1
|
McKenzie B, Khazen R, Valitutti S. Greek Fire, Poison Arrows, and Scorpion Bombs: How Tumor Cells Defend Against the Siege Weapons of Cytotoxic T Lymphocytes. Front Immunol 2022; 13:894306. [PMID: 35592329 PMCID: PMC9110820 DOI: 10.3389/fimmu.2022.894306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are the main cellular effectors of the adaptive immune response against cancer cells, which in turn have evolved sophisticated cellular defense mechanisms to withstand CTL attack. Herein we provide a critical review of the pertinent literature on early and late attack/defense events taking place at the CTL/target cell lytic synapse. We examine the earliest steps of CTL-mediated cytotoxicity (“the poison arrows”) elicited within seconds of CTL/target cell encounter, which face commensurately rapid synaptic repair mechanisms on the tumor cell side, providing the first formidable barrier to CTL attack. We examine how breach of this first defensive barrier unleashes the inextinguishable “Greek fire” in the form of granzymes whose broad cytotoxic potential is linked to activation of cell death executioners, injury of vital organelles, and destruction of intracellular homeostasis. Herein tumor cells deploy slower but no less sophisticated defensive mechanisms in the form of enhanced autophagy, increased reparative capacity, and dysregulation of cell death pathways. We discuss how the newly discovered supra-molecular attack particles (SMAPs, the “scorpion bombs”), seek to overcome the robust defensive mechanisms that confer tumor cell resistance. Finally, we discuss the implications of the aforementioned attack/defense mechanisms on the induction of regulated cell death (RCD), and how different contemporary RCD modalities (including apoptosis, pyroptosis, and ferroptosis) may have profound implications for immunotherapy. Thus, we propose that understanding and targeting multiple steps of the attack/defense process will be instrumental to enhance the efficacy of CTL anti-tumor activity and meet the outstanding challenges in clinical immunotherapy.
Collapse
Affiliation(s)
- Brienne McKenzie
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Roxana Khazen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
2
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Baysal H, De Pauw I, Zaryouh H, Peeters M, Vermorken JB, Lardon F, De Waele J, Wouters A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Front Immunol 2021; 12:737311. [PMID: 34557197 PMCID: PMC8453198 DOI: 10.3389/fimmu.2021.737311] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Abstract
Cytotoxic T lymphocytes and natural killer cells eliminate infected cells from the organism by triggering programmed cell death (apoptosis). The contents of the lytic granules of killer cells, including pore-forming proteins perforins and proteolytic enzymes granzymes, are released with the following penetration of the released proteins into the target cells. Granzyme B initiates mitochondria-dependent apoptosis via (i) proapoptotic Bid protein, (ii) Mcl-1 and Bim proteins, or (iii) p53 protein. As a result, cytochrome c is released from the mitochondria into the cytoplasm, causing formation of apoptosomes that initiate the proteolytic cascade of caspase activation. Granzymes M, H, and F cause cell death accompanied by the cytochrome c release from the mitochondria. Granzyme A induces generation of reactive oxygen species (ROS), which promotes translocation of the endoplasmic reticulum-associated SET complex to the nucleus where it is cleaved by granzyme A, leading to the activation of nucleases that catalyze single-strand DNA breaks. Granzymes A and B penetrate into the mitochondria and cleave subunits of the respiratory chain complex I. One of the complex I subunits is also a target for caspase-3. Granzyme-dependent damage to complex I leads to the ROS generation and cell death.
Collapse
Affiliation(s)
- D B Kiselevsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Chollat-Namy M, Ben Safta-Saadoun T, Haferssas D, Meurice G, Chouaib S, Thiery J. The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death Dis 2019; 10:695. [PMID: 31541080 PMCID: PMC6754511 DOI: 10.1038/s41419-019-1950-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Cytotoxic T lymphocytes (CTL) and natural killer cells (NK)-mediated elimination of tumor cells is mostly dependent on Granzyme B apoptotic pathway, which is regulated by the wild type (wt) p53 protein. Because TP53 inactivating mutations, frequently found in human tumors, could interfere with Granzyme B-mediated cell death, the use of small molecules developed to reactivate wtp53 function in p53-mutated tumor cells could optimize their lysis by CTL or NK cells. Here, we show that the pharmalogical reactivation of a wt-like p53 function in p53-mutated breast cancer cells using the small molecule CP-31398 increases their sensitivity to NK-mediated lysis. This potentiation is dependent on p53-mediated induction of autophagy via the sestrin-AMPK-mTOR pathway and the ULK axis. This CP31398-induced autophagy sequestrates in autophagosomes several anti-apoptotic proteins, including Bcl-XL and XIAP, facilitating Granzyme B-mediated mitochondrial outer membrane permeabilization, caspase-3 activation and Granzyme B- or NK cell-induced apoptosis. Together, our results define a new way to increase cytotoxic lymphocyte-mediated lysis of p53-mutated breast cancer cell, through a p53-dependent autophagy induction, with potential applications in combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Marie Chollat-Namy
- INSERM U1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Thouraya Ben Safta-Saadoun
- INSERM U1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Djazia Haferssas
- INSERM U1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Guillaume Meurice
- Bioinformatic Core Facility, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Salem Chouaib
- INSERM U1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France.,Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM U1186, Villejuif, France. .,Gustave Roussy Cancer Campus, Villejuif, France. .,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France.
| |
Collapse
|
6
|
Radke JR, Routes JM, Cook JL. E1A oncogene induced sensitization to NK cell induced apoptosis requires PIDD and Caspase-2. Cell Death Discov 2019; 5:110. [PMID: 31285853 PMCID: PMC6602934 DOI: 10.1038/s41420-019-0189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022] Open
Abstract
Expression of the adenovirus E1A oncogene sensitizes tumor cells to innate immune rejection by NK cells. This increased NK sensitivity is only partly explained by an E1A-induced increase in target cell surface expression of NKG2D ligands. The post-recognition mechanisms by which E1A sensitizes cells to the apoptotic cell death response to NK injury remains to be defined. E1A sensitizes cells to apoptotic stimuli through two distinct mechanisms-repression of NF-κB-dependent antiapoptotic responses and enhancement of caspase-2 activation and related mitochondrial injury. The current studies examined the roles of each of these post-NKG2D-recognition pathways in the increased sensitivity of E1A-positive target cells to NK killing. Sensitization to NK-induced apoptosis was independent of E1A-mediated repression of cellular NF-κB responses but was dependent on the expression of both caspase-2 and the upstream, caspase-2 activating molecule, PIDD. Target cells lacking caspase-2 or PIDD expression retained E1A-induced increased expression of the NKG2D ligand, RAE-1. NK cell-induced mitochondrial injury of E1A-expressing cells did not require expression of the mitochondrial molecules, Bak or Bax. These results define a PIDD/caspase-2-dependent pathway, through which E1A sensitizes cells to NK-mediated cytolysis independently of and complementarily to E1A-enhanced NKG2D/RAE-1 ligand expression.
Collapse
Affiliation(s)
- Jay R Radke
- 1Research Section, Boise VA Hospital and Idaho Veterans Research and Education Foundation, Boise, ID 83702 USA
| | - John M Routes
- 2Section of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - James L Cook
- 3Research Section, Edward Hines, Jr. VA Hospital, Hines, Maywood, IL 60141 USA.,4Division of Infectious Diseases, Department of Microbiology and Immunology, and the Infectious Diseases and Immunology Research Institute, Loyola University Chicago-Stritch School of Medicine, Maywood, IL 60153 USA
| |
Collapse
|
7
|
Mallick DJ, Soderquist RS, Bates D, Eastman A. Confounding off-target effects of BH3 mimetics at commonly used concentrations: MIM1, UMI-77, and A-1210477. Cell Death Dis 2019; 10:185. [PMID: 30796196 PMCID: PMC6385300 DOI: 10.1038/s41419-019-1426-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
Targeting anti-apoptotic BCL2 family proteins has become an attractive therapeutic strategy for many cancers, and the BCL2-selective inhibitor ABT-199 (venetoclax) has obtained clinical success. However, MCL1 can promote drug resistance and overall cancer cell survival. Thus, there is a critical need to develop an effective drug that antagonizes MCL1. However, most putative MCL1 inhibitors have been misclassified as they fail to directly inhibit MCL1 in cells, but rather induce the pro-apoptotic protein NOXA. We have investigated three putative MCL1 inhibitors: MIM1, UMI-77, and A-1210477. All three compounds were developed in cell-free assays and then found to be cytotoxic, and hence assumed to directly target MCL1 in cells. Here, we investigated whether these compounds directly inhibit MCL1 or inhibit MCL1 indirectly through the induction of NOXA. Both MIM1- and UMI-77-induced NOXA through the unfolded protein response pathway, and sensitized leukemia cells to ABT-199; this cytotoxicity was dependent on NOXA suggesting that these compounds do not directly target MCL1. A-1210477 was the only compound that did not induce NOXA, but it still sensitized cells to ABT-199. A-1210477 induced accumulation of MCL1 protein consistent with it binding and preventing MCL1 degradation. However, at concentrations used in several prior studies, A-1210477 also induced cytochrome c release, caspase activation, and apoptosis in a BAX/BAK-independent manner. Furthermore, the release of cytochrome c occurred without loss of mitochondrial membrane potential. This apoptosis was extremely rapid, sometimes occurring within 0.5-1 h. Hence, we have identified a novel mechanism of apoptosis that circumvents the known mechanisms of cytochrome c release. It remains to be determined whether these unexpected mechanisms of action of putative BH3 mimetics will have therapeutic potential.
