1
|
Smid AI, Garforth SJ, Obaid MS, Bollons HR, James JR. Pre-T cell receptor localization and trafficking are independent of its signaling. J Cell Biol 2023; 222:e202212106. [PMID: 37516909 PMCID: PMC10373305 DOI: 10.1083/jcb.202212106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
Expression of the pre-T cell receptor (preTCR) is an important checkpoint during the development of T cells, an essential cell type of our adaptive immune system. The preTCR complex is only transiently expressed and rapidly internalized in developing T cells and is thought to signal in a ligand-independent manner. However, identifying a mechanistic basis for these unique features of the preTCR compared with the final TCR complex has been confounded by the concomitant signaling that is normally present. Thus, we have reconstituted preTCR expression in non-immune cells to uncouple receptor trafficking dynamics from its associated signaling. We find that all the defining features of the preTCR are intrinsic properties of the receptor itself, driven by exposure of an extracellular hydrophobic region, and are not the consequence of receptor activation. Finally, we show that transitory preTCR cell surface expression can sustain tonic signaling in the absence of ligand binding, suggesting how the preTCR can nonetheless drive αβTCR lineage commitment.
Collapse
Affiliation(s)
- Andrei I. Smid
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Sam J. Garforth
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Maryam S. Obaid
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hannah R. Bollons
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - John R. James
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
van der Stegen SJC, Lindenbergh PL, Petrovic RM, Xie H, Diop MP, Alexeeva V, Shi Y, Mansilla-Soto J, Hamieh M, Eyquem J, Cabriolu A, Wang X, Abujarour R, Lee T, Clarke R, Valamehr B, Themeli M, Riviere I, Sadelain M. Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nat Biomed Eng 2022; 6:1284-1297. [PMID: 35941192 PMCID: PMC9669107 DOI: 10.1038/s41551-022-00915-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
Abstract
The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αβ+ CAR T cells that perform similarly to CD8αβ+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αβ+ T cells for a broad range of immunotherapies.
Collapse
Affiliation(s)
- Sjoukje J C van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pieter L Lindenbergh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Roseanna M Petrovic
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyao Xie
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mame P Diop
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Alexeeva
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamad Hamieh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Eyquem
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tom Lee
- Fate Therapeutics Inc, San Diego, CA, USA
| | | | | | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Riviere
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Rodríguez-Caparrós A, Álvarez-Santiago J, del Valle-Pastor MJ, Suñé C, López-Ros J, Hernández-Munain C. Regulation of T-cell Receptor Gene Expression by Three-Dimensional Locus Conformation and Enhancer Function. Int J Mol Sci 2020; 21:E8478. [PMID: 33187197 PMCID: PMC7696796 DOI: 10.3390/ijms21228478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαβ, or TCRγδ which drive thymocyte maturation into αβ or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”—Spanish Scientific Research Council (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), 18016 Granada, Spain; (A.R.-C.); (J.Á.-S.); (M.J.d.V.-P.); (C.S.); (J.L.-R.)
| |
Collapse
|
4
|
Selman WH, Esfandiari E, Filtz TM. Alteration of Bcl11b upon stimulation of both the MAP kinase- and Gsk3-dependent signaling pathways in double-negative thymocytes. Biochem Cell Biol 2018; 97:201-213. [PMID: 30352171 DOI: 10.1139/bcb-2018-0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
B-cell lymphoma/leukemia 11B (Bcl11b) is a transcription factor critical for thymocyte development. We have previously characterized the kinetic post-translational modifications (PTMs) of Bcl11b in double-positive (DP) thymocytes during stimulation of the T cell receptor-activated MAP kinase pathway. However, the PTMs of Bcl11b in thymocytes from other developmental stages in the thymus, primarily double-negative (DN) cells, have not been previously identified. We found that kinetic modifications of Bcl11b in DN cells are somewhat different than the patterns observed in DP cells. Distinct from DP thymocytes, phosphorylation and sumoylation of Bcl11b in DN cells were not oppositely regulated in response to activation of MAP kinase, even though hyper-phosphorylation of Bcl11b coincided with near complete desumoylation. Additionally, prolonged stimulation of the MAP kinase pathway in DN cells, unlike DP thymocytes, did not alter Bcl11b levels of sumoylation or ubiquitinylation, or stability. On the other hand, activation of Wnt-Gsk3-dependent signaling in DN cells resulted in composite dephosphorylation and sumoylation of Bcl11b. Moreover, stimulation of MAP kinase and (or) Wnt signaling pathways differentially affects gene expression of some Bcl11b target and maturation-associated genes. Defining the signaling pathways and regulation of sequence-specific transcription factors by PTMs at various stages of thymopoiesis may improve our understanding of leukemogenesis.
Collapse
Affiliation(s)
- Wisam Hussein Selman
- a Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA.,b College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Elahe Esfandiari
- a Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Theresa M Filtz
- a Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Navabi B, Upton JEM. Primary immunodeficiencies associated with eosinophilia. Allergy Asthma Clin Immunol 2016; 12:27. [PMID: 27222657 PMCID: PMC4878059 DOI: 10.1186/s13223-016-0130-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
Background Eosinophilia is not an uncommon clinical finding. However, diagnosis of its cause can be a dilemma once common culprits, namely infection, allergy and reactive causes are excluded. Primary immunodeficiency disorders (PID) are among known differentials of eosinophilia. However, the list of PIDs typically reported with eosinophilia is small and the literature lacks an inclusive list of PIDs which have been reported with eosinophilia. This motivated us to review the literature for all PIDs which have been described to have elevated eosinophils as this may contribute to an earlier diagnosis of PID and further the understanding of eosinophilia. Methods A retrospective PubMed, and Google Scholar search using the terms “eosinophilia” and “every individual PID” as classified by Expert Committee of the International Union of Immunological Societies with the limit of the English language was performed. Results were assessed to capture case(s) which reported eosinophilia in the context of PID conditions. Absolute eosinophil counts (AEC) were retrieved from manuscripts whenever reported. Results In addition to the typical PID conditions described with eosinophilia, we document that MHC class II deficiency, CD3γ deficiency, STAT1 deficiency (AD form), Kostmann disease, cyclic neutropenia, TCRα deficiency, Papillon-Lefevre syndrome, CD40 deficiency, CD40L deficiency, anhidrotic ectodermal dysplasia with immune deficiency, ataxia-telangiectasia, common variable immunodeficiency disorders (CVID), Blau syndrome, CARD9 deficiency, neonatal onset multisystem inflammatory disease or chronic infantile neurologic cutaneous and articular syndrome (NOMID/CINCA), chronic granulomatous disease, MALT1 deficiency and Roifman syndrome have been noted to have elevated eosinophils. Severe eosinophilia (>5.0 × 109/L) was reported in Omenn syndrome, Wiskott Aldrich syndrome, ADA deficiency, autoimmune lymphoproliferative syndrome, immunodysregulation polyendocrinopathy enteropathy X-linked, STAT3 deficiency, DOCK8 deficiency, CD40 deficiency, MHC II deficiency, Kostmann disease, Papillon-Lefevre syndrome, and CVID. Conclusions This literature review shows that there is an extensive list of PIDs which have been reported with eosinophilia. This list helps clinicians to consider an extended differential diagnoses when tasked with exclusion of PID as a cause for eosinophilia. Electronic supplementary material The online version of this article (doi:10.1186/s13223-016-0130-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Behdad Navabi
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G-1X8 Canada
| | - Julia Elizabeth Mainwaring Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G-1X8 Canada
| |
Collapse
|
6
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
7
|
Ziegler H, Welker C, Sterk M, Haarer J, Rammensee HG, Handgretinger R, Schilbach K. Human Peripheral CD4(+) Vδ1(+) γδT Cells Can Develop into αβT Cells. Front Immunol 2014; 5:645. [PMID: 25709606 PMCID: PMC4329445 DOI: 10.3389/fimmu.2014.00645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
The lifelong generation of αβT cells enables us to continuously build immunity against pathogens and malignancies despite the loss of thymic function with age. Homeostatic proliferation of post-thymic naïve and memory T cells and their transition into effector and long-lived memory cells balance the decreasing output of naïve T cells, and recent research suggests that also αβT-cell development independent from the thymus may occur. However, the sites and mechanisms of extrathymic T-cell development are not yet understood in detail. γδT cells represent a small fraction of the overall T-cell pool, and are endowed with tremendous phenotypic and functional plasticity. γδT cells that express the Vδ1 gene segment are a minor population in human peripheral blood but predominate in epithelial (and inflamed) tissues. Here, we characterize a CD4+ peripheral Vδ1+ γδT-cell subpopulation that expresses stem-cell and progenitor markers and is able to develop into functional αβT cells ex vivo in a simple culture system and in vivo. The route taken by this process resembles thymic T-cell development. However, it involves the re-organization of the Vδ1+ γδTCR into the αβTCR as a consequence of TCR-γ chain downregulation and the expression of surface Vδ1+Vβ+ TCR components, which we believe function as surrogate pre-TCR. This transdifferentiation process is readily detectable in vivo in inflamed tissue. Our study provides a conceptual framework for extrathymic T-cell development and opens up a new vista in immunology that requires adaptive immune responses in infection, autoimmunity, and cancer to be reconsidered.
