1
|
Li M, Garforth SJ, O’Connor KE, Su H, Lee DM, Celikgil A, Chaparro RJ, Seidel RD, Jones RB, Arav-Boger R, Almo SC, Goldstein H. T cell receptor-targeted immunotherapeutics drive selective in vivo HIV- and CMV-specific T cell expansion in humanized mice. J Clin Invest 2021; 131:e141051. [PMID: 34673568 PMCID: PMC8631598 DOI: 10.1172/jci141051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
To delineate the in vivo role of different costimulatory signals in activating and expanding highly functional virus-specific cytotoxic CD8+ T cells, we designed synTacs, infusible biologics that recapitulate antigen-specific T cell activation signals delivered by antigen-presenting cells. We constructed synTacs consisting of dimeric Fc-domain scaffolds linking CD28- or 4-1BB-specific ligands to HLA-A2 MHC molecules covalently tethered to HIV- or CMV-derived peptides. Treatment of HIV-infected donor PBMCs with synTacs bearing HIV- or CMV-derived peptides induced vigorous and selective ex vivo expansion of highly functional HIV- and/or CMV-specific CD8+ T cells, respectively, with potent antiviral activities. Intravenous injection of HIV- or CMV-specific synTacs into immunodeficient mice intrasplenically engrafted with donor PBMCs markedly and selectively expanded HIV-specific (32-fold) or CMV-specific (46-fold) human CD8+ T cells populating their spleens. Notably, these expanded HIV- or CMV-specific CD8+ T cells directed potent in vivo suppression of HIV or CMV infections in the humanized mice, providing strong rationale for consideration of synTac-based approaches as a therapeutic strategy to cure HIV and treat CMV and other viral infections. The synTac platform flexibility supports facile delineation of in vivo effects of different costimulatory signals on patient-derived virus-specific CD8+ T cells, enabling optimization of individualized therapies, including HIV cure strategies.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Microbiology and Immunology
- Department of Pediatrics, and
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Hang Su
- Department of Microbiology and Immunology
| | | | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Harris Goldstein
- Department of Microbiology and Immunology
- Department of Pediatrics, and
| |
Collapse
|
2
|
Hay M, Kumar V, Ricaño-Ponce I. The role of the X chromosome in infectious diseases. Brief Funct Genomics 2021; 21:143-158. [PMID: 34651167 DOI: 10.1093/bfgp/elab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Many infectious diseases in humans present with a sex bias. This bias arises from a combination of environmental factors, hormones and genetics. In this study, we review the contribution of the X chromosome to the genetic factor associated with infectious diseases. First, we give an overview of the X-linked genes that have been described in the context of infectious diseases and group them in four main pathways that seem to be dysregulated in infectious diseases: nuclear factor kappa-B, interleukin 2 and interferon γ cascade, toll-like receptors and programmed death ligand 1. Then, we review the infectious disease associations in existing genome-wide association studies (GWAS) from the GWAS Catalog and the Pan-UK Biobank, describing the main associations and their possible implications for the disease. Finally, we highlight the importance of including the X chromosome in GWAS analysis and the importance of sex-specific analysis.
Collapse
|
3
|
Hepatocellular cancer therapy in patients with HIV infection: Disparities in cancer care, trials enrolment, and cancer-related research. Transl Oncol 2021; 14:101153. [PMID: 34144349 PMCID: PMC8220238 DOI: 10.1016/j.tranon.2021.101153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
In the highly active antiretroviral therapy (HAART) era, hepatocellular carcinoma (HCC) is arising as a common late complication of human immunodeficiency virus (HIV) infection, with a great impact on morbidity and mortality. Though HIV infection alone may not be sufficient to promote hepatocarcinogenesis, the complex interaction of HIV with hepatitis is a main aspect influencing HCC morbidity and mortality. Data about sorafenib effectiveness and safety in HIV-infected patients are limited, particularly for patients who are on HAART. However, in properly selected subgroups, outcomes may be comparable to those of HIV-uninfected patients. Scarce data are available for those other systemic treatments, either tyrosine kinase inhibitors, as well as immune checkpoint inhibitors (ICIs), which have been added to our therapeutic armamentarium. This review examines the influence of HIV infection on HCC development and natural history, summarizes main data on systemic therapies, offers some insight into possible mechanisms of T cell exhaustion and reversal of HIV latency with ICIs and issues about clinical trials enrollment. Nowadays, routine exclusion of HIV-infected patients from clinical trial participation is totally inappropriate, since it leaves a number of patients deprived of life-prolonging therapies.
Collapse
|
4
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
5
|
Heide J, Wildner NH, Ackermann C, Wittner M, Marget M, Sette A, Sidney J, Jacobs T, Schulze Zur Wiesch J. Detection of EXP1-Specific CD4+ T Cell Responses Directed Against a Broad Range of Epitopes Including Two Promiscuous MHC Class II Binders During Acute Plasmodium falciparum Malaria. Front Immunol 2020; 10:3037. [PMID: 32038611 PMCID: PMC6993587 DOI: 10.3389/fimmu.2019.03037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background: T cells are thought to play a major role in conferring immunity against malaria. This study aimed to comprehensively define the breadth and specificity of the Plasmodium falciparum (P. falciparum)-specific CD4+ T cell response directed against the exported protein 1 (EXP1) in a cohort of patients diagnosed with acute malaria. Methods: Peripheral blood mononuclear cells of 44 patients acutely infected with P. falciparum, and of one patient infected with P. vivax, were stimulated and cultured in vitro with an overlapping set of 31 P. falciparum-specific 13-17-mer peptides covering the entire EXP1 sequence. EXP1-specific T cell responses were analyzed by ELISPOT and intracellular cytokine staining for interferon-γ production after re-stimulation with individual peptides. For further characterization of the epitopes, in silico and in vitro human leukocyte antigen (HLA) binding studies and fine mapping assays were performed. Results: We detected one or more EXP1-specific CD4+ T cell responses (mean: 1.09, range 0–5) in 47% (21/45) of our patients. Responses were directed against 15 of the 31 EXP1 peptides. Peptides EXP1-P13 (aa60-74) and P15 (aa70-85) were detected by 18% (n = 8) and 27% (n = 12) of the 45 patients screened. The optimal length, as well as the corresponding most likely HLA-restriction, of each of these two peptides was assessed. Interestingly, we also identified one CD4+ T cell response against peptide EXP1-P15 in a patient who was infected with P. vivax but not falciparum. Conclusions: This first detailed characterization of novel EXP1-specific T cell epitopes provides important information for future analysis with major histocompatibility complex-multimer technology as well as for immunomonitoring and vaccine design.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Nils H Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Matthias Marget
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
6
|
Devalraju KP, Neela VSK, Chintala S, Krovvidi SS, Valluri VL. Transforming Growth Factor-β Suppresses Interleukin (IL)-2 and IL-1β Production in HIV-Tuberculosis Co-Infection. J Interferon Cytokine Res 2019; 39:355-363. [PMID: 30939065 DOI: 10.1089/jir.2018.0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-1β and IL-2 play important roles in protective immune responses against Mycobacterium tuberculosis (Mtb) infection. Information on the factors that regulate the production of these cytokines in the context of human immunodeficiency virus and latent tuberculosis infection (LTBI) or active tuberculosis (TB) disease is limited. In this study, we compared the production of these cytokines by peripheral blood mononuclear cells (PBMCs) from HIV- and HIV+ individuals with latent and active Tuberculosis infection in response to Mtb Antigen 85A. PBMCs from HIV+ LTBI+ and HIV+ active TB patients produced low IL-1β, IL-2 but high transforming growth factor beta (TGF-β) compared to healthy controls. CD4+ T cells from HIV patients expressed low retinoic acid-related orphan receptor gamma (RORγ), and high suppressors of cytokine signaling-3 (SOCS-3). Active TB infection in HIV+ individuals further inhibited antigen-specific IL-1β and IL-2 production compared with those with LTBI. Neutralization of TGF-β restored IL-1β and IL-2 levels and lowered SOCS-3 production by CD4+ T cells. We hypothesize that high TGF-β in HIV patients could be a reason for defective Mtb-specific IL-1β, IL-2 production and activation of latent TB in HIV. Coupling anti-TGF-β antibodies with antiretroviral therapy treatment might increase T cell function to boost the immune system for effective clearance of Mtb.
Collapse
Affiliation(s)
| | | | - Sreedhar Chintala
- 2 Division of Clinical and Epidemiology, Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Siva Sai Krovvidi
- 3 Department of Biotechnology, Sreenidhi Institute of Science and Technology, Hyderabad, India
| | - Vijaya Lakshmi Valluri
- 1 Department of Immunology and Molecular Biology, Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| |
Collapse
|
7
|
Zhao C, Ao Z, Yao X. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection. Vaccines (Basel) 2016; 4:vaccines4010002. [PMID: 26805898 PMCID: PMC4810054 DOI: 10.3390/vaccines4010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies.
