1
|
Noranate N, Sripanomphong J, Mphande- Nyasulu FA, Chaorattanakawee S. Plasmodium falciparum surf4.1 in clinical isolates: From genetic variation and variant diversity to in silico design immunopeptides for vaccine development. PLoS One 2024; 19:e0312091. [PMID: 39775228 PMCID: PMC11684625 DOI: 10.1371/journal.pone.0312091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/01/2024] [Indexed: 01/11/2025] Open
Abstract
SURFINs protein family expressed on surface of both infected red blood cell and merozoite surface making them as interesting vaccine candidate for erythrocytic stage of malaria infection. In this study, we analyze genetic variation of Pfsurf4.1 gene, copy number variation, and frequency of SURFIN4.1 variants of P. falciparum in clinical isolates. In addition, secondary structure prediction and immunoinformatic were employed to identify immunogenic epitopes in humoral response as proposed vaccine candidates. Overall, our data demonstrate extensive polymorphism of SURFIN4.1 in both genetic and protein level. The surf4.1 gene showed extensive genetic variation with total of 447 polymorphic sites with maximum of three variants as well as singlet/triplet bases indels and mini/microsatellites in the coding sequence. The exon1 encoding extracellular region exhibited higher variation compared to exon2 which coding for intracellular domain. Interestingly, selective pressure was detected on both extracellular region (Var1 and Var2) as well as intracellular region (WRD2 and WRD3). Importantly, extensive full gene analysis suggests adenosine insertion at three key points nucleotide bases (nt 2409/2410, 3809/3810, and 4439/4440) of exon2 could lead to frameshift mutation resulted in four different SURFIN4.1 variants (TMs, WD1, WD2 and WD3). The SURFIN4.1 variant TMs was the most observed type with 67% frequency (51/76). Along with more than one copy number of surf4.1 gene was observed with frequency of 13% (9/70). Despite substantial polymorphism, analysis of relatedness within P. falciparum population using full coding sequence was able to group SURFIN4.1 protein into five distinct clades and reduced into four clades when using only exon1 coding sequence. Also, predicted secondary structure revealed conserved structure of five helix domains of extracellular region which similar among four SURFIN4.1 variant types. In addition, in silico design eight immunopeptides derived from SURFIN4.1, four of which are highly conserved and four of dimorphic epitopes, as potential vaccine candidates.
Collapse
Affiliation(s)
- Nitchakarn Noranate
- Faculty of medicine, King’s Mongkut Institute of Technology (KMITL), Ladkrabang, Bangkok, Thailand
| | - Jariya Sripanomphong
- Faculty of medicine, King’s Mongkut Institute of Technology (KMITL), Ladkrabang, Bangkok, Thailand
| | | | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Bhalerao P, Singh S, Prajapati VK, Bhatt TK. Exploring malaria parasite surface proteins to devise highly immunogenic multi-epitope subunit vaccine for Plasmodium falciparum. J Genet Eng Biotechnol 2024; 22:100377. [PMID: 38797552 PMCID: PMC11089370 DOI: 10.1016/j.jgeb.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Malaria has remained a major health concern for decades among people living in tropical and sub-tropical countries. Plasmodium falciparum is one of the critical species that cause severe malaria and is responsible for major mortality. Moreover, the parasite has generated resistance against all WHO recommended drugs and therapies. Therefore, there is an urgent need for preventive measures in the form of reliable vaccines to achieve the target of a malaria-free world. Surface proteins are the preferable choice for subunit vaccine development because they are rapidly detected and engaged by host immune cells and vaccination-induced antibodies. Additionally, abundant surface or membrane proteins may contribute to the opsonization of pathogens by vaccine-induced antibodies. RESULTS In our study, we have listed all those surface proteins from the literature that could be functionally important and essential for infection and immune evasion of the malaria parasite. Eight Plasmodium surface and membrane proteins from the pre-erythrocyte and erythrocyte stages were shortlisted. Thirty-seven epitopes (B-cell, CTL, and HTL epitopes) from these proteins were predicted using immune-informatic tools and joined with suitable peptide linkers to design a vaccine construct. A TLR-4 agonist peptide adjuvant was added at the N-terminus of the multi-epitope series, followed by the PADRE sequence and EAAAK linker. The TLR-4 receptor was docked with the construct's anticipated model structure. The complex of vaccine and TLR-4, with the lowest energy -1514, was found to be stable under simulated physiological settings. CONCLUSION This study has provided a novel multi-epitope construct that may be exploited further for the development of an efficient vaccine for malaria.
Collapse
Affiliation(s)
- Preshita Bhalerao
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
3
|
Ngoh IA, Mane K, Manneh J, Bojang F, Jawara AS, Akenji TN, Anong DN, D’Alessandro U, Amambua-Ngwa A. Transcriptome analysis reveals molecular targets of erythrocyte invasion phenotype diversity in natural Plasmodium falciparum isolates from Cameroon. FRONTIERS IN PARASITOLOGY 2024; 3:1370615. [PMID: 39817175 PMCID: PMC11731687 DOI: 10.3389/fpara.2024.1370615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 01/18/2025]
Abstract
Further understanding of the molecular mediators of alternative RBC invasion phenotypes in endemic malaria parasites will support malaria blood-stage vaccine or drug development. This study investigated the prevalence of sialic acid (SA)-dependent and SA-independent RBC invasion pathways in endemic Plasmodium falciparum parasites from Cameroon and compared the schizont stage transcriptomes in these two groups to uncover the wider repertoire of transcriptional variation associated with the use of alternative RBC invasion pathway phenotypes. A two-color flow cytometry-based invasion-inhibition assay against RBCs treated with neuraminidase, trypsin, and chymotrypsin and deep RNA sequencing of schizont stages harvested in the first ex vivo replication cycle in culture were employed in this investigation. RBC invasion phenotypes were determined for 63 isolates from asymptomatic children with uncomplicated malaria. Approximately 80% of the isolates invaded neuraminidase-treated but not chymotrypsin-treated RBCs, representing SA-independent pathways of RBC invasion. The schizont transcriptome profiles of 16 isolates with invasion phenotypes revealed a total of 5,136 gene transcripts, with 85% of isolates predicted at schizont stages. Two distinct transcriptome profile clusters belonging to SA-dependent and SA-independent parasites were obtained by data reduction with principal component analysis. Differential analysis of gene expression between the two clusters implicated, in addition to the well-characterized adhesins, the upregulation of genes encoding proteins mediating merozoite organelle discharges as well as several conserved, virulent, merozoite-associated, and exported proteins. The latter majority have been shown to have structural and physiological relevance to RBC surface remodeling and immune evasion in malaria and thus have potential as anti-invasion targets.
