affiliation(s)
- A Helena Jonsson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
In a multicellular system, cellular communication is a must for orchestration and coordination of cellular events. Advent of the latest analytical and imaging tools has allowed us to enhance our understanding of the intercellular communication. An intercellular exchange of proteins or intact membrane patches is a ubiquitous phenomenon, and has been the subject of renewed interest, particularly in the context of immune cells. Recent evidence implicates that intercellular protein transfers, including trogocytosis is an important mechanism of the immune system to modulate immune responses and transferred proteins can also contribute to pathology. It has been demonstrated that intercellular protein transfer can be through the internalization/pathway, dissociation-associated pathway, uptake of exosomes and membrane nanotube formations. Exchange of membrane molecules/antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. In this review, we will discuss the important findings concerning intercellular protein transfers, possible mechanisms and highlight their physiological relevance to the immune system, with special reference to T cells such as the stimulatory or suppressive immune responses derived from T cells with acquired dendritic cell membrane molecules.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
34
|
Abstract
Armed with potent cytotoxic and immunostimulatory effector functions, natural killer (NK) cells have the potential to cause significant damage to normal self cells unless controlled by self-tolerance mechanisms. NK cells identify and attack target cells based on integration of signals from activation and inhibitory receptors, whose ligands exhibit complex expression and/or binding patterns. Preservation of NK cell self-tolerance must therefore go beyond mere engagement of inhibitory receptors during effector functions. Herein, we review recent work that has uncovered a number of mechanisms to ensure self-tolerance of NK cells. For example, licensing of NK cells allows only NK cells that can engage self-MHC to become functionally competent, or licensed. The molecular mechanism of this phenomenon appears to require signaling by receptors that were originally identified in effector inhibition. However, the nature of the signaling event has not yet been defined, but new interpretations of several published experiments provide valuable clues. In addition, several other cell-intrinsic and -extrinsic mechanisms of NK cell tolerance are discussed, including activation receptor cooperation and synergy, cytokine stimulation, and the opposing roles of accessory and regulatory cells. Finally, NK cell tolerance is discussed as it relates to the clinic, such as KIR-HLA disease associations, tumor immunotherapy, and fetal tolerance.
Collapse
|
35
|
Brown K, Sacks SH, Wong W. Extensive and bidirectional transfer of major histocompatibility complex class II molecules between donor and recipient cells in vivo following solid organ transplantation. FASEB J 2008; 22:3776-84. [PMID: 18632850 DOI: 10.1096/fj.08-107441] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intercellular transfer of surface molecules has been demonstrated in vitro, or in vivo under artificial situations. Transplantation is a unique clinical situation in which foreign major histocompatibility complex (MHC) molecules are deliberately introduced. This provides a model to study intercellular MHC transfer because donor MHC molecules can easily be tracked. Here we describe the bidirectional transfer of MHC class II molecules between donor and recipient cells after transplantation of vascularized kidney and cardiac allografts in mice. Cells that are positive for both donor and recipient MHC class II accounted for up to 30% of the donor MHC class II(+) population, suggesting that they play a significant role in the antigen presentation process. The majority of these cells were dendritic cells, but macrophages and B cells were also able to acquire foreign MHC molecules. Most double-positive cells were also positive for costimulatory molecules, indicating a capability to elicit a T-cell response. This transfer of MHC molecules between donor and recipient cells provides a link between the direct and indirect pathways of alloantigen presentation and suggests that MHC transfer is also likely to occur under normal physiological conditions, which has implications in the fields of infection, vaccination, and tumor immunology.
Collapse
Affiliation(s)
- Kathryn Brown
- MRC Center for Transplantation, Fifth Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | | |
Collapse
|
36
|
Davis DM, Sowinski S. Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 2008; 9:431-6. [PMID: 18431401 DOI: 10.1038/nrm2399] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Membrane nanotubes are transient long-distance connections between cells that can facilitate intercellular communication (for example, by trafficking vesicles or transmitting calcium-mediated signals), but they can also contribute to pathologies (for example, by directing the spread of viruses). Recent data have revealed considerable heterogeneity in their structures, processes of formation and functional properties, in part dependent on the cell types involved. Despite recent progress in this young research field, further research is sorely needed.