Collapse
Affiliation(s)
- Chongbo Zhao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
8
|
García F, Plana M, Climent N, León A, Gatell JM, Gallart T. Dendritic cell based vaccines for HIV infection: the way ahead. Hum Vaccin Immunother 2013; 9:2445-52. [PMID: 23912672 PMCID: PMC3981855 DOI: 10.4161/hv.25876] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 01/23/2023] Open
Abstract
Dendritic cells have a central role in HIV infection. On one hand, they are essential to induce strong HIV-specific CD4⁺ helper T-cell responses that are crucial to achieve a sustained and effective HIV-specific CD8⁺ cytotoxic T-lymphocyte able to control HIV replication. On the other hand, DCs contribute to virus dissemination and HIV itself could avoid a correct antigen presentation. As the efficacy of immune therapy and therapeutic vaccines against HIV infection has been modest in the best of cases, it has been hypothesized that ex vivo generated DC therapeutic vaccines aimed to induce effective specific HIV immune responses might overcome some of these problems. In fact, DC-based vaccine clinical trials have yielded the best results in this field. However, despite these encouraging results, functional cure has not been reached with this strategy in any patient. In this Commentary, we discuss new approaches to improve the efficacy and feasibility of this type of therapeutic vaccine.
Collapse
Affiliation(s)
- Felipe García
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Montserrat Plana
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Nuria Climent
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Agathe León
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Jose M Gatell
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Teresa Gallart
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| |
Collapse
|
9
|
Imami N, Westrop SJ, Grageda N, Herasimtschuk AA. Long-Term Non-Progression and Broad HIV-1-Specific Proliferative T-Cell Responses. Front Immunol 2013; 4:58. [PMID: 23459797 PMCID: PMC3585435 DOI: 10.3389/fimmu.2013.00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/17/2013] [Indexed: 12/30/2022] Open
Abstract
Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1(+) patients during early stages of disease, and are maintained in long-term non-progressing subjects. In the vast majority of HIV-1(+) patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilizing cure, involving clearance of virus from the host, remains a primary aim, a "functional cure" may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilized in future strategies designed to improve upon existing therapy. The aim will be to induce long-term non-progressor or elite controller status in every infected host, through immune-mediated control of viremia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates.
Collapse
Affiliation(s)
- Nesrina Imami
- Department of Medicine, Imperial College LondonLondon, UK
| | | | | | | |
Collapse
|
10
|
Flego M, Ascione A, Cianfriglia M, Vella S. Clinical development of monoclonal antibody-based drugs in HIV and HCV diseases. BMC Med 2013; 11:4. [PMID: 23289632 PMCID: PMC3565905 DOI: 10.1186/1741-7015-11-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Today there are many licensed antiviral drugs, but the emergence of drug resistant strains sometimes invalidates the effects of the current therapies used in the treatment of infectious diseases. Compared to conventional antiviral drugs, monoclonal antibodies (mAbs) used as pharmacological molecules have particular physical characteristics and modes of action, and, therefore, they should be considered as a distinct therapeutic class. Despite being historically validated, antibodies may represent a novel tool for combatting infectious diseases. The current high cost of mAbs' production, storage and administration (by injection only) and the consequent obstacles to development are outweighed by mAbs' clinical advantages. These are related to a low toxicity combined with high specificity and versatility, which allows a specific antibody to mediate various biological effects, ranging from the virus neutralization mechanisms to the modulation of immune responses.This review briefly summarizes the recent technological advances in the field of immunoglobulin research, and the current status of mAb-based drugs in clinical trials for HIV and HCV diseases. For each clinical trial the available data are reported and the emerging conceptual problems of the employed mAbs are highlighted.This overview helps to give a clear picture of the efficacy and challenges of the mAbs in the field of these two infectious diseases which have such a global impact.
Collapse
Affiliation(s)
- Michela Flego
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | |
Collapse
|
11
|
Stromberg SP, Antia R. On the role of CD8 T cells in the control of persistent infections. Biophys J 2012; 103:1802-10. [PMID: 23083724 DOI: 10.1016/j.bpj.2012.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
The control of pathogen density during infections is typically assumed to be the result of a combination of resource limitation (loss of target cells that the pathogen can infect), innate immunity, and specific immunity. The contributions of these factors have been considered in acute infections, which are characterized by having a short duration. What controls the pathogen during persistent infections is less clear, and is complicated by two factors. First, specific immune responses become exhausted if they are subject to chronic stimulation. Exhaustion has been best characterized for CD8 T cell responses, and occurs through a combination of cell death and loss of functionality of surviving cells. Second, new nonexhausted T cells can immigrate from the thymus during the infection, and may play a role in the control of the infection. In this article, we formulate a partial-differential-equation model to describe the interaction between these processes, and use this model to explore how thymic influx and exhaustion might affect the ability of CD8 T cell responses to control persistent infections. We find that although thymic influx can play a critical role in the maintenance of a limited CD8 T cell response during persistent infections, this response is not sufficiently large to play a significant role in controlling the infection. In doing so, our results highlight the importance of resource limitation and innate immunity in the control of persistent infections.
Collapse
|
12
|
Van Braeckel E, Leroux-Roels G. HIV vaccines: can CD4+ T cells be of help? Hum Vaccin Immunother 2012; 8:1795-8. [PMID: 22906935 DOI: 10.4161/hv.21760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Defining immune correlates of protection against the human immunodeficiency virus (HIV) remains a major challenge. While the role of neutralizing antibodies and CD8+ T cell responses has been widely acknowledged and applied in vaccine development, little vaccine candidates have focused on CD4+ T cells. As the main target of HIV, CD4+ T cells play a pivotal role in HIV infection. An HIV vaccine that elicits strong, multi-specific, polyfunctional and persisting CD4+ T cell responses would therefore have the potential of lowering viral set point when HIV infection occurs or reducing viral load in already infected patients. In a combined approach with neutralizing antibodies and CD8+ T cells, CD4+ T cells cannot only enhance the magnitude, quality and durability of the desired antibody response, but will also provide the help needed to induce and maintain effective antiviral CD8+ T cell responses. In addition, the disease-modifying potential of the CD4+ T cell response, by lowering viral set point and/or viral load and thus probability of transmission, may be beneficial both at the individual and public health level.
Collapse
|
13
|
Dominguez-Villar M, Fernandez-Ponce C, Munoz-Suano A, Gomez E, Rodríguez-Iglesias M, Garcia-Cozar F. Up-regulation of FOXP3 and induction of suppressive function in CD4+ Jurkat T-cells expressing hepatitis C virus core protein. Clin Sci (Lond) 2012; 123:15-27. [PMID: 22214248 DOI: 10.1042/cs20110631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
HCV (hepatitis C virus) infection is a serious health care problem that affects more than 170 million people worldwide. Viral clearance depends on the development of a successful cellular immune response against the virus. Interestingly, such a response is altered in chronically infected patients, leading to chronic hepatitis that can result in liver fibrosis, cirrhosis and hepatocellular carcinoma. Among the mechanisms that have been described as being responsible for the immune suppression caused by the virus, Treg-cells (regulatory T-cells) are emerging as an essential component. In the present work we aim to study the effect of HCV-core protein in the development of T-cells with regulatory-like function. Using a third-generation lentiviral system to express HCV-core in CD4+ Jurkat T-cells, we describe that HCV-core-expressing Jurkat cells show an up-regulation of FOXP3 (forkhead box P3) and CTLA-4 (cytotoxic T-lymphocyte antigen-4). Moreover, we show that HCV-core-transduced Jurkat cells are able to suppress CD4+ and CD8+ T-cell responses to anti-CD3 plus anti-CD28 stimulation.
Collapse
Affiliation(s)
- Margarita Dominguez-Villar
- Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology (Immunology), University of Cadiz, Cadiz, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci Rep 2012; 2:472. [PMID: 22737405 PMCID: PMC3382734 DOI: 10.1038/srep00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Characterisation of protective helminth acquired immunity in humans or experimental models has focused on effector responses with little work conducted on memory responses. Here we show for the first time, that human helminth infection is associated with altered proportions of the CD4+ memory T cells, with an associated alteration of TH1 responses. The reduced CD4+ memory T cell proportions are associated with a significantly lower ratio of schistosome-specific IgE/IgG4 (marker for resistance to infection/re-infection) in uninfected older people. Helminth infection does not affect the CD8+ memory T cell pool. Furthermore, we show for the first time in a helminth infection that the CD4+ memory T cell proportions decline following curative anti-helminthic treatment despite increased CD4+ memory cell replication. Reduced accumulation of the CD4+ memory T cells in schistosome-infected people has implications for the development of natural or vaccine induced schistosome-specific protective immunity as well as for unrelated pathogens.
Collapse
|
15
|
García F, León A, Gatell JM, Plana M, Gallart T. Therapeutic vaccines against HIV infection. Hum Vaccin Immunother 2012; 8:569-81. [PMID: 22634436 DOI: 10.4161/hv.19555] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resistance to medication, adverse effects in the medium-to-long-term and cost all place important limitations on lifelong adherence to combined antiretroviral therapy (cART). In this context, new therapeutic alternatives to 'cART for life' in HIV-infected patients merit investigation. Some data suggest that strong T cell-mediated immunity to HIV can indeed limit virus replication and protect against CD4 depletion and disease progression. The combination of cART with immune therapy to restore and/or boost immune-specific responses to HIV has been proposed, the ultimate aim being to achieve a 'functional cure'. In this scenario, new, induced, HIV-specific immune responses would be able to control viral replication to undetectable levels, mimicking the situation of the minority of patients who control viral replication without treatment and do not progress to AIDS. Classical approaches such as whole inactivated virus or recombinant protein initially proved useful as therapeutic vaccines. Overall, however, the ability of these early vaccines to increase HIV-specific responses was very limited and study results were discouraging, as no consistent immunogenicity was demonstrated and there was no clear impact on viral load. Recent years have seen the development of new approaches based on more innovative vectors such as DNA, recombinant virus or dendritic cells. Most clinical trials of these new vectors have demonstrated their ability to induce HIV-specific immune responses, although they show very limited efficacy in terms of controlling viral replication. However, some preliminary results suggest that dendritic cell-based vaccines are the most promising candidates. To improve the effectiveness of these vaccines, a better understanding of the mechanisms of protection, virological control and immune deterioration is required; without this knowledge, an efficacious therapeutic vaccine will remain elusive.