Collapse
Affiliation(s)
- David J Mallick
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Ryan S Soderquist
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Darcy Bates
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Alan Eastman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| |
Collapse
|
8
|
Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis. Cell Death Differ 2017; 24:747-758. [PMID: 28338658 DOI: 10.1038/cdd.2017.3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022] Open
Abstract
We have found that granzyme B (GB)-induced apoptosis also requires reactive oxygen species resulting from the alteration of mitochondrial complex I. How GB, which does not possess a mitochondrial targeting sequence, enter this organelle is unknown. We show that GB enters the mitochondria independently of the translocase of the outer mitochondrial membrane complex, but requires instead Sam50, the central subunit of the sorting and assembly machinery that integrates outer membrane β-barrel proteins. Moreover, GB breaches the inner membrane through Tim22, the metabolite carrier translocase pore, in a mitochondrial heat-shock protein 70 (mtHsp70)-dependent manner. Granzyme A (GA) and caspase-3 use a similar route to the mitochondria. Finally, preventing GB from entering the mitochondria either by mutating lysine 243 and arginine 244 or depleting Sam50 renders cells more resistant to GB-mediated reactive oxygen species and cell death. Similarly, Sam50 depletion protects cells from GA-, GM- and caspase-3-mediated cell death. Therefore, cytotoxic molecules enter the mitochondria to induce efficiently cell death through a noncanonical Sam50-, Tim22- and mtHsp70-dependent import pathway.
Collapse
|
9
|
Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound. PLoS One 2015; 10:e0125381. [PMID: 25927702 PMCID: PMC4415924 DOI: 10.1371/journal.pone.0125381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 01/01/2023] Open
Abstract
Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.
Collapse
|
10
|
Ben Safta T, Ziani L, Favre L, Lamendour L, Gros G, Mami-Chouaib F, Martinvalet D, Chouaib S, Thiery J. Granzyme B-activated p53 interacts with Bcl-2 to promote cytotoxic lymphocyte-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 194:418-28. [PMID: 25404359 DOI: 10.4049/jimmunol.1401978] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granzyme B (GzmB) plays a major role in CTLs and NK cell-mediated elimination of virus-infected cells and tumors. Human GzmB preferentially induces target cell apoptosis by cleaving the proapoptotic Bcl-2 family member Bid, which, together with Bax, induces mitochondrial outer membrane permeabilization. We previously showed that GzmB also induces a rapid accumulation of the tumor-suppressor protein p53 within target cells, which seems to be involved in GzmB-induced apoptosis. In this article, we show that GzmB-activated p53 accumulates on target cell mitochondria and interacts with Bcl-2. This interaction prevents Bcl-2 inhibitory effect on both Bax and GzmB-truncated Bid, and promotes GzmB-induced mitochondrial outer membrane permeabilization. Consequently, blocking p53-Bcl-2 interaction decreases GzmB-induced Bax activation, cytochrome c release from mitochondria, and subsequent effector caspases activation leading to a decreased sensitivity of target cells to both GzmB and CTL/NK-mediated cell death. Together, our results define p53 as a new important player in the GzmB apoptotic signaling pathway and in CTL/NK-induced apoptosis.
Collapse
Affiliation(s)
- Thouraya Ben Safta
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Linda Ziani
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Loetitia Favre
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Lucille Lamendour
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Gwendoline Gros
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Fathia Mami-Chouaib
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | - Salem Chouaib
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Jerome Thiery
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| |
Collapse
|
11
|
Okamoto T, Campbell S, Mehta N, Thibault J, Colman PM, Barry M, Huang DCS, Kvansakul M. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins. J Virol 2012; 86:11501-11. [PMID: 22896610 PMCID: PMC3486325 DOI: 10.1128/jvi.01115-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/24/2012] [Indexed: 12/16/2022] Open
Abstract
Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.
Collapse
Affiliation(s)
- Toru Okamoto
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Campbell
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ninad Mehta
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - John Thibault
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter M. Colman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michele Barry
- Li Ka Shing Institute for Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Marc Kvansakul
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. PLoS One 2012; 7:e31510. [PMID: 22442658 PMCID: PMC3307716 DOI: 10.1371/journal.pone.0031510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1. CONCLUSIONS/SIGNIFICANCE Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.
Collapse
Affiliation(s)
- Pedro Eitz Ferrer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Paul Frederick
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jacqueline M. Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruth M. Kluck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
13
|
Dong LF, Jameson VJA, Tilly D, Prochazka L, Rohlena J, Valis K, Truksa J, Zobalova R, Mahdavian E, Kluckova K, Stantic M, Stursa J, Freeman R, Witting PK, Norberg E, Goodwin J, Salvatore BA, Novotna J, Turanek J, Ledvina M, Hozak P, Zhivotovsky B, Coster MJ, Ralph SJ, Smith RAJ, Neuzil J. Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic Biol Med 2011; 50:1546-55. [PMID: 21402148 DOI: 10.1016/j.freeradbiomed.2011.02.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/16/2011] [Accepted: 02/25/2011] [Indexed: 12/20/2022]
Abstract
Mitochondria are emerging as intriguing targets for anti-cancer agents. We tested here a novel approach, whereby the mitochondrially targeted delivery of anti-cancer drugs is enhanced by the addition of a triphenylphosphonium group (TPP(+)). A mitochondrially targeted analog of vitamin E succinate (MitoVES), modified by tagging the parental compound with TPP(+), induced considerably more robust apoptosis in cancer cells with a 1-2 log gain in anti-cancer activity compared to the unmodified counterpart, while maintaining selectivity for malignant cells. This is because MitoVES associates with mitochondria and causes fast generation of reactive oxygen species that then trigger mitochondria-dependent apoptosis, involving transcriptional modulation of the Bcl-2 family proteins. MitoVES proved superior in suppression of experimental tumors compared to the untargeted analog. We propose that mitochondrially targeted delivery of anti-cancer agents offers a new paradigm for increasing the efficacy of compounds with anti-cancer activity.
Collapse
Affiliation(s)
- Lan-Feng Dong
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Poxviruses encode numerous proteins that inhibit apoptosis, a form of cell death critical to the elimination of virally infected cells. Sequencing of the deerpox virus genome revealed DPV022, a protein that lacks obvious homology to cellular members of the Bcl-2 family but shares limited regions of amino acid identity with two unique poxviral inhibitors of apoptosis, M11L and F1L. Given the limited homology, we sought to determine whether DPV022 could inhibit apoptosis. Here we show that DPV022 localized to the mitochondria, where it inhibited apoptosis. We used a Saccharomyces cerevisiae model system to demonstrate that in the absence of all other Bcl-2 family proteins, DPV022 interacted directly with Bak and Bax. We confirmed the ability of DPV022 to interact with Bak and Bax by immunoprecipitation and showed that DPV022 prevented apoptosis induced by Bak and Bax overexpression. Moreover, we showed that DPV022 blocked apoptosis even when all the endogenous mammalian antiapoptotic proteins were neutralized by a combination of selective BH3 ligands. During virus infection, DPV022 interacted with endogenous Bak and Bax and prevented the conformational activation of both of them. Thus, we have characterized a novel poxviral inhibitor of apoptosis with intriguing amino acid differences from the well-studied proteins M11L and F1L.