Collapse
Affiliation(s)
- Hendrik Ziegler
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Christian Welker
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Marco Sterk
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Jan Haarer
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Karin Schilbach
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| |
Collapse
|
8
|
Oda H, Tamehiro N, Patrick MS, Hayakawa K, Suzuki H. Differential requirement for RhoH in development of TCRαβ CD8αα IELs and other types of T cells. Immunol Lett 2013; 151:1-9. [PMID: 23499578 DOI: 10.1016/j.imlet.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/29/2013] [Accepted: 02/21/2013] [Indexed: 11/30/2022]
Abstract
RhoH is a new member of the atypical G proteins exclusively expressed in hematopoietic lineage cells. It has been shown to act as an adaptor for ZAP70, Syk, Lck and Csk kinases in signal transduction, and is required for positive selection of thymocytes as well as activation of peripheral T cells and mast cells. In the present study, we showed that RhoH is required not only for positive selection but also for negative selection of thymocytes. Regarding development of unconventional T cell subsets, development of NKT and regulatory T cells was also inhibited, whereas development of TCRαβ CD8αα intestinal intraepithelial lymphocytes (IEL) was not affected by the absence of RhoH. TCR-dependent in vitro activation of TCRαβ CD8αα IEL required RhoH, suggesting that overall development of IEL does not critically depend on TCR signaling but more on cytokine-dependent expansion and survival in the periphery. Our current results indicate differential requirements for RhoH in the development of TCRαβ CD8αα IELs compared to other subsets of T cells including agonist selected T cells.
Collapse
Affiliation(s)
- Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa-shi, Chiba 272-8516, Japan
| | | | | | | | | |
Collapse
|
9
|
Protein kinase D2 has a restricted but critical role in T-cell antigen receptor signalling in mature T-cells. Biochem J 2012; 442:649-59. [PMID: 22233340 PMCID: PMC3462612 DOI: 10.1042/bj20111700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PKD (protein kinase D) 2 is a serine/threonine kinase activated by diacylglycerol in response to engagement of antigen receptors in lymphocytes. To explore PKD2 regulation and function in TCR (T-cell antigen receptor) signal transduction we expressed TCR complexes with fixed affinity for self antigens in the T-cells of PKD2-null mice or mice deficient in PKD2 catalytic activity. We also developed a single cell assay to quantify PKD2 activation as T-cells respond to developmental stimuli or engagement of α/β TCR complexes in vivo. Strikingly, PKD2 loss caused increases in thymic output, lymphadenopathy and splenomegaly in TCR transgenic mice. The precise magnitude and timing of PKD2 activation during T-cell development is thus critical to regulate thymic homoeostasis. PKD2-null T-cells that exit the thymus have a normal transcriptome, but show a limited and abnormal transcriptional response to antigen. Transcriptional profiling reveals the full consequences of PKD2 loss and maps in detail the selective, but critical, function for PKD2 in signalling by α/β mature TCR complexes in peripheral T-cells.
Collapse
|
10
|
How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 2012; 13:121-8. [PMID: 22261968 DOI: 10.1038/ni.2190] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell repertoire is generated during thymic development in preparation for the response to antigens from pathogens. The T cell repertoire is shaped by positive selection, which requires recognition by the T cell antigen receptor (TCR) of complexes of self peptide and major histocompatibility complex proteins (self-pMHC) with low affinity, and negative selection, which eliminates T cells with TCRs that recognize self-pMHC with high affinity. This generates a repertoire with low affinity for self-pMHC but high affinity for foreign antigens. The TCR must successfully engage both of these ligands for development, homeostasis and immune responses. This review discusses mechanisms underlying the interaction of the TCR with peptide-major histocompatibility complex ligands of varying affinity and highlights signaling mechanisms that enable the TCR to generate different responses to very distinct ligands.
Collapse
|
11
|
Mahtani-Patching J, Neves JF, Pang DJ, Stoenchev KV, Aguirre-Blanco AM, Silva-Santos B, Pennington DJ. PreTCR and TCRγδ signal initiation in thymocyte progenitors does not require domains implicated in receptor oligomerization. Sci Signal 2011; 4:ra47. [PMID: 21775286 PMCID: PMC3475409 DOI: 10.1126/scisignal.2001765] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Whether thymocytes adopt an αβ or a γδ T cell fate in the thymus is determined at the β selection checkpoint by the relatively weak or strong signals that are delivered by either the pre-T cell receptor (preTCR) or the γδ TCR, respectively. Signal initiation at the β selection checkpoint is thought to be independent of ligand engagement of these receptors. Some reports have suggested that receptor oligomerization, which is thought to be mediated by either the immunoglobulin (Ig)-like domain of the preTCRα (pTα) chain or the variable domain of TCRδ, is a unifying mechanism that initiates signaling in early CD4(-)CD8(-) double-negative (DN) thymocyte progenitors. Here, we demonstrate that the extracellular regions of pTα and TCRδ that are implicated in mediating receptor oligomerization were not required for signal initiation from the preTCR or TCRγδ. Indeed, a truncated TCRγδ that lacked all of its extracellular Ig-like domains still formed a signaling-competent TCR that drove cells through the β selection checkpoint. These observations suggest that signal initiation in DN thymocytes is simply a consequence of the surface-pairing of TCR chains, with signal strength being a function of the abundances of surface TCRs. Thus, processes that regulate the surface abundances of TCR complexes in DN cells, such as oligomerization-induced endocytosis, would be predicted to have a major influence in determining whether cells adopt an αβ versus γδ T cell fate.