Collapse
Affiliation(s)
- Felipe García
- Hospital Clinic-HIVACAT, IDIBAPS, University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
16
|
Johnson PLF, Kochin BF, Ahmed R, Antia R. How do antigenically varying pathogens avoid cross-reactive responses to invariant antigens? Proc Biol Sci 2012; 279:2777-85. [PMID: 22438498 DOI: 10.1098/rspb.2012.0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pathogens such as trypanosomes and malaria use antigenic variation to evade immune responses and prolong the duration of infections. As pathogens typically express more than one antigen, even relatively rare conserved antigens might be expected to trigger cross-reactive immune responses capable of clearing the infection. We use simple mathematical models that explicitly consider the dynamic interplay between the replicating pathogen, immune responses to different antigens and immune exhaustion to explore how pathogens can escape the responses to both variable and invariant (conserved) antigens. Our results suggest two hypotheses. In the first, limited quantities of invariant antigens on each pathogen may lead to saturation in killing by cross-reactive responses. In the second, antigenic variation of the dominant antigens prolongs the duration of infection sufficiently to allow for exhaustion of the cross-reactive responses to subdominant, invariant epitopes prior to their being able to control the infection. These hypotheses make distinct predictions: the former predicts that cross-reactive responses will always be ineffective while the latter predicts that appropriately timed treatment could, by preventing exhaustion, lead to the generation of long-lasting protective cross-reactive immunity and thus act similarly to a vaccine.
Collapse
|
17
|
García F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine 2011; 29:6454-63. [PMID: 21791232 DOI: 10.1016/j.vaccine.2011.07.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022]
Abstract
Therapeutic immunization has been proposed as an approach that might help limit the need for lifelong combined antiretroviral therapy (cART). One approach for therapeutic vaccination which has been explored during the last few years is the administration of autologous monocyte-derived DCs (MD-DCs) loaded ex vivo with a variety of antigens. It has been shown in experimental murine models as well as in cancer patients and in patients with chronic infections that this approach can induce and potentiate antigen-specific T-cell response (and to induce a potent protective immunity). Contrary to the wide experience with this strategy in cancer, in HIV-1 infection the experience is limited and the design of the clinical trials varies greatly between groups. This variability affects all the steps of the process, from preparation of immunogen and DCs to clinical trial design and immune monitoring. Although both the study designs and the DC preparation (the maturation stimuli and the identity and source of HIV-1 antigens used to pulse DCs) varied in most of the studies that were published so far, overall the results indicate that DC immunotherapy elicits some degree of immunological response. To address this situation and to allow comparison between trials a panel of experts working in DC-based clinical trials in HIV-1 infection met in Barcelona at the end of 2010. During this meeting, the participants shared the data of their current research activities in this field in order to unify criteria for the future. This report summarizes the present situation of the field and the discussions and conclusions of this meeting.
Collapse
Affiliation(s)
- Felipe García
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain.
| | | |
Collapse
|
18
|
Gasnault J, Costagliola D, Hendel-Chavez H, Dulioust A, Pakianather S, Mazet AA, de Goer de Herve MG, Lancar R, Lascaux AS, Porte L, Delfraissy JF, Taoufik Y. Improved survival of HIV-1-infected patients with progressive multifocal leukoencephalopathy receiving early 5-drug combination antiretroviral therapy. PLoS One 2011; 6:e20967. [PMID: 21738597 PMCID: PMC3127950 DOI: 10.1371/journal.pone.0020967] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 05/17/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML), a rare devastating demyelinating disease caused by the polyomavirus JC (JCV), occurs in severely immunocompromised patients, most of whom have advanced-stage HIV infection. Despite combination antiretroviral therapy (cART), 50% of patients die within 6 months of PML onset. We conducted a multicenter, open-label pilot trial evaluating the survival benefit of a five-drug cART designed to accelerate HIV replication decay and JCV-specific immune recovery. METHODS AND FINDINGS All the patients received an optimized cART with three or more drugs for 12 months, plus the fusion inhibitor enfuvirtide during the first 6 months. The main endpoint was the one-year survival rate. A total of 28 patients were enrolled. At entry, median CD4+ T-cell count was 53 per microliter and 86% of patients had detectable plasma HIV RNA and CSF JCV DNA levels. Seven patients died, all before month 4. The one-year survival estimate was 0.75 (95% confidence interval, 0.61 to 0.93). At month 6, JCV DNA was undetectable in the CSF of 81% of survivors. At month 12, 81% of patients had undetectable plasma HIV RNA, and the median CD4+ T-cell increment was 105 per microliter. In univariate analysis, higher total and naive CD4+ T-cell counts and lower CSF JCV DNA level at baseline were associated with better survival. JCV-specific functional memory CD4+ T-cell responses, based on a proliferation assay, were detected in 4% of patients at baseline and 43% at M12 (P = 0.008). CONCLUSIONS The early use of five-drug cART after PML diagnosis appears to improve survival. This is associated with recovery of anti-JCV T-cell responses and JCV clearance from CSF. A low CD4+ T-cell count (particularly naive subset) and high JCV DNA copies in CSF at PML diagnosis appear to be risk factors for death. TRIAL REGISTRATION ClinicalTrials.gov NCT00120367.
Collapse
Affiliation(s)
- Jacques Gasnault
- Service de Médecine Interne et de Maladies Infectieuses, Hôpital Universitaire de Bicêtre-Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Defining the T helper functions impaired by programmed death-1 (PD-1) is crucial for understanding its role in defective HIV control and determining the therapeutic potential of targeting this inhibitory pathway. We describe here the relationships among disease stage, levels of PD-1 expression, and reversibility of CD4 T-cell impairment. PD-L1 blockade in vitro enhanced HIV-specific production of Th0 (IL-2), Th1 (IFN-γ), Th2 (IL-13), and TFH (IL-21) cytokines by CD4 T cells. PD-L1 blockade caused an early increase in cytokine transcription and translation that preceded cell proliferation. Although the impact of PD-L1 blockade on cytokine expression and, to a lesser extent, cell proliferation was associated with markers of disease progression, restoration of cytokine secretion was also observed in most subjects with undetectable viremia. PD-L1 blockade restored cytokine secretion in both PD-1intermediate and PD-1high sorted CD4 T-cell subsets. Compared with PD-1high HIV-specific CD8 T cells, PD-1high HIV-specific CD4 T cells showed lower expression of the inhibitory molecules CD160 and 2B4, demonstrating marked differences in expression of inhibitory receptors between T-cell subsets. These data show that PD-1 impairs HIV-specific T helper responses both by limiting expansion of these cells and by inhibiting effector functions of multiple differentiated CD4 T-cell subsets.
Collapse
|
20
|
Characterization of the specific CD4+ T cell response against the F protein during chronic hepatitis C virus infection. PLoS One 2010; 5:e14237. [PMID: 21151917 PMCID: PMC2997803 DOI: 10.1371/journal.pone.0014237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/06/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The hepatitis C virus (HCV) Alternate Reading Frame Protein (ARFP or F protein) presents a double-frame shift product of the HCV core gene. We and others have previously reported that the specific antibodies against the F protein could be raised in the sera of HCV chronically infected patients. However, the specific CD4(+) T cell responses against the F protein during HCV infection and the pathological implications remained unclear. In the current study, we screened the MHC class II-presenting epitopes of the F protein through HLA-transgenic mouse models and eventually validated the specific CD4(+) T cell responses in HCV chronically infected patients. METHODOLOGY DNA vaccination in HLA-DR1 and-DP4 transgenic mouse models, proliferation assay to test the F protein specific T cell response, genotyping of Chronic HCV patients and testing the F-peptide stimulated T cell response in the peripheral blood mononuclear cell (PBMC) by in vitro expansion and interferon (IFN)- γ intracellular staining. PRINCIPAL FINDINGS At least three peptides within HCV F protein were identified as HLA-DR or HLA-DP4 presenting epitopes by the proliferation assays in mouse models. Further study with human PBMCs evidenced the specific CD4(+) T cell responses against HCV F protein as well in patients chronically infected with HCV. CONCLUSION The current study provided the evidence for the first time that HCV F protein could elicit specific CD4(+) T cell response, which may provide an insight into the immunopathogenesis during HCV chronic infection.
Collapse
|
21
|
Abstract
Efforts to make vaccines against infectious diseases as well as immunotherapies for cancer, autoimmune diseases and allergy have utilized a variety of heterologous expression systems, including viral and bacterial vectors, as well as DNA and RNA constructs. This review explores the immunologic rationale and provides an update of insights obtained from preclinical and clinical studies of such vaccines.