Collapse
Affiliation(s)
- Ines A. Ngoh
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, Cameroon
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Karim Mane
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jarra Manneh
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Fatoumata Bojang
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Aminata S. Jawara
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Theresia N. Akenji
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, Cameroon
| | - Damian N. Anong
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, Cameroon
| | - Umberto D’Alessandro
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| |
Collapse
|
4
|
Bekić V, Kilian N. Novel secretory organelles of parasite origin - at the center of host-parasite interaction. Bioessays 2023; 45:e2200241. [PMID: 37518819 DOI: 10.1002/bies.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Reorganization of cell organelle-deprived host red blood cells by the apicomplexan malaria parasite Plasmodium falciparum enables their cytoadherence to endothelial cells that line the microvasculature. This increases the time red blood cells infected with mature developmental stages remain within selected organs such as the brain to avoid the spleen passage, which can lead to severe complications and cumulate in patient death. The Maurer's clefts are a novel secretory organelle of parasite origin established by the parasite in the cytoplasm of the host red blood cell in order to facilitate the establishment of cytoadherence by conducting the trafficking of immunovariant adhesins to the host cell surface. Another important function of the organelle is the sorting of other proteins the parasite traffics into its host cell. Although the organelle is of high importance for the pathology of malaria, additional putative functions, structure, and genesis remain shrouded in mystery more than a century after its discovery. In this review, we highlight our current knowledge about the Maurer's clefts and other novel secretory organelles established within the host cell cytoplasm by human-pathogenic malaria parasites and other parasites that reside within human red blood cells.
Collapse
Affiliation(s)
- Viktor Bekić
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
5
|
Batugedara G, Lu XM, Hristov B, Abel S, Chahine Z, Hollin T, Williams D, Wang T, Cort A, Lenz T, Thompson TA, Prudhomme J, Tripathi AK, Xu G, Cudini J, Dogga S, Lawniczak M, Noble WS, Sinnis P, Le Roch KG. Novel insights into the role of long non-coding RNA in the human malaria parasite, Plasmodium falciparum. Nat Commun 2023; 14:5086. [PMID: 37607941 PMCID: PMC10444892 DOI: 10.1038/s41467-023-40883-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
The complex life cycle of Plasmodium falciparum requires coordinated gene expression regulation to allow host cell invasion, transmission, and immune evasion. Increasing evidence now suggests a major role for epigenetic mechanisms in gene expression in the parasite. In eukaryotes, many lncRNAs have been identified to be pivotal regulators of genome structure and gene expression. To investigate the regulatory roles of lncRNAs in P. falciparum we explore the intergenic lncRNA distribution in nuclear and cytoplasmic subcellular locations. Using nascent RNA expression profiles, we identify a total of 1768 lncRNAs, of which 718 (~41%) are novels in P. falciparum. The subcellular localization and stage-specific expression of several putative lncRNAs are validated using RNA-FISH. Additionally, the genome-wide occupancy of several candidate nuclear lncRNAs is explored using ChIRP. The results reveal that lncRNA occupancy sites are focal and sequence-specific with a particular enrichment for several parasite-specific gene families, including those involved in pathogenesis and sexual differentiation. Genomic and phenotypic analysis of one specific lncRNA demonstrate its importance in sexual differentiation and reproduction. Our findings bring a new level of insight into the role of lncRNAs in pathogenicity, gene regulation and sexual differentiation, opening new avenues for targeted therapeutic strategies against the deadly malaria parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Xueqing M Lu
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA
| | - Steven Abel
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zeinab Chahine
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Thomas Hollin
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Desiree Williams
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Tina Wang
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony Cort
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Todd Lenz
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Trevor A Thompson
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Jacques Prudhomme
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Guoyue Xu
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Sunil Dogga
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Photini Sinnis
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Karine G Le Roch
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Chuang H, Sakaguchi M, Lucky AB, Yamagishi J, Katakai Y, Kawai S, Kaneko O. SICA-mediated cytoadhesion of Plasmodium knowlesi-infected red blood cells to human umbilical vein endothelial cells. Sci Rep 2022; 12:14942. [PMID: 36056126 PMCID: PMC9440145 DOI: 10.1038/s41598-022-19199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Zoonotic malaria due to Plasmodium knowlesi infection in Southeast Asia is sometimes life-threatening. Post-mortem examination of human knowlesi malaria cases showed sequestration of P. knowlesi-infected red blood cells (iRBCs) in blood vessels, which has been proposed to be linked to disease severity. This sequestration is likely mediated by the cytoadhesion of parasite-iRBCs to vascular endothelial cells; however, the responsible parasite ligands remain undetermined. This study selected P. knowlesi lines with increased iRBC cytoadhesion activity by repeated panning against human umbilical vein endothelial cells (HUVECs). Transcriptome analysis revealed that the transcript level of one gene, encoding a Schizont Infected Cell Agglutination (SICA) protein, herein termed SICA-HUVEC, was more than 100-fold increased after the panning. Transcripts of other P. knowlesi proteins were also significantly increased, such as PIR proteins exported to the iRBC cytosol, suggesting their potential role in increasing cytoadhesion activity. Transgenic P. knowlesi parasites expressing Myc-fused SICA-HUVEC increased cytoadhesion activity following infection of monkey as well as human RBCs, confirming that SICA-HUVEC conveys activity to bind to HUVECs.
Collapse
Affiliation(s)
- Huai Chuang
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Amuza Byaruhanga Lucky
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Junya Yamagishi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
7
|
Sethumadhavan DV, Tiburcio M, Kanyal A, Jabeena CA, Govindaraju G, Karmodiya K, Rajavelu A. Chromodomain Protein Interacts with H3K9me3 and Controls RBC Rosette Formation by Regulating the Expression of a Subset of RIFINs in the Malaria Parasite. J Mol Biol 2022; 434:167601. [PMID: 35460670 DOI: 10.1016/j.jmb.2022.167601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum expresses clonally variant proteins on the surface of infected erythrocytes to evade the host immune system. The clonally variant multigene families include var, rifin, and stevor, which express Erythrocyte Membrane Protein 1 (EMP1), Repetitive Interspersed Families of polypeptides (RIFINs), and Sub-telomeric Variable Open Reading frame (STEVOR) proteins, respectively. The rifins are the largest multigene family and are essentially involved in the RBC rosetting, the hallmark of severe malaria. The molecular regulators that control the RIFINs expression in Plasmodium spp. have not been reported so far. This study reports a chromodomain-containing protein (PfCDP) that binds to H3K9me3 modification on P. falciparum chromatin. Conditional deletion of the chromodomain (CD) gene in P. falciparum using an inducible DiCre-LoxP system leads to selective up-regulation of a subset of virulence genes, including rifins, a few var, and stevor genes. Further, we show that PfCDP conditional knockout (PfΔCDP) promotes RBC rosette formation. This study provides the first evidence of an epigenetic regulator mediated control on a subset of RIFINs expression and RBC rosetting by P. falciparum.