Collapse
|
15
|
Han J, Goldstein LA, Hou W, Gastman BR, Rabinowich H. Regulation of mitochondrial apoptotic events by p53-mediated disruption of complexes between antiapoptotic Bcl-2 members and Bim. J Biol Chem 2010; 285:22473-83. [PMID: 20404322 PMCID: PMC2903343 DOI: 10.1074/jbc.m109.081042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 04/12/2010] [Indexed: 12/13/2022] Open
Abstract
Multiple mechanisms have been proposed for the mitochondrial function of p53 that are either dependent on or independent of its transcriptional activity. However, none of these mechanisms involves Bim functioning downstream of p53 mitochondrial translocation. Utilizing a p53 nuclear localization signal mutant, whose nuclear import is completely abrogated, we demonstrate that its apoptotic activity at the outer mitochondrial membrane, which involves conformational changes in Bax and Bak, is mediated by Bim. We further demonstrate an inverse correlation between the binding levels of p53 and Bim to Mcl-1. Thus, enhanced binding of p53 to Mcl-1 involves the disruption of existing complexes between Mcl-1 and Bim. We propose that mitochondrial p53 functions as a Bim derepressor by releasing Bim from sequestrating complexes with Mcl-1, Bcl-2, and Bcl-XL, and allowing its engagement in Bak/Bax activation.
Collapse
Affiliation(s)
- Jie Han
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Leslie A. Goldstein
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Brian R. Gastman
- the Department of Otolaryngology, University of Maryland Medical School, Baltimore, Maryland 21201
| | - Hannah Rabinowich
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, and
| |
Collapse
|
16
|
Han J, Goldstein LA, Hou W, Froelich CJ, Watkins SC, Rabinowich H. Deregulation of mitochondrial membrane potential by mitochondrial insertion of granzyme B and direct Hax-1 cleavage. J Biol Chem 2010; 285:22461-72. [PMID: 20388708 PMCID: PMC2903387 DOI: 10.1074/jbc.m109.086587] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/15/2010] [Indexed: 01/05/2023] Open
Abstract
The cytoplasm and the nucleus have been identified as activity sites for granzyme B (GrB) following its delivery from cytotoxic lymphocyte granules into target cells. Here we report on the ability of exogenous GrB to insert into and function within a proteinase K-resistant mitochondrial compartment. We identified Hax-1 (HS-1-associated protein X-1), a mitochondrial protein involved in the maintenance of mitochondrial membrane potential, as a GrB substrate within the mitochondrion. GrB cleaves Hax-1 into two major fragments: an N-terminal fragment that localizes to mitochondria and a C-terminal fragment that localizes to the cytosol after being released from GrB-treated mitochondria. The N-terminal Hax-1 fragment major cellular impact is on the regulation of mitochondrial polarization. Overexpression of wild-type Hax-1 or its uncleavable mutant form protects the mitochondria against GrB or valinomycin-mediated depolarization. The N-terminal Hax-1 fragment functions as a dominant negative form of Hax-1, mediating mitochondrial depolarization in a cyclophilin D-dependent manner. Thus, induced expression of the N-terminal Hax-1 fragment results in mitochondrial depolarization and subsequent lysosomal degradation of such altered mitochondria. This study is the first to demonstrate GrB activity within the mitochondrion and to identify Hax-1 cleavage as a novel mechanism for GrB-mediated mitochondrial depolarization.
Collapse
Affiliation(s)
- Jie Han
- From the Departments of Pathology and
| | | | - Wen Hou
- From the Departments of Pathology and
| | | | - Simon C. Watkins
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
- the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, and
| | - Hannah Rabinowich
- From the Departments of Pathology and
- the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, and
| |
Collapse
|
17
|
Prochazka L, Dong LF, Valis K, Freeman R, Ralph SJ, Turanek J, Neuzil J. α-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis 2010; 15:782-94. [DOI: 10.1007/s10495-010-0482-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Campbell S, Hazes B, Kvansakul M, Colman P, Barry M. Vaccinia virus F1L interacts with Bak using highly divergent Bcl-2 homology domains and replaces the function of Mcl-1. J Biol Chem 2009; 285:4695-708. [PMID: 19955184 PMCID: PMC2836074 DOI: 10.1074/jbc.m109.053769] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Bcl-2 family regulates induction of apoptosis at the mitochondria. Essential to this regulation are the interactions between Bcl-2 family members, which are mediated by Bcl-2 homology (BH) domains. Vaccinia virus F1L is a unique inhibitor of apoptosis that lacks significant sequence similarity with the Bcl-2 family and does not contain obvious BH domains. Despite this, F1L inhibits cytochrome c release from mitochondria by preventing Bak and Bax activation. Although F1L constitutively interacts with Bak to prevent Bak activation, the precise mechanism of this interaction remains elusive. We have identified highly divergent BH domains in F1L that were verified by the recent crystal structure of F1L (Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., Perugini, M. A., Huang, D. C., and Colman, P. M. (2008) Cell Death Differ. 15, 1564-1571). Here we show that F1L required these BH domains to interact with ectopically expressed and endogenous Bak. The interaction between F1L and Bak was conserved across species, and both F1L and the cellular antiapoptotic protein Mcl-1 required the Bak BH3 domain for interaction. Moreover, F1L replaced Mcl-1 during infection, as the Bak x Mcl-1 complex was disrupted during vaccinia virus infection. In contrast to UV irradiation, vaccinia virus infection did not result in rapid degradation of Mcl-1, consistent with our observation that vaccinia virus did not initiate a DNA damage response. Additionally, Mcl-1 expression prevented Bak activation and apoptosis during infection with a proapoptotic vaccinia virus devoid of F1L. Our data suggest that F1L replaces the antiapoptotic activity of Mcl-1 during vaccinia virus infection by interacting with Bak using highly divergent BH domains.
Collapse
Affiliation(s)
- Stephanie Campbell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
19
|
Ngan DA, Vickerman SV, Granville DJ, Man SFP, Sin DD. The possible role of granzyme B in the pathogenesis of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2009; 3:113-29. [PMID: 19638369 DOI: 10.1177/1753465809341965] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent inflammatory lung condition characterized by airways disease and emphysema, and the precise mechanism of pathogenesis is poorly understood. The consistent features of COPD include protease-antiprotease imbalance, inflammation and accelerated aging caused by apoptosis or senescence. One family of molecules involved in all of these processes is the granzymes, serine proteases with the best-known member being granzyme B (GzmB). The majority of GzmB is released unidirectionally towards target cells, but GzmB can also be released nonspecifically and escape into the extracellular environment. GzmB is capable of cleaving extracellular matrix (ECM) proteins in vitro, and the accumulation of GzmB in the extracellular milieu during chronic inflammation in COPD could contribute to ECM degradation and remodelling and, consequently, the emphysematous phenotype in the lung. Preliminary studies suggest that increased GzmB expression is associated with increased COPD severity, and this may represent a promising new target for drug and biomarker discovery in COPD. In this paper, we review the potential pathogenic contributions of GzmB to the pathogenesis of COPD.
Collapse
Affiliation(s)
- David A Ngan
- James Hogg Research Laboratories, Providence Heart + Lung Institute at St. Paul's Hospital and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
20
|
Batsi C, Markopoulou S, Kontargiris E, Charalambous C, Thomas C, Christoforidis S, Kanavaros P, Constantinou AI, Marcu KB, Kolettas E. Bcl-2 blocks 2-methoxyestradiol induced leukemia cell apoptosis by a p27(Kip1)-dependent G1/S cell cycle arrest in conjunction with NF-kappaB activation. Biochem Pharmacol 2009; 78:33-44. [PMID: 19447221 PMCID: PMC2782607 DOI: 10.1016/j.bcp.2009.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2-ME2) induces leukemia cells to undergo apoptosis in association with Bcl-2 inactivation but the mechanisms whereby Bcl-2 contributes to protection against programmed cell death in this context remain unclear. Here we showed that 2-ME2 inhibited the proliferation of Jurkat leukemia cells by markedly suppressing the levels of cyclins D3 and E, E2F1 and p21(Cip1/Waf1) and up-regulating p16(INK4A). Further, 2-ME2 induced apoptosis of Jurkat cells in association with down-regulation and phosphorylation of Bcl-2 (as mediated by JNK), up-regulation of Bak, activation of caspases-9 and -3 and PARP-1 cleavage. To determine the importance and mechanistic role of Bcl-2 in this process, we enforced its expression in Jurkat cells by retroviral transduction. Enforcing Bcl-2 expression in Jurkat cells abolished 2-ME2-induced apoptosis and instead produced a G1/S phase cell cycle arrest in association with markedly increased levels of p27(Kip1). Bcl-2 and p27(Kip1) were localized mainly in the nucleus in these apoptotic resistant cells. Interestingly, NF-kappaB activity and p50 levels were increased by 2-ME2 and suppression of NF-kappaB signaling reduced p27(Kip1) expression and sensitized cells to 2-ME2-induced apoptosis. Importantly, knocking-down p27(Kip1) in Jurkat Bcl-2 cells sensitized them to spontaneous and 2-ME2-induced apoptosis. Thus, Bcl-2 prevented the 2-ME2-induced apoptotic response by orchestrating a p27(Kip1)-dependent G1/S phase arrest in conjunction with activating NF-kappaB. Thus, we achieved a much better understanding of the penetrance and mechanistic complexity of Bcl-2 dependent anti-apoptotic pathways in cancer cells and why Bcl-2 inactivation is so critical for the efficacy of apoptosis and anti-proliferative inducing drugs like 2-ME2.
