1
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
2
|
A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion. J Virol 2017; 91:JVI.02463-16. [PMID: 28179532 PMCID: PMC5391440 DOI: 10.1128/jvi.02463-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.
Collapse
|
3
|
Frederico B, Chao B, May JS, Belz GT, Stevenson PG. A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe 2015; 15:457-70. [PMID: 24721574 DOI: 10.1016/j.chom.2014.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/05/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Gamma-herpesviruses (γHVs) are widespread oncogenic pathogens that chronically infect circulating lymphocytes. How they subvert the immune check-point function of the spleen to promote persistent infection is not clear. We show that Murid Herpesvirus-4 (MuHV-4) enters the spleen by infecting marginal zone (MZ) macrophages, which provided a conduit to MZ B cells. Relocation of MZ B cells to the white pulp allowed virus transfer to follicular dendritic cells. From here the virus reached germinal center B cells to establish persistent infection. Mice lacking MZ B cells, or treated with a sphingosine-1-phosphate receptor agonist to dislocate them, were protected against MuHV-4 colonization. MuHV-4 lacking ORF27, which encodes a glycoprotein necessary for efficient intercellular spread, could infect MZ macrophages but was impaired in long-term infection. Thus, MuHV-4, a γHV, exploits normal immune communication routes to spread by serial lymphoid/myeloid exchange.
Collapse
Affiliation(s)
- Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Brittany Chao
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gabrielle T Belz
- Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK; Sir Albert Sakzewski Virus Research Centre and Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Queensland 4029, Australia.
| |
Collapse
|
4
|
Murine gammaherpesvirus-68 ORF38 encodes a tegument protein and is packaged into virions during secondary envelopment. Protein Cell 2014; 5:141-50. [PMID: 24474202 PMCID: PMC3956968 DOI: 10.1007/s13238-013-0005-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022] Open
Abstract
Tegument is the unique structure of a herpesvirion which occupies the space between nucleocapsid and envelope. Accumulating data have indicated that interactions among tegument proteins play a key role in virion morphogenesis. Morphogenesis of gammaherpesviruses including Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) is poorly understood due to the lack of efficient de novo lytic replication in cell culture. Murine gammaherpesvirus-68 (MHV-68) is genetically related to these two human herpesviruses and serves as an effective model to study the lytic replication of gammaherpesviruses. We previously showed that ORF33 of MHV-68 encodes a tegument protein and plays an essential role in virion maturation in the cytoplasm. However, the molecular mechanism of how ORF33 participates in virion morphogenesis has not been elucidated. In this study we demonstrated that ORF38 of MHV-68 is also a tegument protein and is localized to cytoplasmic compartments during both transient transfection and viral infection. Immuno-gold labeling assay showed that ORF38 is only present on virions that have entered the cytoplasmic vesicles, indicating that ORF38 is packaged into virions during secondary envelopment. We further showed that ORF38 co-localizes with ORF33 during viral infection; therefore, the interaction between ORF38 and ORF33 is conserved among herpesviruses. Notably, we found that although ORF33 by itself is distributed in both the nucleus and the cytoplasm, in the presence of ORF38, ORF33 is co-localized to trans-Golgi network (TGN), a site where secondary envelopment takes place.