Collapse
Affiliation(s)
- Devadathan Valiyamangalath Sethumadhavan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Marta Tiburcio
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India. https://twitter.com/AbhishekKanyal7
| | - C A Jabeena
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Gayathri Govindaraju
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India. https://twitter.com/Krishanpal_K
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695 014, Kerala, India.
| |
Collapse
|
8
|
Epigenetics of malaria parasite nutrient uptake, but why? Trends Parasitol 2022; 38:618-628. [PMID: 35641406 PMCID: PMC9283302 DOI: 10.1016/j.pt.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
The conserved plasmodial surface anion channel (PSAC) mediates nutrient uptake by bloodstream malaria parasites and is an antimalarial target. This pathogen-associated channel is linked to the clag multigene family, which is variably expanded in Plasmodium spp. Member genes are under complex epigenetic regulation, with the clag3 genes of the human P. falciparum pathogen exhibiting monoallelic transcription and mutually exclusive surface exposure on infected erythrocytes. While other multigene families use monoallelic expression to evade host immunity, the reasons of epigenetic control of clag genes are unclear. I consider existing models and their implications for nutrient acquisition and immune evasion. Understanding the reasons for epigenetic regulation of PSAC-mediated nutrient uptake will help clarify host-pathogen interactions and guide development of therapies resistant to allele switching.
Collapse
|
9
|
Michelow IC, Park S, Tsai SW, Rayta B, Pasaje CFA, Nelson S, Early AM, Frosch AP, Ayodo G, Raj DK, Nixon CE, Nixon CP, Pond-Tor S, Friedman JF, Fried M, Duffy PE, Le Roch KG, Niles JC, Kurtis JD. A newly characterized malaria antigen on erythrocyte and merozoite surfaces induces parasite inhibitory antibodies. J Exp Med 2021; 218:e20200170. [PMID: 34342640 PMCID: PMC8340565 DOI: 10.1084/jem.20200170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
We previously identified a Plasmodium falciparum (Pf) protein of unknown function encoded by a single-copy gene, PF3D7_1134300, as a target of antibodies in plasma of Tanzanian children in a whole-proteome differential screen. Here we characterize this protein as a blood-stage antigen that localizes to the surface membranes of both parasitized erythrocytes and merozoites, hence its designation as Pf erythrocyte membrane and merozoite antigen 1 (PfEMMA1). Mouse anti-PfEMMA1 antisera and affinity-purified human anti-PfEMMA1 antibodies inhibited growth of P. falciparum strains by up to 68% in growth inhibition assays. Following challenge with uniformly fatal Plasmodium berghei (Pb) ANKA, up to 40% of mice immunized with recombinant PbEMMA1 self-cured, and median survival of lethally infected mice was up to 2.6-fold longer than controls (21 vs. 8 d, P = 0.005). Furthermore, high levels of naturally acquired human anti-PfEMMA1 antibodies were associated with a 46% decrease in parasitemia over 2.5 yr of follow-up of Tanzanian children. Together, these findings suggest that antibodies to PfEMMA1 mediate protection against malaria.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Child, Preschool
- Erythrocyte Membrane/parasitology
- Female
- Host-Parasite Interactions/physiology
- Humans
- Infant
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/mortality
- Malaria, Falciparum/parasitology
- Merozoites/immunology
- Merozoites/metabolism
- Mice, Inbred BALB C
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Plasmodium falciparum/physiology
- Polymorphism, Single Nucleotide
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Tanzania
- Mice
Collapse
Affiliation(s)
- Ian C. Michelow
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Graduate School of Urban Public Health & Department of Urban Big Data Convergence, University of Seoul, Seoul, Republic of Korea
| | - Shu-Whei Tsai
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Bonnie Rayta
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | | | - Sara Nelson
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Anne P. Frosch
- Department of Medicine, Hennepin Healthcare Research Institute, University of Minnesota, Minneapolis, MN
| | - George Ayodo
- Kenya Medical Research Institute, Centre of Global Health Research, Kisumu, Kenya
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Dipak K. Raj
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Christina E. Nixon
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Christian P. Nixon
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Jennifer F. Friedman
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, University of California, Riverside, Riverside, CA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jonathan D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
10
|
Chaianantakul N, Sungkapong T, Changpad J, Thongma K, Sim-Ut S, Kaewthamasorn M. Genetic polymorphism of the extracellular region in surface associated interspersed 1.1 gene of Plasmodium falciparum field isolates from Thailand. Malar J 2021; 20:343. [PMID: 34399778 PMCID: PMC8365296 DOI: 10.1186/s12936-021-03876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background A novel variable surface antigens (VSAs), Surface-associated interspersed proteins (SUFRINs), is a protein that is modified on the surface of infected red blood cell (iRBC). Modified proteins on the iRBC surface cause severe malaria, which can lead to death throughout the life cycle of a malaria parasite. Previous study suggested that SURFIN1.1 is an immunogenic membrane-associated protein which was encoded by using the surf1.1 gene expressed during the trophozoite and schizont stages. This study aimed to identify the regions of SURFIN1.1 and investigate the genetic diversity of the extracellular region of the surf1.1 gene. Methods A total of 32 blood samples from falciparum malaria cases that were diagnosed in Si Sa Ket Province, Thailand were collected. Plasmodium genomic DNA was extracted, and the extracellular region of surf1.1 gene was amplified using the polymerase chain reaction (PCR). A sequence analysis was then performed to obtain the number of haplotypes (H), the haplotype diversity (Hd), and the segregating sites (S), while the average number of nucleotide differences between two sequences (Pi); in addition, neutrality testing, Tajima’s D test, Fu and Li’s D* and F* statistics was also performed. Results From a total of 32 patient-isolated samples, 31 DNA sequences were obtained and analysed for surf1.1 gene extracellular region polymorphism. Researchers observed six distinct haplotypes in the current research area. Haplotype frequencies were 61.3%, 16.2%, and 12.9% for H1, H2, and H3, respectively. The remaining haplotype (H4-H6) frequency was 3.2% for each haplotype. Hd was 0.598 ± 0.089 with the Pi of 0.00381, and S was 15. The most common amino acid polymorphic site was E251Q; other sites included N48D, I49V, E228D, E235S, L265F, K267T, E276Q, and S288F. Fu and Li’s D* test value was − 1.24255, Fu and Li’s F* test value was − 1.10175, indicating a tendency toward negative balancing selection acting on the surf1.1 N-terminal region. The most polymorphic region was variable 2 (Var2) while cysteine-rich domain (CRD) was conserved in both the amino acid and nucleotide extracellular region of surf1.1 gene. Conclusions The Thai surf1.1 N-terminal region was well-conserved with only a few polymorphic sites remaining. In this study, the data regarding current bearing on the polymorphism of extracellular region of surf1.1 gene were reported, which might impact the biological roles of P. falciparum. In addition, may possibly serve as a suitable candidate for future development of SURFIN-based vaccines regarding malaria control. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03876-y. The regions of SURFIN1.1 were identified: SURFIN1.1 is comprised of extracellular, transmembrane (TM), and intracellular regions. Nucleotide and amino acid sequences of the extracellular region of P. falciparum SURFIN1.1 from a total of 31 field isolates were obtained and analyzed for genetic polymorphism: six different haplotypes were identified. The extracellular region of the SURFIN1.1 among field isolates was conserved, especially in the cysteine-rich domain (CRD) sub-region. High polymorphism was shown in the variable region 2 (Var2), followed by N-terminal (N-ter) and variable region 1 (Var1), respectively. The findings presented herein may enable the discovery and development of a novel SURFIN-based vaccine for prevention and control of malaria.
