1
|
Rago F, Ahmed MY, Marinelli MA, Miller LM, Duray AM, Dresden BP, Constantinesco NJ, Sims PKF, Richwalls LJ, Kupul S, Kolls JK, Gopal R, Alcorn JF. CD209d/e are required for macrophage-mediated phagocytosis and activation during methicillin-resistant Staphylococcus aureus pulmonary host defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:703-713. [PMID: 40101753 PMCID: PMC12041778 DOI: 10.1093/jimmun/vkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/20/2024] [Indexed: 03/20/2025]
Abstract
Staphylococcus aureus is a commensal and opportunist pathogen of the upper respiratory tract. The recognition of pathogen-associated molecular patterns through pattern-recognition receptors is crucial for eliminating microorganisms such as S. aureus. DC-SIGN (CD209) is a pattern-recognition receptor that binds to a broad range of pathogens, promoting phagocytosis. Here we aimed to study the role of mouse homologues of DC-SIGN, CD209d/e, in a methicillin-resistant S. aureus (MRSA) pulmonary infection model. CD209d/e-/- and wild-type C57BL/6 mice were infected with MRSA and inflammatory parameters were evaluated. CD209d/e-/- mice had delayed bacterial burden and mortality together with increased frequency of neutrophils and decreased dendritic cells in the lung compared with control mice. iNOS+ macrophages, and regulatory T cell frequency were decreased in the lungs of CD209d/e-/- mice. CD209d/e-/- mice had increased levels of inflammatory cytokines in the lungs, but levels of IL-12p40 were decreased. MRSA reduced expression of interferon-γ and pattern-recognition receptors in CD209d/e-/- mice. MRSA uptake by phagocytes was decreased in the lungs of CD209d/e-/- versus control mice. CD209d/e-/- bone marrow derived macrophages showed impaired MRSA uptake and killing. These data suggest that CD209d/e are essential receptors to control inflammation by activating macrophages leading to MRSA uptake and killing.
Collapse
Affiliation(s)
- Flavia Rago
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Mohamed Y Ahmed
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Michael A Marinelli
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Leigh M Miller
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexis M Duray
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brooke P Dresden
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas J Constantinesco
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Peyton K F Sims
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Lacee J Richwalls
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Saran Kupul
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jay K Kolls
- Center for Translational Research in Infection & Inflammation, Tulane University School of Medicine, New Orleans, LA, United States
| | - Radha Gopal
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Dovhyi R, Dvukhriadkina A, Ostrovska K, Rudyk M, Verhovcova I, Vaivode K, Pjanova D, Ostapchenko L, Skivka L. Bacteriophage derived dsRNA induces polarized activation of alveolar macrophages from Balb/c and C57Bl/6 mice in vitro in sex- and age-dependent manner. Cell Immunol 2025; 408:104916. [PMID: 39787694 DOI: 10.1016/j.cellimm.2025.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Bacteriophage-derived dsRNA (bp-dsRNA), also known as Larifan, is a poly-functional and wide-spectrum antiviral medication with potent interferonogenic activity. In the lungs of golden Syrian hamsters infected with SARS-CoV-2, Larifan substantially reduces viral load and decreases infection-induced pathological lesion severity. Alveolar macrophages (AM) are key sentinel cells in the lung, which play an important role in antiviral innate immune responses and, at the same time, can trigger infection-associated hyper-inflammatory response. This study revealed that treatment with bp-dsRNA (Larifan) in vitro modulates the functional profile of AM from intact Balb/c and C57Bl/6 mice. The pattern of the drug response depends on the animal strain, age and sex. AM from Balb/c mice generated a weaker response to the preparation as compared to cells from C57Bl/6 mice. Most emphatic responses to the treatment with bf-dsRNA (Larifan) were registered in AM from old males of both BALB/c and C57BL/6 strains with the strongest in the latter. AM from old C57BL/6 females were less likely to be influenced by the preparation. In most cases, exposure to bf-dsRNA (Larifan) increased AM phagocytic activity and was more often accompanied by the stimulation of intracellular reactive oxygen species generation, than by its decrease. In most animal groups, treatment with bf-dsRNA (Larifan) did not affect significantly CD206 expression and down-regulated CD80 expression in AM. Taken together, our findings suggest that bf-dsRNA (Larifan) not so much stimulates the bivalent phenotype of AM, as restrains their hyper-inflammatory responses through the control of antigen-presentation while preserving functional signatures typical of patrolling tissue-resident macrophages.
Collapse
Affiliation(s)
- R Dovhyi
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - A Dvukhriadkina
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - K Ostrovska
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - M Rudyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine.
| | - Irina Verhovcova
- Latvian Biomedical Research and Study Centre, Rātsupītes Street 1, k-1, Riga LV-1067, Latvia
| | - Kristine Vaivode
- Latvian Biomedical Research and Study Centre, Rātsupītes Street 1, k-1, Riga LV-1067, Latvia
| | - D Pjanova
- Latvian Biomedical Research and Study Centre, Rātsupītes Street 1, k-1, Riga LV-1067, Latvia
| | - L Ostapchenko
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - L Skivka
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| |
Collapse
|
4
|
Dalton R, Doyle S. Current Perspectives of TLR2 Signalling in the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:127-131. [PMID: 39930184 DOI: 10.1007/978-3-031-76550-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Toll-like receptor 2 (TLR2) signalling is crucial in initiating the innate immune response. Under normal conditions, TLR2 can recognise and respond to danger signals in the body and protect against damaging pathogens and molecules. However, dysregulation of this tightly controlled cascade has been implicated in various retinal disorders. There are many endogenous sterile ligands present in a degenerating retina that could lead to aberrant TLR2 activation. This culminates in an overaction of the innate immune response, which leads to an excess of pro-inflammatory cytokine production and results in a dangerous cycle of chronic inflammation. Here, we will review the evidence behind TLR2's involvement in retinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) and investigate the potential therapeutic benefit of TLR2 inhibition in the retina.
Collapse
Affiliation(s)
- Rachel Dalton
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Sarah Doyle
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland.
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland.
| |
Collapse
|
5
|
Ji M, Liu H, Wei M, Shi D, Gou J, Yin T, He H, Tang X, Chen C, Zhang Y. Redox-sensitive disulfide-bridged self-assembled nanoparticles of dexamethasone with high drug loading for acute lung injury therapy. Int J Pharm 2024; 664:124600. [PMID: 39159858 DOI: 10.1016/j.ijpharm.2024.124600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Acute lung injury (ALI) arises from an excessive inflammatory response, usually progressing to acute respiratory distress syndrome (ARDS) if not promptly addressed. There is currently a limited array of effective treatments available for ALI. In this study, we developed disulfide bond-bridged prodrug self-assembled nanoparticles (referred to as DSSS NPs). These nanoparticles were consisted of Dexamethasone (Dex) and stearic acid (SA), and were designed to target and treat ALI. DSSS NPs demonstrated a substantial drug loading capacity with 37.75 % of Dex, which is much higher than conventional nanomedicines (usually < 10 %). Moreover, they exhibited the potential to specifically target injured lung tissue and inflammatory microenvironment-responsive release drugs. Consequently, DSSS NPs reduced significantly the levels of pro-inflammatory cytokines and tissue damage in mice with ALI induced by lipopolysaccharide (LPS). Overall, DSSS NPs offer a promising strategy for treatment of acute lung injury.
Collapse
Affiliation(s)
- Muse Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China
| | - Mingli Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China
| | - Dongmei Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China
| | - Tian Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China.
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China
| | - Chengjun Chen
- Beijing Nuokangda Pharmaceutical Co., Ltd, Beijing, 100176 Beijing, China.
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning, China.
| |
Collapse
|
6
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
7
|
Kim EH, Lee WS, Kwon DR. Microcurrent Therapy Mitigates Neuronal Damage and Cognitive Decline in an Alzheimer's Disease Mouse Model: Insights into Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:6088. [PMID: 38892278 PMCID: PMC11173257 DOI: 10.3390/ijms25116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) presents a significant challenge due to its multifaceted nature, characterized by cognitive decline, memory loss, and neuroinflammation. Though AD is an extensively researched topic, effective pharmacological interventions remain elusive, prompting explorations into non-pharmacological approaches. Microcurrent (MC) therapy, which utilizes imperceptible currents, has emerged as a potent clinical protocol. While previous studies have focused on its therapeutic effects, this study investigates the impact of MC on neuronal damage and neuroinflammation in an AD mouse model, specifically addressing potential side effects. Utilizing 5xFAD transgenic mice, we examined the effects of MC therapy on neuronal integrity and inflammation. Our findings suggest that MC therapy attenuates memory impairment and reduces neurodegeneration, as evidenced by improved performance in memory tests and the preservation of the neuronal structure. Additionally, MC therapy significantly decreases amyloid-beta (Aβ) plaque deposition and inhibits apoptosis, indicating its potential to mitigate AD pathology. This study determined that glial activation is effectively reduced by using MC therapy to suppress the TLR4-MyD88-NFκB pathway, which consequently causes the levels of inflammatory factors TNF-α, IL-1β, and IL-6 to decrease, thus implicating TLR4 in neurodegenerative disease-related neuroinflammation. Furthermore, while our study did not observe significant adverse effects, a further clinical trial into potential side effects and neuroinflammatory responses associated with MC therapy is warranted.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Republic of Korea; (E.H.K.); (W.S.L.)
| | - Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Republic of Korea; (E.H.K.); (W.S.L.)