Collapse
|
5
|
Trammell RA, Verhulst S, Toth LA. Environmental perturbation, inflammation and behavior in healthy and virus-infected mice. Brain Behav Immun 2013; 33:139-52. [PMID: 23867134 DOI: 10.1016/j.bbi.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/06/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022] Open
Abstract
The development of so-called "sickness behaviors" (e.g., anorexia, anhedonia, reduced social interaction, fatigue) during infectious and inflammatory disease has been linked to facets of the immune response. Such problems can be particularly troublesome during chronic latent infection, as the host immune system must employ continual vigilance to maintain viral latency. Epstein-Barr virus (EBV) is a ubiquitous human gamma-herpesvirus that causes acute disease and establishes life-long latency in people. Murine gammaherpesvirus (MuGHV) is a natural pathogen of wild rodents that provides an experimental model for studying the pathophysiology of an EBV-like gamma-herpesvirus in mice. To evaluate this model with regard to sickness behavior and its exacerbation during a chronic latent viral disease, we exposed uninfected and MuGHV-infected C57BL/6J and BALB/cByJ mice to novel and potentially stressful environmental perturbations and measured the impact of these challenges on behavior and markers of inflammation. The data indicate that exposure of mice to environmental perturbations during the normal somnolent phase is associated with reduced activity during the subsequent active phase, despite an intervening rest period. Effects on inflammatory mediators were complex due to independent and interactive effects of infection status, mouse strain, and exposure to stressful environment. However, GCSF and MCP1 were consistently elevated in lung both immediately after and 12h after exposure to a "dirty" cage containing the resident mouse (DCR); this increase occurred in both C57BL/6J and BALB/cByJ mice and was independent of infection status. At 12h after DCR, IL1β and IP10 were also consistently elevated in lung. In response to DCR, BALB/cByJ mice showed a greater number of significant cytokine effects than did C57BL/6J mice. With regard to infection status, IP10 was consistently elevated in lung at both time points regardless of mouse strain or DCR exposure. Several analytes were affected by mouse strain in serum or lung at one or both time points, with most strain differences present in serum at E18. Taken together, the data show that exposure of mice to environmental perturbations is associated with systemic inflammation that is in part independent of genetic background or latent MuGHV infection and with reduced activity that could represent fatigue, depression, or other facets of sickness behavior.
Collapse
Affiliation(s)
- Rita A Trammell
- Department of Internal Medicine, Southern Illinois University School of Medicine, United States
| | | | | |
Collapse
|
6
|
Freeman ML, Burkum CE, Lanzer KG, Roberts AD, Pinkevych M, Itakura A, Kummer LW, Szaba FM, Davenport MP, McCarty OJT, Woodland DL, Smiley ST, Blackman MA. Gammaherpesvirus latency induces antibody-associated thrombocytopenia in mice. J Autoimmun 2012; 42:71-9. [PMID: 23245703 DOI: 10.1016/j.jaut.2012.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 12/13/2022]
Abstract
Human herpesviruses establish lifelong latency. Viral recrudescence can lead to the development of cancers, immunoproliferative disorders, transplantation complications, and thrombocytopenia. Although platelet-specific autoantibodies have been reported in patients infected with the Epstein-Barr virus (EBV), the mechanisms by which thrombocytopenia is induced remain unclear, as do the relative contributions of lytic viral replication and latent viral gene expression. The human gammaherpesviruses are tightly restricted in their ability to infect other mammals, so they are difficult to study in live animal models. Here we show that infection of mice with murine gammaherpesvirus-68 (γHV68), a rodent-specific pathogen closely related to EBV, induces the production of platelet-binding antibodies and causes thrombocytopenia. Infection of antibody-deficient mice does not lead to thrombocytopenia, indicating the platelet decrease is mediated by antibody. Additionally, infection with a latency-null recombinant γHV68 does not induce thrombocytopenia, suggesting factors associated with viral latency drive the infection-induced antibody-mediated thrombocytopenia. These studies describe an important animal model of gammaherpesvirus-induced autoimmune thrombocytopenia and demonstrate that this pathology is mediated by antibody and dependent on viral latency. This model will allow studies of the underlying mechanisms of disease progression and the testing of therapeutic strategies for the alleviation of virus-induced thrombocytopenia.
Collapse
Affiliation(s)
- Michael L Freeman
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohno S, Steer B, Sattler C, Adler H. ORF23 of murine gammaherpesvirus 68 is non-essential for in vitro and in vivo infection. J Gen Virol 2012; 93:1076-1080. [PMID: 22258865 DOI: 10.1099/vir.0.041129-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although ORF23 is conserved among gammaherpesviruses, its role during infection is unknown. Here, we studied the expression of ORF23 of murine gammaherpesvirus 68 (MHV-68) and its role during infection. ORF23 mRNA was detected in infected cells as a late transcript. The ORF23 protein product could be expressed and detected as an N-terminally FLAG-tagged protein by Western blot and indirect immunofluorescence. To investigate the role of ORF23 in the infection cycle of a gammaherpesvirus, we constructed an ORF23 deletion mutant of MHV-68. The analysis of the ORF23 deletion mutant suggested that ORF23 of MHV-68 is neither essential for replication in cell culture nor for lytic or latent infection in vivo. A phenotype of the ORF23 deletion mutant, reflected by a moderate reduction in lytic replication and latency amplification, was only detectable in the face of direct competition to the parental virus.