Collapse
Affiliation(s)
- Christina Batsi
- Cell and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The fowlpox virus BCL-2 homologue, FPV039, interacts with activated Bax and a discrete subset of BH3-only proteins to inhibit apoptosis. J Virol 2009; 83:7085-98. [PMID: 19439472 DOI: 10.1128/jvi.00437-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a potent immune barrier against viral infection, and many viruses, including poxviruses, encode proteins to overcome this defense. Interestingly, the avipoxviruses, which include fowlpox and canarypox virus, are the only poxviruses known to encode proteins with obvious Bcl-2 sequence homology. We previously characterized the fowlpox virus protein FPV039 as a Bcl-2-like antiapoptotic protein that inhibits apoptosis by interacting with and inactivating the proapoptotic cellular protein Bak. However, both Bak and Bax can independently trigger cell death. Thus, to effectively inhibit apoptosis, a number of viruses also inhibit Bax. Here we show that FPV039 inhibited apoptosis induced by Bax overexpression and prevented both the conformational activation of Bax and the subsequent formation of Bax oligomers at the mitochondria, two critical steps in the induction of apoptosis. Additionally, FPV039 interacted with activated Bax in the context of Bax overexpression and virus infection. Importantly, the ability of FPV039 to interact with active Bax and inhibit Bax activity was dependent on the structurally conserved BH3 domain of FPV039, even though this domain possesses little sequence homology to other BH3 domains. FPV039 also inhibited apoptosis induced by the BH3-only proteins, upstream activators of Bak and Bax, despite interacting detectably with only two: BimL and Bik. Collectively, our data suggest that FPV039 inhibits apoptosis by sequestering and inactivating multiple proapoptotic Bcl-2 proteins, including certain BH3-only proteins and both of the critical "gatekeepers" of apoptosis, Bak and Bax.
Collapse
|
22
|
Moisini I, Nguyen P, Fugger L, Geiger TL. Redirecting therapeutic T cells against myelin-specific T lymphocytes using a humanized myelin basic protein-HLA-DR2-zeta chimeric receptor. THE JOURNAL OF IMMUNOLOGY 2008; 180:3601-11. [PMID: 18292588 DOI: 10.4049/jimmunol.180.5.3601] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Therapies that Ag-specifically target pathologic T lymphocytes responsible for multiple sclerosis (MS) and other autoimmune diseases would be expected to have improved therapeutic indices compared with Ag-nonspecific therapies. We have developed a cellular immunotherapy that uses chimeric receptors to selectively redirect therapeutic T cells against myelin basic protein (MBP)-specific T lymphocytes implicated in MS. We generated two heterodimeric receptors that genetically link the human MBP84-102 epitope to HLA-DR2 and either incorporate or lack a TCRzeta signaling domain. The Ag-MHC domain serves as a bait, binding the TCR of MBP-specific target cells. The zeta signaling region stimulates the therapeutic cell after cognate T cell engagement. Both receptors were well expressed on primary T cells or T hybridomas using a tricistronic (alpha, beta, green fluorescent protein) retroviral expression system. MBP-DR2-zeta-, but not MBP-DR2, modified CTL were specifically stimulated by cognate MBP-specific T cells, proliferating, producing cytokine, and killing the MBP-specific target cells. The receptor-modified therapeutic cells were active in vivo as well, eliminating Ag-specific T cells in a humanized mouse model system. Finally, the chimeric receptor-modified CTL ameliorated or blocked experimental allergic encephalomyelitis (EAE) disease mediated by MBP84-102/DR2-specific T lymphocytes. These results provide support for the further development of redirected therapeutic T cells able to counteract pathologic, self-specific T lymphocytes, and specifically validate humanized MBP-DR2-zeta chimeric receptors as a potential therapeutic in MS.
Collapse
Affiliation(s)
- Ioana Moisini
- Department of Pathology, St. Jude Children's Research Hospital, and University of Tennessee Health Sciences Center, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
23
|
Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J. Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 2008; 133:681-92. [PMID: 18485875 PMCID: PMC2840390 DOI: 10.1016/j.cell.2008.03.032] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/14/2007] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
The killer lymphocyte protease granzyme A (GzmA) triggers caspase-independent target cell death with morphological features of apoptosis. We previously showed that GzmA acts directly on mitochondria to generate reactive oxygen species (ROS) and disrupt the transmembrane potential (DeltaPsi(m)) but does not permeabilize the mitochondrial outer membrane. Mitochondrial damage is critical to GzmA-induced cell death since cells treated with superoxide scavengers are resistant to GzmA. Here we find that GzmA accesses the mitochondrial matrix to cleave the complex I protein NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase complex I, after Lys56 to interfere with NADH oxidation and generate superoxide anions. Target cells expressing a cleavage site mutant of NDUFS3 are resistant to GzmA-mediated cell death but remain sensitive to GzmB.
Collapse
Affiliation(s)
- Denis Martinvalet
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Derek M. Dykxhoorn
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Roger Ferrini
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Judy Lieberman
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Montes CL, Chapoval AI, Nelson J, Orhue V, Zhang X, Schulze DH, Strome SE, Gastman BR. Tumor-induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer Res 2008; 68:870-9. [PMID: 18245489 DOI: 10.1158/0008-5472.can-07-2282] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Senescent and suppressor T cells are reported to be increased in select patients with cancer and are poor prognostic indicators. Based on the association of these T cells and poor outcomes, we hypothesized that tumors induce senescence in T cells, which negatively effects antitumor immunity. In this report, we show that human T cells from healthy donors incubated with tumor for only 6 h at a low tumor to T-cell ratio undergo a senescence-like phenotype, characterized by the loss of CD27 and CD28 expression and telomere shortening. Tumor-induced senescence of T cells is induced by soluble factors and triggers increases in expression of senescence-associated molecules such as p53, p21, and p16. Importantly, these T cells are not only phenotypically altered, but also functionally altered as they can suppress the proliferation of responder T cells. This suppression requires cell-to-cell contact and is mediated by senescent CD4(+) and CD8(+) subpopulations, which are distinct from classically described natural T regulatory cells. Our observations support the novel concept that tumor can induce senescent T cells with suppressor function and may effect both the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Carolina L Montes
- Department of Otorhinolaryngology, University of Maryland School of Medicine, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The granzymes are cell death-inducing enzymes, stored in the cytotoxic granules of cytotoxic T lymphocytes and natural killer cells, that are released during granule exocytosis when a specific virus-infected or transformed target cell is marked for elimination. Recent work suggests that this homologous family of serine esterases can activate at least three distinct pathways of cell death. This redundancy likely evolved to provide protection against pathogens and tumors with diverse strategies for evading cell death. This review discusses what is known about granzyme-mediated pathways of cell death as well as recent studies that implicate granzymes in immune regulation and extracellular proteolytic functions in inflammation.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Dana Farber Cancer Institute and Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
26
|
Hou Q, Zhao T, Zhang H, Lu H, Zhang Q, Sun L, Fan Z. Granzyme H induces apoptosis of target tumor cells characterized by DNA fragmentation and Bid-dependent mitochondrial damage. Mol Immunol 2007; 45:1044-55. [PMID: 17765974 DOI: 10.1016/j.molimm.2007.07.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are the effectors of innate immunity to act as the first line of defense against viruses and tumors. Granzyme H (GzmH) is predicted to evolve from GzmB and constitutively expressed at a high level in human NK cells. It indicates GzmH plays a pivotal role in NK cell mediated cytolysis. However GzmH is defined as an orphan granzyme and its function has less been defined. Here we demonstrate GzmH can induce rapid apoptosis of target cells, which is dependent on caspase activation and mitochondrial damage. GzmH-induced death is characterized by phophatidylserine externalization, nuclear condensation, DNA fragmentation, caspase activation and cytochrome c release that are hallmarks of typical apoptosis. GzmH can directly cleave ICAD to unleash CAD for DNA fragmentation. Moreover, GzmH directly processes Bid to produce the active form tBid leading to cytochrome c release. Therefore, GzmH may play an essential role in caspase-dependent pathogen clearance in the innate immunity that may complement the proapoptotic function of GzmB in human NK cells.