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
8
|
Bourrel AS, Picart A, Fernandez JC, Hays C, Mignon V, Saubaméa B, Poyart C, Fouet A, Tazi A, Guignot J. Specific interaction between Group B Streptococcus CC17 hypervirulent clone and phagocytes. Infect Immun 2024; 92:e0006224. [PMID: 38514466 PMCID: PMC11003227 DOI: 10.1128/iai.00062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Streptococcus agalactiae also named Group B Streptococcus (GBS) is the most significant pathogen causing invasive infections, such as bacteremia and meningitis, in neonates. Worldwide epidemiological studies have shown that a particular clonal complex (CC) of capsular serotype III, the CC17, is strongly associated with meningitis in neonates and is therefore, designated as the hypervirulent clone. Macrophages are a permissive niche for intracellular bacteria of all GBS clones. In this study, we deciphered the specific interaction of GBS CC17 strains with macrophages. Our study revealed that CC17 strains are phagocytosed at a higher rate than GBS non-CC17 strains by human monocytes and macrophages both in cellular models and in primary cells. CC17-enhanced phagocytosis is due to an initial enhanced-attachment step to macrophages mediated by the CC17-specific surface protein HvgA and the PI-2b pilus (Spb1). We showed that two different inhibitors of scavenger receptors (fucoidan and poly(I)) specifically inhibited CC17 adhesion and phagocytosis while not affecting those of non-CC17 strains. Once phagocytosed, both CC17 and non-CC17 strains remained in a LAMP-1 positive vacuole that ultimately fuses with lysosomes where they can survive at similar rates. Finally, both strains displayed a basal egress which occurs independently from actin and microtubule networks. Our findings provide new insights into the interplay between the hypervirulent GBS CC17 and major players of the host's innate immune response. This enhanced adhesion, leading to increased phagocytosis, could reflect a peculiar capacity of the CC17 lineage to subvert the host immune defenses, establish a niche for persistence or disseminate.
Collapse
Affiliation(s)
- Anne-Sophie Bourrel
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Amandine Picart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | | | - Constantin Hays
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Virginie Mignon
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Bruno Saubaméa
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Asmaa Tazi
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Julie Guignot
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
9
|
Ghosh M, Lee J, Burke AN, Strong TA, Sagen J, Pearse DD. Sex Dependent Disparities in the Central Innate Immune Response after Moderate Spinal Cord Contusion in Rat. Cells 2024; 13:645. [PMID: 38607084 PMCID: PMC11011714 DOI: 10.3390/cells13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Subacute spinal cord injury (SCI) displays a complex pathophysiology associated with pro-inflammation and ensuing tissue damage. Microglia, the resident innate immune cells of the CNS, in concert with infiltrating macrophages, are the primary contributors to SCI-induced inflammation. However, subpopulations of activated microglia can also possess immunomodulatory activities that are essential for tissue remodeling and repair, including the production of anti-inflammatory cytokines and growth factors that are vital for SCI recovery. Recently, reports have provided convincing evidence that sex-dependent differences exist in how microglia function during CNS pathologies and the extent to which these cells contribute to neurorepair and endogenous recovery. Herein we employed flow cytometry and immunohistochemical methods to characterize the phenotype and population dynamics of activated innate immune cells within the injured spinal cord of age-matched male and female rats within the first week (7 days) following thoracic SCI contusion. This assessment included the analysis of pro- and anti-inflammatory markers, as well as the expression of critical immunomodulatory kinases, including P38 MAPK, and transcription factors, such as NFκB, which play pivotal roles in injury-induced inflammation. We demonstrate that activated microglia from the injured spinal cord of female rats exhibited a significantly diminutive pro-inflammatory response, but enhanced anti-inflammatory activity compared to males. These changes included lower levels of iNOS and TLR4 expression but increased levels of ARG-1 and CD68 in females after SCI. The altered expression of these markers is indicative of a disparate secretome between the microglia of males and females after SCI and that the female microglia possesses higher phagocytic capabilities (increased CD68). The examination of immunoregulatory kinases and transcription factors revealed that female microglia had higher levels of phosphorylated P38Thr180/Tyr182 MAPK and nuclear NFκB pp50Ser337 but lower amounts of nuclear NFκB pp65Ser536, suggestive of an attenuated pro-inflammatory phenotype in females compared to males after SCI. Collectively, this work provides novel insight into some of the sex disparities that exist in the innate immune response after SCI and indicates that sex is an important variable when designing and testing new therapeutic interventions or interpretating positive or negative responses to an intervention.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Jinyoung Lee
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Ashley N. Burke
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Thomas A. Strong
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Al-Najjar MAA, Abdulrazzaq SB, Alzaghari LF, Mahmod AI, Omar A, Hasen E, Athamneh T, Talib WH, Chellappan DK, Barakat M. Evaluation of immunomodulatory potential of probiotic conditioned medium on murine macrophages. Sci Rep 2024; 14:7126. [PMID: 38531887 DOI: 10.1038/s41598-024-56622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Probiotics are a mixture of beneficial live bacteria and/or yeasts that naturally exist in our bodies. Recently, numerous studies have focused on the immunostimulatory effects of single-species or killed multi-species probiotic conditioned mediums on macrophages. This study investigates the immunostimulatory effect of commercially available active, multi-species probiotic conditioned medium (CM) on RAW264.7 murine macrophages. The probiotic CM was prepared by culturing the commercially available probiotic in a cell-culture medium overnight at 37 °C, followed by centrifugation and filter-sterilization to be tested on macrophages. The immunostimulatory effect of different dilution percentages (50%, 75%, 100%) of CM was examined using the MTT assay, proinflammatory cytokine (tumor necrosis factor TNF-alpha) production in macrophages, migration, and phagocytosis assays. For all the examined CM ratios, the percentages of cell viability were > 80%. Regarding the migration scratch, TNF-alpha and phagocytosis assays, CM demonstrated a concentration-dependent immunostimulatory effect. However, the undiluted CM (100%) showed a significant (p-value < 0.05) stimulatory effect compared to the positive and negative controls. The findings suggest that the secretions and products of probiotics, as measured in the CM, may be closely associated with their immune-boosting effects. Understanding this relationship between probiotic secretions and immune function is crucial for further exploring the potential benefits of probiotics in enhancing overall health and well-being.
Collapse
Affiliation(s)
| | | | | | | | - Amin Omar
- Faculty of Pharmacy, Applied Science Private University, 11937, Amman, Jordan
| | - Eliza Hasen
- MEA Research Center, Middle East University, Amman, Jordan
| | - Tamara Athamneh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, Jordan
| | - Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, 11937, Amman, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Muna Barakat
- Faculty of Pharmacy, Applied Science Private University, 11937, Amman, Jordan.
| |
Collapse
|
11
|
Iyoda T, Ohishi A, Wang Y, Yokoyama MS, Kazama M, Okita N, Inouye S, Nakagawa Y, Shimano H, Fukai F. Bioactive TNIIIA2 Sequence in Tenascin-C Is Responsible for Macrophage Foam Cell Transformation; Potential of FNIII14 Peptide Derived from Fibronectin in Suppression of Atherosclerotic Plaque Formation. Int J Mol Sci 2024; 25:1825. [PMID: 38339104 PMCID: PMC10855454 DOI: 10.3390/ijms25031825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive β1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.
Collapse
Affiliation(s)
- Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Asayo Ohishi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yunong Wang
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Miyabi-Shara Yokoyama
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Mika Kazama
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Naoyuki Okita
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Sachiye Inouye
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Department of Complex Biosystem Research, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| |
Collapse
|
12
|
Zhou G, Zhang L, Shao S. The application of MARCO for immune regulation and treatment. Mol Biol Rep 2024; 51:246. [PMID: 38300385 DOI: 10.1007/s11033-023-09201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Macrophage receptor with collagen structure (MARCO) is a member of scavenger receptor class A (SR-A) and shares structural and functional similarities with SR-A1. In recent years, many studies have shown that MARCO can trigger an immune response and has therapeutic potential as a target for immunotherapy. Studies have shown that alterations in MARCO expression following pathogen infection cause changes in the functions of innate and adaptive immune cells, including macrophages, dendritic cells, B cells, and T cells, affecting the body's immune response to invading pathogens; thus, MARCO plays a crucial role in triggering the immune response, bridging innate and adaptive immunity, and eliminating pathogens. This paper is a comprehensive summary of the recent research on MARCO. This review focuses on the multiple functions of MARCO, including adhesion, migration, phagocytosis, and cytokine secretion with special emphasis on the complex interactions between MARCO and various types of cells involved in the immune response, as well as possible immune-related mechanisms. In summary, in this review, we discuss the structure and function of MARCO and its role in the immune response and highlight the therapeutic potential of MARCO as a target for immunotherapy. We hope that this review provides a theoretical basis for future research on MARCO.