Collapse
Affiliation(s)
- Daniel M Davis
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK.
| | | |
Collapse
|
37
|
Rouas-Freiss N, Moreau P, Menier C, LeMaoult J, Carosella ED. Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Semin Cancer Biol 2007; 17:413-21. [PMID: 17881247 DOI: 10.1016/j.semcancer.2007.07.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Indexed: 01/22/2023]
Abstract
In this paper, we focus our attention on the relevance of HLA-G in cancer in the light of our recent advances on the expression and immunological function of HLA-G. Regarding HLA-G function, we recently showed that in addition to its direct inhibitory effects on T, APC and NK function, HLA-G induces suppressor cells via two distinct processes: (i) either by cell differentiation of naïve T cells into lasting suppressor T cells or (ii) by rapid transfer of HLA-G from APC or tumor cells to T or NK cells converting them into temporary HLA-G-positive suppressor cells. Regarding HLA-G expression, we described that tumor-microenvironment factors such as hypoxia, IDO and, TNF-alpha regulate the expression of HLA-G by tumor cells in a way that favors tumor escape from NK lysis. These findings reinforce the role of HLA-G as one mechanism of tumor-driven immune evasion and provide potential targets for testing novel anticancer treatment strategies.
Collapse
Affiliation(s)
- Nathalie Rouas-Freiss
- CEA, DSV, I2BM, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, IUH, 1 avenue Claude Vellefaux, 75010 Paris, France.
| | | | | | | | | |
Collapse
|
38
|
Riond J, Elhmouzi J, Hudrisier D, Gairin JE. Capture of membrane components via trogocytosis occurs in vivo during both dendritic cells and target cells encounter by CD8(+) T cells. Scand J Immunol 2007; 66:441-50. [PMID: 17850589 DOI: 10.1111/j.1365-3083.2007.01996.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytotoxic T lymphocytes recently stimulated by antigen-presenting cells (APC) display major histocompatibility class (MHC) I and II molecules inherited from APC. We have previously reported that, in vitro, transfer of MHC molecules and several other proteins occurs through trogocytosis, i.e. the active acquisition of target cell membrane fragments by T lymphocytes. Here, using the model of viral antigen LCMVgp33-41 recognition in transgenic P14 mice, we show that CD8(+) T cells perform trogocytosis in vivo, as detected by the capture of biotin- or fluorescence-labeled components of the APC surface. Trogocytosis occurs during interactions of CD8(+) T cells with at least two kinds of cells: target cells and dendritic cells (DC). In lymph nodes, CD8(+) T cells having performed trogocytosis with DC express the CD69 activation marker indicating that trogocytosis detects recently activated cells. Taken together, our findings suggest that trogocytosis may be a new in vivo marker of the recent interaction between a CD8(+) T cell and its cellular partners or targets.
Collapse
Affiliation(s)
- J Riond
- CRPS, UMR2587 CNRS, Pierre Fabre, Toulouse, France.