Collapse
Affiliation(s)
- S Ohno
- Institute of Molecular Immunology, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - B Steer
- Institute of Molecular Immunology, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - C Sattler
- Institute of Molecular Immunology, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - H Adler
- Institute of Molecular Immunology, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
8
|
Identification and analysis of expression of novel microRNAs of murine gammaherpesvirus 68. J Virol 2010; 84:10266-75. [PMID: 20668074 DOI: 10.1128/jvi.01119-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) and provides a small-animal model with which to study the pathogenesis of gammaherpesvirus (gammaHV) infections. To completely explore the potential of the MHV-68 system for the investigation of gammaHV microRNAs (miRNAs), it would be desirable to know the number and expression patterns of all miRNAs encoded by MHV-68. By deep sequencing of small RNAs, we systematically investigated the expression profiles of MHV-68 miRNAs in both lytically and persistently infected cells. In addition to the nine known MHV-68 miRNAs, we identified six novel MHV-68 miRNA genes and analyzed the expression levels of all MHV-68 miRNAs. Furthermore, we also characterized the cellular miRNA expression signatures in MHV-68-infected versus noninfected NIH 3T3 fibroblasts and in 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-treated versus nontreated S11 cells. We found that mmu-mir-15b and mmu-mir-16 are highly upregulated upon MHV-68 infection of NIH 3T3 cells, indicating a potential role for cellular miRNAs during MHV-68 infection. Our data will aid in the full exploration of the functions of gammaHV miRNAs.
Collapse
|
9
|
Yager EJ, Kim IJ, Freeman ML, Lanzer KG, Burkum CE, Cookenham T, Woodland DL, Blackman MA. Differential impact of ageing on cellular and humoral immunity to a persistent murine gamma-herpesvirus. IMMUNITY & AGEING 2010; 7:3. [PMID: 20181071 PMCID: PMC2843645 DOI: 10.1186/1742-4933-7-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/02/2010] [Indexed: 12/03/2022]
Abstract
Background Oncogenic γ-herpesviruses establish life-long infections in their hosts and control of these latent infections is dependent on continual immune surveillance. Immune function declines with age, raising the possibility that immune control of γ-herpesvirus infection becomes compromised with increasing age, allowing viral reactivation and/or increased latent load, both of which are associated with the development of malignancies. Results In this study, we use the experimental mouse γ-herpesvirus model, γHV68, to investigate viral immunity in aged mice. We found no evidence of viral recrudescence or increased latent load in aged latently-infected mice, suggesting that effective immune control of γ-herpesvirus infection remains intact with ageing. As both cellular and humoral immunity have been implicated in host control of γHV68 latency, we independently examined the impact of ageing on γHV68-specific CD8 T cell function and antibody responses. Virus-specific CD8 T cell numbers and cytolytic function were not profoundly diminished with age. In contrast, whereas ELISA titers of virus-specific IgG were maintained over time, there was a progressive decline in neutralizing activity. In addition, although aged mice were able to control de novo acute infection with only slightly delayed viral clearance, serum titers of neutralizing antibody were reduced in aged mice as compared to young mice. Conclusion Although there is no obvious loss of immune control of latent virus, these data indicate that ageing has differential impacts on anti-viral cellular and humoral immune protection during persistent γHV68 infection. This observation has potential relevance for understanding γ-herpesvirus immune control during disease-associated or therapeutic immunosuppression.