Collapse
Affiliation(s)
- Juliet Mahtani-Patching
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London, E1 2AT, United Kingdom
| | - Joana F. Neves
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London, E1 2AT, United Kingdom
- Programa Doutoral de Biologia Experimental e Biomedicina, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Dick John Pang
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London, E1 2AT, United Kingdom
| | - Kostadin V. Stoenchev
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London, E1 2AT, United Kingdom
| | - Ana M. Aguirre-Blanco
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London, E1 2AT, United Kingdom
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Daniel J. Pennington
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London, E1 2AT, United Kingdom
| |
Collapse
|
12
|
Berry R, Chen Z, McCluskey J, Rossjohn J. Insight into the basis of autonomous immunoreceptor activation. Trends Immunol 2011; 32:165-70. [PMID: 21354859 DOI: 10.1016/j.it.2011.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 12/16/2022]
Abstract
Expression of the pre-T cell receptor (pTCR) by immature thymocytes is crucial for T cell development. The pTCR comprises an invariant pre-Tα chain that pairs with a newly rearranged TCRβ chain and CD3 signaling components. Despite its similarity to the mature αβTCR, which binds to specific peptide-loaded major histocompatibility molecules, the pTCR functions in a ligand-independent manner. Precisely how pTCR functions autonomously has remained a source of intense debate. Recently, the structure of the extracellular domain of the pTCR has been determined, providing insight into the mechanism of pTCR autonomous signaling. In this review, we reflect on the current understanding of pTCR function and draw comparisons to the mechanisms employed by the mature αβTCR and the related pre-B cell receptor.
Collapse
Affiliation(s)
- Richard Berry
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
13
|
Pang SS, Berry R, Chen Z, Kjer-Nielsen L, Perugini MA, King GF, Wang C, Chew SH, La Gruta NL, Williams NK, Beddoe T, Tiganis T, Cowieson NP, Godfrey DI, Purcell AW, Wilce MCJ, McCluskey J, Rossjohn J. The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature 2010; 467:844-8. [PMID: 20944746 DOI: 10.1038/nature09448] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/23/2010] [Indexed: 11/09/2022]
Abstract
The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR β-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent αβ T-cell lineage differentiation. Whereas αβTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant α-chain (pre-Tα) that pairs with any TCR β-chain (TCRβ) following successful TCR β-gene rearrangement. Here we provide the basis of pre-Tα-TCRβ assembly and pre-TCR dimerization. The pre-Tα chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR α-chain; nevertheless, the mode of association between pre-Tα and TCRβ mirrored that mediated by the Cα-Cβ domains of the αβTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Tα domain to interact with the variable (V) β domain through residues that are highly conserved across the Vβ and joining (J) β gene families, thus mimicking the interactions at the core of the αβTCR's Vα-Vβ interface. Disruption of this pre-Tα-Vβ dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Tα chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR β-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Tα represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.
Collapse
Affiliation(s)
- Siew Siew Pang
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Germ-line elimination of electric charge on pre-T-cell receptor (TCR) impairs autonomous signaling for beta-selection and TCR repertoire formation. Proc Natl Acad Sci U S A 2010; 107:19979-84. [PMID: 21030681 DOI: 10.1073/pnas.1011228107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pre-T-cell receptor (TCR) is crucial for the early T-cell development, but the ligand for pre-TCR remains unidentified. We recently proposed a model that pre-TCR complexes oligomerize spontaneously through interactions of the pre-TCRα chain. To investigate the mechanism underlying this ligand-independent signaling in vivo, we established knock-in mice that express a pre-TCRα mutant lacking charged amino acids (D(22)R(24)R(102)R(117) to A(22)A(24)A(102)A(117); 4A). CD4(+)CD8(+) thymocyte number was significantly reduced in invariant pre-TCRα (pTα(4A/4A)) mice, whereas CD4(-)CD8(-) thymocytes were unaffected. The percentages of double-negative 3 (DN3) cells and γδ T cells were increased in the pTα(4A/4A) thymus, indicating that β-selection is impaired in pTα(4A/4A) mice. Pre-TCR-mediated tyrosine phosphorylation and clonal expansion into double-positive thymocytes were also defective in the knock-in mice. Pre-TCR was expressed at higher levels on pTα(4A/4A) cell surfaces than on those of the wild type, suggesting that the charged residues in pTα are critical for autonomous engagement and subsequent internalization of pre-TCR. Pre-TCR-mediated allelic exclusion of the TCRβ gene was also inhibited in pTα(4A/4A) mice, and thereby, dual TCRβs were expressed on pTα(4A/4A) T cells. Furthermore, the TCRβ chain variable region (Vβ) repertoire of mature T cells was significantly altered in pTα(4A/4A) mice. These results suggest that charged residues of pTα are critical for β-selection, allelic exclusion, and TCRβ repertoire formation.
Collapse
|
15
|
Visan I, Yuan JS, Liu Y, Stanley P, Guidos CJ. Lunatic fringe enhances competition for delta-like Notch ligands but does not overcome defective pre-TCR signaling during thymocyte beta-selection in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 185:4609-17. [PMID: 20844195 DOI: 10.4049/jimmunol.1002008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch1 activation by Delta-like (DL) Notch ligands is essential to induce T cell commitment and to suppress B cell development from thymus-seeding progenitors. Thymus-seeding progenitor competition for DL4 is critically regulated by Lunatic Fringe (Lfng), which glycosylates epidermal growth factor repeats in the Notch1 extracellular domain to enhance binding avidity for DL ligands. Notch1 activation is also essential for the process of β-selection, which drives TCRβ(+) CD4/CD8 double-negative 3 (DN3) precursors to proliferate and generate a large pool of CD4/CD8 double-positive thymocytes. We have used several genetic approaches to determine the importance of Lfng-Notch1 interactions in regulating competition of preselection and postselection DN3 thymocytes for DL ligands in vivo. Surprisingly, although Lfng overexpression enhanced DL4 binding by preselection DN3a thymocytes, it did not confer them with a competitive advantage in mixed chimeras. In contrast, Lfng overexpression enhanced competition of post-β-selection DN3b precursors for DL ligands. Lfng modification of O-fucose in the Notch1 ligand-binding domain contributed to but was not solely responsible for the developmental effects of Lfng overexpression. Although previous studies have suggested that pre-TCR-deficient DN3 thymocytes compete poorly for DL ligands, Lfng overexpression did not fully restore double-positive thymocyte pools from DN3b cells with pre-TCR signaling defects. Thus, pre-TCR and Notch signaling have largely nonoverlapping functions in β-selection. Collectively, our data reveal that Lfng enhances DN3b precursor competition for intrathymic DL ligands to maximize Notch-induced clonal expansion during the earliest stage of β-selection.