Collapse
Affiliation(s)
- Guiyuan Zhou
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China
| | - Lei Zhang
- Shijiazhuang Vocational College of City Economy, No. 12, Wenming Road, Economic and Technological Development Zone, Shijiazhuang, 050017, China.
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, No. 361, Zhongshan East Road, Chang'an District, Shijiazhuang, 050017, China.
| |
Collapse
|
13
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
14
|
Uribe-Querol E, Rosales C. Phagocytosis. Methods Mol Biol 2024; 2813:39-64. [PMID: 38888769 DOI: 10.1007/978-1-0716-3890-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Rahman M, Sompa SI, Introna M, Upadhyay S, Ganguly K, Palmberg L. Lipid from electronic cigarette-aerosol both with and without nicotine induced pro-inflammatory macrophage polarization and disrupted phagocytosis. J Inflamm (Lond) 2023; 20:39. [PMID: 37978397 PMCID: PMC10655339 DOI: 10.1186/s12950-023-00367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Clinical cases and experimental evidence revealed that electronic cigarettes (ECIG) induce serious adverse health effects, but underlying mechanisms remain to be fully uncovered. Based on recent exploratory evidence, investigating the effects of ECIG on macrophages can broadly define potential mechanisms by focusing on the effect of ECIG exposure with or without nicotine. Here we investigated the effect of ECIG-aerosol exposure on macrophages (MQ) phenotype, inflammatory response, and function of macrophages.MQ were cultured at air liquid interface and exposed to ECIG-aerosol. Oxidative stress was determined by reactive oxygen species (ROS), heat shock protein 60 (HSP60), glutathione peroxidase (GPx) and heme oxygenase1 (HMOX1). Lipid accumulation and lipid peroxidation were defined by lipid staining and level of malondialdehyde (MDA) respectively. MQ polarization was identified by surface expression markers CD86, CD11C and CD206 as well as pro-inflammatory and anti-inflammatory cytokines in gene and protein level. Phagocytosis of E. coli by MQ was investigated by fluorescence-based phagocytosis assay.ECIG-aerosol exposure in presence or absence of nicotine induced oxidative stress evidenced by ROS, HSP60, GPx, GPx4 and HMOX1 upregulation in MQ. ECIG-aerosol exposure induced accumulation of lipids and the lipid peroxidation product MDA in MQ. Pro-inflammatory MQ (M1) markers CD86 and CD11C but not anti-inflammatory MQ (M2) marker CD206 were upregulated in response to ECIG-aerosol exposure. In addition, ECIG induced pro-inflammatory cytokines IL-1beta and IL-8 in gene level and IL-6, IL-8, and IL-1beta in protein level whereas ECIG exposure downregulated anti-inflammatory cytokine IL-10 in protein level. Phagocytosis activity of MQ was downregulated by ECIG exposure. shRNA mediated lipid scavenger receptor 'CD36' silencing inhibited ECIG-aerosol-induced pro-inflammatory MQ polarization and recovered phagocytic activity of MQ.ECIG exposure alters lung lipid homeostasis and thus induced inflammation by inducing M1 type MQ and impair phagocytic function, which could be a potential cause of ECIG-induced lung inflammation in healthy and inflammatory exacerbation in disease condition.
Collapse
Affiliation(s)
- Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Shanzina Iasmin Sompa
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Micol Introna
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
16
|
Kolypetri P, Weiner HL. Monocyte regulation by gut microbial signals. Trends Microbiol 2023; 31:1044-1057. [PMID: 37271658 PMCID: PMC10524398 DOI: 10.1016/j.tim.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Monocytes are innate immune cells that sense environmental changes and participate in the immunoregulation of autoimmune, neurologic, cardiovascular, and metabolic diseases as well as cancer. Recent studies have suggested that the gut microbiome shapes the biology of monocytes via microbial signals at extraintestinal sites. Interestingly, in chronic diseases, communication between microbial signals and monocytes can either promote or inhibit disease activity, suggesting that some of these pathways can be harnessed for clinical therapies. In this review, we discuss the newer concepts of regulation of monocyte homeostasis and function by gut microbial signals during steady state and inflammation. We also highlight the therapeutic potential of microbial signal-based approaches for modulation in the context of various diseases.
Collapse
Affiliation(s)
- Panayota Kolypetri
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Howard L Weiner
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Moran J, Feltham L, Bagnall J, Goldrick M, Lord E, Nettleton C, Spiller DG, Roberts I, Paszek P. Live-cell imaging reveals single-cell and population-level infection strategies of Listeria monocytogenes in macrophages. Front Immunol 2023; 14:1235675. [PMID: 37675103 PMCID: PMC10478088 DOI: 10.3389/fimmu.2023.1235675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Pathogens have developed intricate strategies to overcome the host's innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from the host cell and non-cooperative, being independent from co-infecting bacteria. A higher multiplicity of infection resulted in a reduced probability of replication of the overall bacterial population. By use of internalisation assays and conditional probabilities to mathematically describe the two-stage invasion process, we demonstrate that the higher MOI compromises the ability of macrophages to phagocytose bacteria. We found that the rate of phagocytosis is mediated via the secreted Listeriolysin toxin (LLO), while the probability of replication of intracellular bacteria remained constant. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell, PrfA-mediated activity to regulate outcomes of host pathogen interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
18
|
Onyishi CU, Desanti GE, Wilkinson AL, Lara-Reyna S, Frickel EM, Fejer G, Christophe OD, Bryant CE, Mukhopadhyay S, Gordon S, May RC. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. Nat Commun 2023; 14:4895. [PMID: 37580395 PMCID: PMC10425417 DOI: 10.1038/s41467-023-40635-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans causes lethal infections in immunocompromised patients. Macrophages are central to the host response to cryptococci; however, it is unclear how C. neoformans is recognised and phagocytosed by macrophages. Here we investigate the role of TLR4 in the non-opsonic phagocytosis of C. neoformans. We find that loss of TLR4 function unexpectedly increases phagocytosis of non-opsonised cryptococci by murine and human macrophages. The increased phagocytosis observed in Tlr4-/- cells was dampened by pre-treatment of macrophages with oxidised-LDL, a known ligand of scavenger receptors. The scavenger receptor, macrophage scavenger receptor 1 (MSR1) (also known as SR-A1 or CD204) was upregulated in Tlr4-/- macrophages. Genetic ablation of MSR1 resulted in a 75% decrease in phagocytosis of non-opsonised cryptococci, strongly suggesting that it is a key non-opsonic receptor for this pathogen. We go on to show that MSR1-mediated uptake likely involves the formation of a multimolecular signalling complex involving FcγR leading to SYK, PI3K, p38 and ERK1/2 activation to drive actin remodelling and phagocytosis. Altogether, our data indicate a hitherto unidentified role for TLR4/MSR1 crosstalk in the non-opsonic phagocytosis of C. neoformans.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Guillaume E Desanti
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Alex L Wilkinson
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Eva-Maria Frickel
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase inflammation thrombose HITH U1176, 94276, Le Kremlin-Bicêtre, France
| | - Clare E Bryant
- University of Cambridge, Department of Medicine, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
19
|
Bento-Lopes L, Cabaço LC, Charneca J, Neto MV, Seabra MC, Barral DC. Melanin's Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. Int J Mol Sci 2023; 24:11289. [PMID: 37511054 PMCID: PMC10379423 DOI: 10.3390/ijms241411289] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.B.-L.); (L.C.C.); (J.C.); (M.V.N.); (M.C.S.)