Collapse
Affiliation(s)
- Qiang Hou
- National Laboratory of Biomacromolecules, Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Banadyga L, Gerig J, Stewart T, Barry M. Fowlpox virus encodes a Bcl-2 homologue that protects cells from apoptotic death through interaction with the proapoptotic protein Bak. J Virol 2007; 81:11032-45. [PMID: 17686864 PMCID: PMC2045560 DOI: 10.1128/jvi.00734-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Poxviruses are renowned for encoding numerous immunomodulatory proteins capable of undermining potent immune defenses. One effective barrier against infection is apoptosis, a process controlled at the mitochondria by pro- and antiapoptotic members of the highly conserved Bcl-2 family of proteins. Although poxviruses are known to encode an array of effective inhibitors of apoptosis, members of the Avipoxvirus genus, which includes fowlpox virus, encode proteins with Bcl-2 homology. Here, we show that FPV039, a fowlpox virus protein with limited Bcl-2 homology, inhibited apoptosis in response to a variety of cytotoxic stimuli, including virus infection itself. Similar to other antiapoptotic Bcl-2 proteins, FPV039 localized predominantly to the mitochondria in both human and chicken cells and protected human cells from tumor necrosis factor alpha-induced loss of the mitochondrial membrane potential. In addition, coimmunoprecipitation revealed that FPV039 interacted constitutively with the proapoptotic Bcl-2 protein, Bak, in both human and chicken cells. Concordantly, FPV039 also inhibited apoptosis induced by the transient overexpression of Bak. To confirm these results in the context of virus infection, we generated a recombinant vaccinia virus lacking F1L, the endogenous apoptotic inhibitor in vaccinia virus, and expressing FPV039. In the context of vaccinia virus infection, FPV039 retained the ability to localize to the mitochondria and interacted with Bak. Moreover, FPV039 prevented the activation of Bak and protected infected cells from apoptosis induced by staurosporine and virus infection. Together, our data indicate that FPV039 is a functional Bcl-2 homologue that inhibits apoptosis by neutralizing the proapoptotic Bcl-2 family member Bak.
Collapse
Affiliation(s)
- Logan Banadyga
- Department of Medical Microbiology and Immunology, University of Alberta, 621 HMRC, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
28
|
Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 2007; 39:1462-75. [PMID: 17403612 DOI: 10.1016/j.biocel.2007.02.007] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/20/2022]
Abstract
The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumour cells. This property has made TRAIL and agonistic antibodies against its death inducing receptors (TRAIL-R1 and TRAIL-R2) to some of the most promising novel biotherapeutic agents for cancer therapy. Here we review the signalling pathways initiated by the apoptosis- as well as the non-apoptosis-inducing receptors, TRAIL-R3 and TRAIL-R4. The TRAIL "death-inducing signalling complex" (DISC) transmits the apoptotic signal. DISC formation leads to activation of a protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated "extrinsic" pathway and the "intrinsic" pathway, which is controlled by the interaction of members of the Bcl-2 family, interact with each other in the decision about life or death of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-kappaB, PKB/Akt and the MAPK signalling pathways. In this review we intend to summarise the most important findings on the TRAIL signalling network and the interplay in the decisions between life and death of a tumor cell.
Collapse
Affiliation(s)
- Christina Falschlehner
- Division of Apoptosis Regulation (D040), Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
29
|
Liu J, Roederer M. Differential susceptibility of leukocyte subsets to cytotoxic T cell killing: Implications for HIV immunopathogenesis. Cytometry A 2007; 71:94-104. [PMID: 17200952 DOI: 10.1002/cyto.a.20363] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cytotoxic T lymphocytes (CTL) are crucial for the host defense against viral infection. In many cases, this anti-viral immune response contributes to host pathogenesis, through inflammation and tissue destruction. Few studies have explored the relative susceptibility of infected cells to CTL killing, and the range of cell types that may be effectively killed by CTLs in vivo, both of which are key to understanding both immune control of infection and immune-related pathogenesis. METHODS We developed and optimized a highly sensitive method to quantify the relative susceptibility of leukocyte subsets to CTL-mediated killing. Maximal sensitivity was achieved by uniquely measuring cell death occurring during the assay culture. RESULTS We found that leukocyte subsets have a wide range of susceptibility to antigen-specific CTL-mediated lysis. Generally, T cells were more susceptible than B or NK cells, with CD4 T cells being more susceptible than CD8 T cells. In all lymphocyte lineages, susceptibility was greater for more differentiated subsets compared with their naïve counterparts; however, for dendritic cells, immature cells are more susceptible than mature cells. We focused on the susceptibility of T cell subsets, and found that naïve cells are far more resistant than memory cells, and in particular, CCR5+ or HLA-DR+ memory cells are highly susceptible to CTL-mediated killing. CONCLUSIONS These results provide an explanation for the observation that certain subsets of CD4 T cells are ablated during chronic HIV infection, and indicate which subsets are most likely to contain the persistent viral reservoir.
Collapse
Affiliation(s)
- Jie Liu
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20895, USA
| | | |
Collapse
|
30
|
Lu H, Hou Q, Zhao T, Zhang H, Zhang Q, Wu L, Fan Z. Granzyme M Directly Cleaves Inhibitor of Caspase-Activated DNase (CAD) to Unleash CAD Leading to DNA Fragmentation. THE JOURNAL OF IMMUNOLOGY 2006; 177:1171-8. [PMID: 16818775 DOI: 10.4049/jimmunol.177.2.1171] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granzyme (Gzm)M is constitutively highly expressed in NK cells that may play a critical role in NK cell-mediated cytolysis. However, the function of GzmM has been less defined. Just one report showed GzmM induces a caspase-independent death pathway. In this study, we demonstrate a protein transfection reagent Pro-Ject can efficiently transport GzmM into target cells. GzmM initiates caspase-dependent apoptosis with typical apoptotic nuclear morphology. GzmM induces DNA fragmentation, not DNA nicking. GzmM can directly degrade inhibitor of caspase-activated DNase to release the nuclease activity of caspase-activated DNase for damaging DNA. Furthermore, GzmM cleaves the DNA damage sensor enzyme poly(ADP-ribose) polymerase to prevent cellular DNA repair and force apoptosis.
Collapse
Affiliation(s)
- Hongxia Lu
- National Laboratory of Biomacromolecules and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Mohan J, Gandhi AA, Bhavya BC, Rashmi R, Karunagaran D, Indu R, Santhoshkumar TR. Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 2006; 281:17599-611. [PMID: 16617056 DOI: 10.1074/jbc.m602641200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.
Collapse
Affiliation(s)
- John Mohan
- Department of Cancer Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Trivandrum-695 014, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Kolettas E, Thomas C, Leneti E, Skoufos I, Mbatsi C, Sisoula C, Manos G, Evangelou A. Rosmarinic acid failed to suppress hydrogen peroxide-mediated apoptosis but induced apoptosis of Jurkat cells which was suppressed by Bcl-2. Mol Cell Biochem 2006; 285:111-20. [PMID: 16534555 DOI: 10.1007/s11010-005-9064-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/21/2005] [Indexed: 11/25/2022]
Abstract
Rosmarinic acid (RosA), frequently found as a secondary metabolite in herbs and medicinal plants, has exhibited antioxidative and anti-inflammatory activities. RosA was shown to inhibit the proliferation and induce apoptosis of Jurkat T cells but the mechanism of action of RosA in apoptosis remains elusive. RosA inhibited the proliferation of Jurkat cells in a dose-dependent manner by suppressing the expression of cyclin D3 and p21(Cip1/Waf1) and up-regulating p27(Kip1). RosA induced apoptosis of Jurkat cells in a dose-dependent manner and failed to protect them from hydrogen peroxide (H2O2)-mediated apoptosis. Induction of apoptosis by RosA correlated with suppression of Bcl-2 but not of Bak or PUMA. Overexpression of Bcl-2 protected Jurkat cells from both H2O2- and RosA-induced apoptosis by altering the ratio of anti- to pro-apoptotic members of the Bcl-2 family. In conclusion, RosA inhibited Jurkat cell proliferation by altering the expression of cyclins and cyclin-dependent kinase inhibitors and induced apoptosis most likely acting through the mitochondrial pathway and possessed no anti-oxidant properties.