Collapse
|
22
|
Leroux-Roels I, Koutsoukos M, Clement F, Steyaert S, Janssens M, Bourguignon P, Cohen K, Altfeld M, Vandepapelière P, Pedneault L, McNally L, Leroux-Roels G, Voss G. Strong and persistent CD4+ T-cell response in healthy adults immunized with a candidate HIV-1 vaccine containing gp120, Nef and Tat antigens formulated in three Adjuvant Systems. Vaccine 2010; 28:7016-24. [DOI: 10.1016/j.vaccine.2010.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/25/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
|
23
|
Comparison of immune restoration in early versus late alpha interferon therapy against hepatitis C virus. J Virol 2010; 84:10429-35. [PMID: 20668076 DOI: 10.1128/jvi.01094-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Early alpha interferon (IFN-alpha) therapy against hepatitis C virus (HCV) rescues polyfunctional, virus-specific memory CD8(+) T cells, but whether immune restoration is possible during late therapy remains controversial. We compared immune restoration of HCV-specific memory T cells in patients who cleared HCV infection spontaneously and following early or late IFN therapy. Multifunctional CD4(+) and CD8(+) memory T cells were detected in spontaneous resolvers and in individuals treated early following an acute infection. In contrast, limited responses were detected in patients treated during chronic infection, and the phenotype of HCV-specific cells was influenced by autologous viral sequences. Our data suggest that irreversible damage to the HCV-specific memory T-cell response is associated with chronic HCV infection.
Collapse
|
24
|
de Goër de Herve MG, Dembele B, Vallée M, Herr F, Cariou A, Taoufik Y. Direct CD4 help provision following interaction of memory CD4 and CD8 T cells with distinct antigen-presenting dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:1028-36. [PMID: 20562265 DOI: 10.4049/jimmunol.0904209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence suggests that CD4 help is needed at the memory stage to mount effective secondary CD8 T cell responses. In this paper, we report that memory CD4 T cells can provide efficient help to memory CD8 T cells after interaction of the two lymphocytes with distinct dendritic cells. Provision of help to CD8 T cells required direct cell-cell contact and involved both IL-2 and CD40 ligation, within a CD4-CD8 T cell synapse. Thus, following antigenic interaction with APCs, activated memory CD4 and CD8 T cells appear to separate from their respective APCs before meeting each other for help provision, regardless of their Ag specificity. CD4 help for memory CD8 T cells therefore appears to be conditioned primarily not by Ag specificity but by activation status.
Collapse
Affiliation(s)
- Marie-Ghislaine de Goër de Herve
- Institut National de la Santé et de la Recherche Médicale U-1012, Université Paris-Sud, Faculté de Médecine, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
25
|
Le Roux-Villet C, Michel L, Gasnault J, Taoufik Y, Bachelez H. Progressive multifocal leucoencephalopathy in a patient with Sézary syndrome. Br J Dermatol 2010; 163:1118-20. [DOI: 10.1111/j.1365-2133.2010.09896.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Fleming VM, Harcourt G, Barnes E, Klenerman P. Virological footprint of CD4+ T-cell responses during chronic hepatitis C virus infection. J Gen Virol 2010; 91:1396-406. [PMID: 20107020 PMCID: PMC3052717 DOI: 10.1099/vir.0.017699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human and animal model evidence suggests that CD4+ T cells play a critical role in the control of chronic hepatitis C virus (HCV) infection. However, despite their importance, the mechanism behind the failure of such populations in chronic disease is not understood and the contribution of viral mutation is not known. To address this, this study defined the specificity and virological footprint of CD4+ T cells in chronic infection. CD8+ T-cell-depleted peripheral blood mononuclear cells from 61 HCV genotype 1-infected patients were analysed against a panel of peptides covering the HCV genotype 1 core – a region where CD4+ T-cell responses may be reproducibly obtained. In parallel, the core region and E2 protein were sequenced. Gamma interferon-secreting CD4+ T-cell responses directed against multiple epitopes were detected in 53 % of individuals, targeting between one and four peptides in the HCV core. Viral sequence evaluation revealed that these CD4+ T-cell responses were associated with mutants in 2/21 individuals. In these two cases, the circulating sequence variant was poorly recognized by host CD4+ T cells. Bioinformatics analyses revealed no overall evidence of selection in the target epitopes and no differences between the groups with and without detectable CD4+ T-cell responses. It was concluded that sustained core peptide-specific CD4+ T-cell responses may be reproducibly measured during chronic HCV infection and that immune escape may occur in specific instances. However, overall the virological impact of such responses is limited and other causes for CD4+ T-cell failure in HCV must be sought.
Collapse
Affiliation(s)
- Vicki M Fleming
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, South Parks Road, Oxford, UK.
| | | | | | | |
Collapse
|
27
|
Landrum ML, Fieberg AM, Chun HM, Crum-Cianflone NF, Marconi VC, Weintrob AC, Ganesan A, Barthel RV, Wortmann G, Agan BK. The effect of human immunodeficiency virus on hepatitis B virus serologic status in co-infected adults. PLoS One 2010; 5:e8687. [PMID: 20084275 PMCID: PMC2800198 DOI: 10.1371/journal.pone.0008687] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 11/21/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Factors associated with serologic hepatitis B virus (HBV) outcomes in HIV-infected individuals remain incompletely understood, yet such knowledge may lead to improvements in the prevention and treatment of chronic HBV infection. METHODS AND FINDINGS HBV-HIV co-infected cohort participants were retrospectively analyzed. HBV serologic outcomes were classified as chronic, resolved, and isolated-HBcAb. Chronic HBV (CHBV) was defined as the presence of HBsAg on two or more occasions at least six months apart. Risk factors for HBV serologic outcome were assessed using logistic regression. Of 2037 participants with HBV infection, 281 (14%) had CHBV. Overall the proportions of HBV infections classified as CHBV were 11%, 16%, and 19% for CD4 cell count strata of > or =500, 200-499, and <200, respectively (p<0.0001). Risk of CHBV was increased for those with HBV infection occurring after HIV diagnosis (OR 2.62; 95% CI 1.78-3.85). This included the subset with CD4 count > or =500 cells/microL where 21% of those with HBV after HIV diagnosis had CHBV compared with 9% for all other cases of HBV infection in this stratum (p = 0.0004). Prior receipt of HAART was associated with improved HBV serologic outcome overall (p = 0.012), and specifically among those with HBV after HIV (p = 0.002). In those with HBV after HIV, HAART was associated with reduced risk of CHBV overall (OR 0.18; 95% CI 0.04-0.79); including reduced risk in the subsets with CD4 > or =350 cells/microL (p<0.001) and CD4 > or =500 cells/microL (p = 0.01) where no cases of CHBV were seen in those with a recent history of HAART use. CONCLUSIONS Clinical indicators of immunologic status in HIV-infected individuals, such as CD4 cell count, are associated with HBV serologic outcome. These data suggest that immunologic preservation through the increased use of HAART to improve functional anti-HBV immunity, whether by improved access to care or earlier initiation of therapy, would likely improve HBV infection outcomes in HIV-infected individuals.
Collapse
Affiliation(s)
- Michael L Landrum
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kassu A, D’Souza M, O'Connor BP, Kelly-McKnight E, Akkina R, Fontenot AP, Palmer BE. Decreased 4-1BB expression on HIV-specific CD4+ T cells is associated with sustained viral replication and reduced IL-2 production. Clin Immunol 2009; 132:234-45. [PMID: 19406689 PMCID: PMC2761838 DOI: 10.1016/j.clim.2009.03.531] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/09/2009] [Accepted: 03/30/2009] [Indexed: 11/29/2022]
Abstract
CD4+ T cell dysfunction in subjects with chronic HIV infection is in part due to an imbalance of costimulatory and coinhibitory receptors. We report that virus-specific CD4+ T cells expressing 4-1BB (CD137) or OX40 (CD134) produced more IL-2 than cells lacking these costimulatory receptors (P<0.05) and that 4-1BB was expressed at a lower level on HIV- than CMV-specific IFN-gamma and IL-2 producing CD4+ T cells (P<0.0001 and P<0.01, respectively). Suppression of viral replication with antiretroviral therapy was associated with increased 4-1BB expression on HIV- and CMV-specific IL-2 producing CD4+ T cells (P<0.05 and P<0.01, respectively) and the percentage of IL-2 producing HIV-specific CD4+ T cells that expressed 4-1BB was inversely correlated with HIV plasma viral load (r=-0.75, P=0.007). These findings indicate that the loss of 4-1BB on HIV-specific CD4+ T cells is associated with viral replication and that it may contribute to reduced IL-2 production observed during chronic infection.
Collapse
Affiliation(s)
- Afework Kassu
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Michelle D’Souza
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Brian P. O'Connor
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Elizabeth Kelly-McKnight
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew P. Fontenot
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Brent E. Palmer
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Immunodominant HIV-1 Cd4+ T cell epitopes in chronic untreated clade C HIV-1 infection. PLoS One 2009; 4:e5013. [PMID: 19352428 PMCID: PMC2661367 DOI: 10.1371/journal.pone.0005013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 03/04/2009] [Indexed: 12/17/2022] Open
Abstract
Background A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1–specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified. Methodology/Principal Findings Intracellular cytokine staining was conducted on 373 subjects with chronic, untreated clade C infection to assess interferon-gamma (IFN-γ) responses by CD4+ T cells to pooled Gag peptides and to determine their association with viral load and CD4 count. Gag-specific IFN-γ–producing CD4+ T cell responses were detected in 261/373 (70%) subjects, with the Gag responders having a significantly lower viral load and higher CD4 count than those with no detectable Gag response (p<0.0001 for both parameters). To identify individual peptides targeted by HIV-1–specific CD4+ T cells, separate ELISPOT screening was conducted on CD8-depleted PBMCs from 32 chronically infected untreated subjects, using pools of overlapping peptides that spanned the entire HIV-1 clade C consensus sequence, and reconfirmed by flow cytometry to be CD4+ mediated. The ELISPOT screening identified 33 CD4+ peptides targeted by 18/32 patients (56%), with 27 of the 33 peptides located in the Gag region. Although the breadth of the CD4+ responses correlated inversely with viral load (p = 0.015), the magnitude of the response was not significantly associated with viral load. Conclusions/Significance These data indicate that in chronic untreated clade C HIV-1 infection, IFN-γ–secreting Gag-specific CD4+ T cell responses are immunodominant, directed at multiple distinct epitopes, and associated with viral control.
