1
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Takada S, Weitering TJ, van Os NJH, Du L, Pico-Knijnenburg I, Kuipers TB, Mei H, Salzer E, Willemsen MAAP, Weemaes CMR, Pan-Hammarstrom Q, van der Burg M. Causative mechanisms and clinical impact of immunoglobulin deficiencies in ataxia telangiectasia. J Allergy Clin Immunol 2024; 153:1392-1405. [PMID: 38280573 DOI: 10.1016/j.jaci.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.
Collapse
Affiliation(s)
- Sanami Takada
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J Weitering
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke J H van Os
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth Salzer
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Qiang Pan-Hammarstrom
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Kabrani E, Saha T, Di Virgilio M. DNA repair and antibody diversification: the 53BP1 paradigm. Trends Immunol 2023; 44:782-791. [PMID: 37640588 DOI: 10.1016/j.it.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Freie Universität Berlin, Berlin 14195, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
4
|
Lee JY, Chou NL, Yu YR, Shih HA, Lin HW, Lee CK, Chang MS. PHRF1 promotes the class switch recombination of IgA in CH12F3-2A cells. PLoS One 2023; 18:e0285159. [PMID: 37540725 PMCID: PMC10403053 DOI: 10.1371/journal.pone.0285159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 08/06/2023] Open
Abstract
PHRF1 is an E3 ligase that promotes TGF-β signaling by ubiquitinating a homeodomain repressor TG-interacting factor (TGIF). The suppression of PHRF1 activity by PML-RARα facilitates the progression of acute promyelocytic leukemia (APL). PHRF1 also contributes to non-homologous end-joining in response to DNA damage by linking H3K36me3 and NBS1 with DNA repair machinery. However, its role in class switch recombination (CSR) is not well understood. In this study, we report the importance of PHRF1 in IgA switching in CH12F3-2A cells and CD19-Cre mice. Our studies revealed that Crispr-Cas9 mediated PHRF1 knockout and shRNA-silenced CH12F3-2A cells reduced IgA production, as well as decreased the amounts of PARP1, NELF-A, and NELF-D. The introduction of PARP1 could partially restore IgA production in PHRF1 knockout cells. Intriguingly, IgA, as well as IgG1, IgG2a, and IgG3, switchings were not significantly decreased in PHRF1 deficient splenic B lymphocytes isolated from CD19-Cre mice. The levels of PARP1 and NELF-D were not decreased in PHRF1-depleted primary splenic B cells. Overall, our findings suggest that PHRF1 may modulate IgA switching in CH12F3-2A cells.
Collapse
Affiliation(s)
- Jin-Yu Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Nai-Lin Chou
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ya-Ru Yu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-An Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chine-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Menolfi D, Lee BJ, Zhang H, Jiang W, Bowen NE, Wang Y, Zhao J, Holmes A, Gershik S, Rabadan R, Kim B, Zha S. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. Nat Commun 2023; 14:3618. [PMID: 37336885 DOI: 10.1038/s41467-023-39332-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication and dNTP levels can be restored in Atr-deficient cells by suppressing origin firing, such as partial inhibition of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and importantly also other replication factors.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Hanwen Zhang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Antony Holmes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Steven Gershik
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Department of Pathology and Cell Biology, Herbert Irvine Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY, 10032, USA.
| |
Collapse
|
6
|
Menolfi D, Lee BJ, Zhang H, Jiang W, Bowen NE, Wang Y, Zhao J, Holmes A, Gershik S, Rabadan R, Kim B, Zha S. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542515. [PMID: 37292881 PMCID: PMC10246007 DOI: 10.1101/2023.05.26.542515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently in early S phase, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication can be restored in Atr-deficient cells by pathways that suppress origin firing, such as downregulation of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and other replication factors.
Collapse
|
7
|
Hao Q, Zhan C, Lian C, Luo S, Cao W, Wang B, Xie X, Ye X, Gui T, Voena C, Pighi C, Wang Y, Tian Y, Wang X, Dai P, Cai Y, Liu X, Ouyang S, Sun S, Hu Q, Liu J, Ye Y, Zhao J, Lu A, Wang JY, Huang C, Su B, Meng FL, Chiarle R, Pan-Hammarström Q, Yeap LS. DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification. Sci Immunol 2023; 8:eade1167. [PMID: 36961908 PMCID: PMC10351598 DOI: 10.1126/sciimmunol.ade1167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Insertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood. We carried out ultra-deep profiling of indels and systematically dissected the underlying mechanisms using passenger-immunoglobulin mouse models. We found that activation-induced cytidine deaminase-dependent ±1-base pair (bp) indels are the most prevalent indel events, biasing deleterious outcomes, whereas longer in-frame indels, especially insertions that can extend the CDR3 length, are rare outcomes. The ±1-bp indels are channeled by base excision repair, but longer indels require additional DNA-processing factors. Ectopic expression of a DNA exonuclease or perturbation of the balance of DNA polymerases can increase the frequency of longer indels, thus paving the way for models that can generate antibodies with long CDR3. Our study reveals the mechanisms that generate beneficial and deleterious indels during the process of antibody somatic hypermutation and has implications in understanding the detrimental genomic alterations in various conditions, including tumorigenesis.
Collapse
Affiliation(s)
- Qian Hao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chuanzong Zhan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Chaoyang Lian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Simin Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Binbin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xia Xie
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
- Present address: Kindstar Global Precision Medicine Institute, Wuhan, China and Kindstar Biotech, Wuhan, China
| | - Tuantuan Gui
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
| | - Chiara Pighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Yanyan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Ying Tian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Xin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Yanni Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Xiaojing Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Shengqun Ouyang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Shiqi Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Departments of Endocrinology and Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; 320 Yueyang Road, Shanghai 200031, China
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino; 10126 Torino, Italy
- Department of Pathology, Boston Children’s Hospital, and Harvard Medical School; Boston, MA 02115, USA
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet; SE141-83, Huddinge, Stockholm, Sweden
| | - Leng-Siew Yeap
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine; 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
8
|
Sible E, Attaway M, Fiorica G, Michel G, Chaudhuri J, Vuong BQ. Ataxia Telangiectasia Mutated and MSH2 Control Blunt DNA End Joining in Ig Class Switch Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:369-376. [PMID: 36603026 PMCID: PMC9915862 DOI: 10.4049/jimmunol.2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sμ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.
Collapse
Affiliation(s)
- Emily Sible
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Mary Attaway
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Giuseppe Fiorica
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Genesis Michel
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | | | - Bao Q. Vuong
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| |
Collapse
|
9
|
Zhao H, Hartono SR, de Vera KMF, Yu Z, Satchi K, Zhao T, Sciammas R, Sanz L, Chédin F, Barlow J. Senataxin and RNase H2 act redundantly to suppress genome instability during class switch recombination. eLife 2022; 11:e78917. [PMID: 36542058 PMCID: PMC9771370 DOI: 10.7554/elife.78917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.