Collapse
Affiliation(s)
- Natpasit Chaianantakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Tippawan Sungkapong
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jirapinya Changpad
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Keawalin Thongma
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sasiwimon Sim-Ut
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
11
|
Ajibola O, Diop MF, Ghansah A, Amenga-Etego L, Golassa L, Apinjoh T, Randrianarivelojosia M, Maiga-Ascofare O, Yavo W, Bouyou-Akotet M, Oyebola KM, Andagalu B, D'Alessandro U, Ishengoma D, Djimde AA, Kamau E, Amambua-Ngwa A. In silico characterisation of putative Plasmodium falciparum vaccine candidates in African malaria populations. Sci Rep 2021; 11:16215. [PMID: 34376744 PMCID: PMC8355234 DOI: 10.1038/s41598-021-95442-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
Genetic diversity of surface exposed and stage specific Plasmodium falciparum immunogenic proteins pose a major roadblock to developing an effective malaria vaccine with broad and long-lasting immunity. We conducted a prospective genetic analysis of candidate antigens (msp1, ama1, rh5, eba175, glurp, celtos, csp, lsa3, Pfsea, trap, conserved chrom3, hyp9, hyp10, phistb, surfin8.2, and surfin14.1) for malaria vaccine development on 2375 P. falciparum sequences from 16 African countries. We described signatures of balancing selection inferred from positive values of Tajima's D for all antigens across all populations except for glurp. This could be as a result of immune selection on these antigens as positive Tajima's D values mapped to regions with putative immune epitopes. A less diverse phistb antigen was characterised with a transmembrane domain, glycophosphatidyl anchors between the N and C- terminals, and surface epitopes that could be targets of immune recognition. This study demonstrates the value of population genetic and immunoinformatic analysis for identifying and characterising new putative vaccine candidates towards improving strain transcending immunity, and vaccine efficacy across all endemic populations.
Collapse
Affiliation(s)
- O Ajibola
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- First Technical University, Ibadan, Nigeria
| | - M F Diop
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - A Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - L Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - L Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - T Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | | - O Maiga-Ascofare
- Bernhard Nocht Institute for Topical Medicine (BNITM), Hamburg, Germany
| | - W Yavo
- Unite Des Sciences Pharmaceutiques et Biologiques, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - M Bouyou-Akotet
- Faculty of Medicine, University of Health Sciences, Libreville, Gabon
| | - K M Oyebola
- Department of Zoology, University of Lagos, Lagos, Nigeria
| | - B Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | - U D'Alessandro
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - D Ishengoma
- National Institute for Medical Research (NIMR), Tanga, Tanzania
| | - A A Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - E Kamau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| | - A Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
12
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Hang JW, Tukijan F, Lee EQH, Abdeen SR, Aniweh Y, Malleret B. Zoonotic Malaria: Non- Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens 2021; 10:889. [PMID: 34358039 PMCID: PMC8308728 DOI: 10.3390/pathogens10070889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.
Collapse
Affiliation(s)
- Jing-Wen Hang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Farhana Tukijan
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Erica-Qian-Hui Lee
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Shifana Raja Abdeen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| | - Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana;
| | - Benoit Malleret
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| |
Collapse
|
14
|
Miyazaki S, Chitama BYA, Kagaya W, Lucky AB, Zhu X, Yahata K, Morita M, Takashima E, Tsuboi T, Kaneko O. Plasmodium falciparum SURFIN 4.1 forms an intermediate complex with PTEX components and Pf113 during export to the red blood cell. Parasitol Int 2021; 83:102358. [PMID: 33901679 DOI: 10.1016/j.parint.2021.102358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
Plasmodium falciparum malaria parasites export several hundred proteins to the cytoplasm of infected red blood cells (RBCs) to modify the cell environment suitable for their growth. A Plasmodium translocon of exported proteins (PTEX) is necessary for both soluble and integral membrane proteins to cross the parasitophorous vacuole (PV) membrane surrounding the parasite inside the RBC. However, the molecular composition of the translocation complex for integral membrane proteins is not fully characterized, especially at the parasite plasma membrane. To examine the translocation complex, here we used mini-SURFIN4.1, consisting of a short N-terminal region, a transmembrane region, and a cytoplasmic region of an exported integral membrane protein SURFIN4.1. We found that mini-SURFIN4.1 forms a translocation intermediate complex with core PTEX components, EXP2, HSP101, and PTEX150. We also found that several proteins are exposed to the PV space, including Pf113, an uncharacterized PTEX-associated protein. We determined that Pf113 localizes in dense granules at the merozoite stage and on the parasite periphery after RBC invasion. Using an inducible translocon-clogged mini-SURFIN4.1, we found that a stable translocation intermediate complex forms at the parasite plasma membrane and contains EXP2 and a processed form of Pf113. These results suggest a potential role of Pf113 for the translocation step of mini-SURFIN4.1, providing further insights into the translocation mechanisms for parasite integral membrane proteins.