| |
Collapse
|
20
|
Cieniewicz B, Bhatta A, Torabi D, Baichoo P, Saxton M, Arballo A, Nguyen L, Thomas S, Kethar H, Kukutla P, Shoaga O, Yu B, Yang Z, Fate M, Oliveira E, Ning H, Corey L, Corey D. Chimeric TIM-4 receptor-modified T cells targeting phosphatidylserine mediates both cytotoxic anti-tumor responses and phagocytic uptake of tumor-associated antigen for T cell cross-presentation. Mol Ther 2023; 31:2132-2153. [PMID: 37194236 PMCID: PMC10362418 DOI: 10.1016/j.ymthe.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
To leverage complementary mechanisms for cancer cell removal, we developed a novel cell engineering and therapeutic strategy co-opting phagocytic clearance and antigen presentation activity into T cells. We engineered a chimeric engulfment receptor (CER)-1236, which combines the extracellular domain of TIM-4, a phagocytic receptor recognizing the "eat me" signal phosphatidylserine, with intracellular signaling domains (TLR2/TIR, CD28, and CD3ζ) to enhance both TIM-4-mediated phagocytosis and T cell cytotoxic function. CER-1236 T cells demonstrate target-dependent phagocytic function and induce transcriptional signatures of key regulators responsible for phagocytic recognition and uptake, along with cytotoxic mediators. Pre-clinical models of mantle cell lymphoma (MCL) and EGFR mutation-positive non-small cell lung cancer (NSCLC) demonstrate collaborative innate-adaptive anti-tumor immune responses both in vitro and in vivo. Treatment with BTK (MCL) and EGFR (NSCLC) inhibitors increased target ligand, conditionally driving CER-1236 function to augment anti-tumor responses. We also show that activated CER-1236 T cells exhibit superior cross-presentation ability compared with conventional T cells, triggering E7-specific TCR T responses in an HLA class I- and TLR-2-dependent manner, thereby overcoming the limited antigen presentation capacity of conventional T cells. Therefore, CER-1236 T cells have the potential to achieve tumor control by eliciting both direct cytotoxic effects and indirect-mediated cross-priming.
Collapse
Affiliation(s)
| | - Ankit Bhatta
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Damoun Torabi
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Priya Baichoo
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Mike Saxton
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | - Linh Nguyen
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Sunil Thomas
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Harini Kethar
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | | | - Omolola Shoaga
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Bi Yu
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Zhuo Yang
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Maria Fate
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Edson Oliveira
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Hongxiu Ning
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel Corey
- Cero Therapeutics Inc, South San Francisco, CA 94080, USA.
| |
Collapse
|
21
|
Sousa NS, Brás MF, Antunes IB, Lindholm P, Neves J, Sousa-Victor P. Aging disrupts MANF-mediated immune modulation during skeletal muscle regeneration. NATURE AGING 2023; 3:585-599. [PMID: 37118549 DOI: 10.1038/s43587-023-00382-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/16/2023] [Indexed: 04/30/2023]
Abstract
Age-related decline in skeletal muscle regenerative capacity is multifactorial, yet the contribution of immune dysfunction to regenerative failure is unknown. Macrophages are essential for effective debris clearance and muscle stem cell activity during muscle regeneration, but the regulatory mechanisms governing macrophage function during muscle repair are largely unexplored. Here, we uncover a new mechanism of immune modulation operating during skeletal muscle regeneration that is disrupted in aged animals and relies on the regulation of macrophage function. The immune modulator mesencephalic astrocyte-derived neurotrophic factor (MANF) is induced following muscle injury in young mice but not in aged animals, and its expression is essential for regenerative success. Regenerative impairments in aged muscle are associated with defects in the repair-associated myeloid response similar to those found in MANF-deficient models and could be improved through MANF delivery. We propose that restoring MANF levels is a viable strategy to improve myeloid response and regenerative capacity in aged muscle.
Collapse
Affiliation(s)
- Neuza S Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida F Brás
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Inês B Antunes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Joana Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Pedro Sousa-Victor
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
22
|
Watanabe M, Motooka D, Yamasaki S. The kinetics of signaling through the common FcRγ chain determine cytokine profiles in dendritic cells. Sci Signal 2023; 16:eabn9909. [PMID: 36881655 DOI: 10.1126/scisignal.abn9909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The common Fc receptor γ (FcRγ) chain is a signaling subunit common to several immune receptors, but cellular responses induced by FcRγ-coupled receptors are diverse. We investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells. Chronological tracing of transcriptomic and epigenetic changes upon stimulation revealed that Dectin-2 induced early and strong signaling, whereas Mincle-mediated signaling was delayed, which reflects their expression patterns. Generation of early and strong FcRγ-Syk signaling by engineered chimeric receptors was sufficient to recapitulate a Dectin-2-like gene expression profile. Early Syk signaling selectively stimulated the activity of the calcium ion-activated transcription factor NFAT, which rapidly altered the chromatin status and transcription of the Il2 gene. In contrast, proinflammatory cytokines, such as TNF, were induced regardless of FcRγ signaling kinetics. These results suggest that the strength and timing of FcRγ-Syk signaling can alter the quality of cellular responses through kinetics-sensing signaling machineries.
Collapse
Affiliation(s)
- Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
23
|
Jalalifar S, Morovati Khamsi H, Hosseini-Fard SR, Karampoor S, Bajelan B, Irajian G, Mirzaei R. Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes. Infect Agent Cancer 2023; 18:3. [PMID: 36658631 PMCID: PMC9850788 DOI: 10.1186/s13027-023-00480-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The role of gut microbiota and its products in human health and disease is profoundly investigated. The communication between gut microbiota and the host involves a complicated network of signaling pathways via biologically active molecules generated by intestinal microbiota. Some of these molecules could be assembled within nanoparticles known as outer membrane vesicles (OMVs). Recent studies propose that OMVs play a critical role in shaping immune responses, including homeostasis and acute inflammatory responses. Moreover, these OMVs have an immense capacity to be applied in medical research, such as OMV-based vaccines and drug delivery. This review presents a comprehensive overview of emerging knowledge about biogenesis, the role, and application of these bacterial-derived OMVs, including OMV-based vaccines, OMV adjuvants characteristics, OMV vehicles (in conjugated vaccines), cancer immunotherapy, and drug carriers and delivery systems. Moreover, we also highlight the significance of the potential role of these OMVs in diagnosis and therapy.
Collapse
Affiliation(s)
- Saba Jalalifar
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovati Khamsi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Bajelan
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
24
|
Patra T, Ray R. Bystander effect of SARS-CoV-2 spike protein on human monocytic THP-1 cell activation and initiation of prothrombogenic stimulus representing severe COVID-19. J Inflamm (Lond) 2022; 19:28. [PMID: 36585712 PMCID: PMC9801152 DOI: 10.1186/s12950-022-00325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hypercoagulable state and thromboembolic complications are potential life-threatening events in COVID-19 patients. Our previous studies demonstrated that SARS-CoV-2 infection as well as viral spike protein expressed epithelial cells exhibit senescence with the release of inflammatory molecules, including alarmins. FINDINGS We observed extracellular alarmins present in the culture media of SARS-CoV-2 spike expressing cells activate human THP-1 monocytes to secrete pro-inflammatory cytokines to a significant level. The release of THP-1 derived pro-inflammatory cytokine signature correlated with the serum of acute COVID-19 patient, but not in post-COVID-19 state. Our study suggested that the alarmins secreted by spike expressing cells, initiated phagocytosis property of THP-1 cells. The phagocytic monocytes secreted complement component C5a and generated an autocrine signal via C5aR1 receptor. The C5a-C5aR1 signal induced formation of monocyte mediated extracellular trap resulted in the generation of a prothrombogenic stimulus with activating platelets and increased tissue factor activity. We also observed an enhanced C5a level, platelet activating factor, and high tissue factor activity in the serum of acute COVID-19 patients, but not in recovered patients. CONCLUSION Our present study demonstrated that SARS-CoV-2 spike protein modulates monocyte responses in a paracrine manner for prothrombogenic stimulus by the generation of C5a complement component.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 South Grand Blvd, MO 63104 Saint Louis, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 South Grand Blvd, MO 63104 Saint Louis, USA ,grid.262962.b0000 0004 1936 9342Molecular Microbiology & Immunology, Saint Louis University, 63104 Saint Louis, Missouri, MO USA
| |
Collapse
|
25
|
Abstract
Monocytes/macrophages are key components of the body's innate ability to restore tissue function after injury. In most tissues, both embryo-derived tissue-resident macrophages and recruited blood monocyte-derived macrophages contribute to the injury response. The developmental origin of injury-associated macrophages has a major impact on the outcome of the healing process. Macrophages are abundant at all stages of repair and coordinate the progression through the different phases of healing. They are highly plastic cells that continuously adapt to their environment and acquire phase-specific activation phenotypes. Advanced omics methodologies have revealed a vast heterogeneity of macrophage activation phenotypes and metabolic status at injury sites in different organs. In this review, we highlight the role of the developmental origin, the link between the wound phase-specific activation state and metabolic reprogramming as well as the fate of macrophages during the resolution of the wounding response.