Collapse
Affiliation(s)
- Eric J Yager
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
The M10 locus of murine gammaherpesvirus 68 contributes to both the lytic and the latent phases of infection. J Virol 2009; 83:8163-72. [PMID: 19493995 DOI: 10.1128/jvi.00629-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus (KSHV) and provides a small-animal model to study the pathogenesis of gammaherpesvirus (gammaHV) infections. According to the colinear organization of the gammaHV genomes, the M10 locus is situated at a position equivalent to the K12 locus of KSHV, which codes for proteins of the kaposin family. The M10 locus of MHV-68 has been predicted to code for three overlapping open reading frames (M10a, M10b, and M10c [M10a-c]) with unknown function. In addition, the M10 locus contains a lytic origin of replication (oriLyt). To elucidate the function of the M10 locus during lytic and latent infections, we investigated, both in vitro and in vivo, the following four recombinant viruses which were generated using MHV-68 cloned as a bacterial artificial chromosome: (i) a mutant virus with a deletion which affects both the coding region for M10a-c and the oriLyt; (ii) a revertant virus in which both the M10a-c coding region and the oriLyt were reverted to those of the wild type; (iii) a virus with an ectopic insertion of the oriLyt, which restores the function of the oriLyt but not the M10a-c coding region; and (iv) a mutant virus with a deletion in the oriLyt only. While the mutants were slightly attenuated with regard to lytic replication in cell culture, they showed severe growth defects in vivo. Both lytic replication and latency amplification were strongly reduced. In contrast, both the revertant virus and the virus with the ectopic oriLyt insertion grew very similarly to the parental wild-type virus both in vitro and in vivo. Thus, we provide genetic evidence that mutation of the oriLyt, and not of putative protein coding sequences within the M10a-c region, is responsible for the observed phenotype. We conclude that the oriLyt in the M10 locus plays an important role during infection of mice with MHV-68.
Collapse
|
11
|
Yang Z, Tang H, Huang H, Deng H. RTA promoter demethylation and histone acetylation regulation of murine gammaherpesvirus 68 reactivation. PLoS One 2009; 4:e4556. [PMID: 19234612 PMCID: PMC2644783 DOI: 10.1371/journal.pone.0004556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/15/2009] [Indexed: 01/24/2023] Open
Abstract
Gammaherpesviruses have a common biological characteristic, latency and lytic replication. The balance between these two phases in murine gammaherpesvirus 68 (MHV-68) is controlled by the replication and transcription activator (RTA) gene. In this report, we investigated the effect of DNA demethylation and histone acetylation on MHV-68 replication. We showed that distinctive methylation patterns were associated with MHV-68 at the RTA promoter during latency or lytic replication. Treatment of MHV-68 latently-infected S11E cells with a DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AzaC), only weakly reactivated MHV-68, despite resulted in demethylation of the viral RTA promoter. In contrast, treatment with a histone deacetylase (HDAC) inhibitor trichostatin A (TSA) strongly reactivated MHV-68 from latency, and this was associated with significant change in histone H3 and H4 acetylation levels at the RTA promoter. We further showed that HDAC3 was recruited to the RTA promoter and inhibited RTA transcription during viral latency. However, TSA treatment caused rapid removal of HDAC3 and also induced passive demethylation at the RTA promoter. In vivo, we found that the RTA promoter was hypomethylated during lytic infection in the lung and that methylation level increased with virus latent infection in the spleen. Collectively, our data showed that histone acetylation, but not DNA demethylation, is sufficient for effective reactivation of MHV-68 from latency in S11E cells.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Haidong Tang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Hai Huang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Deng
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Guggemoos S, Hangel D, Hamm S, Heit A, Bauer S, Adler H. TLR9 contributes to antiviral immunity during gammaherpesvirus infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:438-43. [PMID: 18097045 DOI: 10.4049/jimmunol.180.1.438] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and EBV cause important infections. As pathogenetic studies of the human infections are restricted, murine gammaherpesvirus 68 serves as a model to study gammaherpesvirus pathogenesis. TLRs are a conserved family of receptors detecting microbial molecular patterns. Among the TLRs, TLR9 recognizes unmethylated CpG DNA motifs present in bacterial and viral DNA. The aim of this study was to assess the role of TLR9 in gammaherpesvirus pathogenesis. Upon stimulation with murine gammaherpesvirus 68, Flt3L-cultured bone marrow cells (dendritic cells) from TLR9-/- mice secreted reduced levels of IL-12, IFN-alpha, and IL-6, when compared with dendritic cells from wild-type mice. Intranasal infection of TLR9-/- and wild-type mice did not reveal any differences during lytic and latent infection. In contrast, when infected i.p., TLR9-/- mice showed markedly higher viral loads both during lytic and latent infection. Thus, we show for the first time that TLR9 is involved in gammaherpesvirus pathogenesis and contributes to organ-specific immunity.