Collapse
Affiliation(s)
- Ioana Visan
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Fayard E, Moncayo G, Hemmings BA, Holländer GA. Phosphatidylinositol 3-kinase signaling in thymocytes: the need for stringent control. Sci Signal 2010; 3:re5. [PMID: 20716765 DOI: 10.1126/scisignal.3135re5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The thymus serves as the primary site for the lifelong formation of new T lymphocytes; hence, it is essential for the maintenance of an effective immune system. Although thymocyte development has been widely studied, the mechanisms involved are incompletely defined. A comprehensive understanding of the molecular events that control regular thymocyte development will not only shed light on the physiological control of T cell differentiation but also probably provide insight into the pathophysiology of T cell immunodeficiencies, the molecular basis that underpins autoimmunity, and the mechanisms that instigate the formation of T cell lymphomas. Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in thymocyte development, although not all of their downstream mediators have yet been identified. Here, we discuss experimental evidence that argues for a critical role of the PI3K-phosphoinositide-dependent protein kinase (PDK1)-protein kinase B (PKB) signaling pathway in the development of both normal and malignant thymocytes, and we highlight molecules that can potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Elisabeth Fayard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
17
|
Nunes‐Cabaço H, Ribot JC, Caramalho Í, Serra‐Caetano A, Silva‐Santos B, Sousa AE. Foxp3 induction in human and murine thymus precedes the CD4
+
CD8
+
stage but requires early T‐cell receptor expression. Immunol Cell Biol 2010; 88:523-8. [DOI: 10.1038/icb.2010.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Helena Nunes‐Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisboa Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisboa Portugal
- Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Íris Caramalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisboa Portugal
| | - Ana Serra‐Caetano
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisboa Portugal
| | - Bruno Silva‐Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisboa Portugal
- Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
18
|
Yu S, Zhao DM, Jothi R, Xue HH. Critical requirement of GABPalpha for normal T cell development. J Biol Chem 2010; 285:10179-88. [PMID: 20139079 DOI: 10.1074/jbc.m109.088740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GA binding protein (GABP) consists of GABPalpha and GABPbeta subunits. GABPalpha is a member of Ets family transcription factors and binds DNA via its conserved Ets domain, whereas GABPbeta does not bind DNA but possesses transactivation activity. In T cells, GABP has been demonstrated to regulate the gene expression of interleukin-7 receptor alpha chain (IL-7Ralpha) and postulated to be critical in T cell development. To directly investigate its function in early thymocyte development, we used GABPalpha conditional knock-out mice where the exons encoding the Ets DNA-binding domain are flanked with LoxP sites. Ablation of GABPalpha with the Lck-Cre transgene greatly diminished thymic cellularity, blocked thymocyte development at the double negative 3 (DN3) stage, and resulted in reduced expression of T cell receptor (TCR) beta chain in DN4 thymocytes. By chromatin immunoprecipitation, we demonstrated in DN thymocytes that GABPalpha is associated with transcription initiation sites of genes encoding key molecules in TCR rearrangements. Among these GABP-associated genes, knockdown of GABPalpha expression by RNA interference diminished expression of DNA ligase IV, Artemis, and Ku80 components in DNA-dependent protein kinase complex. Interestingly, forced expression of prearranged TCR but not IL-7Ralpha can alleviate the DN3 block in GABPalpha-targeted mice. Our observations collectively indicate that in addition to regulating IL-7Ralpha expression, GABP is critically required for TCR rearrangements and hence normal T cell development.
Collapse
Affiliation(s)
- Shuyang Yu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
19
|
Kreslavsky T, Gleimer M, von Boehmer H. Alphabeta versus gammadelta lineage choice at the first TCR-controlled checkpoint. Curr Opin Immunol 2010; 22:185-92. [PMID: 20074925 DOI: 10.1016/j.coi.2009.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 01/13/2023]
Abstract
Alphabeta and gammadelta T cells develop in the thymus from a common precursor. Although lineages initially were defined by the type of TCR they express, it soon became clear that the TCR type per se does not play a deterministic role in the lineage decision, since in various transgenic and knockout models, as well as in a small fraction of cells in wt mice, the TCRgammadelta can drive the differentiation of alphabeta lineage cells and the TCRalphabeta can drive differentiation of gammadelta lineage cells. Thus until recently it was unclear what determines lineage choice and at which stage the two lineages diverge. Recent observations suggest that TCR signal strength determines lineage fate and that lineage choice is made at or shortly after the first TCR-controlled checkpoint. While it is clear that the decision between alphabeta and gammadelta lineages is made at the first TCR-controlled checkpoint and the alphabeta sublineages split off later, it is less clear whether gammadelta sublineages divert already at the first TCR-controlled checkpoint or later. Recent experiments support the former view.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Liu X, Nguyen P, Liu W, Cheng C, Steeves M, Obenauer JC, Ma J, Geiger TL. T cell receptor CDR3 sequence but not recognition characteristics distinguish autoreactive effector and Foxp3(+) regulatory T cells. Immunity 2009; 31:909-20. [PMID: 20005134 DOI: 10.1016/j.immuni.2009.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 09/21/2009] [Accepted: 09/25/2009] [Indexed: 01/12/2023]
Abstract
The source, specificity, and plasticity of the forkhead box transcription factor 3 (Foxp3)(+) regulatory T (Treg) and conventional T (Tconv) cell populations active at sites of autoimmune pathology are not well characterized. To evaluate this, we combined global repertoire analyses and functional assessments of isolated T cell receptors (TCR) from TCRalpha retrogenic mice with autoimmune encephalomyelitis. Treg and Tconv cell TCR repertoires were distinct, and autoantigen-specific Treg and Tconv cells were enriched in diseased tissue. Autoantigen sensitivity and fine specificity of these cells intersected, implying that differences in responsiveness were not responsible for lineage specification. Notably, autoreactive Treg and Tconv cells could be fully distinguished by an acidic versus aliphatic variation at a single TCR CDR3 residue. Our results imply that ontogenically distinct Treg and Tconv cell repertoires with convergent specificities for autoantigen respond during autoimmunity and argue against more than limited plasticity between Treg and Tconv cells during autoimmune inflammation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Leung MWL, Shen S, Lafaille JJ. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. ACTA ACUST UNITED AC 2009; 206:2121-30. [PMID: 19737865 PMCID: PMC2757883 DOI: 10.1084/jem.20091033] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Numerous studies have highlighted the importance of high-affinity interactions between T cell receptors (TCRs) and their ligands in the selection of Foxp3+ regulatory T cells (T reg cells). To determine the role of the TCR in directing T cells into the Foxp3+ lineage, we generated transgenic (Tg) mice expressing TCRs from Foxp3+ cells. Initial analyses of the TCR Tg mice crossed with RAG-deficient mice showed that the percentage of Foxp3+ cells was very low. However, intrathymic injection and bone marrow chimera experiments showed a saturable increase of the Foxp3+ population when T reg TCR Tg cells were present in low numbers. Furthermore, when analyzing whole thymi of T reg TCR Tg RAG-deficient mice, we found significantly more Foxp3+ cells than in conventional T cell TCR Tg mice. Our results indicate that although the TCR has an instructive role in determining Foxp3 expression, selection of Foxp3+ individual clones in the thymus is limited by a very small niche.