| | | | | | | |
Collapse
|
39
|
Stern-Ginossar N, Nedvetzki S, Markel G, Gazit R, Betser-Cohen G, Achdout H, Aker M, Blumberg RS, Davis DM, Appelmelk B, Mandelboim O. Intercellular transfer of carcinoembryonic antigen from tumor cells to NK cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:4424-34. [PMID: 17878338 DOI: 10.4049/jimmunol.179.7.4424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The inhibition of NK cell killing is mainly mediated via the interaction of NK inhibitory receptors with MHC class I proteins. In addition, we have previously demonstrated that NK cells are inhibited in a class I MHC-independent manner via homophilic carcinoembryonic Ag (CEA) cell adhesion molecules (CEACAM1)-CEACAM1 and heterophilic CEACAM1-CEA interactions. However, the cross-talk between immune effector cells and their target cells is not limited to cell interactions per se, but also involves a specific exchange of proteins. The reasons for these molecular exchanges and the functional outcome of this phenomenon are still mostly unknown. In this study, we show that NK cells rapidly and specifically acquire CEA molecules from target cells. We evaluated the role of cytotoxicity in the acquisition of CEA and demonstrated it to be mostly killing independent. We further demonstrate that CEA transfer requires a specific interaction with an unknown putative NK cell receptor and that carbohydrates are probably involved in CEA recognition and acquisition by NK cells. Functionally, the killing of bulk NK cultures was inhibited by CEA-expressing cells, suggesting that this putative receptor is an inhibitory receptor.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Lautenberg Center for General and Tumor Immunology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Benoît LA, Tan R. Xenogeneic β2-Microglobulin Substitution Alters NK Cell Function. THE JOURNAL OF IMMUNOLOGY 2007; 179:1466-74. [PMID: 17641012 DOI: 10.4049/jimmunol.179.3.1466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, it has been shown that human beta(2)-microglobulin (h-beta(2)m) blocks the association between the NK cell inhibitory receptor Ly49C and H-2K(b). Given this finding, we therefore sought to assess the immunobiology of NK cells derived from C57BL/6 (H-2(b)) mice expressing exclusively h-beta(2)m. Initial analysis revealed that the Ly49C expression profile of NK cells from h-beta(2)m(+) mice was modified, despite the fact that H-2K(b) expression was normal in these mice. Moreover, the NK cells were not anergic in that IL-2 treatment of h-beta(2)m(+) NK cells in vitro enabled efficient lysis of prototypic tumor cell lines as well as of syngeneic h-beta(2)m(+) lymphoblasts. This loss of self-tolerance appeared to correlate with the activation status of h-beta(2)m(+) NK cells because quiescent h-beta(2)m(+) transplant recipients maintained h-beta(2)m(+) grafts but polyinosine:polycytidylic acid-treated recipients acutely rejected h-beta(2)m(+) grafts. NK cell reactivity toward h-beta(2)m(+) targets was attributed to defective Ly49C interactions with h-beta(2)m:H-2K(b) molecules. With regard to NK cell regulatory mechanisms, we observed that h-beta(2)m:H-2K(b) complexes in the cis-configuration were inefficient at regulating Ly49C and, furthermore, that receptor-mediated uptake of h-beta(2)m:H-2K(b) by Ly49C was impaired compared with uptake of mouse beta(2)m:H-2K(b). Thus, we conclude that transgenic expression of h-beta(2)m alters self-MHC class I in such a way that it modulates the NK cell phenotype and interferes with regulatory mechanisms, which in turn causes in vitro-expanded and polyinosine:polycytidylic acid-activated NK cells to be partially self-reactive similar to what is seen with NK cells derived from MHC class I-deficient mice.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Female
- Graft Rejection/genetics
- Graft Rejection/immunology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Humans
- Immunophenotyping
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Lymphokine-Activated/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Self Tolerance/genetics
- Self Tolerance/immunology
- beta 2-Microglobulin/biosynthesis
- beta 2-Microglobulin/deficiency
- beta 2-Microglobulin/genetics
Collapse
Affiliation(s)
- Loralyn A Benoît
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Williams GS, Collinson LM, Brzostek J, Eissmann P, Almeida CR, McCann FE, Burshtyn D, Davis DM. Membranous structures transfer cell surface proteins across NK cell immune synapses. Traffic 2007; 8:1190-204. [PMID: 17605758 DOI: 10.1111/j.1600-0854.2007.00603.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intercellular transfer of cell surface proteins is widespread and facilitates several recently discovered means for immune cell communication. Here, we examined the molecular mechanism for intercellular exchange of the natural killer (NK) cell receptor KIR2DL1 and HLA-C, prototypical proteins that swap between NK cells and target cells. Transfer was contact dependent and enhanced for cells expressing cognate receptor/ligand pairs but did not depend on KIR2DL1 signaling. To a lesser extent, proteins transferred independent from specific recognition. Intracellular domains of transferred proteins were not exposed to the extracellular environment and transferred proteins were removed by brief exposure to low pH. By fluorescence microscopy, transferred proteins localized to discrete regions on the recipient cell surface. Higher resolution scanning electron micrographs revealed that transferred proteins were located within specific membranous structures. Transmission electron microscopy of the immune synapse revealed that membrane protrusions from one cell interacted with the apposing cell surface within the synaptic cleft. These data, coupled with previous observations, lead us to propose that intercellular protein transfer is mediated by membrane protrusions within and surrounding the immunological synapse.