Collapse
Affiliation(s)
- Evangelos Kolettas
- Cell and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Han Y, Kim Y, Kang H, Hong SH, Kim YH, Lim DS, Park C, Yun YS, Song JY. N-acetylphytosphingosine-induced apoptosis of Jurkat cells is mediated by the conformational change in Bak. Apoptosis 2006; 11:581-8. [PMID: 16528476 DOI: 10.1007/s10495-006-4569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
N-acetylphytosphingosine (NAPS), a sphingolipid derivative, is one of the well-known signal molecules that mediates various cellular functions, including cell growth, differentiation, and apoptosis. In this study, we demonstrated that NAPS induces apoptosis of Jurkat cells by activating Bak, but not Bax, which are both members of a proapoptotic subfamily of the Bcl-2 proteins. NAPS activated caspase-8 in a FADD-independent manner, but the lack of caspase-8 did not suppress the activation of caspase-3 and -9 and cell death, indicating that caspase-8 activation does not play an important role in NAPS-induced cell death. The overexpression of Bcl-xL, an anti-apoptotic protein, completely inhibited the activation of the caspases and apoptosis, assuming that NAPS-induced apoptosis was initiated by the mitochondria. The expression levels of pro- and anti-apoptotic Bcl-2 family members were not changed by the NAPS treatment. However, Bad was translocated from the cytosol into the mitochondria, where it bound to Bcl-xL, and Bak was dissociated from Bcl-xL and conformationally changed. Taken together, these findings indicate that NAPS induced apoptosis of Jurkat cells in a mitochondria-dependent manner that was controlled by the translocation of Bad and the conformational change in Bak.
Collapse
Affiliation(s)
- Y Han
- Laboratory of Radiation Immunology, Korea Institute of Radiological and Medical Sciences, KAERI, Gongneung-Dong, Nowon-Gu, Seoul, 139-706, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yin XM. Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 2006; 369:7-19. [PMID: 16446060 DOI: 10.1016/j.gene.2005.10.038] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 12/22/2022]
Abstract
Bid, BH3-interacting domain death agonist, was initially cloned based in its ability to interact with both Bcl-2 and Bax. Bid contains only the BH3 domain, which is required for its interaction with the Bcl-2 family proteins and for its pro-death activity. Bid is susceptible to proteolytic cleavage by caspases, calpains, Granzyme B and cathepsins. Bid is important to cell death mediated by these proteases and thus is the sentinel to protease-mediated death signals. Protease-cleaved Bid is able to induce multiple mitochondrial dysfunctions, including the release of the inter-membrane space proteins, cristae reorganization, depolarization, permeability transition and generation of reactive oxygen species. Thus Bid is the molecular linker bridging various peripheral death pathways to the central mitochondria pathway. Recent studies further indicate that Bid may be more than just a killer molecule. Deletion of Bid inhibits carcinogenesis in the liver, although this genetic alteration promotes tumorigenesis in the myeloid cells. This is likely related to the function of Bid to promote cell cycle progression into S phase. Bid could be also involved in the maintenance of genomic stability by engaging at mitosis checkpoint. These novel findings indicate that this BH3-only Bcl-2 family protein has a diverse array of functions that are important to both the life and death of the cell.
Collapse
Affiliation(s)
- Xiao-Ming Yin
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
35
|
Fischer U, Stroh C, Schulze-Osthoff K. Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene 2006; 25:152-9. [PMID: 16186808 DOI: 10.1038/sj.onc.1209015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although caspase-8 has an established role as an initiator of death receptor-mediated apoptosis, the function of its closest homolog, caspase-10, is almost completely unknown. To gain a closer insight into the physiological function of caspase-10, we compared the cleavage of known caspase-8 substrates by both initiator caspases. We demonstrate that caspase-10 and -8 have overlapping cleavage preferences for several substrates such as the kinases RIP and PAK2. Interestingly, in other substrates, such as the Bcl-2 protein Bid, we found additional and distinct cleavage sites for both caspases, which might have important consequences for mitochondrial targeting and propagation of the death signal. Caspase-8 and -10 also caused different interchain cleavage patterns of their enzyme precursors. Together, these results suggest that caspase-8 and -10, despite having overlapping functions, also have selective substrate cleavage specificities and might thereby exert nonredundant roles in apoptosis signaling.
Collapse
Affiliation(s)
- U Fischer
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | |
Collapse
|
36
|
Ravi R, Fuchs EJ, Jain A, Pham V, Yoshimura K, Prouser T, Jalla S, Zhou X, Garrett-Mayer E, Kaufmann SH, Schulick RD, Pardoll DM, Bedi A. Resistance of Cancers to Immunologic Cytotoxicity and Adoptive Immunotherapy via X-Linked Inhibitor of Apoptosis Protein Expression and Coexisting Defects in Mitochondrial Death Signaling. Cancer Res 2006; 66:1730-9. [PMID: 16452233 DOI: 10.1158/0008-5472.can-05-3377] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability of cancers to evade immune surveillance and resist immunotherapy raises a fundamental question of how tumor cells survive in the presence of a competent immune system. Studies to address this question have primarily focused on mechanisms by which tumor cells avoid recognition by or induce tolerance in the immune system. However, little is known about whether cancer cells also acquire an intrinsic ability to resist killing by immune effectors. We find that cancer cells enhance their ability to withstand an attack by cytotoxic immune effector cells via acquisition of specific genetic alterations that interfere with the shared mitochondrial death signaling pathway entrained by granzyme B, IFN-gamma, and Apo2 ligand/tumor necrosis factor-related apoptosis inducing ligand (Apo2L/TRAIL), three key mediators of immunologic cell-mediated cytotoxicity. We show that the coexistence of specific mitochondrial signaling defects (either deletion of Bax, overexpression of Bcl-x(L), or deletion of Smac) with expression of X-linked inhibitor of apoptosis protein decreases the sensitivity of cancer cells to IFN-gamma/Apo2L/TRAIL- or granzyme B-induced apoptosis, lymphocyte-mediated cytotoxicity in vitro, and adoptive cellular immunotherapy in vivo. Conversely, negating X-linked inhibitor of apoptosis protein expression or function in tumor cells with defective mitochondrial signaling enables direct activation of caspase-3/-7 by granzyme B or Apo2L/TRAIL, and restores their susceptibility to immunologic cytotoxicity. These findings identify an important mechanism by which cancers evade elimination by immune effector cells and suggest that cancer immunotherapy might be improved by concurrent strategies to alleviate or circumvent the intrinsic mitochondrial death signaling defects that help cancer cells resist immunologic cytotoxicity.
Collapse
Affiliation(s)
- Rajani Ravi
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wasilenko ST, Banadyga L, Bond D, Barry M. The vaccinia virus F1L protein interacts with the proapoptotic protein Bak and inhibits Bak activation. J Virol 2005; 79:14031-43. [PMID: 16254338 PMCID: PMC1280199 DOI: 10.1128/jvi.79.22.14031-14043.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/16/2005] [Indexed: 12/29/2022] Open
Abstract
Many viruses have evolved strategies to counteract cellular immune responses, including apoptosis. Vaccinia virus, a member of the poxvirus family, encodes an antiapoptotic protein, F1L. F1L localizes to mitochondria and inhibits apoptosis by preventing the release of cytochrome c by an undetermined mechanism (S. T. Wasilenko, T. L. Stewart, A. F. Meyers, and M. Barry, Proc. Natl. Acad. Sci. USA 100:14345-14350, 2003; T. L. Stewart, S. T. Wasilenko, and M. Barry, J. Virol. 79:1084-1098, 2005). Here, we show that in the absence of an apoptotic stimulus, F1L associates with Bak, a proapoptotic member of the Bcl-2 family that plays a pivotal role in the release of cytochrome c. Cells infected with vaccinia virus were resistant to Bak oligomerization and the initial N-terminal exposure of Bak following the induction of apoptosis with staurosporine. A mutant vaccinia virus missing F1L was no longer able to inhibit apoptosis or Bak activation. In addition, the expression of F1L was essential to inhibit tBid-induced cytochrome c release in both wild-type murine embryonic fibroblasts (MEFs) and Bax-deficient MEFs, indicating that F1L could inhibit apoptosis in the presence and absence of Bax. tBid-induced Bak oligomerization and N-terminal exposure of Bak in Bax-deficient MEFs were inhibited during virus infection, as assessed by cross-linking and limited trypsin proteolysis. Infection with the F1L deletion virus no longer provided protection from tBid-induced Bak activation and apoptosis. Additionally, infection of Jurkat cells with the F1L deletion virus resulted in cellular apoptosis, as measured by loss of the inner mitochondrial membrane potential, caspase 3 activation, and cytochrome c release, indicating that the presence of F1L was pivotal for inhibiting vaccinia virus-induced apoptosis. Our data indicate that F1L expression during infection inhibits apoptosis and interferes with the activation of Bak.