Collapse
Affiliation(s)
- Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Stella R Hartono
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | | | - Zheyuan Yu
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
- Graduate Group in Biostatistics, University of California, DavisDavisUnited States
| | - Krishni Satchi
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Tracy Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California, DavisDavisUnited States
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jacqueline Barlow
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| |
Collapse
|
10
|
Oudinet C, Zhang X, Puget N, Kyritsis N, Leduc C, Braikia FZ, Dauba A, Alt FW, Khamlichi AA. Switch Tandem Repeats Influence the Choice of the Alternative End-Joining Pathway in Immunoglobulin Class Switch Recombination. Front Immunol 2022; 13:870933. [PMID: 35651614 PMCID: PMC9149575 DOI: 10.3389/fimmu.2022.870933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Immunoglobulin class switch recombination (CSR) plays an important role in humoral imm\une responses by changing the effector functions of antibodies. CSR occurs between highly repetitive switch (S) sequences located upstream of immunoglobulin constant gene exons. Switch sequences differ in size, the nature of their repeats, and the density of the motifs targeted by the activation-induced cytidine deaminase (AID), the enzyme that initiates CSR. CSR involves double-strand breaks (DSBs) at the universal Sµ donor region and one of the acceptor S regions. The DSBs ends are fused by the classical non-homologous end-joining (C-NHEJ) and the alternative-NHEJ (A-NHEJ) pathways. Of the two pathways, the A-NHEJ displays a bias towards longer junctional micro-homologies (MHs). The Sµ region displays features that distinguish it from other S regions, but the molecular basis of Sµ specificity is ill-understood. We used a mouse line in which the downstream Sγ3 region was put under the control of the Eµ enhancer, which regulates Sµ, and analyzed its recombination activity by CSR-HTGTS. Here, we show that provision of Eµ enhancer to Sγ3 is sufficient to confer the recombinational features of Sµ to Sγ3, including efficient AID recruitment, enhanced internal deletions and robust donor function in CSR. Moreover, junctions involving Sγ3 display a bias for longer MH irrespective of sequence homology with switch acceptor sites. The data suggest that the propensity for increased MH usage is an intrinsic property of Sγ3 sequence, and that the tandem repeats of the donor site influence the choice of the A-NHEJ.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Xuefei Zhang
- Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Department of Genetics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nadine Puget
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Nia Kyritsis
- Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Department of Genetics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Claire Leduc
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Howard Hughes Medical Institute, Department of Genetics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
11
|
Luo S, Qiao R, Zhang X. DNA Damage Response and Repair in Adaptive Immunity. Front Cell Dev Biol 2022; 10:884873. [PMID: 35663402 PMCID: PMC9157429 DOI: 10.3389/fcell.2022.884873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
The diversification of B-cell receptor (BCR), as well as its secreted product, antibody, is a hallmark of adaptive immunity, which has more specific roles in fighting against pathogens. The antibody diversification is from recombination-activating gene (RAG)-initiated V(D)J recombination, activation-induced cytidine deaminase (AID)-initiated class switch recombination (CSR), and V(D)J exon somatic hypermutation (SHM). The proper repair of RAG- and AID-initiated DNA lesions and double-strand breaks (DSBs) is required for promoting antibody diversification, suppressing genomic instability, and oncogenic translocations. DNA damage response (DDR) factors and DSB end-joining factors are recruited to the RAG- and AID-initiated DNA lesions and DSBs to coordinately resolve them for generating productive recombination products during antibody diversification. Recently, cohesin-mediated loop extrusion is proposed to be the underlying mechanism of V(D)J recombination and CSR, which plays essential roles in promoting the orientation-biased deletional end-joining . Here, we will discuss the mechanism of DNA damage repair in antibody diversification.
Collapse
Affiliation(s)
- Sha Luo
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Ruolin Qiao
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Xuefei Zhang
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
12
|
Cirillo E, Polizzi A, Soresina A, Prencipe R, Giardino G, Cancrini C, Finocchi A, Rivalta B, Dellepiane RM, Baselli LA, Montin D, Trizzino A, Consolini R, Azzari C, Ricci S, Lodi L, Quinti I, Milito C, Leonardi L, Duse M, Carrabba M, Fabio G, Bertolini P, Coccia P, D'Alba I, Pession A, Conti F, Zecca M, Lunardi C, Bianco ML, Presti S, Sciuto L, Micheli R, Bruzzese D, Lougaris V, Badolato R, Plebani A, Chessa L, Pignata C. Progressive Depletion of B and T Lymphocytes in Patients with Ataxia Telangiectasia: Results of the Italian Primary Immunodeficiency Network. J Clin Immunol 2022; 42:783-797. [PMID: 35257272 PMCID: PMC9166859 DOI: 10.1007/s10875-022-01234-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
Ataxia telangiectasia (AT) is a rare neurodegenerative genetic disorder due to bi-allelic mutations in the Ataxia Telangiectasia Mutated (ATM) gene. The aim of this paper is to better define the immunological profile over time, the clinical immune-related manifestations at diagnosis and during follow-up, and to attempt a genotype-phenotype correlation of an Italian cohort of AT patients. Retrospective data of 69 AT patients diagnosed between December 1984 and November 2019 were collected from the database of the Italian Primary Immunodeficiency Network. Patients were classified at diagnosis as lymphopenic (Group A) or non-lymphopenic (Group B). Fifty eight out of 69 AT patients (84%) were genetically characterized and distinguished according to the type of mutations in truncating/truncating (TT; 27 patients), non-truncating (NT)/T (28 patients), and NT/NT (5 patients). In 3 patients, only one mutation was detected. Data on age at onset and at diagnosis, cellular and humoral compartment at diagnosis and follow-up, infectious diseases, signs of immune dysregulation, cancer, and survival were analyzed and compared to the genotype. Lymphopenia at diagnosis was related per se to earlier age at onset. Progressive reduction of cellular compartment occurred during the follow-up with a gradual reduction of T and B cell number. Most patients of Group A carried bi-allelic truncating mutations, had a more severe B cell lymphopenia, and a reduced life expectancy. A trend to higher frequency of interstitial lung disease, immune dysregulation, and malignancy was noted in Group B patients. Lymphopenia at the onset and the T/T genotype are associated with a worst clinical course. Several mechanisms may underlie the premature and progressive immune decline in AT subjects.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy
| | - Caterina Cancrini
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Finocchi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Beatrice Rivalta
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rosa M Dellepiane
- Departments of Pediatrics, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia A Baselli
- Departments of Pediatrics, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina and Benfratelli Hospital, Palermo, Italy
| | - Rita Consolini
- Section of Pediatrics Immunology and Rheumatology, Department of Pediatrics, University of Pisa, Pisa, Italy
| | - Chiara Azzari
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Silvia Ricci
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Lodi
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leonardi
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Bertolini
- Pediatric Hematology Oncology Unit, Azienda Ospedaliero Universitaria of Parma, Parma, Italy
| | - Paola Coccia
- Division of Pediatric Hematology and Oncology, Ospedale G. Salesi, Ancona, Italy
| | - Irene D'Alba
- Division of Pediatric Hematology and Oncology, Ospedale G. Salesi, Ancona, Italy
| | - Andrea Pession
- Unit of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Francesca Conti
- Unit of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Manuela Lo Bianco
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Santiago Presti
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Laura Sciuto
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Roberto Micheli
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Dario Bruzzese
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili Di Brescia, Brescia, Italy
| | | | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, via S. Pansini, 5-80131, Naples, Italy.