Collapse
Affiliation(s)
- Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Ben-Yeddy Abel Chitama
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; Department of Environmental Parasitology, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | - Amuza Byaruhanga Lucky
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Xiaotong Zhu
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
15
|
Ben Chaabene R, Lentini G, Soldati-Favre D. Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol Microbiol 2021; 115:453-465. [PMID: 33368727 DOI: 10.1111/mmi.14674] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.
Collapse
Affiliation(s)
- Rouaa Ben Chaabene
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Kanoi BN, Nagaoka H, White MT, Morita M, Palacpac NMQ, Ntege EH, Balikagala B, Yeka A, Egwang TG, Horii T, Tsuboi T, Takashima E. Global Repertoire of Human Antibodies Against Plasmodium falciparum RIFINs, SURFINs, and STEVORs in a Malaria Exposed Population. Front Immunol 2020; 11:893. [PMID: 32477363 PMCID: PMC7235171 DOI: 10.3389/fimmu.2020.00893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
Clinical immunity to malaria develops after repeated exposure to Plasmodium falciparum parasites. Broadly reactive antibodies against parasite antigens expressed on the surface of infected erythrocytes (variable surface antigens; VSAs) are candidates for anti-malaria therapeutics and vaccines. Among the VSAs, several RIFIN, STEVOR, and SURFIN family members have been demonstrated to be targets of naturally acquired immunity against malaria. For example, RIFIN family members are important ligands for opsonization of P. falciparum infected erythrocytes with specific immunoglobulins (IgG) acquiring broad protective reactivity. However, the global repertoire of human anti-VSAs IgG, its variation in children, and the key protective targets remain poorly understood. Here, we report wheat germ cell-free system-based production and serological profiling of a comprehensive library of A-RIFINs, B-RIFINs, STEVORs, and SURFINs derived from the P. falciparum 3D7 parasite strain. We observed that >98% of assayed proteins (n = 265) were immunogenic in malaria-exposed individuals in Uganda. The overall breadth of immune responses was significantly correlated with age but not with clinical malaria outcome among the study volunteers. However, children with high levels of antibodies to four RIFINs (PF3D7_0201000, PF3D7_1254500, PF3D7_1040600, PF3D7_1041100), STEVOR (PF3D7_0732000), and SURFIN 1.2 (PF3D7_0113600) had prospectively reduced the risk of developing febrile malaria, suggesting that the 5 antigens are important targets of protective immunity. Further studies on the significance of repeated exposure to malaria infection and maintenance of such high-level antibodies would contribute to a better understanding of susceptibility and naturally acquired immunity to malaria.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Michael T White
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Edward H Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Hospital, University of the Ryukyus, Okinawa, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Adoke Yeka
- Makerere University School of Public Health, Kampala, Uganda
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
17
|
Ruiz JL, Gómez-Díaz E. The second life of Plasmodium in the mosquito host: gene regulation on the move. Brief Funct Genomics 2020; 18:313-357. [PMID: 31058281 DOI: 10.1093/bfgp/elz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
18
|
Investigating a Plasmodium falciparum erythrocyte invasion phenotype switch at the whole transcriptome level. Sci Rep 2020; 10:245. [PMID: 31937828 PMCID: PMC6959351 DOI: 10.1038/s41598-019-56386-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
The central role that erythrocyte invasion plays in Plasmodium falciparum survival and reproduction makes this process an attractive target for therapeutic or vaccine development. However, multiple invasion-related genes with complementary and overlapping functions afford the parasite the plasticity to vary ligands used for invasion, leading to phenotypic variation and immune evasion. Overcoming the challenge posed by redundant ligands requires a deeper understanding of conditions that select for variant phenotypes and the molecular mediators. While host factors including receptor heterogeneity and acquired immune responses may drive parasite phenotypic variation, we have previously shown that host-independent changes in invasion phenotype can be achieved by continuous culturing of the W2mef and Dd2 P. falciparum strains in moving suspension as opposed to static conditions. Here, we have used a highly biologically replicated whole transcriptome sequencing approach to identify the molecular signatures of variation associated with the phenotype switch. The data show increased expression of particular invasion-related genes in switched parasites, as well as a large number of genes encoding proteins that are either exported or form part of the export machinery. The genes with most markedly increased expression included members of the erythrocyte binding antigens (EBA), reticulocyte binding homologues (RH), surface associated interspersed proteins (SURFIN), exported protein family 1 (EPF1) and Plasmodium Helical Interspersed Sub-Telomeric (PHIST) gene families. The data indicate changes in expression of a repertoire of genes not previously associated with erythrocyte invasion phenotypes, suggesting the possibility that moving suspension culture may also select for other traits.