Collapse
Affiliation(s)
- Simone Guggemoos
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF-National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Kayhan B, Yager EJ, Lanzer K, Cookenham T, Jia Q, Wu TT, Woodland DL, Sun R, Blackman MA. A replication-deficient murine gamma-herpesvirus blocked in late viral gene expression can establish latency and elicit protective cellular immunity. THE JOURNAL OF IMMUNOLOGY 2008; 179:8392-402. [PMID: 18056385 DOI: 10.4049/jimmunol.179.12.8392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, are widely disseminated and are associated with the onset of a variety of malignancies. Thus, the development of prophylactic and therapeutic vaccination strategies is an important goal. The experimental mouse gamma-herpesvirus, gammaHV68 (or MHV-68), has provided an in vivo model for studying immune control of these persistent viruses. In the current studies, we have examined infectivity, immunogenicity, and protective efficacy following infection with a replication-deficient gammaHV68 blocked in late viral gene expression, ORF31STOP. The data show that ORF31STOP was able to latently infect B cells. However, the anatomical site and persistence of the infection depended on the route of inoculation, implicating a role for viral replication in viral spread but not the infectivity per se. Furthermore, i.p. infection with ORF31STOP elicited strong cellular immunity but a non-neutralizing Ab response. In contrast, intranasal infection was poorly immunogenic. Consistent with this, mice infected i.p. had enhanced control of both the lytic and latent viral loads following challenge with wild-type gammaHV68, whereas intranasal infected mice were not protected. These data provide important insight into mechanisms of infection and protective immunity for the gamma-herpesviruses and demonstrate the utility of replication-deficient mutant viruses in direct testing of "proof of principal" vaccination strategies.
Collapse
|
14
|
Mages J, Freimüller K, Lang R, Hatzopoulos AK, Guggemoos S, Koszinowski UH, Adler H. Proteins of the secretory pathway govern virus productivity during lytic gammaherpesvirus infection. J Cell Mol Med 2008; 12:1974-89. [PMID: 18194452 PMCID: PMC2673020 DOI: 10.1111/j.1582-4934.2008.00235.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Diseases caused by gammaherpesviruses continue to be a challenge for human health and antiviral treatment. Most of the commonly used antiviral drugs are directed against viral gene products. However, the emergence of drug-resistant mutations ma limit the effectiveness of these drugs. Since viruses require a host cell to propagate, the search for host cell targets is an interestin alternative. Methods: In this study, we infected three different cell types (fibroblasts, endothelial precursor cells and macrophages with a murine gammaherpesvirus and analysed the host cell response for changes either common to all or unique to a particular cell type using oligonucleotide microarrays. Results: The analysis revealed a number of genes whose transcription was significantly up- or down-regulated in either one or two of the cell types tested. After infection, only two genes, Lman1 (also known as ERGIC53) an synaptobrevin-like 1 (sybl1) were significantly up-regulated in all three cell types, suggestive for a general role for the virus life cycl independent of the cell type. Both proteins have been implicated in cellular exocytosis and transport of glycoproteins through the secre tory pathway. To test the significance of the observed up-regulation, the functionality of these proteins was modulated, and the effect on virus replication was monitored. Inhibition of either Lman1 or sybl1 resulted in a significant reduction in virus production. Conclusions: This suggests that proteins of the secretory pathway which appear to be rate limiting for virus production may represent new targets for intervention.