Collapse
MESH Headings
- Acids/pharmacology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Cell Communication/immunology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cell Surface Extensions/metabolism
- Cell Surface Extensions/ultrastructure
- Coated Pits, Cell-Membrane/metabolism
- Coated Pits, Cell-Membrane/ultrastructure
- HLA-C Antigens/genetics
- HLA-C Antigens/metabolism
- Humans
- Intercellular Junctions/metabolism
- Intercellular Junctions/ultrastructure
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Membrane Proteins/metabolism
- Microscopy, Electron
- Organic Chemicals/metabolism
- Protein Binding
- Protein Transport/drug effects
- Pyrimidines/pharmacology
- Receptors, KIR2DL1/genetics
- Receptors, KIR2DL1/immunology
- Receptors, KIR2DL1/metabolism
- Transfection
- src-Family Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Geoffrey S Williams
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Smyth LA, Afzali B, Tsang J, Lombardi G, Lechler RI. Intercellular transfer of MHC and immunological molecules: molecular mechanisms and biological significance. Am J Transplant 2007; 7:1442-9. [PMID: 17511673 PMCID: PMC3815510 DOI: 10.1111/j.1600-6143.2007.01816.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The intercellular transfer of many molecules, including the major histocompatibility complexes (MHC), both class I and II, costimulatory and adhesion molecules, extracellular matrix organization molecules as well as chemokine, viral and complement receptors, has been observed between cells of the immune system. In this review, we aim to summarize the findings of a large body of work, highlight the molecules transferred and how this is achieved, as well as the cells capable of acquiring molecules from other cells. Although a physiological role for this phenomenon has yet to be established we suggest that the exchange of molecules between cells may influence the immune system with respect to immune amplification as well as regulation and tolerance. We will discuss why this may be the case and highlight the influence intercellular transfer of MHC molecules may have on allorecognition and graft rejection.
Collapse
|
43
|
McCann FE, Eissmann P, Onfelt B, Leung R, Davis DM. The activating NKG2D ligand MHC class I-related chain A transfers from target cells to NK cells in a manner that allows functional consequences. THE JOURNAL OF IMMUNOLOGY 2007; 178:3418-26. [PMID: 17339436 DOI: 10.4049/jimmunol.178.6.3418] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, it has become apparent that surface proteins commonly transfer between immune cells in contact. Inhibitory receptors and ligands exchange between cells during NK cell surveillance and we report here that NK cells also acquire activating ligands from target cells. Specifically, the stress-inducible activating ligand for NKG2D, MHC class I-related chain A (MICA), transferred to NK cells upon conjugation with MICA-expressing target cells. Acquisition of MICA from target cells was dependent on cell contact and occurred after accumulation of MICA at the immunological synapse. Moreover, transfer of MICA was facilitated by specific molecular recognition via NKG2D and augmented by Src kinase signaling. Importantly, MICA associated with its new host NK cell membrane in an orientation that allowed engagement with NKG2D in trans and indeed could down-regulate NKG2D in subsequent homotypic interactions with other NK cells. MICA captured from target cells could subsequently transfer between NK cells and, more importantly, NK cell degranulation was triggered in such NK cell-NK cell interactions. Thus, NK cells can influence other NK cells with proteins acquired from target cells and our data specifically suggest that NK cells could lyse other NK cells upon recognition of activating ligands acquired from target cells. This mechanism could constitute an important function for immunoregulation of NK cell activity.