Collapse
Affiliation(s)
- Monica W L Leung
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
22
|
Bezman NA, Baker RG, Lenox LE, Jordan MS, Koretzky GA. Cutting edge: rescue of pre-TCR but not mature TCR signaling in mice expressing membrane-targeted SLP-76. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5183-7. [PMID: 19380761 PMCID: PMC2727718 DOI: 10.4049/jimmunol.0802176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa) organizes signaling from immunoreceptors, including the platelet collagen receptor, the pre-TCR, and the TCR, and is required for T cell development. In this study we examine a mouse in which wild-type SLP-76 is replaced with a mutant constitutively targeted to the cell membrane. Membrane-targeted SLP-76 (MTS) supports ITAM signaling in platelets and from the pre-TCR. Signaling from the mature TCR, however, is defective in MTS thymocytes, resulting in failed T cell differentiation. Defective thymic selection by MTS is not rescued by a SLP-76 mutant whose localization is restricted to the cytosol. Thus, fixed localization of SLP-76 reveals differential requirements for the subcellular localization of signaling complexes downstream of the pre-TCR vs mature TCR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Gene Knock-In Techniques
- Gene Targeting
- Humans
- Jurkat Cells
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Protein Precursors/physiology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Natalie A. Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Rebecca G. Baker
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Laurie E. Lenox
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Martha S. Jordan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary A. Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Zabel M, Greenwood C, Thackray AM, Pulford B, Rens W, Bujdoso R. Perturbation of T-cell development by insertional mutation of a PrP transgene. Immunology 2008; 127:226-36. [PMID: 19143847 DOI: 10.1111/j.1365-2567.2008.02944.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The normal cellular form of the prion protein PrP(C) is a glycosylphosphatidylinositol-linked cell-surface glycoprotein expressed primarily by cells of the nervous and immune systems. There is evidence to suggest that PrP(C) is involved in cell signalling and cellular homeostasis. We have investigated the immune composition of peripheral lymphoid tissue in PrP-/-, wild-type, tg19 and tga20 strains of mice, which express 0, 1-, 3-5- and 4-7-fold higher levels of PrP(C), respectively, relative to wild-type mice. Our data show that tga20 mice have a reduced number of spleen T-cell receptor (TCR)-alphabeta(+) T cells and an increased number of TCR-gammadelta(+) T cells compared with wild-type mice. This was not seen in tg19 mice, which also express elevated levels of PrP(C). In addition, we have found that the Prnp transgene in the tga20 genome is located centrally on chromosome 17, in or around genes involved in T-cell development. Significantly, mRNA transcripts from pre-TCR-alpha (pTalpha), a T-cell development gene located on mouse chromosome 17, are drastically reduced in tga20 mice, indicative of a perturbation in pTalpha gene regulation. We propose that the immune cell phenotype of tga20 mice may be caused by the insertional mutation of the Prnp transgene into the pTalpha gene or its regulatory elements.
Collapse
Affiliation(s)
- Mark Zabel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | | | | | | | | | | |
Collapse
|
24
|
Navarro MN, Nusspaumer G, Fuentes P, González-García S, Alcain J, Toribio ML. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function. Blood 2007; 110:4331-40. [PMID: 17823309 DOI: 10.1182/blood-2007-06-094938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.
Collapse
Affiliation(s)
- María N Navarro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Hayday AC, Pennington DJ. Key factors in the organized chaos of early T cell development. Nat Immunol 2007; 8:137-44. [PMID: 17242687 DOI: 10.1038/ni1436] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 12/12/2006] [Indexed: 11/09/2022]
Abstract
A fundamental issue in T cell development is what controls whether a thymocyte differentiates into a gammadelta T cell or an alphabeta T cell, each defined by their distinct T cell receptor. Most likely, lessons learned in studying that issue will also provide insight into how the thymus produces T cell subsets with distinct functional and regulatory potentials. Here we review recent experiments, focusing on three factors that regulate thymocyte differentiation up to and including the expression of the first products of antigen receptor gene rearrangements. Those factors are the archetypal developmental regulator Notch, intrinsic signals emanating from antigen-receptor complexes, and trans conditioning, which reflects communication between different subsets of thymocytes. We also review new findings on the positive selection of gammadelta T cells and on extrathymic T cell development.
Collapse
Affiliation(s)
- Adrian C Hayday
- King's College School of Medicine at Guy's Hospital, London SE1 9RT, UK
| | | |
Collapse
|
26
|
Leng Q, Ge Q, Nguyen T, Eisen HN, Chen J. Stage-dependent reactivity of thymocytes to self-peptide--MHC complexes. Proc Natl Acad Sci U S A 2007; 104:5038-43. [PMID: 17360333 PMCID: PMC1829260 DOI: 10.1073/pnas.0700674104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mice that express a transgene for the 2C T cell antigen-receptor (TCR) and lack a recombinase-activating gene (2C(+)RAG(-/-) mice) most of the peripheral T cells are CD8(+), a few are CD4(+), and a significant fraction are CD4(-)CD8(-) [double negative (DN)]. The DN 2C cells, like DN T cells that are abundant in various other alphabeta TCR-transgenic mice, appear to be derived directly from DN thymocytes that prematurely express the TCR transgene. The DN 2C cells are virtually absent in mice deficient in major histocompatibility complex class II (MHC-II) but more abundant in mice deficient in MHC-I, suggesting that the DN 2C thymocytes are positively selected by self-peptide-MHC-II (pMHC-II) complexes and negatively selected by self-pMHC-I complexes. The pMHC-I complexes, however, positively select CD8(+) 2C T cells in the same mice. The different effects of thymic pMHC-I on DN and CD8(+) thymocytes are consistent with the finding that DN 2C thymocytes are more sensitive than more mature CD4(+)CD8(+) [double positive (DP)] thymocytes to a weak pMHC-I agonist for the 2C TCR. Together with previous evidence that DP thymocytes respond more sensitively than T cells in the periphery to weak pMHC agonists, the findings suggest progressive decreases in responsiveness to self-pMHC-I complexes as thymocytes develop from DN to DP thymocytes and then to mature naïve T cells in the periphery.
Collapse
Affiliation(s)
- Qibin Leng
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Qing Ge
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tam Nguyen
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Jianzhu Chen
- *To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
27
|
Garbe AI, von Boehmer H. TCR and Notch synergize in αβ versus γδ lineage choice. Trends Immunol 2007; 28:124-31. [PMID: 17261380 DOI: 10.1016/j.it.2007.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/15/2006] [Accepted: 01/18/2007] [Indexed: 11/16/2022]
Abstract
At two checkpoints, T cell development is controlled by T cell receptor (TCR) signaling, which determines survival and lineage commitment. At the first of these checkpoints, signaling by the pre-TCR, the gammadeltaTCR or the alphabetaTCR has a major but nonexclusive impact on whether cells will become CD4-CD8- gammadelta or CD4+CD8+ alphabeta lineage cells. Pre-TCR signals synergize with moderate Notch signals to generate alphabeta lineage cells. Relatively strong signals by the gammadeltaTCR (or early expressed alphabetaTCR) in the absence of Notch signaling are sufficient to yield gammadelta lineage cells. However, relatively weak signals of the latter two receptors combined with strong Notch signaling result in the formation of alphabeta lineage cells that generate a diverse alphabetaTCR repertoire in pre-TCR-deficient mice. It remains to be determined whether TCR and/or Notch signals instruct or confirm predetermined lineage fate.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Gene Rearrangement, T-Lymphocyte
- Humans
- Lymphocyte Activation
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Interleukin-7/analysis
- Receptors, Notch/physiology
- Signal Transduction/physiology
- Transgenes
Collapse
Affiliation(s)
- Annette I Garbe
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Yamasaki S, Saito T. Molecular basis for pre-TCR-mediated autonomous signaling. Trends Immunol 2007; 28:39-43. [PMID: 17126602 DOI: 10.1016/j.it.2006.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/27/2006] [Accepted: 11/16/2006] [Indexed: 02/05/2023]
Abstract
The pre-T-cell receptor (pre-TCR) is a multimeric complex composed of a nascent TCRbeta chain, an invariant pre-TCRalpha (pTalpha) chain and CD3 molecules, and is crucial for early T-cell development. Despite its structural similarity to the mature alphabetaTCR, which requires MHC-antigen for receptor triggering, the pre-TCR is proposed to initiate signals in a ligand-independent manner. However, the molecular mechanism underlying the autonomous signaling is still unclear. Recent studies have revealed that pTalpha possesses unique characteristics that promote autonomous signaling. In this review, we summarize current data relating to the molecular mechanism underlying the initiation of pre-TCR-mediated autonomous signaling.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | |
Collapse
|
29
|
Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S, Alegre ML, Kee BL, Ferrando A, Miele L, Aifantis I. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2006; 13:70-7. [PMID: 17173050 DOI: 10.1038/nm1524] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 11/20/2006] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), unlike other ALL types, is only infrequently associated with chromosomal aberrations, but it was recently shown that most individuals with T-ALL carry activating mutations in the NOTCH1 gene. However, the signaling pathways and target genes responsible for Notch1-induced neoplastic transformation remain undefined. We report here that constitutively active Notch1 activates the NF-kappaB pathway transcriptionally and via the IkappaB kinase (IKK) complex, thereby causing increased expression of several well characterized target genes of NF-kappaB in bone marrow hematopoietic stem cells and progenitors. Our observations demonstrate that the NF-kappaB pathway is highly active in established human T-ALL and that inhibition of the pathway can efficiently restrict tumor growth both in vitro and in vivo. These findings identify NF-kappaB as one of the major mediators of Notch1-induced transformation and suggest that the NF-kappaB pathway is a potential target of future therapies of T-ALL.