| |
Collapse
|
13
|
Sun X, Bai J, Xu J, Xi X, Gu M, Zhu C, Xue H, Chen C, Dong J. Multiple DSB Resection Activities Redundantly Promote Alternative End Joining-Mediated Class Switch Recombination. Front Cell Dev Biol 2021; 9:767624. [PMID: 34926456 PMCID: PMC8671047 DOI: 10.3389/fcell.2021.767624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023] Open
Abstract
Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.
Collapse
Affiliation(s)
- Xikui Sun
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jingning Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiaoli Xi
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Gu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengming Zhu
- Research Center of the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
14
|
Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. ACTA ACUST UNITED AC 2021; 2:115-125. [PMID: 33817557 PMCID: PMC7996122 DOI: 10.1007/s42764-021-00035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Abstract
The adaptive immune system can diversify the antigen receptors to eliminate various pathogens through programmed DNA lesions at antigen receptor genes. In immune diversification, general DNA repair machineries are applied to transform the programmed DNA lesions into gene mutation or recombination events with common and unique features. Here we focus on antibody class switch recombination (CSR), and review the initiation of base damages, the conversion of damaged base to DNA double-strand break, and the ligation of broken ends. With an emphasis on the unique features in CSR, we discuss recent advances in the understanding of DNA repair/replication coordination, and ERCC6L2-mediated deletional recombination. We further elaborate the application of CSR in end-joining, resection and translesion synthesis assays. In the time of the COVID-19 pandemic, we hope it help to understand the generation of therapeutic antibodies.
Collapse
|
15
|
ATM: Translating the DNA Damage Response to Adaptive Immunity. Trends Immunol 2021; 42:350-365. [PMID: 33663955 DOI: 10.1016/j.it.2021.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
Collapse
|
16
|
Milanovic M, Shao Z, Estes VM, Wang XS, Menolfi D, Lin X, Lee BJ, Xu J, Cupo OM, Wang D, Zha S. FATC Domain Deletion Compromises ATM Protein Stability, Blocks Lymphocyte Development, and Promotes Lymphomagenesis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1228-1239. [PMID: 33536256 DOI: 10.4049/jimmunol.2000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm RX , corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm RX/RX mice compared with Atm -/- . Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; .,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
17
|
Milanovic M, Sprinzen L, Menolfi D, Lee JH, Yamamoto K, Li Y, Lee BJ, Xu J, Estes VM, Wang D, Mckinnon PJ, Paull TT, Zha S. The Cancer-Associated ATM R3008H Mutation Reveals the Link between ATM Activation and Its Exchange. Cancer Res 2021; 81:426-437. [PMID: 33239428 PMCID: PMC8137556 DOI: 10.1158/0008-5472.can-20-2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.
Collapse
Affiliation(s)
- Maja Milanovic
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Lisa Sprinzen
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Demis Menolfi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Ji-Hoon Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Kenta Yamamoto
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
- Department of Pathology and Cell Biology, Pathobiology and Human Disease Graduate Program, Vagelos College for Physicians and Surgeons, Columbia University, New York, New York
| | - Yang Li
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brian J Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Jun Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Verna M Estes
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York City, New York.
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York City, New York
| |
Collapse
|
18
|
Bröckelmann PJ, de Jong MRW, Jachimowicz RD. Targeting DNA Repair, Cell Cycle, and Tumor Microenvironment in B Cell Lymphoma. Cells 2020; 9:E2287. [PMID: 33066395 PMCID: PMC7602196 DOI: 10.3390/cells9102287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023] Open
Abstract
The DNA double-strand break (DSB) is the most cytotoxic lesion and compromises genome stability. In an attempt to efficiently repair DSBs, cells activate ATM kinase, which orchestrates the DNA damage response (DDR) by activating cell cycle checkpoints and initiating DSB repair pathways. In physiological B cell development, however, programmed DSBs are generated as intermediates for effective immune responses and the maintenance of genomic integrity. Disturbances of these pathways are at the heart of B cell lymphomagenesis. Here, we review the role of DNA repair and cell cycle control on B cell development and lymphomagenesis. In addition, we highlight the intricate relationship between the DDR and the tumor microenvironment (TME). Lastly, we provide a clinical perspective by highlighting treatment possibilities of defective DDR signaling and the TME in mantle cell lymphoma, which serves as a blueprint for B cell lymphomas.