Collapse
Affiliation(s)
| | - Louise Injarabian
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
26
|
de Oliveira Formiga R, Amaral FC, Souza CF, Mendes DAGB, Wanderley CWS, Lorenzini CB, Santos AA, Antônia J, Faria LF, Natale CC, Paula NM, Silva PCS, Fonseca FR, Aires L, Heck N, Starick MR, Queiroz-Junior CM, Santos FRS, de Souza FRO, Costa VV, Barroso SPC, Morrot A, Van Weyenbergh J, Sordi R, Alisson-Silva F, Cunha FQ, Rocha EL, Chollet-Martin S, Hurtado-Nedelec MM, Martin C, Burgel PR, Mansur DS, Maurici R, Macauley MS, Báfica A, Witko-Sarsat V, Spiller F. Neuraminidase inhibitors rewire neutrophil function in vivo in murine sepsis and ex vivo in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.11.12.379115. [PMID: 33200130 PMCID: PMC7668734 DOI: 10.1101/2020.11.12.379115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Flávia C. Amaral
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Camila F. Souza
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Daniel A. G. B. Mendes
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Carlos W. S. Wanderley
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Cristina B. Lorenzini
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Adara A. Santos
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Juliana Antônia
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Lucas F. Faria
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Caio C. Natale
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Nicholas M. Paula
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Priscila C. S. Silva
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Fernanda R. Fonseca
- Department of Clinical Medicine, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Luan Aires
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Nicoli Heck
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Márick R. Starick
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe R. S. Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Filipe R. O. de Souza
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian V. Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Shana P. C. Barroso
- Molecular Biology Laboratory, Institute of Biomedical Research, Marcilio Dias Naval Hospital, Navy of Brazil, RJ, Brazil
| | - Alexandre Morrot
- Tuberculosis Research Laboratory, Faculty of Medicine, Federal University of Rio de Janeiro
- Immunoparasitology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Frederico Alisson-Silva
- Department of Immunology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Edroaldo L. Rocha
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sylvie Chollet-Martin
- INSERM UMR 996, “Infammation, Microbiome and Immunosurveillance”, Faculty of Pharmacy, Université Paris-Saclay, Châtenay-Malabry, France
| | | | - Clémence Martin
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Department of Pneumology, AP-HP, Hôpital Cochin, Paris, France
| | - Pierre-Régis Burgel
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Department of Pneumology, AP-HP, Hôpital Cochin, Paris, France
| | - Daniel S. Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Rosemeri Maurici
- Department of Clinical Medicine, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Matthew S. Macauley
- Department of Chemistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
27
|
Petrie-Hanson L, Peterman AE(B. Trained Immunity Provides Long-Term Protection against Bacterial Infections in Channel Catfish. Pathogens 2022; 11:pathogens11101140. [PMID: 36297197 PMCID: PMC9607340 DOI: 10.3390/pathogens11101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Beta glucan exposure induced trained immunity in channel catfish that conferred long-term protection against Edwardsiella ictaluri and Edwardsiella piscicida infections one month post exposure. Flow cytometric analyses demonstrated that isolated macrophages and neutrophils phagocytosed higher amounts of E. ictaluri and E. piscicida. Beta glucan induced changes in the distribution of histone modifications in the monomethylation and trimethylation of H3K4 and modifications in the acetylation and trimethylation of H3K27. KEGG pathway analyses revealed that these modifications affected expressions of genes controlling phagocytosis, phagosome functions and enhanced immune cell signaling. These analyses correlate the histone modifications with gene functions and to the observed enhanced phagocytosis and to the increased survival following bacterial challenge in channel catfish. These data suggest the chromatin reconfiguration that directs trained immunity as demonstrated in mammals also occurs in channel catfish. Understanding the mechanisms underlying trained immunity can help us design prophylactic and non-antibiotic based therapies and develop broad-based vaccines to limit bacterial disease outbreaks in catfish production.
Collapse
|
28
|
Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm 2022; 2022:7924199. [PMID: 36046763 PMCID: PMC9420645 DOI: 10.1155/2022/7924199] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis, autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide valuable clues for developing new therapeutic strategies for AD.
Collapse
|
29
|
Balachandran Y, Singh B. Toll-like receptor 10 has a role in human macrophage response against Streptococcus pneumoniae. Cell Tissue Res 2022; 390:51-57. [PMID: 35867184 DOI: 10.1007/s00441-022-03671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pathogen-associated molecular pattern recognition receptors, and play a critical role in early response against invading pathogens. Even though TLRs have been widely studied, very little is known about the expression and function of TLR10. Till date, neither any data are available on expression of TLR10 in human lungs nor there is any information on function of TLR10 in macrophages. Streptococcus pneumoniae are Gram-positive, alpha-hemolytic, and major causative agent of pneumonia, ear infections, sinus infections, and meningitis. We examined the role of TLR10 in innate immune response to S. pneumoniae infection in U937 cell line-derived human macrophages. We found a significant increase in TLR10 mRNA and protein expression in S. pneumoniae challenged macrophages. TLR10 knockdown resulted in significant reduction of IL-1β, IL-8, IL-17, and TNF-α but not IL-10 expression in infected macrophages. TLR10 knockdown in macrophages reduced nuclear translocation of NF-κB during S. pneumoniae challenge but did not affect the phagocytosis of the bacteria. Taken together, we report the first data on TLR10's role in macrophage response against S. pneumoniae.
Collapse
Affiliation(s)
- Yadu Balachandran
- Pulmonary Pathobiology Lab, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Baljit Singh
- Pulmonary Pathobiology Lab, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
30
|
Zheng Y, Guan J, Wang L, Luo X, Zhang X. Comparative proteomic analysis of spleen reveals key immune-related proteins in the yak (Bos grunniens) at different growth stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100968. [PMID: 35150973 DOI: 10.1016/j.cbd.2022.100968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Spleen plays an indispensable role in the immune system as the largest lymphatic organ in the body. The spleens of yaks at three developmental stages (1 day fetal yak, 15 months juvenile yak and 5 years old adult yak) were sampled and the Tandem mass tag (TMT) quantification method was employed in spleen proteomic analysis. The results showed that 6576 proteins and 529 differentially expressed proteins (DEPs) were identified in the yak spleens at three growth stages. Gene ontology (GO) analysis of DEPs indicated that DEPs were enriched in Oxygen transport, Actin filament movement, DNA replication, Cell cycle process, and Cell macromolecule biosynthesis process, which was conducive to high altitude breathing, protein synthesis and organ growth in yaks. These were indispensable for yak spleen growth and cell metabolism, high altitude adaptation. Those DEPs were further analyzed based on Kyoto encyclopedia of genes and genomes (KEGG) pathways, which principally participated in Th1 and Th2 cell differentiation, NF-kappa B signaling pathway, Phagosome, and Glutathione metabolism. Those pathways were associated with some animal life activities in defense against microbial antigens, indicating that with age, the immune function of the yak's spleen continued to increase. Hemoglobin, Tumor necrosis factor receptor associated factor 1 (TRAF1), T cell receptor (TCR), Macrophage receptor, Fc receptors (FcR), and Gamma-glutamyl transferase (GGT) of DEPs played roles in immune function in yak spleen directly or indirectly. The dynamic changes of Toll like receptor 2 (TLR2), TRAF1 and Heat shock protein 27 (HSP27 or HSPB1) detected by Immunohistochemistry were consistent with those obtained from TMT proteomic. In conclusion, this study provides extensive and functional analyses of the spleen proteome at three developmental stages and will offer a new insight into key proteins involved in the immune function of yak spleen.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China.
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| |
Collapse
|
31
|
Noh HJ, Park JM, Kwon YJ, Kim K, Park SY, Kim I, Lim JH, Kim BK, Kim BY. Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages. J Microbiol Biotechnol 2022; 32:638-644. [PMID: 35354761 PMCID: PMC9628881 DOI: 10.4014/jmb.2201.01015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.
Collapse
Affiliation(s)
- Hye-Ji Noh
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Jung Min Park
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea
| | - Yoo Jin Kwon
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Kyunghwan Kim
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Sung Yurb Park
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Insu Kim
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea
| | - Jong Hyun Lim
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea
| | - Byoung Kook Kim
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea,Corresponding authors B.K. Kim Phone: +82-31-489-1110 Fax: +82-31-495-8162 E-mail:
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare (CKDHC), Seoul 07249, Republic of Korea,
B.Y. Kim Phone: +82-2-6292-9107 Fax: +82-2-6292-9266 E-mail:
| |
Collapse
|
32
|
Bomfim CCB, Fisher L, Amaral EP, Mittereder L, McCann K, Correa AAS, Namasivayam S, Swamydas M, Moayeri M, Weiss JM, Chari R, McVicar DW, Costa DL, D’Império Lima MR, Sher A. Mycobacterium tuberculosis Induces Irg1 in Murine Macrophages by a Pathway Involving Both TLR-2 and STING/IFNAR Signaling and Requiring Bacterial Phagocytosis. Front Cell Infect Microbiol 2022; 12:862582. [PMID: 35586249 PMCID: PMC9109611 DOI: 10.3389/fcimb.2022.862582] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in Mycobacterium tuberculosis (Mtb) infection. Here, we investigated the pattern recognition receptors and signaling pathways by which Mtb triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs. Using this approach, we demonstrated partial roles for TLR-2 (but not TLR-4 or -9), MyD88 and NFκB signaling in Irg1 induction by Mtb bacilli. In addition, drug inhibition studies revealed major requirements for phagocytosis and endosomal acidification in Irg1 expression triggered by Mtb but not LPS or PAM3CSK4. Importantly, the Mtb-induced Irg1 response was highly dependent on the presence of the bacterial ESX-1 secretion system, as well as host STING and Type I IFN receptor (IFNAR) signaling with Type II IFN (IFN-γ) signaling playing only a minimal role. Based on these findings we hypothesize that Mtb induces Irg1 expression in macrophages via the combination of two independent triggers both dependent on bacterial phagocytosis: 1) a major signal stimulated by phagocytized Mtb products released by an ESX-1-dependent mechanism into the cytosol where they activate the STING pathway leading to Type I-IFN production, and 2) a secondary TLR-2, MyD88 and NFκB dependent signal that enhances Irg1 production independently of Type I IFN induction.