Collapse
MESH Headings
- Animals
- Boronic Acids/pharmacology
- Bortezomib
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- COS Cells
- Cell Line
- Cell Line, Tumor
- Cell Survival/drug effects
- Chlorocebus aethiops
- DNA-Binding Proteins/genetics
- Gene Expression Profiling
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Interleukin Receptor Common gamma Subunit/genetics
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/metabolism
- Leukemia, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Mutation
- NF-kappa B/metabolism
- Pyrazines/pharmacology
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Survival Analysis
Collapse
Affiliation(s)
- Tomas Vilimas
- Department of Medicine, Section of Rheumatology, University of Chicago, 5841 South Maryland Avenue Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ferrero I, Mancini SJC, Grosjean F, Wilson A, Otten L, MacDonald HR. TCRgamma silencing during alphabeta T cell development depends upon pre-TCR-induced proliferation. THE JOURNAL OF IMMUNOLOGY 2006; 177:6038-43. [PMID: 17056529 DOI: 10.4049/jimmunol.177.9.6038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymus development, immature T cells become committed to two distinct lineages based upon expression of alphabeta or gammadelta TCR. In the alphabeta lineage, developing thymocytes progressively extinguish transcription of the TCRgamma genes by a poorly understood process known as gamma silencing. We show that alphabeta lineage thymocytes in mice lacking a functional pre-TCR undergo limited proliferation and fail to silence TCRgamma genes during development. Stimulation of pre-TCR-deficient immature thymocytes with anti-CD3 Abs does not directly down-regulate TCRgamma transcription but restores TCRgamma silencing following proliferation. Collectively our data reveal an important role for pre-TCR induced proliferation in activating the TCRgamma silencer in alphabeta lineage thymocytes, a process that may reinforce alphabeta or gammadelta lineage commitment.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- CD3 Complex/immunology
- Cell Lineage/genetics
- Cell Proliferation
- Gene Silencing
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/agonists
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Silencer Elements, Transcriptional/genetics
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/growth & development
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Isabel Ferrero
- Ludwig Institute for Cancer Research-Lausanne Branch, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Guidos CJ. Synergy between the pre-T cell receptor and Notch: cementing the alphabeta lineage choice. ACTA ACUST UNITED AC 2006; 203:2233-7. [PMID: 17000868 PMCID: PMC2118108 DOI: 10.1084/jem.20060998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Notch1 signaling suppresses B cell development and promotes T lineage commitment in thymus-seeding hematopoietic progenitors. Notch1 is also activated in early T cell progenitors, but the functions of these later Notch signals have not been clearly defined. Recent studies reveal that Notch signaling is not essential for pre-T cell receptor (TCR) expression or gammadelta lineage choice. Rather, pre-TCR signaling enhances progenitor competitiveness for limiting Notch ligands, leading to preferential expansion of TCRbeta-bearing progenitors.
Collapse
Affiliation(s)
- Cynthia J Guidos
- Program in Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5G 1L7.
| |
Collapse
|
32
|
Maillard I, Tu L, Sambandam A, Yashiro-Ohtani Y, Millholland J, Keeshan K, Shestova O, Xu L, Bhandoola A, Pear WS. The requirement for Notch signaling at the beta-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. ACTA ACUST UNITED AC 2006; 203:2239-45. [PMID: 16966428 PMCID: PMC2118105 DOI: 10.1084/jem.20061020] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetic inactivation of Notch signaling in CD4(-)CD8(-) double-negative (DN) thymocytes was previously shown to impair T cell receptor (TCR) gene rearrangement and to cause a partial block in CD4(+)CD8(+) double-positive (DP) thymocyte development in mice. In contrast, in vitro cultures suggested that Notch was absolutely required for the generation of DP thymocytes independent of pre-TCR expression and activity. To resolve the respective role of Notch and the pre-TCR, we inhibited Notch-mediated transcriptional activation in vivo with a green fluorescent protein-tagged dominant-negative Mastermind-like 1 (DNMAML) that allowed us to track single cells incapable of Notch signaling. DNMAML expression in DN cells led to decreased production of DP thymocytes but only to a modest decrease in intracellular TCRbeta expression. DNMAML attenuated the pre-TCR-associated increase in cell size and CD27 expression. TCRbeta or TCRalphabeta transgenes failed to rescue DNMAML-related defects. Intrathymic injections of DNMAML(-) or DNMAML(+) DN thymocytes revealed a complete DN/DP transition block, with production of DNMAML(+) DP thymocytes only from cells undergoing late Notch inactivation. These findings indicate that the Notch requirement during the beta-selection checkpoint in vivo is absolute and independent of the pre-TCR, and it depends on transcriptional activation by Notch via the CSL/RBP-J-MAML complex.
Collapse
Affiliation(s)
- Ivan Maillard
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aifantis I, Bassing CH, Garbe AI, Sawai K, Alt FW, von Boehmer H. The E delta enhancer controls the generation of CD4- CD8- alphabetaTCR-expressing T cells that can give rise to different lineages of alphabeta T cells. J Exp Med 2006; 203:1543-50. [PMID: 16754716 PMCID: PMC2118313 DOI: 10.1084/jem.20051711] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 05/05/2006] [Indexed: 11/12/2022] Open
Abstract
It is well established that the pre-T cell receptor for antigen (TCR) is responsible for efficient expansion and differentiation of thymocytes with productive TCRbeta rearrangements. However, Ptcra- as well as Tcra-targeting experiments have suggested that the early expression of Tcra in CD4- CD8- cells can partially rescue the development of alphabeta CD4+ CD8+ cells in Ptcra-deficient mice. In this study, we show that the TCR E delta but not E alpha enhancer function is required for the cell surface expression of alphabetaTCR on immature CD4- CD8- T cell precursors, which play a crucial role in promoting alphabeta T cell development in the absence of pre-TCR. Thus, alphabetaTCR expression by CD4- CD8- thymocytes not only represents a transgenic artifact but occurs under physiological conditions.