Collapse
Affiliation(s)
- Paul J. Bröckelmann
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, 50937 Cologne, Germany
| | - Mathilde R. W. de Jong
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ron D. Jachimowicz
- Max Planck Research Group Mechanisms of DNA Repair, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
19
|
Moeini Shad T, Yousefi B, Amirifar P, Delavari S, Rae W, Kokhaei P, Abolhassani H, Aghamohammadi A, Yazdani R. Variable Abnormalities in T and B Cell Subsets in Ataxia Telangiectasia. J Clin Immunol 2020; 41:76-88. [PMID: 33052516 DOI: 10.1007/s10875-020-00881-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a rare genetic condition, caused by biallelic deleterious variants in the ATM gene, and has variable immunological abnormalities. This study aimed to examine immunologic parameters reflecting cell development, activation, proliferation, and class switch recombination (CSR) and determine their relationship to the clinical phenotype in AT patients. METHODS In this study, 40 patients with a confirmed diagnosis of AT from the Iranian immunodeficiency registry center and 28 age-sex matched healthy controls were enrolled. We compared peripheral B and T cell subsets and T cell proliferation response to CD3/CD28 stimulation in AT patients with and without CSR defects using flow cytometry. RESULTS A significant decrease in naïve, transitional, switched memory, and IgM only memory B cells, along with a sharp increase in the marginal zone-like and CD21low B cells was observed in the patients. We also found CD4+ and CD8+ naïve, central memory, and terminally differentiated effector memory CD4+ (TEMRA) T cells were decreased. CD4+ and CD8+ effector memory, CD8+ TEMRA, and CD4+ regulatory T cells were significantly elevated in our patients. CD4+ T cell proliferation was markedly impaired compared to the healthy controls. Moreover, immunological investigations of 15 AT patients with CSR defect revealed a significant reduction in the marginal zone, switched memory, and more intense defects in IgM only memory B cells, CD4+ naïve and central memory T cells. CONCLUSION The present study revealed that patients with AT have a broad spectrum of cellular and humoral deficiencies. Therefore, a detailed evaluation of T and B cell subsets increases understanding of the disease in patients and the risk of infection.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Sundaravinayagam D, Rahjouei A, Andreani M, Tupiņa D, Balasubramanian S, Saha T, Delgado-Benito V, Coralluzzo V, Daumke O, Di Virgilio M. 53BP1 Supports Immunoglobulin Class Switch Recombination Independently of Its DNA Double-Strand Break End Protection Function. Cell Rep 2020; 28:1389-1399.e6. [PMID: 31390554 PMCID: PMC6693562 DOI: 10.1016/j.celrep.2019.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023] Open
Abstract
Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector functions of antibodies. CSR occurs via the formation and non-homologous end joining (NHEJ) repair of programmed DNA double-strand breaks (DSBs) at the immunoglobulin heavy chain locus. The DNA repair factors 53BP1 and Rif1 promote NHEJ and CSR by protecting DSBs against resection. However, to what extent repression of DNA end resection contributes to CSR is unknown. Here, we show that B lymphocytes devoid of 53BP1-Rif1-dependent DSB end protection activity undergo robust CSR. Inactivation of specific sets of phospho-sites within 53BP1 N-terminal SQ/TQ motifs abrogates Rif1 recruitment and inhibition of resection but only mildly reduces CSR. Furthermore, mutations within 53BP1 oligomerization domain abolish CSR without substantially affecting DNA end processing. Thus, inhibition of DNA end resection does not correlate with CSR efficiency, indicating that regulation of DSB processing is not a key determinant step in CSR. 53BP1 oligomerization is largely dispensable for inhibition of DSB resection 53BP1 higher order oligomerization is a pre-requisite for CSR B lymphocytes devoid of 53BP1-Rif1 DSB end protection activity undergo robust CSR 53BP1-mediated DSB end mobility is dispensable for CSR
Collapse
Affiliation(s)
- Devakumar Sundaravinayagam
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Ali Rahjouei
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Matteo Andreani
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Dagnija Tupiņa
- Laboratory of Structural Biology of Membrane-Associated Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Sandhya Balasubramanian
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Tannishtha Saha
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Verónica Delgado-Benito
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Violeta Coralluzzo
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Oliver Daumke
- Laboratory of Structural Biology of Membrane-Associated Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Michela Di Virgilio
- Laboratory of DNA Repair and Maintenance of Genome Stability, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The most serious DNA damage, DNA double strand breaks (DNA-dsb), leads to mutagenesis, carcinogenesis or apoptosis if left unrepaired. Non-homologous end joining (NHEJ) is the principle repair pathway employed by mammalian cells to repair DNA-dsb. Several proteins are involved in this pathway, defects in which can lead to human disease. This review updates on the most recent information available for the specific diseases associated with the pathway. RECENT FINDINGS A new member of the NHEJ pathway, PAXX, has been identified, although no human disease has been associated with it. The clinical phenotypes of Artemis, DNA ligase 4, Cernunnos-XLF and DNA-PKcs deficiency have been extended. The role of haematopoietic stem cell transplantation, following reduced intensity conditioning chemotherapy, for many of these diseases is being advanced. In the era of newborn screening, urgent genetic diagnosis is necessary to correctly target appropriate treatment for patients with DNA-dsb repair disorders.
Collapse
Affiliation(s)
- Mary A Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Clinical Resource Building, Floor 4, Block 2, Newcastle upon Tyne, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
22
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
23
|
Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion. Cell Biosci 2020; 10:8. [PMID: 32015826 PMCID: PMC6990542 DOI: 10.1186/s13578-020-0376-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
DNA damage, especially DNA double strand breaks (DSBs) and replication stress, activates a complex post-translational network termed DNA damage response (DDR). Our review focuses on three PI3-kinase related protein kinases-ATM, ATR and DNA-PKcs, which situate at the apex of the mammalian DDR. They are recruited to and activated at the DNA damage sites by their respective sensor protein complexes-MRE11/RAD50/NBS1 for ATM, RPA/ATRIP for ATR and KU70-KU80/86 (XRCC6/XRCC5) for DNA-PKcs. Upon activation, ATM, ATR and DNA-PKcs phosphorylate a large number of partially overlapping substrates to promote efficient and accurate DNA repair and to coordinate DNA repair with other DNA metabolic events (e.g., transcription, replication and mitosis). At the organism level, robust DDR is critical for normal development, aging, stem cell maintenance and regeneration, and physiological genomic rearrangements in lymphocytes and germ cells. In addition to endogenous damage, oncogene-induced replication stresses and genotoxic chemotherapies also activate DDR. On one hand, DDR factors suppress genomic instability to prevent malignant transformation. On the other hand, targeting DDR enhances the therapeutic effects of anti-cancer chemotherapy, which led to the development of specific kinase inhibitors for ATM, ATR and DNA-PKcs. Using mouse models expressing kinase dead ATM, ATR and DNA-PKcs, an unexpected structural function of these kinases was revealed, where the expression of catalytically inactive kinases causes more genomic instability than the loss of the proteins themselves. The spectrum of genomic instabilities and physiological consequences are unique for each kinase and depends on their activating complexes, suggesting a model in which the catalysis is coupled with DNA/chromatin release and catalytic inhibition leads to the persistence of the kinases at the DNA lesion, which in turn affects repair pathway choice and outcomes. Here we discuss the experimental evidences supporting this mode of action and their implications in the design and use of specific kinase inhibitors for ATM, ATR and DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Demis Menolfi
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032 USA
| |
Collapse
|
24
|
Mandola AB, Reid B, Sirror R, Brager R, Dent P, Chakroborty P, Bulman DE, Roifman CM. Ataxia Telangiectasia Diagnosed on Newborn Screening-Case Cohort of 5 Years' Experience. Front Immunol 2019; 10:2940. [PMID: 31921190 PMCID: PMC6932992 DOI: 10.3389/fimmu.2019.02940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022] Open
Abstract
Ataxia telangiectasia (AT) is a genetic condition caused by mutations involving ATM (Ataxia Telangiectasia Mutated). This gene is responsible for the expression of a DNA double stranded break repair kinase, the ATM protein kinase. The syndrome encompasses combined immunodeficiency and various degrees of neurological abnormalities and increased risk of malignancy. Typically, patients present early in life with delay in neurological milestones, but very infrequently, with life threatening infections typical of a profound T cell deficiency. It would therefore be unexpected to identify this condition immediately after birth using T cell receptor excision circle (TREC)-based newborn screening (NBS) for SCID. We sought to evaluate the frequency of AT detected by NBS, and to assess immunity as well as the genetic aberrations associated with this early presentation. Here, we describe the clinical, laboratory, and genetic features of patients diagnosed with AT through the Ontario NBS program for SCID, and followed in our center since its inception in 2013. Four patients were diagnosed with AT as a result of low TRECs on NBS. In each case, whole exome sequencing was diagnostic. All of our patients had compound heterozygous mutations involving the FRAP-ATM-TRRAP (FAT) domain of the ATM gene, which appears critical for kinase activity and is highly sensitive to mutagenesis. Our patients presented with profound lymphopenia involving both B and T cells. The ratio of naïve/memory CD45+RA/RO T cells population was variable. T cell repertoire showed decreased T cell diversity. Two out of four patients had decreased specific antibody response to vaccination and hypogammaglobulinemia requiring IVIG replacement. In two patients, profound decreased responses to phytohemagglutinin stimulation was observed. In the other two patients, the initial robust response declined with time. In summary, the rate of detection of AT through NBS had been surprisingly high at our center. One case was identified per year, while the total rate for SCID has been five new cases per year. This early detection may allow for better prospective evaluation of AT shortly after birth, and may assist in formulating early and more effective interventions both for the neurological as well as the immune abnormalities in this syndrome.