Collapse
Affiliation(s)
- Fiona E McCann
- Division of Cell and Molecular Biology, Imperial College London, South Kensington Campus, London, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Andersson KE, Williams GS, Davis DM, Höglund P. Quantifying the reduction in accessibility of the inhibitory NK cell receptor Ly49A caused by binding MHC class I proteins in cis. Eur J Immunol 2007; 37:516-27. [PMID: 17236237 DOI: 10.1002/eji.200636693] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Murine natural killer (NK) cells are inhibited by target cell MHC class I molecules via Ly49 receptors. However, Ly49 receptors can be made inaccessible to target cell MHC class I by a cis interaction with its MHC class I ligand within the NK cell membrane. It has recently been demonstrated that MHC class I proteins transfer from the target cells to the NK cell. Here, we establish that the number of transferred MHC class I proteins is proportional to the number of Ly49A receptors at the NK cell surface. Ly49A+ NK cells from mice expressing the Ly49A ligand H-2D(d) showed a 90% reduction in Ly49A accessibility compared to Ly49A+ NK cells from H-2D(d)-negative mice. The reduction was caused both by lower expression of Ly49A and interactions in cis between Ly49A and H-2D(d) at the NK cell surface. Approximately 75% of the Ly49A receptors on H-2D(d)-expressing NK cells were occupied in cis with endogenous H-2D(d) and only 25% were free to interact with H-2D(d) molecules in trans. Thus, H-2D(d) ligands control Ly49A receptor accessibility through interactions both in cis and in trans.
Collapse
Affiliation(s)
- Katja E Andersson
- Department of Microbiology, Tumor and Cell Biology and the IRIS Strategic Research Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Hudrisier D, Aucher A, Puaux AL, Bordier C, Joly E. Capture of Target Cell Membrane Components via Trogocytosis Is Triggered by a Selected Set of Surface Molecules on T or B Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:3637-47. [PMID: 17339461 DOI: 10.4049/jimmunol.178.6.3637] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Key events of T and B cell biology are regulated through direct interaction with APC or target cells. Trogocytosis is a process whereby CD4(+) T, CD8(+) T, and B cells capture their specific membrane-bound Ag through the acquisition of plasma membrane fragments from their cellular targets. With the aim of investigating whether the ability to trigger trogocytosis was a selective property of Ag receptors, we set up an assay that allowed us to test the ability of many different cell surface molecules to trigger trogocytosis. On the basis of the analysis of a series of surface molecules on CD4(+) T, CD8(+) T, and B cells, we conclude that a set of cell type-specific surface determinants, including but not limited to Ag receptors, do trigger trogocytosis. On T cells, these determinants include components of the TCR/CD3 as well as that of coreceptors and of several costimulatory molecules. On B cells, we identified only the BCR and MHC molecules as potentials triggers of trogocytosis. Remarkably, latrunculin, which prevents actin polymerization, impaired trogocytosis by T cells, but not by B cells. This was true even when the same Abs were used to trigger trogocytosis in T or B cells. Altogether, our results indicate that although trogocytosis is performed by all hemopoietic cells tested thus far, both the receptors and the mechanisms involved can differ depending on the lineage of the cell acquiring membrane materials from other cells. This could therefore account for the different biological consequences of Ag capture via trogocytosis proposed for different types of cells.
Collapse
Affiliation(s)
- Denis Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5089, 205 route de Narbonne, 31077 Toulouse Cedex 3, France.
| | | | | | | | | |
Collapse
|
46
|
Caumartin J, Favier B, Daouya M, Guillard C, Moreau P, Carosella ED, LeMaoult J. Trogocytosis-based generation of suppressive NK cells. EMBO J 2007; 26:1423-33. [PMID: 17318190 PMCID: PMC1817622 DOI: 10.1038/sj.emboj.7601570] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022] Open
Abstract
Trogocytosis is a fast uptake of membranes and associated molecules from one cell by another. Trogocytosis between natural killer (NK) cells and tumors is already described, but the functional relevance of NK-tumor targets material exchange is unclear. We investigated whether the immunosuppressive molecule HLA-G that is commonly expressed by tumors in vivo and known to block NK cytolytic function, could be transferred from tumor cells to NK cells, and if this transfer had functional consequences. We show that activated NK cells acquire HLA-G1 from tumor cells, and that upon this acquisition, NK cells stop proliferating, are no longer cytotoxic, and behave as suppressor cells. Such cells can inhibit other NK cells' cytotoxic function and protect NK-sensitive tumor cells from cytolysis. These data are the first demonstration that trogocytosis of HLA-G1 can be a major mechanism of immune escape that acts through effector cells made to act as suppressor cells locally, temporarily, but efficiently. The broader consequences of membrane sharing between immune and non-immune cells on the function of effectors and the outcome of immune responses are discussed.