Collapse
|
19
|
Brashear AM, Roobsoong W, Siddiqui FA, Nguitragool W, Sattabongkot J, López-Uribe MM, Miao J, Cui L. A glance of the blood stage transcriptome of a Southeast Asian Plasmodium ovale isolate. PLoS Negl Trop Dis 2019; 13:e0007850. [PMID: 31730621 PMCID: PMC6881071 DOI: 10.1371/journal.pntd.0007850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/27/2019] [Accepted: 10/16/2019] [Indexed: 11/24/2022] Open
Abstract
Plasmodium ovale accounts for a disproportionate number of travel-related malaria cases. This parasite is understudied since there is a reliance on clinical samples. We collected a P. ovale curtisi parasite isolate from a clinical case in western Thailand and performed RNA-seq analysis on the blood stage transcriptomes. Using both de novo assembly and alignment-based methods, we detected the transcripts for 6628 out of 7280 annotated genes. For those lacking evidence of expression, the vast majority belonged to the PIR and STP1 gene families. We identified new splicing patterns for over 2500 genes, and mapped at least one untranslated region for over half of all annotated genes. Our analysis also detected a notable presence of anti-sense transcripts for over 10% of P. ovale curtisi genes. This transcriptomic analysis provides new insights into the blood-stage biology of this neglected parasite.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Entomology, Pennsylvania State University, Department of Entomology, University Park, Pennsylvania, United States of America
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Faiza A. Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Margarita M. López-Uribe
- Department of Entomology, Pennsylvania State University, Department of Entomology, University Park, Pennsylvania, United States of America
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, Department of Entomology, University Park, Pennsylvania, United States of America
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
20
|
Chitama BYA, Miyazaki S, Zhu X, Kagaya W, Yahata K, Kaneko O. Multiple charged amino acids of Plasmodium falciparum SURFIN4.1 N-terminal region are important for efficient export to the red blood cell. Parasitol Int 2019; 71:186-193. [DOI: 10.1016/j.parint.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
|
21
|
Wichers JS, Scholz JAM, Strauss J, Witt S, Lill A, Ehnold LI, Neupert N, Liffner B, Lühken R, Petter M, Lorenzen S, Wilson DW, Löw C, Lavazec C, Bruchhaus I, Tannich E, Gilberger TW, Bachmann A. Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. mBio 2019; 10:e01500-19. [PMID: 31363031 PMCID: PMC6667621 DOI: 10.1128/mbio.01500-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
During its intraerythrocytic development, the malaria parasite Plasmodium falciparum exposes variant surface antigens (VSAs) on infected erythrocytes to establish and maintain an infection. One family of small VSAs is the polymorphic STEVOR proteins, which are marked for export to the host cell surface through their PEXEL signal peptide. Interestingly, some STEVORs have also been reported to localize to the parasite plasma membrane and apical organelles, pointing toward a putative function in host cell egress or invasion. Using deep RNA sequencing analysis, we characterized P. falciparumstevor gene expression across the intraerythrocytic development cycle, including free merozoites, in detail and used the resulting stevor expression profiles for hierarchical clustering. We found that most stevor genes show biphasic expression oscillation, with maximum expression during trophozoite stages and a second peak in late schizonts. We selected four STEVOR variants, confirmed the expected export of these proteins to the host cell membrane, and tracked them to a secondary location, either to the parasite plasma membrane or the secretory organelles of merozoites in late schizont stages. We investigated the function of a particular STEVOR that showed rhoptry localization and demonstrated its role at the parasite-host interface during host cell invasion by specific antisera and targeted gene disruption. Experimentally determined membrane topology of this STEVOR revealed a single transmembrane domain exposing the semiconserved as well as variable protein regions to the cell surface.IMPORTANCE Malaria claims about half a million lives each year. Plasmodium falciparum, the causative agent of the most severe form of the disease, uses proteins that are translocated to the surface of infected erythrocytes for immune evasion. To circumvent the detection of these gene products by the immune system, the parasite evolved a complex strategy that includes gene duplications and elaborate sequence polymorphism. STEVORs are one family of these variant surface antigens and are encoded by about 40 genes. Using deep RNA sequencing of blood-stage parasites, including free merozoites, we first established stevor expression of the cultured isolate and compared it with published transcriptomes. We reveal a biphasic expression of most stevor genes and confirm this for individual STEVORs at the protein level. The membrane topology of a rhoptry-associated variant was experimentally elucidated and linked to host cell invasion, underlining the importance of this multifunctional protein family for parasite proliferation.
Collapse
Affiliation(s)
- J Stephan Wichers
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Jan Strauss
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Andrés Lill
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | | | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Erlangen, Germany
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | | | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tim W Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
22
|
Abstract
In the progression of the life cycle of Plasmodium falciparum, a small proportion of asexual parasites differentiate into male or female sexual forms called gametocytes. Just like their asexual counterparts, gametocytes are contained within the infected host's erythrocytes (RBCs). However, unlike their asexual partners, they do not exit the RBC until they are taken up in a blood meal by a mosquito. In the mosquito midgut, they are stimulated to emerge from the RBC, undergo fertilization, and ultimately produce tens of thousands of sporozoites that are infectious to humans. This transmission cycle can be blocked by antibodies targeting proteins exposed on the parasite surface in the mosquito midgut, a process that has led to the development of candidate transmission-blocking vaccines (TBV), including some that are in clinical trials. Here we review the leading TBV antigens and highlight the ongoing search for additional gametocyte/gamete surface antigens, as well as antigens on the surfaces of gametocyte-infected erythrocytes, which can potentially become a new group of TBV candidates.
Collapse
|
23
|
Chan JA, Boyle MJ, Moore KA, Reiling L, Lin Z, Hasang W, Avril M, Manning L, Mueller I, Laman M, Davis T, Smith JD, Rogerson SJ, Simpson JA, Fowkes FJI, Beeson JG. Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children. J Infect Dis 2019; 219:819-828. [PMID: 30365004 PMCID: PMC6376912 DOI: 10.1093/infdis/jiy580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Kerryn A Moore
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Zaw Lin
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Wina Hasang
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Marion Avril
- Center for Infectious Diseases Research, Seattle, Washington
| | - Laurens Manning
- Papua New Guinea Institute of Medical Research, Madang
- University of Western Australia, Perth
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | | | - Joseph D Smith
- Center for Infectious Diseases Research, Seattle, Washington
| | - Stephen J Rogerson
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
25
|
Bruske E, Otto TD, Frank M. Whole genome sequencing and microsatellite analysis of the Plasmodium falciparum E5 NF54 strain show that the var, rifin and stevor gene families follow Mendelian inheritance. Malar J 2018; 17:376. [PMID: 30348135 PMCID: PMC6198375 DOI: 10.1186/s12936-018-2503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium falciparum exhibits a high degree of inter-isolate genetic diversity in its variant surface antigen (VSA) families: P. falciparum erythrocyte membrane protein 1, repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR). The role of recombination for the generation of this diversity is a subject of ongoing research. Here the genome of E5, a sibling of the 3D7 genome strain is presented. Short and long read whole genome sequencing (WGS) techniques (Ilumina, Pacific Bioscience) and a set of 84 microsatellites (MS) were employed to characterize the 3D7 and non-3D7 parts of the E5 genome. This is the first time that VSA genes in sibling parasites were analysed with long read sequencing technology. Results Of the 5733 E5 genes only 278 genes, mostly var and rifin/stevor genes, had no orthologues in the 3D7 genome. WGS and MS analysis revealed that chromosomal crossovers occurred at a rate of 0–3 per chromosome. var, stevor and rifin genes were inherited within the respective non-3D7 or 3D7 chromosomal context. 54 of the 84 MS PCR fragments correctly identified the respective MS as 3D7- or non-3D7 and this correlated with var and rifin/stevor gene inheritance in the adjacent chromosomal regions. E5 had 61 var and 189 rifin/stevor genes. One large non-chromosomal recombination event resulted in a new var gene on chromosome 14. The remainder of the E5 3D7-type subtelomeric and central regions were identical to 3D7. Conclusions The data show that the rifin/stevor and var gene families represent the most diverse compartments of the P. falciparum genome but that the majority of var genes are inherited without alterations within their respective parental chromosomal context. Furthermore, MS genotyping with 54 MS can successfully distinguish between two sibling progeny of a natural P. falciparum cross and thus can be used to investigate identity by descent in field isolates. Electronic supplementary material The online version of this article (10.1186/s12936-018-2503-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ellen Bruske
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK. .,Centre of Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany.