Collapse
|
30
|
Jia B, Ng SK, DeGottardi MQ, Piatak M, Yuste E, Carville A, Mansfield KG, Li W, Richardson BA, Lifson JD, Evans DT. Immunization with single-cycle SIV significantly reduces viral loads after an intravenous challenge with SIV(mac)239. PLoS Pathog 2009; 5:e1000272. [PMID: 19165322 PMCID: PMC2621341 DOI: 10.1371/journal.ppat.1000272] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/15/2008] [Indexed: 12/24/2022] Open
Abstract
Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV. AIDS vaccine candidates based on recombinant DNA and/or viral vectors stimulate potent cellular immune responses. However, the extent of protection achieved by these vaccines has so far been disappointing. While live, attenuated strains of SIV afford more reliable protection in animal models, there are justifiable safety concerns with the use of live, attenuated HIV-1 in humans. As an experimental vaccine approach designed to uncouple immune activation from ongoing virus replication, we developed a genetic system for producing strains of SIV that are limited to a single cycle of infection. We compared repeated versus prime-boost vaccine regimens with single-cycle SIV for the ability to elicit protective immunity in rhesus macaques against a strain of SIV that is notoriously difficult to control by vaccination. Both vaccine regimens afforded significant containment of virus replication after challenge. Nevertheless, the extent of protection achieved by immunization with single-cycle SIV was not as good as the protection typically provided by persistent infection of animals with live, attenuated SIV. These observations have important implications for the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may ultimately be necessary for achieving the robust protection afforded by live, attenuated SIV.
Collapse
Affiliation(s)
- Bin Jia
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Sharon K. Ng
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - M. Quinn DeGottardi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eloísa Yuste
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Angela Carville
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Keith G. Mansfield
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Wenjun Li
- Biostatistics Research Group, Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Barbra A. Richardson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - David T. Evans
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
de Goër de Herve MG, Cariou A, Simonetta F, Taoufik Y. Heterospecific CD4 help to rescue CD8 T cell killers. THE JOURNAL OF IMMUNOLOGY 2009; 181:5974-80. [PMID: 18941186 DOI: 10.4049/jimmunol.181.9.5974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Help from CD4 T cells may be required for optimal generation and maintenance of memory CD8 T cells and also for optimal Ag reactivation. We examined whether the helper cell and the CD8 killer cell need to have the same Ag specificity for help to be effective during interactions of memory T cells with mature APC. This is important because virus and tumor Ag-specific CD4 T cell responses are selectively impaired in several chronic viral infections and malignancies. We performed studies in vitro and in vivo and found that functional memory CD4 T cells generated from a distinct antigenic source (heterospecific helpers) could provide direct and effective help to memory CD8 T cells. Functional heterospecific memory CD4 T cells could also rescue secondary CD8 T cell responses in an experimental tumor model in which homospecific CD4 help was impaired. This could provide a rationale for immunotherapy strategies designed to bypass impaired homospecific help.
Collapse
|
32
|
Huang S, Dunkley-Thompson J, Tang Y, Macklin EA, Steel-Duncan J, Singh-Minott I, Ryland EG, Smikle M, Walker BD, Christie CD, Feeney ME. Deficiency of HIV-Gag-specific T cells in early childhood correlates with poor viral containment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8103-11. [PMID: 19018003 PMCID: PMC2714370 DOI: 10.4049/jimmunol.181.11.8103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Perinatal HIV infection is characterized by a sustained high-level viremia and a high risk of rapid progression to AIDS, indicating a failure of immunologic containment of the virus. We hypothesized that age-related differences in the specificity or function of HIV-specific T cells may influence HIV RNA levels and clinical outcome following perinatal infection. In this study, we defined the HIV epitopes targeted by 76 pediatric subjects (47 HIV infected and 29 HIV exposed, but uninfected), and assessed the ability of HIV-specific CD8 and CD4 T cells to degranulate and produce IFN-gamma, TNF-alpha, and IL-2. No responses were detected among HIV-uninfected infants, whereas responses among infected subjects increased in magnitude and breadth with age. Gag-specific responses were uncommon during early infancy, and their frequency was significantly lower among children younger than 24 mo old (p = 0.014). Importantly, Gag responders exhibited significantly lower HIV RNA levels than nonresponders (log viral load 5.8 vs 5.0; p = 0.005). Both the total and Gag-specific T cell frequency correlated inversely with viral load after correction for age, whereas no relationship with targeting of other viral proteins was observed. Functional assessment of HIV-specific T cells by multiparameter flow cytometry revealed that polyfunctional CD8 cells were less prevalent in children before 24 mo of age, and that HIV-specific CD4 cell responses were of universally low frequency among antiretroviral-naive children and absent in young infants. These cross-sectional data suggest that qualitative differences in the CD8 response, combined with a deficiency of HIV-specific CD4 cells, may contribute to the inability of young infants to limit replication of HIV.
Collapse
Affiliation(s)
- SiHong Huang
- Partners AIDS Research Center and Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115
- Children's Hospital Boston, Boston, MA 02115
- Clinical Investigator Training Program: Harvard/MIT Health Sciences and Technology - Beth Israel Deaconess Medical Center, in collaboration with Pfizer Inc. and Merck Co., Boston, MA 02114
| | - Jacqueline Dunkley-Thompson
- Kingston Perinatal AIDS Program and Department of Obstetrics, Gynecology and Pediatrics, University of the West Indies, Kingston, Jamaica
| | - YanHua Tang
- Partners AIDS Research Center and Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115
| | - Eric A. Macklin
- MGH Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - Julianne Steel-Duncan
- Kingston Perinatal AIDS Program and Department of Obstetrics, Gynecology and Pediatrics, University of the West Indies, Kingston, Jamaica
| | - Indira Singh-Minott
- Kingston Perinatal AIDS Program and Department of Obstetrics, Gynecology and Pediatrics, University of the West Indies, Kingston, Jamaica
| | - Elizabeth G. Ryland
- Partners AIDS Research Center and Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115
| | - Monica Smikle
- Kingston Perinatal AIDS Program and Department of Obstetrics, Gynecology and Pediatrics, University of the West Indies, Kingston, Jamaica
| | - Bruce D. Walker
- Partners AIDS Research Center and Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115
- Howard Hughes Medical Institute, Chev Chase, MD 20815
| | - Celia D.C. Christie
- Kingston Perinatal AIDS Program and Department of Obstetrics, Gynecology and Pediatrics, University of the West Indies, Kingston, Jamaica
| | - Margaret E. Feeney
- Partners AIDS Research Center and Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02115
- Children's Hospital Boston, Boston, MA 02115
| |
Collapse
|
33
|
Day CL, Mkhwanazi N, Reddy S, Mncube Z, van der Stok M, Klenerman P, Walker BD. Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis 2008; 197:990-9. [PMID: 18419535 DOI: 10.1086/529048] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) epidemic is associated with a significant increase in the incidence of tuberculosis (TB); however, little is known about the quality of Mycobacterium tuberculosis (MTB)-specific cellular immune responses in coinfected individuals. METHODS A total of 137 HIV-1-positive individuals in Durban, South Africa, were screened with the use of overlapping peptides spanning Ag85A, culture filtrate protein 10 (CFP-10), early secretory antigen target 6 (ESAT-6), and TB10.4, in an interferon (IFN)-gamma enzyme-linked immunospot (ELISPOT) assay. Intracellular cytokine staining for MTB-specific production of IFN-gamma, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-2 was performed, as was ex vivo phenotyping of memory markers on MTB-specific T cells. RESULTS A total of 41% of subjects responded to ESAT-6 and/or CFP-10, indicating the presence of latent MTB infection. The proportion of MTB-specific IFN-gamma(+)/TNF-alpha(+) CD4(+) cells was significantly higher than the proportion of IFN-gamma(+)/IL-2(+) CD4(+) cells (P = .0220), and the proportion of MTB-specific IL-2-secreting CD4 cells was inversely correlated with the HIV-1 load (P = .0098). MTB-specific CD8 T cells were predominately IFN-gamma(+)/TNF-alpha(+)/IL-2(-). Ex vivo memory phenotyping of MTB-specific CD4 and CD8 T cells indicated an early to intermediate differentiated phenotype for the population of effector memory cells. CONCLUSIONS Polyfunctional MTB-specific CD4 and CD8 T cell responses are maintained in the peripheral blood of HIV-1-positive individuals, in the absence of active disease, and the functional capacity of these responses is affected by HIV-1 disease status.