Collapse
Affiliation(s)
- Caio C. B. Bomfim
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Parasitic Diseases - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Logan Fisher
- Laboratory of Parasitic Diseases - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eduardo P. Amaral
- Laboratory of Parasitic Diseases - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara Mittereder
- Laboratory of Parasitic Diseases - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Katelyn McCann
- Laboratory of Clinical Immunology and Microbiology - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - André A. S. Correa
- Department of Biochemistry and Immunology - Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Graduate Program in Basic and Applied Immunology - Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sivaranjani Namasivayam
- Laboratory of Parasitic Diseases - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Muthulekha Swamydas
- Laboratory of Clinical Immunology and Microbiology - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mahtab Moayeri
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jonathan M. Weiss
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Daniel W. McVicar
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Diego L. Costa
- Department of Biochemistry and Immunology - Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Graduate Program in Basic and Applied Immunology - Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria R. D’Império Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alan Sher
- Laboratory of Parasitic Diseases - National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
The Outer Membrane Vesicles of Salmonella enterica Serovar Typhimurium Activate Chicken Immune Cells through Lipopolysaccharides and Membrane Proteins. Pathogens 2022; 11:pathogens11030339. [PMID: 35335663 PMCID: PMC8948782 DOI: 10.3390/pathogens11030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Salmonella is a common pathogen which can secrete outer membrane vesicles (OMVs). However, the effect of OMVs from Salmonella enterica Serovar Typhimurium (S. Typhimurium) of poultry origin on cells of the chicken innate immune system is not well known. In this study, S. Typhimurium OMVs were first isolated from three different poultry strains of Salmonella, Salmonella CVCC542, SALA, and SALB. In order to investigate the effect of OMVs on the maturation of monocytes into macrophages, both bone marrow-derived (BMD) monocytes and macrophage cell line HD11 cells were used. OMVs promoted the formation of monocyte dendrites in both types of cells, enabled BMD cells to become larger, and stimulated expression of LPS-induced TNF-αfactor (LITAF), IL-6, and inducible nitric oxide synthase (iNOS) genes in HD11 cells. These results demonstrated the capability of OMVs to promote the development of chicken monocytes into macrophages and the maturation of macrophages. In order to study the effect of OMVs on the phagocytosis of macrophages, chicken spleen-derived monocytes and HD11 cells were used. Phagocytosis of FITC-Salmonella and FITC-dextran by these two types of cells was enhanced after stimulation with OMVs. To determine which components in OMVs were responsible for the above observed results, OMVs were treated with proteinase K(PK) or polymyxin B (PMB). Both treatments reduced the phagocytosis of FITC-Salmonella by HD11 cells and chicken spleen mononuclear cells and reduced the secretion of IL-1β, LITAF, and IL-6 cytokines. These results demonstrated that Salmonella OMVs activated chicken macrophages and spleen mononuclear cells and the activation was achieved mainly through lipopolysaccharides and membrane proteins.
Collapse
|
34
|
Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiol Dis 2022; 168:105696. [DOI: 10.1016/j.nbd.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
|
35
|
Mesencephalic astrocyte-derived neurotrophic factor reprograms macrophages to ameliorate acetaminophen-induced acute liver injury via p38 MAPK pathway. Cell Death Dis 2022; 13:100. [PMID: 35110525 PMCID: PMC8810950 DOI: 10.1038/s41419-022-04555-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is the most frequent cause of acute liver failure; but the underlying mechanisms still remain obscure. Macrophages and endoplasmic reticulum (ER) stress play an important role in the pathogenesis of AILI. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly identified 18-kDa soluble protein, whose expression and secretion are stimulated by ER stress. To investigate the role of myeloid cell MANF in the pathogenesis of AILI, we assayed serum and liver samples from AILI model mice and patients with drug-induced liver injury (DILI). We demonstrated that the levels of MANF were elevated in patients with DILI and in mice with AILI. Moreover, myeloid-specific MANF knockout mice were generated and used. It was observed that a delayed liver recovery from myeloid-specific MANF gene knockout mice following APAP overdose compared to that from wild-type mice. MANF deficiency in myeloid cells resulted in increased infiltrating monocyte-derived macrophages (MoMFs) but reduced restorative Ly6Clow macrophages after APAP treatment. MANF supplementation increased restorative Ly6Clow macrophages and subsequently alleviated liver injury. Moreover, MANF could enhance IL-10 expression and phagocytosis in macrophages via p38 MAPK pathway. Altogether, MANF seems to be a critical immune modulator in promoting liver repair via reducing and reprogramming MoMFs. MANF perhaps promoted the phenotype conversion of pro-inflammatory MoMFs to pro-restorative Ly6Clow MoMFs via p38 MAPK pathway, particularly through enhancing IL-10 and phagocytosis.
Collapse
|
36
|
Linares-Alcántara E, Mendlovic F. Scavenger Receptor A1 Signaling Pathways Affecting Macrophage Functions in Innate and Adaptive Immunity. Immunol Invest 2022; 51:1725-1755. [PMID: 34986758 DOI: 10.1080/08820139.2021.2020812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
First discovered on macrophages by Goldstein and Brown in 1979, Scavenger Receptors have since been shown to participate in a diverse number of cell functions; equally diverse are their structures and the ligands they bind. Macrophage activation is crucial in the outcome of an immune response. SR-A1 is highly abundant on macrophages and recognizes both host- and microorganism-derived molecules that impact processes that are initiated, perpetuated, or modified. This review summarizes the involvement of SR-A1 in both inflammatory and anti-inflammatory responses, the multiple-ligand internalization mechanisms and the diversity of signaling pathways that impact macrophage function and activation. Engagement of SR-A1 results in the stimulation of differential signaling pathways and patterns of cytokine expression, kinetics, magnitude of response and activation status. SR-A1 plays essential roles in phagocytosis and efferocytosis, interacting with other receptors and promoting tolerance in response to apoptotic cell uptake. In cell adhesion, tissue remodeling, and cell migration, SR-A1 signals through different pathways engaging different cytoplasmic motifs. We describe the role of SR-A1 during innate and adaptive immune responses, such as participation in macrophage polarization and interaction with other innate receptors, as well as in antigen uptake, processing, and presentation, regulating T and B cell activation. The dichotomous contribution of SR-A1 on macrophage functions is discussed. A better understanding of the role SR-A1 plays through molecular mechanisms and crosstalk with other receptors may provide insights into developing novel therapeutic strategies to modulate immune responses and immunopathologies.
Collapse
Affiliation(s)
- Elizabeth Linares-Alcántara
- Facultad de Ciencias, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
| |
Collapse
|
37
|
Mendoza R, Banerjee I, Manna D, Reghupaty SC, Yetirajam R, Sarkar D. Mouse Bone Marrow Cell Isolation and Macrophage Differentiation. Methods Mol Biol 2022; 2455:85-91. [PMID: 35212988 PMCID: PMC8936184 DOI: 10.1007/978-1-0716-2128-8_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid increase in the incidence of obesity contributes to a parallel increase in nonalcoholic steatohepatitis (NASH). Monocyte-derived macrophages, recruited from the bone marrow to the liver, promote NASH-related inflammation and fibrosis. In addition, adipose tissue macrophages (ATMs) release pro-inflammatory cytokines (PICs) which stimulate adipose tissue lipolysis liberating free fatty acids (FFAs) that can accumulate in the liver as triglycerides (TGs), thereby inducing steatosis. As such, bone marrow-derived macrophages (BMDMs) function as an essential tool to study the pathogenesis of NASH. BMDMs are primary bone marrow-derived cells which are differentiated into macrophages in vitro in the presence of growth factors. Macrophage colony-stimulating factor (M-CSF) is required for the proliferation and differentiation of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Here, we describe a protocol for the isolation of mouse bone marrow cells and subsequent macrophage differentiation in which bone marrow cells are cultured in the presence of M-CSF, supplemented either by conditioned medium from L929 cells or in purified form. The efficiency of the differentiation is confirmed by immunofluorescent staining of macrophage surface antigen F4/80. The BMDMs serve as an excellent ex vivo model for a variety of studies, including hepatocyte-macrophage and adipocyte-macrophage cross-talk regulating NASH.