Collapse
MESH Headings
- Cell Line
- Cell Line, Tumor
- Cell Proliferation
- Cells, Cultured
- Cytotoxicity, Immunologic/immunology
- Flow Cytometry
- HLA Antigens/genetics
- HLA Antigens/metabolism
- HLA-G Antigens
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Microscopy, Confocal
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Julien Caumartin
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, Paris, France
| | - Benoit Favier
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, Paris, France
| | - Marina Daouya
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, Paris, France
| | - Christine Guillard
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, Paris, France
| | - Philippe Moreau
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, Paris, France
| | - Edgardo D Carosella
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, Paris, France
| | - Joel LeMaoult
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, Paris, France
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, 1 Avenue Claude Vellefaux, Paris 75010, France. Tel.: +33 1 53 72 22 29; Fax: +33 1 48 03 19 60; E-mail:
| |
Collapse
|
47
|
Roda-Navarro P, Reyburn HT. Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J 2007; 21:1636-46. [PMID: 17314139 DOI: 10.1096/fj.06-7488rev] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune synapses (IS) are supramolecular clusters providing intercellular communication among cells of the immune system. While the physiological role and consequences of IS formation are beginning to be understood, these studies have given rise to a new research topic in the biology of lymphocyte interactions: synaptic transfer of proteins between lymphocytes. During natural killer (NK) cell immunosurveillance, clustering and transfer of receptor and ligand molecules have been observed at both the inhibitory and cytotoxic NK cell immune synapse (NK-IS). The transfer of activating receptors seems to be associated with receptor distribution to thin membrane connective structures (MCS)/nanotubes that communicate effector and susceptible target cells. Strikingly, bidirectional transfer of the activating receptor NKG2D and its cellular ligand MICB correlates with a reduction in NK cell cytotoxic function. In this regard, synaptic uptake of MICB may represent a novel strategy of tumor immune evasion. Finally, synaptic acquisition of receptors by NK cells may also favor the spread of pathogens. In this review we discuss possible mechanisms of synaptic protein transfer and propose different testable hypotheses about the physiological and pathological significance of this process for NK cell function.
Collapse
|
48
|
Davis DM. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 2007; 7:238-43. [PMID: 17290299 DOI: 10.1038/nri2020] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells can extend the limits of their transcriptome by using proteins captured from other cells. Through an exchange of specific proteins, tools and information can be shared to establish integrated communities of cells that are better able to coordinate stages of an immune response. Transferred proteins can also contribute to pathology by allowing, for example, infection of cell types not otherwise infected. Here, I present the case for considering the intercellular transfer of cell-surface proteins between immune cells as commonplace and important.
Collapse
Affiliation(s)
- Daniel M Davis
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
49
|
Onfelt B, Nedvetzki S, Benninger RKP, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MAA, French PMW, Davis DM. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. THE JOURNAL OF IMMUNOLOGY 2007; 177:8476-83. [PMID: 17142745 DOI: 10.4049/jimmunol.177.12.8476] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.
Collapse
Affiliation(s)
- Björn Onfelt
- Division of Cell and Molecular Biology, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Caumartin J, Lemaoult J, Carosella ED. Intercellular exchanges of membrane patches (trogocytosis) highlight the next level of immune plasticity. Transpl Immunol 2006; 17:20-2. [PMID: 17157208 DOI: 10.1016/j.trim.2006.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/13/2006] [Indexed: 11/18/2022]
Abstract
Although they have been evidenced a long time ago, exchanges of antigens between cells have remained poorly understood and their significance is still unclear. Yet, intercellular antigen exchanges, and most particularly intercellular exchanges of intact membrane patches, also called trogocytosis, have recently been the subject of renewed interest. We here briefly outline the key findings concerning trogocytosis, and discuss their implications.
Collapse
Affiliation(s)
- Julien Caumartin
- Service de Recherches en Hemato-Immunologie, Commissariat a l'Energie Atomique, Hopital Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France
| | | | | |
Collapse
|