Collapse
Affiliation(s)
- Amarilla B Mandola
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| | - Brenda Reid
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| | - Raga Sirror
- Paediatric Allergy/Immunology, Thunder Bay Regional Health Sciences Center, North Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Rae Brager
- Division of Rheumatology, Immunology, and Allergy, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, ON, Canada
| | - Peter Dent
- Division of Rheumatology, Immunology, and Allergy, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, ON, Canada
| | - Pranesh Chakroborty
- Department of Pediatrics, CHEO Research Institute and Newborn Screening Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Dennis E Bulman
- Department of Pediatrics, CHEO Research Institute and Newborn Screening Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,The Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, the Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
25
|
Nicolas L, Cols M, Smolkin R, Fernandez KC, Yewdell WT, Yen WF, Zha S, Vuong BQ, Chaudhuri J. Cutting Edge: ATM Influences Germinal Center Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3137-3142. [PMID: 31028119 PMCID: PMC6529280 DOI: 10.4049/jimmunol.1801033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/09/2019] [Indexed: 01/21/2023]
Abstract
The DNA damage response protein ATM has long been known to influence class switch recombination in ex vivo-cultured B cells. However, an assessment of B cell-intrinsic requirement of ATM in humoral responses in vivo was confounded by the fact that its germline deletion affects T cell function, and B:T cell interactions are critical for in vivo immune responses. In this study, we demonstrate that B cell-specific deletion of ATM in mice leads to reduction in germinal center (GC) frequency and size in response to immunization. We find that loss of ATM induces apoptosis of GC B cells, likely due to unresolved DNA lesions in cells attempting to undergo class-switch recombination. Accordingly, suboptimal GC responses in ATM-deficient animals are characterized by decreased titers of class-switched Abs and decreased rates of somatic hypermutation. These results unmask the critical B cell-intrinsic role of ATM in maintaining an optimal GC response following immunization.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Montserrat Cols
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ryan Smolkin
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Keith C Fernandez
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - William T Yewdell
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pediatrics, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; and
| | - Bao Q Vuong
- Department of Biology, City College of New York, City University of New York, New York, NY 10031
| | - Jayanta Chaudhuri
- Immunology Program, Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
26
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Abstract
DNA damage occurs on exposure to genotoxic agents and during physiological DNA transactions. DNA double-strand breaks (DSBs) are particularly dangerous lesions that activate DNA damage response (DDR) kinases, leading to initiation of a canonical DDR (cDDR). This response includes activation of cell cycle checkpoints and engagement of pathways that repair the DNA DSBs to maintain genomic integrity. In adaptive immune cells, programmed DNA DSBs are generated at precise genomic locations during the assembly and diversification of lymphocyte antigen receptor genes. In innate immune cells, the production of genotoxic agents, such as reactive nitrogen molecules, in response to pathogens can also cause genomic DNA DSBs. These DSBs in adaptive and innate immune cells activate the cDDR. However, recent studies have demonstrated that they also activate non-canonical DDRs (ncDDRs) that regulate cell type-specific processes that are important for innate and adaptive immune responses. Here, we review these ncDDRs and discuss how they integrate with other signals during immune system development and function.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
29
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
30
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
31
|
Pereira CTM, Bichuetti-Silva DC, da Mota NVF, Salomão R, Brunialti MKC, Costa-Carvalho BT. B-cell subsets imbalance and reduced expression of CD40 in ataxia-telangiectasia patients. Allergol Immunopathol (Madr) 2018; 46:438-446. [PMID: 29739685 DOI: 10.1016/j.aller.2017.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a well-known primary immunodeficiency with recurrent sinopulmonary infections and variable abnormalities in both the humoral and cellular immune system. Dysfunctions in immunoglobulin production, reduced number of B cells, and B-cell receptor excision circles copies have been reported. We aimed to understand the immunological mechanisms involving the humoral compartment in AT patients by analysing peripheral blood B cells subsets, B-T lymphocyte cooperation through the expression of CD40 and CD40 ligand (CD40L), and cytokines involved in class-switch recombination production. METHODS We compared the proportion of B-cell subsets, the expression of CD40/CD40L, and the plasma levels of IL-6 and IFN-γ of 18 AT patients and 15 healthy age-sex-matched controls using flow cytometry. RESULTS We found that some steps in peripheral B cell development were altered in AT with a pronounced reduction of cell-surface CD40 expression. The proportions of transitional and naïve-mature B cells were reduced, whereas CD21-low, natural effector memory, IgM-only memory, and IgG atypical memory B cells were present in a higher proportion. CONCLUSIONS These findings revealed a disturbed B-cell homeostasis with unconventional maturation of B lymphocyte memory cells, which can explain the consequent impairment of humoral immunity.