| |
Collapse
|
26
|
Quintana MDP, Ch’ng JH, Zandian A, Imam M, Hultenby K, Theisen M, Nilsson P, Qundos U, Moll K, Chan S, Wahlgren M. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4.2-RON4-GLURP) contributes to merozoite invasion. PLoS One 2018; 13:e0201669. [PMID: 30092030 PMCID: PMC6084945 DOI: 10.1371/journal.pone.0201669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Plasmodium falciparum invasion into red blood cells (RBCs) is a complex process engaging proteins on the merozoite surface and those contained and sequentially released from the apical organelles (micronemes and rhoptries). Fundamental to invasion is the formation of a moving junction (MJ), a region of close apposition of the merozoite and the RBC plasma membranes, through which the merozoite draws itself before settling into a newly formed parasitophorous vacuole (PV). SURFIN4.2 was identified at the surface of the parasitized RBCs (pRBCs) but was also found apically associated with the merozoite. Using antibodies against the N-terminus of the protein we show the presence of SURFIN4.2 in the neck of the rhoptries, its secretion into the PV and shedding into the culture supernatant upon schizont rupture. Using immunoprecipitation followed by mass spectrometry we describe here a novel protein complex we have named SURGE where SURFIN4.2 forms interacts with the rhoptry neck protein 4 (RON4) and the Glutamate Rich Protein (GLURP). The N-terminal cysteine-rich-domain (CRD) of SURFIN4.2 mediates binding to the RBC membrane and its interaction with RON4 suggests its involvement in the contact between the merozoite apex and the RBC at the MJ. Supporting this suggestion, we also found that polyclonal antibodies to the extracellular domain (including the CRD) of SURFIN4.2 partially inhibit merozoite invasion. We propose that the formation of the SURGE complex participates in the establishment of parasite infection within the PV and the RBCs.
Collapse
Affiliation(s)
- Maria del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch’ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Maryam Imam
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Kaur J, Hora R. '2TM proteins': an antigenically diverse superfamily with variable functions and export pathways. PeerJ 2018; 6:e4757. [PMID: 29770278 PMCID: PMC5951124 DOI: 10.7717/peerj.4757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Malaria is a disease that affects millions of people annually. An intracellular habitat and lack of protein synthesizing machinery in erythrocytes pose numerous difficulties for survival of the human pathogen Plasmodium falciparum. The parasite refurbishes the infected red blood cell (iRBC) by synthesis and export of several proteins in an attempt to suffice its metabolic needs and evade the host immune response. Immune evasion is largely mediated by surface display of highly polymorphic protein families known as variable surface antigens. These include the two trans-membrane (2TM) superfamily constituted by multicopy repetitive interspersed family (RIFINs), subtelomeric variable open reading frame (STEVORs) and Plasmodium falciparum Maurer's cleft two trans-membrane proteins present only in P. falciparum and some simian infecting Plasmodium species. Their hypervariable region flanked by 2TM domains exposed on the iRBC surface is believed to generate antigenic diversity. Though historically named "2TM superfamily," several A-type RIFINs and some STEVORs assume one trans-membrane topology. RIFINs and STEVORs share varied functions in different parasite life cycle stages like rosetting, alteration of iRBC rigidity and immune evasion. Additionally, a member of the STEVOR family has been implicated in merozoite invasion. Differential expression of these families in laboratory strains and clinical isolates propose them to be important for host cell survival and defense. The role of RIFINs in modulation of host immune response and presence of protective antibodies against these surface exposed molecules in patient sera highlights them as attractive targets of antimalarial therapies and vaccines. 2TM proteins are Plasmodium export elements positive, and several of these are exported to the infected erythrocyte surface after exiting through the classical secretory pathway within parasites. Cleaved and modified proteins are trafficked after packaging in vesicles to reach Maurer's clefts, while information regarding delivery to the iRBC surface is sparse. Expression and export timing of the RIFIN and Plasmodium falciparum erythrocyte membrane protein1 families correspond to each other. Here, we have compiled and comprehended detailed information regarding orthologues, domain architecture, surface topology, functions and trafficking of members of the "2TM superfamily." Considering the large repertoire of proteins included in the 2TM superfamily and recent advances defining their function in malaria biology, a surge in research carried out on this important protein superfamily is likely.
Collapse
Affiliation(s)
- Jasweer Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
28
|
Liu X, Wang Y, Liang J, Wang L, Qin N, Zhao Y, Zhao G. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome. BMC Genomics 2018; 19:312. [PMID: 29716542 PMCID: PMC5930813 DOI: 10.1186/s12864-018-4654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Results Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract genes highly transcribed at the trophozoite stage. Finally, 55 candidate genes were identified. Considering that parasite-infected erythrocyte surface protein 2 (PIESP2) contains gap-junction-related Neuromodulin_N domain and that anti-PIESP2 might provide protection against malaria, we chose PIESP2 for further experimental study. Conclusions Our analysis revealed a limited number of genes linked to human disease in P. falciparum genome. These genes could be interesting targets for further functional characterization. Electronic supplementary material The online version of this article (10.1186/s12864-018-4654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuewu Liu
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanyuan Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Liang
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Luojun Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Qin
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya Zhao
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
29
|
The Plasmodium knowlesi MAHRP2 ortholog localizes to structures connecting Sinton Mulligan's clefts in the infected erythrocyte. Parasitol Int 2018; 67:481-492. [PMID: 29673877 DOI: 10.1016/j.parint.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022]
Abstract
During development within the host erythrocyte malaria parasites generate nascent membranous structures which serve as a pathway for parasite protein transport to modify the host cell. The molecular basis of such membranous structures is not well understood, particularly for malaria parasites other than Plasmodium falciparum. To characterize the structural basis of protein trafficking in the Plasmodium knowlesi-infected erythrocyte, we identified a P. knowlesi ortholog of MAHRP2, a marker of the tether structure that connects membranous structures in the P. falciparum-infected erythrocyte. We show that PkMAHRP2 localizes on amorphous structures that connect Sinton Mulligan's clefts (SMC) to each other and to the erythrocyte membrane. Three dimensional reconstruction of the P. knowlesi-infected erythrocyte revealed that the SMC is a plate-like structure with swollen ends, reminiscent of the morphology of the Golgi apparatus. The PkMAHRP2-localized amorphous structures are possibly functionally equivalent to P. falciparum tether structure. These findings suggest a conservation in the ultrastructure of protein trafficking between P. falciparum and P. knowlesi.