Collapse
Affiliation(s)
- J Mages
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 2007; 25:337-79. [PMID: 17201683 DOI: 10.1146/annurev.immunol.25.022106.141651] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SAP (SLAM-associated protein) was identified in 1998 as an adaptor molecule involved in the intracellular signaling pathways elicited through the cell surface receptor SLAM and as the protein defective in the human immunodeficiency X-linked lymphoproliferative disease (XLP). During the past eight years, it has been established that the SLAM family of cell surface receptors (SLAM, 2B4, NTB-A, Ly9, CD84) and the SAP family of adaptors (SAP, EAT-2, ERT) play critical roles in lymphocyte development, differentiation, and acquisition of effector functions. Studies of these proteins have shown unexpected roles in cytokine production by T cells and myeloid cells, T cell-dependent humoral immune responses, NK cell-mediated cytotoxicity, and NKT cell development. This review highlights recent findings that have improved our understanding of the roles of the SLAM and SAP families of molecules in immune regulation and discusses how perturbations in the signaling pathways involving these proteins can result in different disease states.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, 2010, New South Wales, Australia.
| | | | | |
Collapse
|
16
|
Kim IJ, Burkum CE, Cookenham T, Schwartzberg PL, Woodland DL, Blackman MA. Perturbation of B cell activation in SLAM-associated protein-deficient mice is associated with changes in gammaherpesvirus latency reservoirs. THE JOURNAL OF IMMUNOLOGY 2007; 178:1692-701. [PMID: 17237419 DOI: 10.4049/jimmunol.178.3.1692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP)) interactions with SLAM family proteins play important roles in immune function. SAP-deficient mice have defective B cell function, including impairment of germinal center formation, production of class-switched Ig, and development of memory B cells. B cells are the major reservoir of latency for both EBV and the homologous murine gammaherpesvirus, gammaherpesvirus 68. There is a strong association between the B cell life cycle and viral latency in that the virus preferentially establishes latency in activated germinal center B cells, which provides access to memory B cells, a major reservoir of long-term latency. In the current studies, we have analyzed the establishment and maintenance of gammaHV68 latency in wild-type and SAP-deficient mice. The results show that, despite SAP-associated defects in germinal center and memory B cell formation, latency was established and maintained in memory B cells at comparable frequencies to wild-type mice, although the paucity of memory B cells translated into a 10-fold reduction in latent load. Furthermore, there were defects in normal latency reservoirs within the germinal center cells and IgD(+)"naive" B cells in SAP-deficient mice, showing a profound effect of the SAP mutation on latency reservoirs.
Collapse
|
17
|
Flaño E, Jia Q, Moore J, Woodland DL, Sun R, Blackman MA. Early establishment of gamma-herpesvirus latency: implications for immune control. THE JOURNAL OF IMMUNOLOGY 2005; 174:4972-8. [PMID: 15814726 PMCID: PMC3069848 DOI: 10.4049/jimmunol.174.8.4972] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, infect >90% of the population worldwide, and latent infection is associated with numerous malignancies. Rational vaccination and therapeutic strategies require an understanding of virus-host interactions during the initial asymptomatic infection. Primary EBV infection is associated with virus replication at epithelial sites and entry into the circulating B lymphocyte pool. The virus exploits the life cycle of the B cell and latency is maintained long term in resting memory B cells. In this study, using a murine gamma-herpesvirus model, we demonstrate an early dominance of latent virus at the site of infection, with lung B cells harboring virus almost immediately after infection. These data reinforce the central role of the B cell not only in the later phase of infection, but early in the initial infection. Early inhibition of lytic replication does not impact the progression of the latent infection, and latency is established in lymphoid tissues following infection with a replication-deficient mutant virus. These data demonstrate that lytic viral replication is not a requirement for gamma-herpesvirus latency in vivo and suggest that viral latency can be disseminated by cellular proliferation. These observations emphasize that prophylactic vaccination strategies must target latent gamma-herpesvirus at the site of infection.
Collapse
Affiliation(s)
| | - Qingmei Jia
- Department of Molecular and Medical Pharmacology, AIDS Institute, Jonsson Comprehensive Cancer Center, Dental Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - John Moore
- Trudeau Institute, Saranac Lake, NY 12983
| | | | - Ren Sun
- Department of Molecular and Medical Pharmacology, AIDS Institute, Jonsson Comprehensive Cancer Center, Dental Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Marcia A. Blackman
- Trudeau Institute, Saranac Lake, NY 12983
- Address correspondence and reprint requests to Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983.