Collapse
Affiliation(s)
- C T M Pereira
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - D C Bichuetti-Silva
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - N V F da Mota
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - R Salomão
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - M K C Brunialti
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - B T Costa-Carvalho
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
32
|
Nicolas L, Cols M, Choi JE, Chaudhuri J, Vuong B. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination. F1000Res 2018; 7:458. [PMID: 29744038 PMCID: PMC5904731 DOI: 10.12688/f1000research.13247.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jee Eun Choi
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bao Vuong
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
33
|
DNA double-strand break response factors influence end-joining features of IgH class switch and general translocation junctions. Proc Natl Acad Sci U S A 2018; 115:762-767. [PMID: 29311308 DOI: 10.1073/pnas.1719988115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ig heavy chain (IgH) class switch recombination (CSR) in B lymphocytes switches IgH constant regions to change antibody functions. CSR is initiated by DNA double-strand breaks (DSBs) within a donor IgH switch (S) region and a downstream acceptor S region. CSR is completed by fusing donor and acceptor S region DSB ends by classical nonhomologous end-joining (C-NHEJ) and, in its absence, by alternative end-joining that is more biased to use longer junctional microhomologies (MHs). Deficiency for DSB response (DSBR) factors, including ataxia telangiectasia-mutated (ATM) and 53BP1, variably impair CSR end-joining, with 53BP1 deficiency having the greatest impact. However, studies of potential impact of DSBR factor deficiencies on MH-mediated CSR end-joining have been technically limited. We now use a robust DSB joining assay to elucidate impacts of deficiencies for DSBR factors on CSR and chromosomal translocation junctions in primary mouse B cells and CH12F3 B-lymphoma cells. Compared with wild-type, CSR and c-myc to S region translocation junctions in the absence of 53BP1, and, to a lesser extent, other DSBR factors, have increased MH utilization; indeed, 53BP1-deficient MH profiles resemble those associated with C-NHEJ deficiency. However, translocation junctions between c-myc DSB and general DSBs genome-wide are not MH-biased in ATM-deficient versus wild-type CH12F3 cells and are less biased in 53BP1- and C-NHEJ-deficient cells than CSR junctions or c-myc to S region translocation junctions. We discuss potential roles of DSBR factors in suppressing increased MH-mediated DSB end-joining and features of S regions that may render their DSBs prone to MH-biased end-joining in the absence of DSBR factors.
Collapse
|
34
|
Kim JH, Grosbart M, Anand R, Wyman C, Cejka P, Petrini JHJ. The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression. Cell Rep 2017; 18:496-507. [PMID: 28076792 DOI: 10.1016/j.celrep.2016.12.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 11/04/2016] [Accepted: 12/12/2016] [Indexed: 02/02/2023] Open
Abstract
The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant mice (Nbs1mid mice), which harbor mutations in the Mre11 interaction domain of Nbs1. Nbs1mid alleles that abolished interaction were incompatible with viability. Conversely, a 108-amino-acid Nbs1 fragment comprising the Mre11 interface was sufficient to rescue viability and ATM activation in cultured cells and support differentiation of hematopoietic cells in vivo. These data indicate that the essential role of Nbs1 is via its interaction with Mre11 and that most of the Nbs1 protein is dispensable for Mre11 complex functions and suggest that Mre11 and Rad50 directly activate ATM.
Collapse
Affiliation(s)
- Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Malgorzata Grosbart
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Claire Wyman
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 Rotterdam, the Netherlands
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
35
|
Histone methyltransferase MMSET promotes AID-mediated DNA breaks at the donor switch region during class switch recombination. Proc Natl Acad Sci U S A 2017; 114:E10560-E10567. [PMID: 29158395 DOI: 10.1073/pnas.1701366114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In B cells, Ig class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), the activity of which leads to DNA double-strand breaks (DSBs) within IgH switch (S) regions. Preferential targeting of AID-mediated DSBs to S sequences is critical for allowing diversification of antibody functions, while minimizing potential off-target oncogenic events. Here, we used gene targeted inactivation of histone methyltransferase (HMT) multiple myeloma SET domain (MMSET) in mouse B cells and the CH12F3 cell line to explore its role in CSR. We find that deletion of MMSET-II, the isoform containing the catalytic SET domain, inhibits CSR without affecting either IgH germline transcription or joining of DSBs within S regions by classical nonhomologous end joining (C-NHEJ). Instead, we find that MMSET-II inactivation leads to decreased AID recruitment and DSBs at the upstream donor Sμ region. Our findings suggest a role for the HMT MMSET in promoting AID-mediated DNA breaks during CSR.
Collapse
|
36
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
37
|
Darrah EJ, Kulinski JM, Mboko WP, Xin G, Malherbe LP, Gauld SB, Cui W, Tarakanova VL. B Cell-Specific Expression of Ataxia-Telangiectasia Mutated Protein Kinase Promotes Chronic Gammaherpesvirus Infection. J Virol 2017; 91:e01103-17. [PMID: 28701397 PMCID: PMC5599758 DOI: 10.1128/jvi.01103-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/28/2023] Open
Abstract
Manipulation of host cellular pathways is a strategy employed by gammaherpesviruses, including mouse gammaherpesvirus 68 (MHV68), in order to negotiate a chronic infection. Ataxia-telangiectasia mutated (ATM) plays a unique yet incompletely understood role in gammaherpesvirus infection, as it has both proviral and antiviral effects. Chronic gammaherpesvirus infection is poorly controlled in a host with global ATM insufficiency, whether the host is a mouse or a human. In contrast, ATM facilitates replication, reactivation, and latency establishment of several gammaherpesviruses in vitro, suggesting that ATM is proviral in the context of infected cell cultures. The proviral role of ATM is also evident in vivo, as myeloid-specific ATM expression facilitates MHV68 reactivation during the establishment of viral latency. In order to better understand the complex relationship between host ATM and gammaherpesvirus infection, we depleted ATM specifically in B cells, a cell type critical for chronic gammaherpesvirus infection. B cell-specific ATM deficiency attenuated the establishment of viral latency due to compromised differentiation of ATM-deficient B cells. Further, we found that during long-term infection, peritoneal B-1b, but not related B-1a, B cells display the highest frequency of gammaherpesvirus infection. While ATM expression did not affect gammaherpesvirus tropism for B-1 B cells, B cell-specific ATM expression was necessary to support viral reactivation from peritoneal cells during long-term infection. Thus, our study reveals a role of ATM as a host factor that promotes chronic gammaherpesvirus infection of B cells.IMPORTANCE Gammaherpesviruses infect a majority of the human population and are associated with cancer, including B cell lymphomas. ATM is a unique host kinase that has both proviral and antiviral roles in the context of gammaherpesvirus infection. Further, there is insufficient understanding of the interplay of these roles in vivo during chronic infection. In this study, we show that ATM expression by splenic B cells is required for efficient establishment of gammaherpesvirus latency. We also show that ATM expression by peritoneal B cells is required to facilitate viral reactivation during long-term infection. Thus, our study defines a proviral role of B cell-specific ATM expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Eric J Darrah
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph M Kulinski
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wadzanai P Mboko
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Laurent P Malherbe
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephen B Gauld
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
38
|
Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, Bellingham MC, Noakes PG, Lim YC, Barnett NL, Dingwall S, Wolvetang E, Mashimo T, Roberts TL, Lavin MF. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet 2017; 26:109-123. [PMID: 28007901 DOI: 10.1093/hmg/ddw371] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Ataxia-telangiectasia (A-T), an autosomal recessive disease caused by mutations in the ATM gene is characterised by cerebellar atrophy and progressive neurodegeneration which has been poorly recapitulated in Atm mutant mice. Consequently, pathways leading to neurodegeneration in A-T are poorly understood. We describe here the generation of an Atm knockout rat model that does not display cerebellar atrophy but instead paralysis and spinal cord atrophy, reminiscent of that seen in older patients and milder forms of the disorder. Loss of Atm in neurons and glia leads to accumulation of cytosolic DNA, increased cytokine production and constitutive activation of microglia consistent with a neuroinflammatory phenotype. Rats lacking ATM had significant loss of motor neurons and microgliosis in the spinal cord, consistent with onset of paralysis. Since short term treatment with steroids has been shown to improve the neurological signs in A-T patients we determined if that was also the case for Atm-deficient rats. Betamethasone treatment extended the lifespan of Atm knockout rats, prevented microglial activation and significantly decreased neuroinflammatory changes and motor neuron loss. These results point to unrepaired damage to DNA leading to significant levels of cytosolic DNA in Atm-deficient neurons and microglia and as a consequence activation of the cGAS-STING pathway and cytokine production. This in turn would increase the inflammatory microenvironment leading to dysfunction and death of neurons. Thus the rat model represents a suitable one for studying neurodegeneration in A-T and adds support for the use of anti-inflammatory drugs for the treatment of neurodegeneration in A-T patients.