Collapse
MESH Headings
- Animals
- Artifacts
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Enhancer Elements, Genetic
- Gene Rearrangement, T-Lymphocyte/immunology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Iannis Aifantis
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Garbe AI, Krueger A, Gounari F, Zúñiga-Pflücker JC, von Boehmer H. Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. ACTA ACUST UNITED AC 2006; 203:1579-90. [PMID: 16754723 PMCID: PMC2118312 DOI: 10.1084/jem.20060474] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thymic precursors expressing the pre–T cell receptor (TCR), the γδTCR, or the αβTCR can all enter the CD4+8+ αβ lineage, albeit with different efficacy. Here it is shown that proliferation and differentiation of precursors with the different TCRs into αβ lineage cells require Notch signaling at the DN3 stage of thymic development. At the DN4 stage, Notch signaling still significantly contributes to the generation of αβ T cells. In particular, in αβ lineage commitment, the pre-TCR synergizes more efficiently with Notch signals than the other two TCRs, whereas γδTCR-expressing cells can survive and expand in the absence of Notch signals, even though Notch signaling enhances their proliferation. These observations suggest a new model of αβ versus γδ lineage choice in which lineage fate is determined by the extent of synergy between TCR and Notch signaling and in which the evolutionarily recent advent of the cell-autonomously signaling pre-TCR increased the efficacy of αβ T cell generation.
Collapse
MESH Headings
- Animals
- Homeodomain Proteins/genetics
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Annette I Garbe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
35
|
Wei DG, Curran SA, Savage PB, Teyton L, Bendelac A. Mechanisms imposing the Vbeta bias of Valpha14 natural killer T cells and consequences for microbial glycolipid recognition. ACTA ACUST UNITED AC 2006; 203:1197-207. [PMID: 16651387 PMCID: PMC2121203 DOI: 10.1084/jem.20060418] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mouse and human natural killer T (NKT) cells recognize a restricted set of glycosphingolipids presented by CD1d molecules, including self iGb3 and microbial α-glycuronosylceramides. The importance of the canonical Vα14-Jα18 TCR α chain for antigen recognition by NKT cells is well recognized, but the mechanisms underlying the Vβ8, Vβ7, and Vβ2 bias in mouse have not been explored. To study the influences of thymic selection and the constraints of pairing with Vα14-Jα18, we have created a population of mature T cells expressing Vα14-Jα18 TCR α chain in CD1d-deficient mice and studied its recognition properties in vitro and in vivo. Transgenic cells expressed a diverse Vβ repertoire but their recognition of endogenous ligands and synthetic iGb3 was restricted to the same biased Vβ repertoire as expressed in natural NKT cells. In contrast, α-GalCer, a synthetic homologue of microbial α-glycuronosylceramides, was recognized by a broader set of Vβ chains, including the biased NKT set but also Vβ6, Vβ9, Vβ10, and Vβ14. These surprising findings demonstrate that, whereas Vβ8, Vβ7, and Vβ2 represent the optimal solution for recognition of endogenous ligand, many Vβ chains that are potentially useful for the recognition of foreign lipids fail to be selected in the NKT cell repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, CD1d
- Autoantigens/immunology
- Bacteria/immunology
- Cells, Cultured
- Glycosphingolipids/immunology
- Humans
- Killer Cells, Natural/immunology
- Ligands
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Datsen G Wei
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
36
|
Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev 2006; 209:159-69. [PMID: 16448541 DOI: 10.1111/j.0105-2896.2006.00343.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pre-T-cell receptor (pre-TCR) functions and the study of early thymocyte development continue to fascinate immunologists more than 10 years after the first description and cloning of the receptor. Although multiple reports have addressed several aspects of pre-TCR signaling and function, its ability to regulate diverse functions, including proliferation, survival, and allelic exclusion of the TCR-beta locus, remains an open question. What fascinates us is its central role in the fine balance between physiological differentiation and thymocyte transformation that leads to T-cell leukemia and lymphomas. In this review, we integrate pre-TCR signaling pathways and study their effects on the regulation of T-cell progenitor cell-cycle entry and cell survival. We also connect aberrant pre-TCR signaling to deregulated proliferation and apoptotic balances and thymocyte transformation.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction
- T-Lymphocytes/cytology
- Thymus Gland/cytology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Iannis Aifantis
- University of Chicago, Department of Medicine, Section of Rheumatology, Committees of Immunology, Cancer and Developmental Biology, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
37
|
Yamasaki S, Ishikawa E, Sakuma M, Ogata K, Sakata-Sogawa K, Hiroshima M, Wiest DL, Tokunaga M, Saito T. Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development. Nat Immunol 2005; 7:67-75. [PMID: 16327787 DOI: 10.1038/ni1290] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 10/13/2005] [Indexed: 01/08/2023]
Abstract
The pre-T cell receptor (TCR) is crucial for early T cell development and is proposed to function in a ligand-independent way. However, the molecular mechanism underlying the autonomous signals remains elusive. Here we show that the pre-TCR complex spontaneously formed oligomers. Specific charged residues in the extracellular domain of the pre-TCR alpha-chain mediated formation of the oligomers in vitro. Alteration of these residues eliminated the ability of the pre-TCR alpha-chain to support pre-TCR signaling in vivo. Dimerization but not raft localization of CD3epsilon was sufficient to simulate pre-TCR function and promote beta-selection. These results suggest that the pre-TCR complex can deliver its signal autonomously through oligomerization of the pre-TCR alpha-chain mediated by charged residues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/immunology
- Hematopoietic Stem Cells/cytology
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Baldwin TA, Sandau MM, Jameson SC, Hogquist KA. The timing of TCR alpha expression critically influences T cell development and selection. ACTA ACUST UNITED AC 2005; 202:111-21. [PMID: 15998791 PMCID: PMC2212895 DOI: 10.1084/jem.20050359] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sequential rearrangement of the T cell receptor for antigen (TCR) beta and alpha chains is a hallmark of thymocyte development. This temporal control is lost in TCR transgenics because the alpha chain is expressed prematurely at the CD4- CD8- double negative (DN) stage. To test the importance of this, we expressed the HY alpha chain at the physiological CD4+ CD8+ double positive (DP) stage. The reduced DP and increased DN cellularity typically seen in TCR transgenics was not observed when the alpha chain was expressed at the appropriate stage. Surprisingly, antigen-driven selection events were also altered. In male mice, thymocyte deletion now occurred at the single positive or medullary stage. In addition, no expansion of CD8 alpha alpha intestinal intraepithelial lymphocytes (IELs) was observed, despite the fact that HY transgenics have been used to model IEL development. Collectively, these data establish the importance of proper timing of TCR expression in thymic development and selection and emphasize the need to use models that most accurately reflect the physiologic process.