Collapse
Affiliation(s)
- Shawn T Wasilenko
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
38
|
Hahn HP, Pang M, He J, Hernandez JD, Yang RY, Li LY, Wang X, Liu FT, Baum LG. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ 2005; 11:1277-86. [PMID: 15297883 PMCID: PMC1201488 DOI: 10.1038/sj.cdd.4401485] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Galectin-1, a mammalian lectin expressed in many tissues, induces death of diverse cell types, including lymphocytes and tumor cells. The galectin-1 T cell death pathway is novel and distinct from other death pathways, including those initiated by Fas and corticosteroids. We have found that galectin-1 binding to human T cell lines triggered rapid translocation of endonuclease G from mitochondria to nuclei. However, endonuclease G nuclear translocation occurred without cytochrome c release from mitochondria, without nuclear translocation of apoptosis-inducing factor, and prior to loss of mitochondrial membrane potential. Galectin-1 treatment did not result in caspase activation, nor was death blocked by caspase inhibitors. However, galectin-1 cell death was inhibited by intracellular expression of galectin-3, and galectin-3 expression inhibited the eventual loss of mitochondrial membrane potential. Galectin-1-induced cell death proceeds via a caspase-independent pathway that involves a unique pattern of mitochondrial events, and different galectin family members can coordinately regulate susceptibility to cell death.
Collapse
Affiliation(s)
- Hejin P. Hahn
- Dept. of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California, USA 90095
| | - Mabel Pang
- Dept. of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California, USA 90095
| | - Jiale He
- Dept. of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California, USA 90095
| | - Joseph D. Hernandez
- Dept. of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California, USA 90095
| | - Ri-Yao Yang
- Dept. of Dermatology, UC Davis School of Medicine, Davis, California, USA 95616
| | - Lily Y. Li
- Howard Hughes Medical Institute & Dept. of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Xiaodong Wang
- Howard Hughes Medical Institute & Dept. of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Fu-Tong Liu
- Dept. of Dermatology, UC Davis School of Medicine, Davis, California, USA 95616
| | - Linda G. Baum
- Dept. of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California, USA 90095
- Correspondence should be addressed to L.G.B., Dept. of Pathology and Laboratory Medicine, UCLA School of Medicine, 10833 LeConte Ave., Los Angeles, California, USA 90095-1732, phone 310-206-5985, fax 310-206-0657,
| |
Collapse
|
39
|
Han J, Goldstein LA, Gastman BR, Rabinovitz A, Rabinowich H. Disruption of Mcl-1·Bim Complex in Granzyme B-mediated Mitochondrial Apoptosis. J Biol Chem 2005; 280:16383-92. [PMID: 15713684 DOI: 10.1074/jbc.m411377200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported the identification of a novel mitochondrial apoptotic pathway for granzyme B (GrB). The newly identified GrB-mediated mitochondrial cascade was initiated by the cleavage and subsequent degradation of Mcl-1, resulting in the release of mitochondrial Bim from Mcl-1 sequestration. To investigate the biological significance of Mcl-1 cleavage by GrB, we mapped the major GrB cleavage sites and evaluated the apoptotic potential of the cleavage products. GrB cleaves Mcl-1 after aspartic acid residues 117, 127, and 157, generating C-terminal fragments that all contain BH-1, BH-2, BH-3, and transmembrane domains. These fragments accumulate at an early apoptotic phase but are eliminated by further degradation during the apoptotic process. The major Mcl-1 C-terminal fragment generated by GrB (residues 118-350) was unable to induce or enhance apoptosis when transfected into tumor cells. Instead, this Mcl-1 C-terminal fragment maintained a partial protective capability against GrB-mediated apoptosis via its lower affinity to Bim. In comparison with ectopically expressed full-length Mcl-1, the stably transfected C-terminal fragments of Mcl-1 were less efficiently localized to the mitochondria. Knockdown of Mcl-1, as achieved by transfection with Mcl-1-specific short interfering RNA, resulted in a significant level of apoptosis in the absence of external apoptotic stimulation and, in addition, enhanced the susceptibility of breast carcinoma cells to GrB cytotoxicity. The significance of Bim in this GrB apoptotic cascade was indicated by the marked protection against GrB-mediated apoptosis endowed on these cells through Bim knockdown. Our studies suggest that the disruption of the Mcl-1.Bim complex by GrB initiates a major Bim-mediated cellular cytotoxic mechanism that requires the elimination of Mcl-1 following its initial cleavage.
Collapse
Affiliation(s)
- Jie Han
- Department of Pathology, the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
40
|
Klee M, Pimentel-Muiños FX. Bcl-X(L) specifically activates Bak to induce swelling and restructuring of the endoplasmic reticulum. ACTA ACUST UNITED AC 2005; 168:723-34. [PMID: 15728194 PMCID: PMC2171806 DOI: 10.1083/jcb.200408169] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bcl-2 family members Bak and Bax constitute a mitochondrial gateway for multiple death pathways. Both proteins are also present in the endoplasmic reticulum where they control apoptosis through the regulation of calcium levels. We show here that reticular Bak has the additional capacity of modulating the structure of this organelle. Coexpression of Bak and Bcl-XL provokes extensive swelling and vacuolization of reticular cisternae. A Bak version lacking the BH3 domain suffices to induce this phenotype, and reticular targeting of this mutant retains the activity. Expression of upstream BH3-only activators in similar conditions recapitulates ER swelling and vacuolization if ryanodine receptor calcium channel activity is inhibited. Experiments with Bak and Bax-deficient mouse embryonic fibroblasts show that endogenous Bak mediates the effect, whereas Bax is mainly irrelevant. These results reveal a previously unidentified role of Bak in regulating reticular conformation. Because this activity is absent in Bax, it constitutes one of the first examples of functional divergence between the two multidomain homologues.
Collapse
Affiliation(s)
- Martina Klee
- Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, Salamanca, 37007 Spain
| | | |
Collapse
|
41
|
Han J, Goldstein LA, Gastman BR, Rabinovitz A, Wang GQ, Fang B, Rabinowich H. Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells. Leukemia 2004; 18:1671-80. [PMID: 15356645 DOI: 10.1038/sj.leu.2403496] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TRAIL-induced apoptosis has been considered a promising therapeutic approach for tumors that are resistant to chemotherapy, which is usually mediated via mitochondrial apoptotic cascades. Recent studies have shown that in certain cancer cells, TRAIL-mediated apoptosis is also dependent on mitochondrial involvement, suggesting that similar mechanisms of resistance to chemotherapy might be implicated in the resistance of tumor cells to TRAIL. We have used TRAIL-resistant leukemic cells that are deficient in both Bax and Bak to determine the roles of these Bcl-2 members in TRAIL-mediated apoptosis. Exposure of these cells to TRAIL did not have an impact on cell viability, although it induced the processing of caspase-3 to its active p20 subunit. The activity of the p20 caspase-3 appeared to be inhibited as no autoprocessing of this p20 subunit or cleavage of known caspase-3 substrates were detected. Also, in the absence of Bax and Bak, no release of mitochondrial apoptogenic proteins was observed following TRAIL treatment. Adenoviral transduction of the Bax, but not the Bak gene, to the Bax/Bak-deficient leukemic cells rendered them TRAIL-sensitive as assessed by enhanced apoptotic death and caspase-3 processing. These findings demonstrate preferential utilization of Bax over Bak in leukemic cell response to specific apoptotic stimulation.
Collapse
Affiliation(s)
- J Han
- Department of Pathology, The University of Pittsburgh School of Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
43
|
Tong QS, Zheng LD, Wang L, Liu J, Qian W. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells. BMC Cancer 2004; 4:33. [PMID: 15248898 PMCID: PMC481072 DOI: 10.1186/1471-2407-4-33] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 07/12/2004] [Indexed: 11/28/2022] Open
Abstract
Background BAK (Bcl-2 homologous antagonist/killer) is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Methods Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53) and MKN-28 (mutant-type p53). RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. Results BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G0/G1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45), or in p53 mutant-type (MKN-28) gastric cancer cells. Conclusions The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies.
Collapse
Affiliation(s)
- Qiang-Song Tong
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li-Duan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Wang
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Liu
- Department of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
44
|
Abstract
Antigens, provided by the allograft, trigger the activation and proliferation of allospecific T cells. As a consequence of this response, effector elements are generated that mediate graft injury and are responsible for the clinical manifestations of allograft rejection. Donor-specific CD8+ cytotoxic T lymphocytes play a major role in this process. Likewise, CD4+ T cells mediate delayed-type hypersensitivity responses via the production of soluble mediators that function to further activate and guide immune cells to the site of injury. In addition, these mediators may directly alter graft function by modulating vascular tone and permeability or by promoting platelet aggregation. Allospecific CD4+ T cells also promote B-cell maturation and differentiation into antibody-secreting plasma cells via CD40-CD40 ligand interactions. Alloantibodies that are produced by these B cells exert most of their detrimental effects on the graft by activating the complement cascade. Alternatively, antibodies can bind Fc receptors on natural killer cells or macrophages and cause target cell lysis via antibody-dependent cell-mediated cytotoxicity. In this review, we discuss these major effector pathways, focusing on their role in the pathogenesis of allograft rejection.