Collapse
Affiliation(s)
- Hazel Quek
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - John Luff
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - KaGeen Cheung
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Sergei Kozlov
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - Magtouf Gatei
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - C Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Nigel L Barnett
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,Queensland Eye Institute, South Brisbane, Qld, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Qld, Australia
| | - Steven Dingwall
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Tomoji Mashimo
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tara L Roberts
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| |
Collapse
|
39
|
Díaz-Muñoz MD, Kiselev VY, Le Novère N, Curk T, Ule J, Turner M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat Commun 2017; 8:530. [PMID: 28904350 PMCID: PMC5597594 DOI: 10.1038/s41467-017-00454-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/30/2017] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis in a CAP-independent manner. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response.Sequestering mRNA in cytoplasmic stress granules is a mechanism for translational repression. Here the authors find that p53 mRNA, present in stress granules in activated B lymphocytes, is released upon DNA damage and is translated in a CAP-independent manner.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043 / CNRS U5282, Toulouse, 31300, France.
| | - Vladimir Yu Kiselev
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Nicolas Le Novère
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tomaz Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
40
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
41
|
Abstract
DNA double-strand breaks (DSBs) serve as obligatory intermediates for Ig heavy chain (Igh) class switch recombination (CSR). The mechanisms by which DSBs are resolved to promote long-range DNA end-joining while suppressing genomic instability inherently associated with DSBs are yet to be fully elucidated. Here, we use a targeted short-hairpin RNA screen in a B-cell lymphoma line to identify the BRCT-domain protein BRIT1 as an effector of CSR. We show that conditional genetic deletion of BRIT1 in mice leads to a marked increase in unrepaired Igh breaks and a significant reduction in CSR in ex vivo activated splenic B cells. We find that the C-terminal tandem BRCT domains of BRIT1 facilitate its interaction with phosphorylated H2AX and that BRIT1 is recruited to the Igh locus in an activation-induced cytidine deaminase (AID) and H2AX-dependent fashion. Finally, we demonstrate that depletion of another BRCT-domain protein, MDC1, in BRIT1-deleted B cells increases the severity of CSR defect over what is observed upon loss of either protein alone. Our results identify BRIT1 as a factor in CSR and demonstrate that multiple BRCT-domain proteins contribute to optimal resolution of AID-induced DSBs.
Collapse
|
42
|
Feldman S, Wuerffel R, Achour I, Wang L, Carpenter PB, Kenter AL. 53BP1 Contributes to Igh Locus Chromatin Topology during Class Switch Recombination. THE JOURNAL OF IMMUNOLOGY 2017; 198:2434-2444. [PMID: 28159901 DOI: 10.4049/jimmunol.1601947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023]
Abstract
In B lymphocytes, Ig class switch recombination (CSR) is induced by activation-induced cytidine deaminase, which initiates a cascade of events leading to DNA double-strand break formation in switch (S) regions. Resolution of DNA double-strand breaks proceeds through formation of S-S synaptic complexes. S-S synapsis is mediated by a chromatin loop that spans the C region domain of the Igh locus. S-S junctions are joined via a nonhomologous end joining DNA repair process. CSR occurs via an intrachromosomal looping out and deletion mechanism that is 53BP1 dependent. However, the mechanism by which 53BP1 facilitates deletional CSR and inhibits inversional switching events remains unknown. We report a novel architectural role for 53BP1 in Igh chromatin looping in mouse B cells. Long-range interactions between the Eμ and 3'Eα enhancers are significantly diminished in the absence of 53BP1. In contrast, germline transcript promoter:3'Eα looping interactions are unaffected by 53BP1 deficiency. Furthermore, 53BP1 chromatin occupancy at sites in the Igh locus is B cell specific, is correlated with histone H4 lysine 20 marks, and is subject to chromatin spreading. Thus, 53BP1 is required for three-dimensional organization of the Igh locus and provides a plausible explanation for the link with 53BP1 enforcement of deletional CSR.