Collapse
Affiliation(s)
- Cheryl L Day
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa.
| | | | | | | | | | | | | |
Collapse
|
34
|
Thobakgale CF, Ramduth D, Reddy S, Mkhwanazi N, de Pierres C, Moodley E, Mphatswe W, Blanckenberg N, Cengimbo A, Prendergast A, Tudor-Williams G, Dong K, Jeena P, Kindra G, Bobat R, Coovadia H, Kiepiela P, Walker BD, Goulder PJR. Human immunodeficiency virus-specific CD8+ T-cell activity is detectable from birth in the majority of in utero-infected infants. J Virol 2007; 81:12775-84. [PMID: 17881456 PMCID: PMC2169079 DOI: 10.1128/jvi.00624-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/28/2007] [Indexed: 01/28/2023] Open
Abstract
Human immunodeficiency virus (HIV)-infected infants in sub-Saharan Africa typically progress to AIDS or death by 2 years of life in the absence of antiretroviral therapy. This rapid progression to HIV disease has been related to immaturity of the adaptive immune response in infants. We screened 740 infants born to HIV-infected mothers and tracked development and specificity of HIV-specific CD8+ T-cell responses in 63 HIV-infected infants identified using gamma interferon enzyme-linked immunospot assays and intracellular cytokine staining. Forty-four in utero-infected and 19 intrapartum-infected infants were compared to 45 chronically infected children >2 years of age. Seventy percent (14 of 20) in utero-infected infants tested within the first week of life demonstrated HIV-specific CD8+ T-cell responses. Gag, Pol, and Nef were the principally targeted regions in chronic pediatric infection. However, Env dominated the overall response in one-third (12/36) of the acutely infected infants, compared to only 2/45 (4%) of chronically infected children (P = 0.00083). Gag-specific CD4+ T-cell responses were minimal to undetectable in the first 6 months of pediatric infection. These data indicate that failure to control HIV replication in in utero-infected infants is not due to an inability to induce responses but instead suggest secondary failure of adaptive immunity in containing this infection. Moreover, the detection of virus-specific CD8+ T-cell responses in the first days of life in most in utero-infected infants is encouraging for HIV vaccine interventions in infants.
Collapse
Affiliation(s)
- Christina F Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, Baker B, Zhu B, Le Gall S, Waring MT, Ahern R, Moss K, Kelleher AD, Coffin JM, Freeman GJ, Rosenberg ES, Walker BD. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 2007; 8:1246-54. [PMID: 17906628 DOI: 10.1038/ni1515] [Citation(s) in RCA: 425] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 08/24/2007] [Indexed: 01/17/2023]
Abstract
In progressive viral infection, antiviral T cell function is impaired by poorly understood mechanisms. Here we report that the inhibitory immunoregulatory receptor CTLA-4 was selectively upregulated in human immunodeficiency virus (HIV)-specific CD4(+) T cells but not CD8(+) T cells in all categories of HIV-infected subjects evaluated, with the exception of rare people able to control viremia in the absence of antiretroviral therapy. CTLA-4 expression correlated positively with disease progression and negatively with the capacity of CD4(+) T cells to produce interleukin 2 in response to viral antigen. Most HIV-specific CD4(+) T cells coexpressed CTLA-4 and another inhibitory immunoregulatory receptor, PD-1. In vitro blockade of CTLA-4 augmented HIV-specific CD4(+) T cell function. These data, indicating a reversible immunoregulatory pathway selectively associated with CD4(+) T cell dysfunction, provide a potential target for immunotherapy in HIV-infected patients.
Collapse
Affiliation(s)
- Daniel E Kaufmann
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Domínguez-Villar M, Muñoz-Suano A, Anaya-Baz B, Aguilar S, Novalbos JP, Giron JA, Rodríguez-Iglesias M, Garcia-Cozar F. Hepatitis C virus core protein up-regulates anergy-related genes and a new set of genes, which affects T cell homeostasis. J Leukoc Biol 2007; 82:1301-10. [PMID: 17711976 DOI: 10.1189/jlb.0507335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is the main cause for chronic hepatitis, leading to cirrhosis and hepatic carcinoma. Virally induced immune dysfunction has been called as the cause for viral persistence. Previous results demonstrate that CD4 Jurkat cells stably expressing the HCV core protein show an increased activation of NFAT transcription factor and an impaired IL-2 promoter activity, affecting intracellular signaling pathways in a manner that mimics clonal anergy. We had shown previously that NFAT activates a transcriptional program, ensuing in immunological tolerance. In the present work, we have engineered lentiviral vectors expressing the HCV core to analyze the events, which unfold in the initial phase of HCV core-induced anergy. We show that genes initially described to be up-regulated by ionomycin-induced anergy in mice are also up-regulated in humans, not only by ionomycin but also by HCV core expression. We also show that HCV core is sufficient to cause NFAT nuclear translocation and a slow-down in cell-cycle progression, and using whole genome microarrays, we identify novel genes up-regulated in Jurkat cells expressing HCV core. The relevance of our results is highlighted by the presence of HCV in CD4 T cells from HCV chronically infected patients.
Collapse
Affiliation(s)
- M Domínguez-Villar
- Puerto Real University Hospital Research Unit, School of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Cadiz, Cadiz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schulze Zur Wiesch J, Lauer GM, Timm J, Kuntzen T, Neukamm M, Berical A, Jones AM, Nolan BE, Longworth SA, Kasprowicz V, McMahon C, Wurcel A, Lohse AW, Lewis-Ximenez LL, Chung RT, Kim AY, Allen TM, Walker BD. Immunologic evidence for lack of heterologous protection following resolution of HCV in patients with non-genotype 1 infection. Blood 2007; 110:1559-69. [PMID: 17475911 PMCID: PMC1975840 DOI: 10.1182/blood-2007-01-069583] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is typically characterized by a lack of virus-specific CD4(+) T-cell-proliferative responses, but strong responses have been described in a subset of persons with persistent viremia. One possible explanation for these responses is that they were primed by an earlier resolved infection and do not recognize the current circulating virus. We defined all targeted epitopes using overlapping peptides corresponding to a genotype 1a strain in 44 patients chronically infected with different HCV genotypes (GT). Surprisingly, more HCV-specific CD4(+) T-cell responses were detected in patients with chronic non-GT1 infection compared with patients with chronic GT1 infection (P = .017). Notably, we found serologic evidence of a previous exposure to GT1 in 4 patients with non-GT1 infection, and these persons also demonstrated significantly more responses than non-GT1 patients in whom genotype and HCV serotype were identical (P < .001). Comparison of recognition of GT1-specific peptides to peptides representing autologous virus revealed the absence of cross-recognition of the autologous circulating virus. These data indicate that persistent HCV infection can occur in the presence of an HCV-specific T-cell response primed against a heterologous HCV strain, and suggest that clearance of 1 GT does not necessarily protect against subsequent exposure to a second GT.
Collapse
Affiliation(s)
- Julian Schulze Zur Wiesch
- Partners AIDS Research Center, Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Millington KA, Innes JA, Hackforth S, Hinks TSC, Deeks JJ, Dosanjh DPS, Guyot-Revol V, Gunatheesan R, Klenerman P, Lalvani A. Dynamic relationship between IFN-gamma and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:5217-26. [PMID: 17404305 PMCID: PMC2743164 DOI: 10.4049/jimmunol.178.8.5217] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Distinct IFN-gamma and IL-2 profiles of Ag-specific CD4(+) T cells have recently been associated with different clinical disease states and Ag loads in viral infections. We assessed the kinetics and functional profile of Mycobacterium tuberculosis Ag-specific T cells secreting IFN-gamma and IL-2 in 23 patients with untreated active tuberculosis when bacterial and Ag loads are high and after curative treatment, when Ag load is reduced. The frequencies of M. tuberculosis Ag-specific IFN-gamma-secreting T cells declined during 28 mo of follow-up with an average percentage decline of 5.8% per year (p = 0.005), while the frequencies of Ag-specific IL-2-secreting T cells increased during treatment (p = 0.02). These contrasting dynamics for the two cytokines led to a progressive convergence of the frequencies of IFN-gamma- and IL-2-secreting cells over 28 mo. Simultaneous measurement of IFN-gamma and IL-2 secretion at the single-cell level revealed a codominance of IFN-gamma-only secreting and IFN-gamma/IL-2 dual secreting CD4(+) T cells in active disease that shifted to dominance of IFN-gamma/IL-2-secreting CD4(+) T cells and newly detectable IL-2-only secreting CD4(+) T cells during and after treatment. These distinct T cell functional signatures before and after treatment suggest a novel immunological marker of mycobacterial load and clinical status in tuberculosis that now requires validation in larger prospective studies.