Collapse
Affiliation(s)
- Paulo N Rocha
- Duke University and Durham VA Medical Centers, Durham, NC 27705, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Granzyme B is a caspase-like serine protease that is released by cytotoxic lymphocytes to kill virus-infected and tumor cells. Major recent advances in our understanding of granzyme B biochemistry, biology and function include an appreciation of its uptake into and trafficking within target cells, a thorough dissection of how cell death is triggered, and the identification of the serpin protease inhibitor PI-9, which regulates its function in lymphocytes and in other cells. The roles that granzyme B plays in human pathologies, such as transplant rejection, viral immunity and particularly tumor immune surveillance, remain a topic for vigorous debate and conjecture. The recent discovery of a triply mutated human granzyme B allele, whose product is predicted to possess a reduced capacity to induce cell death, opens the way for major progress in these areas in coming years.
Collapse
Affiliation(s)
- Joseph A Trapani
- Cancer Immunology Program, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne 8006, Australia.
| | | |
Collapse
|
46
|
Kim TH, Zhao Y, Ding WX, Shin JN, He X, Seo YW, Chen J, Rabinowich H, Amoscato AA, Yin XM. Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol Biol Cell 2004; 15:3061-72. [PMID: 15107464 PMCID: PMC452564 DOI: 10.1091/mbc.e03-12-0864] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Release of cytochrome c from the mitochondrial intermembrane space is critical to apoptosis induced by a variety of death stimuli. Bid is a BH3-only prodeath Bcl-2 family protein that can potently activate this efflux. In the current study, we investigated the mitochondrial localization of Bid and its interactions with mitochondrial phospholipids, focusing on their relationships with Bid-induced cytochrome c release. We found that Bid binding to the mitochondria required only three of its eight helical structures (alpha4-alpha6), but not the BH3 domain, and the binding could not be inhibited by the antideath molecule Bcl-x(L). Membrane fractionations indicated that tBid bound to mitochondrial outer membranes at both contact and noncontact sites. Bid could interact with specific cardiolipin species on intact mitochondria as identified by mass spectrometry. Like the binding to the mitochondria, this interaction could not be blocked by the mutation in the BH3 domain or by Bcl-x(L.) However, a cardiolipin-specific dye, 10-N-nonyl acridine orange, could preferentially suppress Bid binding to the mitochondrial contact site and inhibit Bid-induced mitochondrial cristae reorganization and cytochrome c release. These findings thus suggest that interactions of Bid with mitochondrial cardiolipin at the contact site can contribute significantly to its functions.
Collapse
Affiliation(s)
- Tae-Hyoung Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Han J, Goldstein LA, Gastman BR, Froelich CJ, Yin XM, Rabinowich H. Degradation of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic events. J Biol Chem 2004; 279:22020-9. [PMID: 15014070 DOI: 10.1074/jbc.m313234200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have suggested that in the absence of Bid, granzyme B (GrB) can utilize an unknown alternative pathway to mediate mitochondrial apoptotic events. The current study has elucidated just such a pathway for GrB-mediated mitochondrial apoptotic alterations. Two Bcl-2 family members have been identified as interactive players in this newly discovered mitochondrial response to GrB: the pro-survival protein Mcl-1L and the pro-apoptotic protein, Bim. Expression of Mcl-1L, which localizes mainly to the outer mitochondrial membrane, decreases significantly in cells subjected to CTL-free cytotoxicity mediated by a combination of GrB and replication-deficient adenovirus. The data suggest that Mcl-1L is a substrate for GrB and for caspase-3, but the two enzymes appear to target different cleavage sites. The cleavage pattern of endogenous Mcl-1L resembles that of in vitro translated Mcl-1L subjected to similar proteolytic activity. Co-immunoprecipitation experiments performed with endogenous as well as with in vitro translated proteins suggest that Mcl-1L is a high affinity binding partner of the three isoforms of Bim (extra-long, long, and short). Bim, a BH3-only protein, is capable of mediating the release of mitochondrial cytochrome c, and this activity is inhibited by the presence of exogenous Mcl-1L. The findings presented herein imply that Mcl-1L degradation by either GrB or caspase-3 interferes with Bim sequestration by Mcl-1L.
Collapse
Affiliation(s)
- Jie Han
- Departments of Pathology and Plastic Surgery, The University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gastman B, Wang K, Han J, Zhu ZY, Huang X, Wang GQ, Rabinowich H, Gorelik E. A novel apoptotic pathway as defined by lectin cellular initiation. Biochem Biophys Res Commun 2004; 316:263-71. [PMID: 15003540 DOI: 10.1016/j.bbrc.2004.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 10/26/2022]
Abstract
In this study of lectin-induced apoptosis we found that wheat germ agglutinin (WGA) initiated an accelerated type of programmed cell death developing after only 30 min of incubation with tumor cells. To analyze possible mechanisms, studies were focused using the WGA lectin whose carbohydrate specificity is well defined. We found that WGA could induce apoptosis by binding to either N-acetylneuraminic acid or N-acetylglucosamine (GlcNAc) on the cell surface of normal and malignant cells. We also showed that it is unlikely that WGA triggers apoptosis by binding to the carbohydrate portion of Fas. CrmA gene transfection did not inhibit WGA-mediated apoptosis of Jurkat cells. In addition, Jurkat-R cells selected for resistance to Fas signaled apoptosis manifested high sensitivity to WGA as did Fas-negative BL6 melanoma cells. WGA-induced apoptosis is also caspase-3-independent and was found to be triggered via a mitochondrial pathway. WGA induced a loss of transmembrane potential, disruption of the inner mitochondria membrane, and release of cytochrome c and caspase-9 activation after 30 min of cell interaction. Interestingly, Bcl-2 gene transfection did not affect sensitivity of Jurkat cells to WGA. The Jurkat-R subline that has been shown to be Bax and Bak deficient and resistant to various apoptotic signals was highly sensitive to WGA-induced apoptosis. In summary, WGA triggers a unique pattern of apoptosis that is extremely fast, Fas- and caspase-3-independent, and is mediated via a mitochondrial pathway. However, its mitochondrial component is unrestrained by the loss of Bax and Bak or the upregulation of Bcl-2 expression.
Collapse
Affiliation(s)
- Brian Gastman
- Division of Plastic Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Granzyme B (GrB) is a serine protease that is released by cytotoxic lymphocytes to kill virus-infected and tumor cells. Recent advances in the understanding of GrB have stressed the importance of reassessing the mechanisms by which GrB accomplishes its death functions. These include the uptake and trafficking of GrB within target cells, pathways used to trigger cell death, and the mechanism(s) controlling its killing activity. In addition, the role that GrB plays in human pathologies is still to be defined. The purpose of this review is to discuss recent insights into the biology of GrB and to evaluate its functional significance in health and disease.
Collapse
Affiliation(s)
- Felipe Andrade
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Mexico City, Mexico
| | | | | |
Collapse
|
50
|
Mekala DJ, Geiger TL. Functional Segregation of the TCR and Antigen-MHC Complexes on the Surface of CTL. THE JOURNAL OF IMMUNOLOGY 2003; 171:4089-95. [PMID: 14530330 DOI: 10.4049/jimmunol.171.8.4089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As CTL adhere to and lyze their targets, they extract cognate Ag-MHC and represent this on their own cell surface. Whether such self-presented cognate Ag stimulate the TCR of a CTL is uncertain. To analyze this, we examined TCR capping in response to self-presented Ag. We found that OVA peptide-specific OT-1 CTL that were pulsed with cognate peptide Ag did not cap their TCR, implying that the autologously presented MHC-Ag complex does not normally stimulate the TCR. However, this functional separation of the TCR and its ligand on the cell surface was not absolute. Treatment of Ag-pulsed OT-1 CTL with agents that alter cell surface charge, including trypsin, papain, tunicamycin, neuraminidase, and polybrene, allowed Ag-specific TCR capping. The TCR capped together with the restricting MHC molecule on the surface of the cell, implying an interaction between the TCR and cell-associated Ag. Further, the treated CTL underwent a time- and dose-dependent suicidal death that was both Fas- and perforin-dependent. Therefore, our results indicate that the association of the TCR with its MHC-peptide ligand on the surface of a CTL is normally proscribed by biophysical properties of the plasma membrane. Overcoming this restriction allows TCR stimulation and induces CTL effector functions and cell suicide.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Cell Death/immunology
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cells, Cultured
- Extracellular Space/immunology
- Glycosylation
- H-2 Antigens/metabolism
- H-2 Antigens/physiology
- Intracellular Fluid/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Ovalbumin/pharmacology
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Receptor Aggregation/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/ultrastructure
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Divya J Mekala
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|