Collapse
Affiliation(s)
- Scott Feldman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344; and
| | - Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344; and
| | - Ikbel Achour
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344; and
| | - Lili Wang
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344; and
| | - Phillip B Carpenter
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030
| | - Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344; and
| |
Collapse
|
43
|
Yamauchi M, Shibata A, Suzuki K, Suzuki M, Niimi A, Kondo H, Miura M, Hirakawa M, Tsujita K, Yamashita S, Matsuda N. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1. Sci Rep 2017; 7:41812. [PMID: 28155885 PMCID: PMC5290537 DOI: 10.1038/srep41812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022] Open
Abstract
Chromosome rearrangement is clinically and physiologically important because it can produce oncogenic fusion genes. Chromosome rearrangement requires DNA double-strand breaks (DSBs) at two genomic locations and misrejoining between the DSBs. Before DSB misrejoining, two DSB-containing chromatin regions move and pair with each other; however, the molecular mechanism underlying this process is largely unknown. We performed a spatiotemporal analysis of ionizing radiation-induced foci of p53-binding protein 1 (53BP1), a marker for DSB-containing chromatin. We found that some 53BP1 foci were paired, indicating that the two damaged chromatin regions neighboured one another. We searched for factors regulating the foci pairing and found that the number of paired foci increased when Ku80, DNA-PKcs, or ATM was absent. In contrast, 53BP1 depletion reduced the number of paired foci and dicentric chromosomes—an interchromosomal rearrangement. Foci were paired more
frequently in heterochromatin than in euchromatin in control cells. Additionally, the reduced foci pairing in 53BP1-depleted cells was rescued by concomitant depletion of a heterochromatin building factor such as Krüppel-associated box-associated protein 1 or chromodomain helicase DNA-binding protein 3. These findings indicate that pairing between DSB-containing chromatin regions was suppressed by Ku80, DNA-PKcs, and ATM, and this pairing was promoted by 53BP1 through chromatin relaxation.
Collapse
Affiliation(s)
- Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Masatoshi Suzuki
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku Sendai, Miyagi, 980-8575, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hisayoshi Kondo
- Department of Global Health, Medicine and Welfare, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Miwa Miura
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Miyako Hirakawa
- Radioisotope Research Center, Life Science Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Keiko Tsujita
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Naoki Matsuda
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
44
|
Ataxia-telangiectasia: Immunodeficiency and survival. Clin Immunol 2017; 178:45-55. [PMID: 28126470 DOI: 10.1016/j.clim.2017.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/17/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (AT) is a neurodegenerative disorder characterized by ataxia, telangiectasia, and immunodeficiency. An increased risk of malignancies and respiratory diseases dramatically reduce life expectancy. To better counsel families, develop individual follow-up programs, and select patients for therapeutic trials, more knowledge is needed on factors influencing survival. This retrospective cohort study of 61 AT patients shows that classical AT patients had a shorter survival than variant patients (HR 5.9, 95%CI 2.0-17.7), especially once a malignancy was diagnosed (HR 2.5, 95%CI 1.1-5.5, compared to classical AT patients without malignancy). Patients with the hyper IgM phenotype with hypogammaglobulinemia (AT-HIGM) and patients with an IgG2 deficiency showed decreased survival compared to patients with normal IgG (HR 9.2, 95%CI 3.2-26.5) and patients with normal IgG2 levels (HR 7.8, 95%CI 1.7-36.2), respectively. If high risk treatment trials will become available for AT, those patients with factors indicating the poorest prognosis might be considered for inclusion first.
Collapse
|
45
|
Lavin MF, Yeo AJ, Kijas AW, Wolvetang E, Sly PD, Wainwright C, Sinclair K. Therapeutic targets and investigated treatments for Ataxia-Telangiectasia. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1254618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Rocha PP, Raviram R, Fu Y, Kim J, Luo VM, Aljoufi A, Swanzey E, Pasquarella A, Balestrini A, Miraldi ER, Bonneau R, Petrini J, Schotta G, Skok JA. A Damage-Independent Role for 53BP1 that Impacts Break Order and Igh Architecture during Class Switch Recombination. Cell Rep 2016; 16:48-55. [PMID: 27320916 PMCID: PMC4927351 DOI: 10.1016/j.celrep.2016.05.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
During class switch recombination (CSR), B cells replace the Igh Cμ or δ exons with another down-stream constant region exon (CH), altering the anti-body isotype. CSR occurs through the introduction of AID-mediated double-strand breaks (DSBs) in switch regions and subsequent ligation of broken ends. Here, we developed an assay to investigate the dynamics of DSB formation in individual cells. We demonstrate that the upstream switch region Sμ is first targeted during recombination and that the mechanism underlying this control relies on 53BP1. Surprisingly, regulation of break order occurs through residual binding of 53BP1 to chromatin before the introduction of damage and independent of its established role in DNA repair. Using chromosome conformation capture, we show that 53BP1 mediates changes in chromatin architecture that affect break order. Finally, our results explain how changes in Igh architecture in the absence of 53BP1 could promote inversional rearrangements that compromise CSR.
Collapse
Affiliation(s)
- Pedro P Rocha
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Yi Fu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - JungHyun Kim
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Vincent M Luo
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Arafat Aljoufi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Emily Swanzey
- Department of Developmental Genetics, New York University School of Medicine, New York, NY 10016, USA
| | - Alessandra Pasquarella
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, Planegg-Martinsried 80336, Germany
| | - Alessia Balestrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA; Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY 10012, USA; Simons Center for Data Analysis, New York, NY 10010, USA
| | - John Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gunnar Schotta
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Biomedical Center, Planegg-Martinsried 80336, Germany
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
47
|
Yamamoto K, Wang J, Sprinzen L, Xu J, Haddock CJ, Li C, Lee BJ, Loredan DG, Jiang W, Vindigni A, Wang D, Rabadan R, Zha S. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors. eLife 2016; 5. [PMID: 27304073 PMCID: PMC4957979 DOI: 10.7554/elife.14709] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jiguang Wang
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Lisa Sprinzen
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jun Xu
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Christopher J Haddock
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Chen Li
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Denis G Loredan
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Alessandro Vindigni
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Dong Wang
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Columbia University, New York, United States.,Department of Pediatrics, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| |
Collapse
|
48
|
Wong D, Li L, Jurado S, King A, Bamford R, Wall M, Walia M, Kelly G, Walkley C, Tarlinton D, Strasser A, Heierhorst J. The Transcription Factor ASCIZ and Its Target DYNLL1 Are Essential for the Development and Expansion of MYC-Driven B Cell Lymphoma. Cell Rep 2016; 14:1488-1499. [DOI: 10.1016/j.celrep.2016.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/04/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
|
49
|
Yamamoto K, Lee BJ, Li C, Dubois RL, Hobeika E, Bhagat G, Zha S. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice. Leukemia 2015; 29:1414-24. [PMID: 25676421 PMCID: PMC5282516 DOI: 10.1038/leu.2015.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 01/12/2023]
Abstract
Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Graduate Program for Pathobiology and Molecular Medicine, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Brian J. Lee
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Chen Li
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard L. Dubois
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Elias Hobeika
- Centre for Biological Signaling Studies BIOSS, Albert-Ludwigs-Universität Freiburg, Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg and Max Planck Institute for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | - Govind Bhagat
- Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pediatrics, College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
50
|
Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. THE JOURNAL OF IMMUNOLOGY 2015; 193:5370-8. [PMID: 25411432 DOI: 10.4049/jimmunol.1401849] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|