Collapse
Affiliation(s)
- Rachel Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Indranil Banerjee
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Debashri Manna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Rajesh Yetirajam
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
38
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
39
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
40
|
Wu F, Sokolova IM. Immune responses to ZnO nanoparticles are modulated by season and environmental temperature in the blue mussels Mytilus edulis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149786. [PMID: 34467929 DOI: 10.1016/j.scitotenv.2021.149786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Increased production and release of ZnO nanoparticles (nZnO) can cause toxic effects on marine ecosystems and aquatic organisms. However, nZnO toxicity and its modulation by common environmental stressors such as temperature are not yet fully understood. We examined the responses of immune cells (hemocytes) of the blue mussels (Mytilus edulis) exposed to different concentrations (0, 10, 100 μg l-1) of nZnO or dissolved zinc combined with two temperatures (ambient (10 °C in winter and 15 °C in summer) and warming (+5 °C above ambient temperature)) in winter and summer for 21 days. In winter mussels, exposure to nZnO induced a strong transcriptomic response in multiple immune and inflammation-related genes, stimulated phagocytosis and hemocyte mortality yet suppressed adhesion capacity of hemocytes. In summer mussels, the immune cell responses to nZnO were blunted. The transcriptional responses of hemocytes to dissolved Zn were qualitatively similar but weaker than the responses to nZnO. In the absence of the toxic stress, +5 °C warming lead to dysregulation of the transcription of key immune-related genes in the summer but not the winter mussels. Seasonal warm acclimatization and additional warming in summer suppressed the nZnO-induced transcriptional upregulation of antimicrobial peptides, Toll-like receptors and the complement system. These findings demonstrate that nZnO act as an immunogen in M. edulis and indicate that +5 °C warming might have detrimental effect on innate immunity of the temperate mussel populations in summer when exposure to pathogens is especially high. Capsule: ZnO nanoparticles act as an immunotoxicant inducing a strong immune response in the mussels which is dysregulated by warming in summer but not in winter.
Collapse
Affiliation(s)
- Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
41
|
Gruber EJ, Aygun AY, Leifer CA. Macrophage uptake of oxidized and acetylated low-density lipoproteins and generation of reactive oxygen species are regulated by linear stiffness of the growth surface. PLoS One 2021; 16:e0260756. [PMID: 34914760 PMCID: PMC8675690 DOI: 10.1371/journal.pone.0260756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Macrophages are key players in the development of atherosclerosis: they scavenge lipid, transform into foam cells, and produce proinflammatory mediators. At the same time, the arterial wall undergoes profound changes in its mechanical properties. We recently showed that macrophage morphology and proinflammatory potential are regulated by the linear stiffness of the growth surface. Here we asked whether linear stiffness also regulates lipid uptake by macrophages. We cultured murine bone marrow-derived macrophages (BMMs) on polyacrylamide gels modeling stiffness of healthy (1kPa) and diseased (10-150kPa) blood vessels. In unprimed BMMs, increased linear stiffness increased uptake of oxidized (oxLDL) and acetylated (acLDL) low density lipoproteins and generation of reactive oxygen species, but did not alter phagocytosis of bacteria or silica particles. Macrophages adapted to stiff growth surfaces had increased mRNA and protein expression of two key lipoprotein receptors: CD36 and scavenger receptor b1. Regulation of the lipoprotein receptor, lectin-like receptor for ox-LDL, was more complex: mRNA expression decreased but surface protein expression increased with increased stiffness. Focal adhesion kinase was required for maximal uptake of oxLDL, but not of acLDL. Uptake of oxLDL and acLDL was independent of rho-associated coiled coil kinase. Through pharmacologic inhibition and genetic deletion, we found that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel, plays an inhibitory role in the uptake of acLDL, but not oxLDL. Together, these results implicate mechanical signaling in the uptake of acLDL and oxLDL, opening up the possibility of new pharmacologic targets to modulate lipid uptake by macrophages in vivo.
Collapse
Affiliation(s)
- Erika J. Gruber
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ali Y. Aygun
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Cynthia A. Leifer
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bekere I, Huang J, Schnapp M, Rudolph M, Berneking L, Ruckdeschel K, Grundhoff A, Günther T, Fischer N, Aepfelbacher M. Yersinia remodels epigenetic histone modifications in human macrophages. PLoS Pathog 2021; 17:e1010074. [PMID: 34793580 PMCID: PMC8639070 DOI: 10.1371/journal.ppat.1010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Various pathogens systematically reprogram gene expression in macrophages, but the underlying mechanisms are largely unknown. We investigated whether the enteropathogen Yersinia enterocolitica alters chromatin states to reprogram gene expression in primary human macrophages. Genome-wide chromatin immunoprecipitation (ChIP) seq analyses showed that pathogen-associated molecular patterns (PAMPs) induced up- or down-regulation of histone modifications (HMod) at approximately 14500 loci in promoters and enhancers. Effectors of Y. enterocolitica reorganized about half of these dynamic HMod, with the effector YopP being responsible for about half of these modulatory activities. The reorganized HMod were associated with genes involved in immune response and metabolism. Remarkably, the altered HMod also associated with 61% of all 534 known Rho GTPase pathway genes, revealing a new level in Rho GTPase regulation and a new aspect of bacterial pathogenicity. Changes in HMod were associated to varying degrees with corresponding gene expression, e. g. depending on chromatin localization and cooperation of the HMod. In summary, infection with Y. enterocolitica remodels HMod in human macrophages to modulate key gene expression programs of the innate immune response. Human pathogenic bacteria can affect epigenetic histone modifications to modulate gene expression in host cells. However, a systems biology analysis of this bacterial virulence mechanism in immune cells has not been performed. Here we analyzed genome-wide epigenetic histone modifications and associated gene expression changes in primary human macrophages infected with enteropathogenic Yersinia enterocolitica. We demonstrate that Yersinia virulence factors extensively modulate histone modifications and associated gene expression triggered by the pathogen-associated molecular patterns (PAMPs) of the bacteria. The epigenetically modulated genes are involved in several key pathways of the macrophage immune response, including the Rho GTPase pathway, revealing a novel level of Rho GTPase regulation by a bacterial pathogen. Overall, our findings provide an in-depth view of epigenetic and gene expression changes during host-pathogen interaction and might have further implications for understanding of the innate immune memory in macrophages.
Collapse
Affiliation(s)
- Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maren Rudolph
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Thomas Günther
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| |
Collapse
|
43
|
Ding J, Huang J, Yin D, Liu T, Ren Z, Hu S, Ye Y, Le C, Zhao N, Zhou H, Li Z, Qi X, Huang J. Trilobatin Alleviates Cognitive Deficits and Pathologies in an Alzheimer's Disease Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3298400. [PMID: 34777683 PMCID: PMC8589506 DOI: 10.1155/2021/3298400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease nowadays that causes memory impairments. It is characterized by extracellular aggregates of amyloid-beta (Aβ), intracellular aggregates of hyperphosphorylated Tau (p-Tau), and other pathological features. Trilobatin (TLB), a natural flavonoid compound isolated from Lithocarpuspolystachyus Rehd., has emerged as a neuroprotective agent. However, the effects and mechanisms of TLB on Alzheimer's disease (AD) remain unclear. In this research, different doses of TLB were orally introduced to 3×FAD AD model mice. The pathology, memory performance, and Toll-like receptor 4- (TLR4-) dependent inflammatory pathway protein level were assessed. Here, we show that TLB oral treatment protected 3×FAD AD model mice against the Aβ burden, neuroinflammation, Tau hyperphosphorylation, synaptic degeneration, hippocampal neuronal loss, and memory impairment. The TLR4, a pattern recognition immune receptor, has been implicated in neurodegenerative disease-related neuroinflammation. We found that TLB suppressed glial activation by inhibiting the TLR4-MYD88-NFκB pathway, which leads to the inflammatory factor TNF-α, IL-1β, and IL-6 reduction. Our study shows that TLR4 might be a key target of TLB in AD treatment and suggests a multifaceted target of TLB in halting AD. Taken together, our findings suggest a potential therapeutic effect of TLB in AD treatment.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Yin
- Laboratory of Electron Microscopy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Zheng Ren
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou, China
| | - Cuiyun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Hongmei Zhou
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
44
|
Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nat Biomed Eng 2021; 6:19-31. [PMID: 34725505 DOI: 10.1038/s41551-021-00795-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4+ T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types.