| |
Collapse
|
18
|
Flaño E, Hardy CL, Kim IJ, Frankling C, Coppola MA, Nguyen P, Woodland DL, Blackman MA. T Cell Reactivity during Infectious Mononucleosis and Persistent Gammaherpesvirus Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:3078-85. [PMID: 14978113 DOI: 10.4049/jimmunol.172.5.3078] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intranasal infection of mice with murine gammaherpesvirus 68 causes a dramatic increase in numbers of activated CD8(+) T cells in the blood, analogous in many respects to EBV-induced infectious mononucleosis in humans. In the mouse model, this lymphocytosis has two distinct components: an early, conventional virus-specific CD8(+) T cell response, and a later response characterized by a dramatic increase among CD8(+) T cells that bear Vbeta4(+) TCRs. We previously demonstrated that Vbeta4(+)CD8(+) T cells recognize an uncharacterized ligand expressed on latently infected B cells in an MHC-independent manner. The frequency of Vbeta4(+)CD8(+) T cells increases dramatically following the peak of viral latency in the spleen. In the current studies, we show that elevated Vbeta4(+)CD8(+) T cell levels are sustained long-term in persistently infected mice, apparently a consequence of continued ligand expression. In addition, we show that Vbeta4(+)CD8(+) T cells can acquire effector functions, including cytotoxicity and the capacity to secrete IFN-gamma, although they have an atypical activation profile compared with well-characterized CD8(+) T cells specific for conventional viral epitopes. The characteristics of Vbeta4(+)CD8(+) T cells (potential effector function, stimulation by latently infected B cells, and kinetics of expansion) suggested that this dominant T cell response plays a key role in the immune control of latent virus. However, Ab depletion and adoptive transfer studies show that Vbeta4(+)CD8(+) T cells are not essential for this function. This murine model of infection may provide insight into the role of unusual populations of activated T cells associated with persistent viral infections.
Collapse
|
19
|
Kim IJ, Flaño E, Woodland DL, Lund FE, Randall TD, Blackman MA. Maintenance of long term gamma-herpesvirus B cell latency is dependent on CD40-mediated development of memory B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:886-92. [PMID: 12847258 DOI: 10.4049/jimmunol.171.2.886] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been proposed that the gamma-herpesviruses maintain lifelong latency in B cells by gaining entry into the memory B cell pool and taking advantage of host mechanisms for maintaining these cells. We directly tested this hypothesis by kinetically monitoring viral latency in CD40(+) and CD40(-) B cells from CD40(+)CD40(-) mixed bone marrow chimera mice after infection with a murine gamma-herpesvirus, MHV-68. CD40(+) B cells selectively entered germinal centers and differentiated into memory B cells. Importantly, latency was progressively lost in the CD40(-) B cells and preferentially maintained in the long-lived, isotype-switched CD40(+) B cells. These data directly demonstrate viral exploitation of the normal B cell differentiation pathway to maintain latency.
Collapse
|
20
|
Adler H, Messerle M, Koszinowski UH. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol 2003; 13:111-21. [PMID: 12627394 DOI: 10.1002/rmv.380] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herpesviruses, which are important pathogens for both animals and humans, have large and complex genomes with a coding capacity for up to 225 open reading frames (ORFs). Due to the large genome size and the slow replication kinetics in vitro of some herpesviruses, mutagenesis of viral genes in the context of the viral genome by conventional recombination methods in cell culture has been difficult. Given that mutagenesis of viral genes is the basic strategy to investigate function, many of the herpesvirus ORFs could not be defined functionally. Recently, a completely new approach for the construction of herpesvirus mutants has been developed, based on cloning of the virus genome as a bacterial artificial chromosome (BAC) in E. coli. This technique allows the maintenance of viral genomes as a plasmid in E. coli and the reconstitution of viral progeny by transfection of the BAC plasmid into eukaryotic cells. Any genetic modification of the viral genome in E. coli using prokaryotic recombination proteins is possible, thereby allowing the generation of mutant viruses and facilitating the analysis of herpesvirus genomes cloned as infectious BACs. In this review, we describe the principle of cloning a viral genome as a BAC using murine gammaherpesvirus 68 (MHV-68), a mouse model for gammaherpesvirus infections, as an example.
Collapse
Affiliation(s)
- Heiko Adler
- GSF-Research Center for Environment and Health, Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, Munich, Germany.
| | | | | |
Collapse
|