Collapse
Affiliation(s)
- Troy A Baldwin
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
39
|
von Boehmer H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat Rev Immunol 2005; 5:571-7. [PMID: 15999096 DOI: 10.1038/nri1636] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pre-T-cell receptor (pre-TCR) has a crucial role in the normal development of alphabeta T cells. Different views have emerged concerning the structure and function of the pre-TCR. This molecular complex can be viewed as a variant of the alphabeta-TCR in which the pre-TCR alpha-chain that is covalently associated with the TCR beta-chain is a 'surrogate' TCR alpha-chain. Alternatively, the unique structure of the pre-TCR might be associated with a unique function, owing to evolutionary selection of a pre-TCR alpha-chain that has different capabilities from the TCR alpha-chain. As described here, I consider that experimental evidence favours the latter view.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Terra R, Louis I, Le Blanc R, Ouellet S, Zúñiga-Pflücker JC, Perreault C. T-cell generation by lymph node resident progenitor cells. Blood 2005; 106:193-200. [PMID: 15746078 DOI: 10.1182/blood-2004-12-4886] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the thymus, 2 types of Lin–Sca-1+ (lineage-negative stem cell antigen-1–positive) progenitors can generate T-lineage cells: c-Kithi interleukin-7 receptor α–negative (c-KithiIL-7Rα–) and c-KitloIL-7Rα+. While c-KithiIL-7Rα– progenitors are absent, c-KitloIL-7Rα+ progenitors are abundant in the lymph nodes (LNs). c-KitloIL-7Rα+ progenitors undergo abortive T-cell commitment in the LNs and become arrested in the G1 phase of the cell cycle because they fail both to up-regulate c-myb, c-myc, and cyclin D2 and to repress junB, p16INK4a, and p21Cip1/WAF. As a result, development of LN c-KitloIL-7Rα+ progenitors is blocked at an intermediate CD44+CD25lo development stage in vivo, and LN-derived progenitors fail to generate mature T cells when cultured with OP9-DL1 stromal cells. LN stroma can provide key signals for T-cell development including IL-7, Kit ligand, and Delta-like–1 but lacks Wnt4 and Wnt7b transcripts. LN c-KitloIL-7Rα+ progenitors are able to generate mature T cells when cultured with stromal cells producing wingless-related MMTV integration site 4 (Wnt4) or upon in vivo exposure to oncostatin M whose signaling pathway intersects with Wnt. Thus, supplying Wnt signals to c-KitloIL-7Rα+ progenitors may be sufficient to transform the LN into a primary T-lymphoid organ. These data provide unique insights into the essence of a primary T-lymphoid organ and into how a cryptic extrathymic T-cell development pathway can be amplified.
Collapse
Affiliation(s)
- Rafik Terra
- Institute of Research in Immunology and Cancer, University of Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Call ME, Wucherpfennig KW. The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu Rev Immunol 2005; 23:101-25. [PMID: 15771567 DOI: 10.1146/annurev.immunol.23.021704.115625] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have demonstrated that cell membranes provide a unique environment for protein-protein and protein-lipid interactions that are critical for the assembly and function of the T cell receptor (TCR)-CD3 complex. Highly specific polar interactions among transmembrane (TM) domains that are uniquely favorable in the lipid environment organize the association of the three signaling dimers with the TCR. Each of these three assembly steps depends on the formation of a three-helix interface between one basic and two acidic residues in the membrane environment. The same polar TM residues that drive assembly also play a central role in quality control and export by directing the retention and degradation of free subunits and partial complexes, while membrane proximal cytoplasmic signals control recycling and degradation of surface receptors. Recent studies also suggest that interactions between the membrane and the cytoplasmic domains of CD3 proteins may be important for receptor triggering.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Cell Membrane/immunology
- Endoplasmic Reticulum/immunology
- Humans
- Membrane Lipids/metabolism
- Models, Immunological
- Models, Molecular
- Multiprotein Complexes
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Matthew E Call
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
42
|
van den Brandt J, Kwon SH, Hünig T, McPherson KG, Reichardt HM. Sustained Pre-TCR Expression in Notch1IC-Transgenic Rats Impairs T Cell Maturation and Selection. THE JOURNAL OF IMMUNOLOGY 2005; 174:7845-52. [PMID: 15944289 DOI: 10.4049/jimmunol.174.12.7845] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch1 is involved in directing cell fate decisions in a variety of developmental scenarios. Extending previous experiments in mice, we generated transgenic rats expressing the intracellular domain of Notch1 in the thymus. Importantly, this leads to sustained expression of the pre-TCR throughout thymocyte development, accompanied by a reduction of alphabetaTCR complexes. In addition, re-expression of RAG-1 and RAG-2 in TCRbeta(+) cells is impaired, and the Valpha repertoire is altered. Consequently, thymocytes in transgenic rats do not undergo positive selection and largely fail to progress to the single positive stage. According to our model, the previously reported effects of Notch1 on the CD4/CD8 cell fate decision may be explained by a differential sensitivity of the two lineages toward altered TCR signaling.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cells, Cultured
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Female
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/physiology
- Mice
- Protein Structure, Tertiary/genetics
- Rats
- Rats, Inbred Lew
- Receptor, Notch1
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Jens van den Brandt
- Institute for Virology and Immunobiology, Molecular Immunology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Hayes SM, Li L, Love PE. TCR Signal Strength Influences αβ/γδ Lineage Fate. Immunity 2005; 22:583-93. [PMID: 15894276 DOI: 10.1016/j.immuni.2005.03.014] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/16/2005] [Accepted: 03/28/2005] [Indexed: 10/25/2022]
Abstract
Signals transduced by T cell antigen receptors (TCRs) have been shown to be critical for alphabeta and gammadelta T cell development, but their role in lineage determination remains poorly defined. Two models have been forwarded for alphabeta/gammadelta lineage choice: the instructive model and the stochastic model. Recent data, however, are inconsistent with either model. In this study, we devised an experimental system in which lineage fate was controlled exclusively by the gammadeltaTCR. We then analyzed the impact of TCR signal strength on alphabeta/gammadelta lineage development by altering the surface expression or signaling potential of the gammadeltaTCR complex. We found that increasing the gammadeltaTCR signal strength favored gammadelta lineage development, whereas weakening the gammadeltaTCR signal favored alphabeta lineage development. These results support a model in which the strength of the TCR signal is a critical determinant in the lineage fate decision.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Differentiation/immunology
- DNA, Complementary/genetics
- Humans
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Sandra M Hayes
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
44
|
Mandal M, Borowski C, Palomero T, Ferrando AA, Oberdoerffer P, Meng F, Ruiz-Vela A, Ciofani M, Zuniga-Pflucker JC, Screpanti I, Look AT, Korsmeyer SJ, Rajewsky K, von Boehmer H, Aifantis I. The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival. ACTA ACUST UNITED AC 2005; 201:603-14. [PMID: 15728238 PMCID: PMC2213063 DOI: 10.1084/jem.20041924] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pre–T cell receptor (TCR) is expressed early during T cell development and imposes a tight selection for differentiating T cell progenitors. Pre-TCR–expressing cells are selected to survive and differentiate further, whereas pre-TCR− cells are “negatively” selected to die. The mechanisms of pre-TCR–mediated survival are poorly understood. Here, we describe the induction of the antiapoptotic gene BCL2A1 (A1) as a potential mechanism regulating inhibition of pre–T cell death. We characterize in detail the signaling pathway involved in A1 induction and show that A1 expression can induce pre–T cell survival by inhibiting activation of caspase-3. Moreover, we show that in vitro “knockdown” of A1 expression can compromise survival even in the presence of a functional pre-TCR. Finally, we suggest that pre-TCR–induced A1 overexpression can contribute to T cell leukemia in both mice and humans.
Collapse
Affiliation(s)
- Malay Mandal
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
von Boehmer H. Selection of the T-Cell Repertoire: Receptor-Controlled Checkpoints in T-Cell Development. Adv Immunol 2004; 84:201-38. [PMID: 15246254 DOI: 10.1016/s0065-2776(04)84006-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| |
Collapse
|