Collapse
Affiliation(s)
- Kerry A. Millington
- Tuberculosis Immunology Group, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, Imperial College London, London, UK
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John A. Innes
- Department of Infection & Tropical Medicine, Birmingham Heartlands Hospital, Birmingham, UK
| | - Sarah Hackforth
- Department of Infection & Tropical Medicine, Birmingham Heartlands Hospital, Birmingham, UK
| | - Timothy S. C. Hinks
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jonathan J. Deeks
- Department of Public Health and Epidemiology University of Birmingham, Birmingham UK
| | - Davinder P. S. Dosanjh
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Valerie Guyot-Revol
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rubamalaar Gunatheesan
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ajit Lalvani
- Tuberculosis Immunology Group, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, Imperial College London, London, UK
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
39
|
Gahery H, Figueiredo S, Texier C, Pouvelle-Moratille S, Ourth L, Igea C, Surenaud M, Guillet JG, Maillere B. HLA-DR-restricted peptides identified in the Nef protein can induce HIV type 1-specific IL-2/IFN-gamma-secreting CD4+ and CD4+ /CD8+ T cells in humans after lipopeptide vaccination. AIDS Res Hum Retroviruses 2007; 23:427-37. [PMID: 17411376 DOI: 10.1089/aid.2006.0075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We screened the Neflaiprotein to identify new HLA-DR-restricted epitopes, because this small protein is expressed early during infection, and specific CD4(+) T cells are critical for effective immunity in HIV-1 infection. We synthesized a set of peptides that covers the sequence of the Nef protein, and performed binding assays using 10 common HLA-DR molecules. We defined four large regions in this protein able to bind very efficiently to eight HLADR molecules. We took advantage of healthy volunteers immunized with an HIV-1 lipopeptide vaccine that contains three of the four HLA DR-restricted regions to investigate their capacities to stimulate T cells. In 11 vaccinated volunteers, typed for their class II molecules, we were able to correlate sequences of the vaccine displaying binding activities to specific HLA-DR molecules and the induction of CD4(+) T cell proliferation. To identify potential HLA-DR epitopes, we synthesized 31 15-mer peptides and showed that 26 bound to one or more HLA-DR molecules. Interestingly, 12 of the 26 15-mer peptides identified are included in the sequence of lipopeptides. We used IFN-gamma ELISPOT and flow cytometer assays to investigate the capacity of these potential CD4(+) T cell epitopes to induce specific T cell responses. We showed that seven of these peptides were able to stimulate HIV-specific T cell responses in five of six tested volunteers. These cells are Nef-specific CD4(+) and CD4(+) CD8(+) T cells secreting IL-2/INF-gamma or IL-2 alone. To conclude, these 26 Nef HLA-DR-restricted peptides could be helpful to better evaluate CD4(+) deficiencies in HIV infection and, for new vaccine designs.
Collapse
|
40
|
Correa R, Harari A, Vallelian F, Resino S, Munoz-Fernandez MA, Pantaleo G. Functional patterns of HIV-1-specific CD4 T-cell responses in children are influenced by the extent of virus suppression and exposure. AIDS 2007; 21:23-30. [PMID: 17148964 DOI: 10.1097/qad.0b013e32801120bc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Virus-specific CD4 T cells play a critical role in antiviral immunity. HIV-1-specific CD4 T cells in chronically infected adults are mostly composed of IFN-gamma-secreting cells, whereas a selective defect in IL-2-secreting CD4 T cells has been demonstrated. HIV-1-specific IL-2-secreting CD4 T cells are key components of effective immunity. OBJECTIVE To determine the function of HIV-1-specific CD4 T cells in HIV-1 vertically infected children after antiretroviral treatment (ART). DESIGN Twenty-three vertically HIV-infected children treated with ART for an extended period (mean 7 years) were retrospectively studied. METHODS The function of HIV-1-specific CD4 T cells was determined by their ability to secrete IL-2 and IFN-gamma after stimulation with HIV-1 p55 gag protein using polychromatic flow cytometry. RESULTS : Substantial differences in the patterns of CD4 T-cell responses were associated with different conditions of response to ART. Interestingly, children with suppression of viraemia below 50 HIV-1-RNA copies/ml of plasma for at least 2 years showed dominant IL-2 CD4 T-cell responses; children with viraemia below 50 copies but experiencing transient blips of viraemia showed polyfunctional (IL-2 plus IFN-gamma) CD4 T-cell responses; children with uncontrolled high viraemia levels had dominant IFN-gamma CD4 T-cell responses. Furthermore, the total frequency of HIV-1-specific CD4 T cells including IL-2 and IFN-gamma-secreting cells was significantly higher compared with HIV-infected adults with chronic infection. CONCLUSION The higher frequency of HIV-1-specific CD4 T cells in children compared with adults and the recovery of IL-2-secreting CD4 T cells after successful ART-mediated suppression of virus replication indicate a greater capacity of immune restoration in children than adults.
Collapse
Affiliation(s)
- Rafael Correa
- Laboratory of AIDS Immunopathogenesis, Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Gauduin MC, Yu Y, Barabasz A, Carville A, Piatak M, Lifson JD, Desrosiers RC, Johnson RP. Induction of a virus-specific effector-memory CD4+ T cell response by attenuated SIV infection. J Exp Med 2006; 203:2661-72. [PMID: 17116733 PMCID: PMC2118155 DOI: 10.1084/jem.20060134] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 10/12/2006] [Indexed: 01/31/2023] Open
Abstract
We investigated simian immunodeficiency virus (SIV)-specific CD4+ T cell responses in rhesus macaques chronically infected with attenuated or pathogenic SIV strains. Analysis of SIVDeltanef-infected animals revealed a relatively high frequency of SIV-specific CD4+ T cells representing 4-10% of all CD4+ T lymphocytes directed against multiple SIV proteins. Gag-specific CD4+ T cells in wild-type SIV-infected animals were 5-10-fold lower in frequency and inversely correlated with the level of plasma viremia. SIV-specific CD4+ cells from SIVDeltanef animals were predominantly CD27-CD28-CD45RAlowCCR7-CCR5-, consistent with an effector-memory subset, and included a fully differentiated CD45RA+CCR7- subpopulation. In contrast, SIV-specific CD4+ T cells from SIV-infected animals were mostly CD27+CD28+CD45RA-CCR7+CCR5+, consistent with an early central memory phenotype. The CD45RA+CCR7-CD4+ subset from SIVDeltanef animals was highly enriched for effector CD4+ T cells, as indicated by the perforin expression and up-regulation of the lysosomal membrane protein CD107a after SIV Gag stimulation. SIV-specific CD4+ T cells in attenuated SIV-infected animals were increased in frequency in bronchioalveolar lavage and decreased in lymph nodes, consistent with an effector-memory T cell population. The ability of SIVDeltanef to induce a high frequency virus-specific CD4+ T cell response with direct effector function may play a key role in protective immunity produced by vaccination with attenuated SIV strains.
Collapse
Affiliation(s)
- Marie-Claire Gauduin
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, and Partners AIDS Research Center, Infectious Disease Unit, Massachusetts General Hospital, Boston 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ulsenheimer A, Lucas M, Seth NP, Tilman Gerlach J, Gruener NH, Loughry A, Pape GR, Wucherpfennig KW, Diepolder HM, Klenerman P. Transient immunological control during acute hepatitis C virus infection: ex vivo analysis of helper T-cell responses. J Viral Hepat 2006; 13:708-14. [PMID: 16970603 PMCID: PMC4515975 DOI: 10.1111/j.1365-2893.2006.00747.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) readily sets up persistence after acute infection. Cellular immune responses are thought to play a major role in control of the virus. Failure of CD4+ T-cell responses in acute disease is associated with viral persistence but the dynamics of this are poorly understood. We aimed to assess such responses using a novel set of Class II tetrameric complexes (tetramers) to study helper T-cells ex vivo in acute disease. We analysed the HCV-specific CD4+ T-cell response in a patient with acute hepatitis c infection. We were able to track the virus-specific CD4+ T-cells directly ex vivo with HLA DR4 tetramers. Proliferative responses were absent initially, recovered as viral load dropped and were lost again during relapse. Longitudinal tetramer analyses showed expanded populations of antiviral CD4+ T-cells throughout acute infection despite lack of proliferation. A pattern of transient CD4+ T-cell proliferative responses as HCV is partially controlled is observed. Failure to control virus is associated with emergence of 'dysfunctional' CD4+ T-cell populations. Failure to control HCV in acute disease may relate to the capacity to sustain efficient immune responses as virus attempts to 'bounce back' after partial control.
Collapse
Affiliation(s)
- A Ulsenheimer
- Institute for Immunology, University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJR, Klenerman P, Ahmed R, Freeman GJ, Walker BD. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006; 443:350-4. [PMID: 16921384 DOI: 10.1038/nature05115] [Citation(s) in RCA: 2140] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/28/2006] [Indexed: 02/07/2023]
Abstract
Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. The inhibitory receptor programmed death 1 (PD-1; also known as PDCD1), a negative regulator of activated T cells, is markedly upregulated on the surface of exhausted virus-specific CD8 T cells in mice. Blockade of this pathway using antibodies against the PD ligand 1 (PD-L1, also known as CD274) restores CD8 T-cell function and reduces viral load. To investigate the role of PD-1 in a chronic human viral infection, we examined PD-1 expression on human immunodeficiency virus (HIV)-specific CD8 T cells in 71 clade-C-infected people who were naive to anti-HIV treatments, using ten major histocompatibility complex (MHC) class I tetramers specific for frequently targeted epitopes. Here we report that PD-1 is significantly upregulated on these cells, and expression correlates with impaired HIV-specific CD8 T-cell function as well as predictors of disease progression: positively with plasma viral load and inversely with CD4 T-cell count. PD-1 expression on CD4 T cells likewise showed a positive correlation with viral load and an inverse correlation with CD4 T-cell count, and blockade of the pathway augmented HIV-specific CD4 and CD8 T-cell function. These data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function. Moreover, this pathway of reversible T-cell impairment provides a potential target for enhancing the function of exhausted T cells in chronic HIV infection.