Collapse
|
45
|
Badal D, Sachdeva N, Maheshwari D, Basak P. Role of nucleic acid sensing in the pathogenesis of type 1 diabetes. World J Diabetes 2021; 12:1655-1673. [PMID: 34754369 PMCID: PMC8554372 DOI: 10.4239/wjd.v12.i10.1655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
During infections, nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors, such as the toll-like receptors, retinoic acid inducible gene-I-like receptors, and nucleotide-binding and oligomerization domain-like receptors. The binding of the pathogen-derived nucleic acids to their corresponding sensors initiates certain downstream signaling cascades culminating in the release of type-I interferons (IFNs), especially IFN-α and other cytokines to induce proinflammatory responses towards invading pathogens leading to their clearance from the host. Although these sensors are hardwired to recognize pathogen associated molecular patterns, like viral and bacterial nucleic acids, under unusual physiological conditions, such as excessive cellular stress and increased apoptosis, endogenous self-nucleic acids like DNA, RNA, and mitochondrial DNA are also released. The presence of these self-nucleic acids in extranuclear compartments or extracellular spaces or their association with certain proteins sometimes leads to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune disorders, like systemic lupus erythematosus, psoriasis and to some extent in type 1 diabetes (T1D). This review discusses the involvement of various nucleic acid sensors in autoimmunity and discusses how aberrant recognition of self-nucleic acids by their sensors activates the innate immune responses during the pathogenesis of T1D.
Collapse
Affiliation(s)
- Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Maheshwari
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Preetam Basak
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
46
|
Stimulation of Toll-Like Receptor 3 Diminishes Intracellular Growth of Salmonella Typhimurium by Enhancing Autophagy in Murine Macrophages. Metabolites 2021; 11:metabo11090602. [PMID: 34564417 PMCID: PMC8466172 DOI: 10.3390/metabo11090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative Gram-negative bacterium that causes acute gastroenteritis and food poisoning. S. Typhimurium can survive within macrophages that are able to initiate the innate immune response after recognizing bacteria via various pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs). In this study, we investigated the effects and molecular mechanisms by which agonists of endosomal TLRs—especially TLR3—contribute to controlling S. Typhimurium infection in murine macrophages. Treatment with polyinosinic:polycytidylic acid (poly(I:C))—an agonist of TLR3—significantly suppressed intracellular bacterial growth by promoting intracellular ROS production in S. Typhimurium-infected cells. Pretreatment with diphenyleneiodonium (DPI)—an NADPH oxidase inhibitor—reduced phosphorylated MEK1/2 levels and restored intracellular bacterial growth in poly(I:C)-treated cells during S. Typhimurium infection. Nitric oxide (NO) production increased through the NF-κB-mediated signaling pathway in poly(I:C)-treated cells during S. Typhimurium infection. Intracellular microtubule-associated protein 1A/1B-light chain 3 (LC3) levels were increased in poly(I:C)-treated cells; however, they were decreased in cells pretreated with 3-methyladenine (3-MA)—a commonly used inhibitor of autophagy. These results suggest that poly(I:C) induces autophagy and enhances ROS production via MEK1/2-mediated signaling to suppress intracellular bacterial growth in S. Typhimurium-infected murine macrophages, and that a TLR3 agonist could be developed as an immune enhancer to protect against S. Typhimurium infection.
Collapse
|
47
|
Sinha A, Kushwaha R, Molesworth K, Mychko O, Makarava N, Baskakov IV. Phagocytic Activities of Reactive Microglia and Astrocytes Associated with Prion Diseases Are Dysregulated in Opposite Directions. Cells 2021; 10:1728. [PMID: 34359897 PMCID: PMC8304827 DOI: 10.3390/cells10071728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/11/2023] Open
Abstract
Phagocytosis is one of the most important physiological functions of the glia directed at maintaining a healthy, homeostatic environment in the brain. Under a homeostatic environment, the phagocytic activities of astrocytes and microglia are tightly coordinated in time and space. In neurodegenerative diseases, both microglia and astrocytes contribute to neuroinflammation and disease pathogenesis, however, whether their phagocytic activities are up- or downregulated in reactive states is not known. To address this question, this current study isolated microglia and astrocytes from C57BL/6J mice infected with prions and tested their phagocytic activities in live-cell imaging assays that used synaptosomes and myelin debris as substrates. The phagocytic uptake by the reactive microglia was found to be significantly upregulated, whereas that of the reactive astrocytes was strongly downregulated. The up- and downregulation of phagocytosis by the two cell types were observed irrespective of whether disease-associated synaptosomes, normal synaptosomes, or myelin debris were used in the assays, indicating that dysregulations are dictated by cell reactive states, not substrates. Analysis of gene expression confirmed dysregulation of phagocytic functions in both cell types. Immunostaining of animal brains infected with prions revealed that at the terminal stage of disease, neuronal cell bodies were subject to engulfment by reactive microglia. This study suggests that imbalance in the phagocytic activities of the reactive microglia and astrocytes, which are dysregulated in opposite directions, is likely to lead to excessive microglia-mediated neuronal death on the one hand, and the inability of astrocytes to clear cell debris on the other hand, contributing to the neurotoxic effects of glia as a whole.
Collapse
Affiliation(s)
- Anshuman Sinha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (R.K.); (K.M.); (O.M.); (N.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (R.K.); (K.M.); (O.M.); (N.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (R.K.); (K.M.); (O.M.); (N.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olga Mychko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (R.K.); (K.M.); (O.M.); (N.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (R.K.); (K.M.); (O.M.); (N.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (R.K.); (K.M.); (O.M.); (N.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
48
|
Kolypetri P, Liu S, Cox LM, Fujiwara M, Raheja R, Ghitza D, Song A, Daatselaar D, Willocq V, Weiner HL. Regulation of splenic monocyte homeostasis and function by gut microbial products. iScience 2021; 24:102356. [PMID: 33898947 PMCID: PMC8059056 DOI: 10.1016/j.isci.2021.102356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Splenic Ly6Chigh monocytes are innate immune cells involved in the regulation of central nervous system-related diseases. Recent studies have reported the shaping of peripheral immune responses by the gut microbiome via mostly unexplored pathways. In this study, we report that a 4-day antibiotic treatment eliminates certain families of the Bacteroidetes, Firmicutes, Tenericutes, and Actinobacteria phyla in the gut and reduces the levels of multiple pattern recognition receptor (PRR) ligands in the serum. Reduction of PRR ligands was associated with reduced numbers and perturbed function of splenic Ly6Chigh monocytes, which acquired an immature phenotype producing decreased levels of inflammatory cytokines and exhibiting increased phagocytic and anti-microbial abilities. Addition of PRR ligands in antibiotic-treated mice restored the number and functions of splenic Ly6Chigh monocytes. Our data identify circulating PRR ligands as critical regulators of the splenic Ly6Chigh monocyte behavior and suggest possible intervention pathways to manipulate this crucial immune cell subset.
Collapse
Affiliation(s)
- Panayota Kolypetri
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shirong Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M. Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mai Fujiwara
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Radhika Raheja
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dvora Ghitza
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anya Song
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dominique Daatselaar
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Willocq
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L. Weiner
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
50
|
Sanguinarine and Chelidonine Synergistically Induce Endosomal Toll-like Receptor and M1-Associated Mediators Expression. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural compounds represent the great capability to stimulate several cell types. Macrophage plays an important role for an effective immune response for infection and inflammation. Isoquinoline alkaloid, sanguinarine, and chelidonine are active compounds that exhibit activity on various tumor cells and immune cells. However, the effect of these compounds on the endosomal toll-like receptor (enTLR) and type I interferon (IFN) are still unclear. The monocyte-derived macrophages (MDMs) were cultured and were determined their cell viability and phagocytic activity to Staphylococcus aureus DMST8840. The nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression were also examined. The expression of enTLRs, type I IFN, and cytokines were determined by real-time PCR. Result shows that the compounds did not affect on MDM cell viability. Sanguinarine and chelidonine enhance phagocytic activity of MDM against Staphylococcus aureus DMST8840 by revealing a higher number of bacterial survival than the MDM treated by polyI:C, and the cell control after co-culture for 3 h. The production of NO has no difference amount but iNOS mRNA production was down-regulated in sanguinarine, chelidonine and their mixed treated MDM. The expressions of enTLRs and IFN-β1 mRNA were up-regulated in both compounds and their combination. Additionally, these compounds also enhance M1-liked cytokine by up-regulated IL-6 and down-regulated IL-10 and TGF-β1, respectively. Therefore, sanguinarine and chelidonine enhance enTLR and IFN-β1 expression and trend to stimulate the cell into M1-liked MDM.
Collapse
|