Collapse
Affiliation(s)
- Cheryl L Day
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban 4013, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Urbani S, Amadei B, Fisicaro P, Tola D, Orlandini A, Sacchelli L, Mori C, Missale G, Ferrari C. Outcome of acute hepatitis C is related to virus-specific CD4 function and maturation of antiviral memory CD8 responses. Hepatology 2006; 44:126-39. [PMID: 16799989 DOI: 10.1002/hep.21242] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A timely, efficient, and coordinated activation of both CD4 and CD8 T cell subsets following HCV infection is believed to be essential for HCV control. However, to what extent a failure of the individual T cell subsets can contribute to the high propensity of HCV to persist is still largely undefined. To address this issue, we analyzed the breadth, vigor, and quality of CD4 and CD8 responses simultaneously with panels of peptides covering the entire HCV sequence or containing the HLA-A2-binding motif, and with recombinant HCV proteins in 16 patients with acute HCV infection by tetramer staining, ELISPOT, and intracellular cytokine staining for interferon gamma, interleukin (IL)-2, IL-4, and IL-10. Our results indicate that at clinical onset, CD8 responses are similarly weak and narrowly focused in both self-limited and chronically evolving infections. At this stage, CD4 responses are deeply impaired in patients with a chronic outcome as they are weak and of narrow specificity, unlike the strong, broad and T helper 1-oriented CD4 responses associated with resolving infections. Only patients able to finally control infection show maturation of CD8 memory sustained by progressive expansion of CD127+ CD8 cells. Thus, a poor CD8 response in the acute stage of infection may enhance the overall probability of chronic viral persistence. In conclusion, the presence of functional CD4 responses represents one of the factors dictating the fate of infection by directly contributing to control of the virus and by promoting maturation of protective memory CD8 responses.
Collapse
Affiliation(s)
- Simona Urbani
- Laboratory of Viral Immunopathology, Department of Infectious Diseases and Hepatology, Azienda Ospedaliera di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Trapero-Marugán M, García-Buey L, Muñoz C, Quintana NE, Moreno-Monteagudo JA, Borque MJ, Fernández MJ, Salvanés FR, Medina J, Moreno-Otero R. Sustained virological response to peginterferon plus ribavirin in chronic hepatitis C genotype 1 patients is associated with a persistent Th1 immune response. Aliment Pharmacol Ther 2006; 24:117-28. [PMID: 16803610 DOI: 10.1111/j.1365-2036.2006.02954.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND An impairment of cellular immune response may contribute to the persistency of hepatitis C virus infection. AIM To analyse the Th1/Th2 cytokine profile in peripheral blood CD4(+) and CD8(+) T cells from patients with chronic hepatitis C (CHC) during treatment with pegylated interferon-alpha2a plus ribavirin and to correlate the Th1/Th2 balance with virological response (SVR). METHODS Prospective longitudinal study: 44 naïve genotype 1 CHC patients received PEG-IFNalpha2a plus ribavirin for 48 weeks: 26 (59.1%) achieved a SVR, 13 relapsed (29.5%) and 5 (11.4%) were non-responders. Sixteen healthy controls were analysed. The production of IL-4, IFNgamma and TNFalpha by CD4(+) and CD8(+) T cells was measured using flow cytometry, both in resting and phorbol-ester-stimulated cells. RESULTS First three months of treatment: the synthesis of TNFalpha by phorbol-ester-stimulated-CD4(+) T cells was higher in patients with SVR (P < 0.01). At the end of treatment, SVR was associated with higher intracellular expression of IFNgamma by stimulated-CD4(+) and CD8(+) T cells (P < 0.05). At the end of follow-up, a higher intracellular expression of IFNgamma by CD4(+) T cells was associated with a SVR. CONCLUSIONS A Th1-type immune response was associated with achievement of a SVR, as indicated by the persistent elevation of intracellular IFNgamma and TNFalpha.
Collapse
Affiliation(s)
- M Trapero-Marugán
- Gastroenterology and Hepatology Service, Hospital Universitario de La Princesa, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
AIDS and Secondary Immunodeficiency. Immunology 2006. [DOI: 10.1016/b0-323-03399-7/50019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Pires A, Nelson M, Pozniak AL, Fisher M, Gazzard B, Gotch F, Imami N. Mycobacterial immune reconstitution inflammatory syndrome in HIV-1 infection after antiretroviral therapy is associated with deregulated specific T-cell responses: beneficial effect of IL-2 and GM-CSF immunotherapy. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2005; 3:7. [PMID: 16181494 PMCID: PMC1262752 DOI: 10.1186/1476-8518-3-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 09/25/2005] [Indexed: 12/29/2022]
Abstract
BACKGROUND With the advent of antiretroviral therapy (ART) cases of immune reconstitution inflammatory syndrome (IRIS) have increasingly been reported. IRIS usually occurs in individuals with a rapidly rising CD4 T-cell count or percentage upon initiation of ART, who develop a deregulated immune response to infection with or without reactivation of opportunistic organisms. Here, we evaluated rises in absolute CD4 T-cells, and specific CD4 T-cell responses in 4 HIV-1+ individuals presenting with mycobacterial associated IRIS who received in conjunction with ART, IL-2 plus GM-CSF immunotherapy. METHODS We assessed CD4 T-cell counts, HIV-1 RNA loads, phenotype for naïve and activation markers, and in vitro proliferative responses. Results were compared with those observed in 11 matched, successfully treated asymptomatic clinical progressors (CP) with no evidence of opportunistic infections, and uninfected controls. RESULTS Median CD4 T-cell counts in IRIS patients rose from 22 cells/microl before initiation of ART, to 70 cells/microl after 8 months of therapy (median 6.5 fold increase). This coincided with IRIS diagnosis, lower levels of naïve CD4 T-cells, increased expression of immune activation markers, and weak CD4 T-cell responses. In contrast, CP had a median CD4 T-cell counts of 76 cells/microl at baseline, which rose to 249 cells/microl 6 months post ART, when strong T-cell responses were seen in > 80% of patients. Higher levels of expression of immune activation markers were seen in IRIS patients compared to CP and UC (IRIS > CP > UC). Immunotherapy with IL-2 and GM-CSF paralleled clinical recovery. CONCLUSION These data suggest that mycobacterial IRIS is associated with inadequate immune reconstitution rather than vigorous specific T-cell responses, and concomitant administration of IL-2 and GM-CSF immunotherapy with effective ART may correct/augment T-cell immunity in such setting resulting in clinical benefit.
Collapse
Affiliation(s)
- A Pires
- Department of Immunology Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London. UK
| | - M Nelson
- Department of HIV/GU Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London, UK
| | - AL Pozniak
- Department of HIV/GU Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London, UK
| | - M Fisher
- Department of HIV/GU Medicine, Royal Sussex County Hospital, Brighton, UK
| | - B Gazzard
- Department of HIV/GU Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London, UK
| | - F Gotch
- Department of Immunology Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London. UK
| | - N Imami
- Department of Immunology Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London. UK
| |
Collapse
|
48
|
Schulze zur Wiesch J, Lauer GM, Day CL, Kim AY, Ouchi K, Duncan JE, Wurcel AG, Timm J, Jones AM, Mothe B, Allen TM, McGovern B, Lewis-Ximenez L, Sidney J, Sette A, Chung RT, Walker BD. Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:3603-13. [PMID: 16148104 DOI: 10.4049/jimmunol.175.6.3603] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A vigorous hepatitis C virus (HCV)-specific Th cell response is regarded as essential to the immunological control of HCV viremia. The aim of this study was to comprehensively define the breadth and specificity of dominant HCV-specific CD4(+) T cell epitopes in large cohorts of subjects with chronic and spontaneously resolved HCV viremia. Following in vitro stimulation of PBMC, HCV-specific cell cultures from each subject were screened with an overlapping panel of synthetic 20-mer peptides spanning the entire HCV polyprotein. Of 22 subjects who spontaneously controlled HCV viremia, all recognized at least one of a group of six epitopes situated within the nonstructural (NS) proteins NS3, NS4, and NS5, each of which was detected by >30% of subjects, but most subjects recognized additional, more heterogeneous specificities. In contrast, none of the most frequently targeted epitopes was detected by >5% of persons with chronic infection. The most frequently recognized peptides showed promiscuous binding to multiple HLA-DR molecules in in vitro binding assays and were restricted by different HLA-DR molecules in functional assays in different persons. These data demonstrate that predominant CD4(+) T cell epitopes in persons with resolved HCV infection are preferentially located in the nonstructural proteins and are immunogenic in the context of multiple class II molecules. This comprehensive characterization of CD4(+) T cell epitopes in resolved HCV infection provides important information to facilitate studies of immunopathogenesis and HCV vaccine design and evaluation.
Collapse
Affiliation(s)
- Julian Schulze zur Wiesch
- Partners AIDS Research Center and Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
García F, Ruiz L, López-Bernaldo de Quirós JC, Moreno S, Domingo P. Inmunoterapia y vacunas terapéuticas en la infección por VIH. Enferm Infecc Microbiol Clin 2005. [DOI: 10.1016/s0213-005x(05)75164-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
García F, Ruiz L, López-Bernaldo de Quirós JC, Moreno S, Domingo P. Immunotherapy and therapeutic vaccines in HIV infection. Enferm Infecc Microbiol Clin 2005. [DOI: 10.1016/s0213-005x(05)75165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|