Collapse
|
30
|
Böhme U, Otto TD, Cotton JA, Steinbiss S, Sanders M, Oyola SO, Nicot A, Gandon S, Patra KP, Herd C, Bushell E, Modrzynska KK, Billker O, Vinetz JM, Rivero A, Newbold CI, Berriman M. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome Res 2018; 28:547-560. [PMID: 29500236 PMCID: PMC5880244 DOI: 10.1101/gr.218123.116] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2018] [Indexed: 01/08/2023]
Abstract
Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum.
Collapse
Affiliation(s)
- Ulrike Böhme
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Thomas D Otto
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Sascha Steinbiss
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Samuel O Oyola
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Antoine Nicot
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, 34293 Montpellier Cedex 5, France
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, 34293 Montpellier Cedex 5, France
| | - Kailash P Patra
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Colin Herd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Ellen Bushell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Katarzyna K Modrzynska
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Joseph M Vinetz
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Ana Rivero
- MIVEGEC (CNRS UMR 5290), 34394 Montpellier Cedex 5, France
| | - Chris I Newbold
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
31
|
Quintana MDP, Ch'ng JH, Moll K, Zandian A, Nilsson P, Idris ZM, Saiwaew S, Qundos U, Wahlgren M. Antibodies in children with malaria to PfEMP1, RIFIN and SURFIN expressed at the Plasmodium falciparum parasitized red blood cell surface. Sci Rep 2018; 8:3262. [PMID: 29459776 PMCID: PMC5818650 DOI: 10.1038/s41598-018-21026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/12/2018] [Indexed: 01/21/2023] Open
Abstract
Naturally acquired antibodies to proteins expressed on the Plasmodium falciparum parasitized red blood cell (pRBC) surface steer the course of a malaria infection by reducing sequestration and stimulating phagocytosis of pRBC. Here we have studied a selection of proteins representing three different parasite gene families employing a well-characterized parasite with a severe malaria phenotype (FCR3S1.2). The presence of naturally acquired antibodies, impact on rosetting rate, surface reactivity and opsonization for phagocytosis in relation to different blood groups of the ABO system were assessed in a set of sera from children with mild or complicated malaria from an endemic area. We show that the naturally acquired immune responses, developed during malaria natural infection, have limited access to the pRBCs inside a blood group A rosette. The data also indicate that SURFIN4.2 may have a function at the pRBC surface, particularly during rosette formation, this role however needs to be further validated. Our results also indicate epitopes differentially recognized by rosette-disrupting antibodies on a peptide array. Antibodies towards parasite-derived proteins such as PfEMP1, RIFIN and SURFIN in combination with host factors, essentially the ABO blood group of a malaria patient, are suggested to determine the outcome of a malaria infection.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Jun-Hong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Zulkarnain Md Idris
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan, Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Somporn Saiwaew
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Tannous S, Ghanem E. A bite to fight: front-line innate immune defenses against malaria parasites. Pathog Glob Health 2018; 112:1-12. [PMID: 29376476 DOI: 10.1080/20477724.2018.1429847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria infection caused by Plasmodium parasites remains a major health burden worldwide especially in the tropics and subtropics. Plasmodium exhibits a complex life cycle whereby it undergoes a series of developmental stages in the Anopheles mosquito vector and the vertebrate human host. Malaria severity is mainly attributed to the genetic complexity of the parasite which is reflected in the sophisticated mechanisms of invasion and evasion that allow it to overcome the immune responses of both its invertebrate and vertebrate hosts. In this review, we aim to provide an updated, clear and concise summary of the literature focusing on the interactions of the vertebrate innate immune system with Plasmodium parasites, namely sporozoites, merozoites, and trophozoites. The roles of innate immune factors, both humoral and cellular, in anti-Plasmodium defense are described with particular emphasis on the contribution of key innate players including neutrophils, macrophages, and natural killer cells to the clearance of liver and blood stage parasites. A comprehensive understanding of the innate immune responses to malaria parasites remains an important goal that would dramatically help improve the design of original treatment strategies and vaccines, both of which are urgently needed to relieve the burden of malaria especially in endemic countries.
Collapse
Affiliation(s)
- Stephanie Tannous
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| | - Esther Ghanem
- a Faculty of Natural and Applied Sciences, Department of Sciences , Notre Dame University , Louaize , Lebanon
| |
Collapse
|
33
|
Zhang M, Faou P, Maier AG, Rug M. Plasmodium falciparum exported protein PFE60 influences Maurer’s clefts architecture and virulence complex composition. Int J Parasitol 2018; 48:83-95. [DOI: 10.1016/j.ijpara.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/20/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
|
34
|
Cabral FJ, Vianna LG, Medeiros MM, Carlos BC, Martha RD, Silva NM, Silva LHPD, Stabeli RG, Wunderlich G. Immunoproteomics of Plasmodium falciparum-infected red blood cell membrane fractions. Mem Inst Oswaldo Cruz 2017; 112:850-856. [PMID: 29211247 PMCID: PMC5719555 DOI: 10.1590/0074-02760170041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The surface of infected red blood cells (iRBCs) has been widely investigated
because of the molecular complexity and pathogenesis mechanisms involved.
Asymptomatic individuals are important in the field because they can
perpetuate transmission as natural reservoirs and present a challenge for
diagnosing malaria because of their low levels of circulating parasites.
Recent studies of iRBC antibody recognition have shown that responses are
quantitatively similar in symptomatic and asymptomatic infections, but no
studies have characterised the plasmodial proteins targeted by this
response. OBJECTIVES Our main objective was to identify Plasmodium falciparum
proteins associated with iRBC ghosts recognised by antibodies in the sera of
symptomatic and asymptomatic individuals in the Brazilian Amazon. METHODS We collected symptomatic and asymptomatic sera from patients residing in the
Brazilian Amazon and P. falciparum iRBC ghosts to identify
the proteins involved in natural antibody recognition by 2D-electrophoresis,
western blotting, and high- resolution mass spectrometry. FINDINGS 2D gel-based immunoproteome analysis using symptomatic and asymptomatic sera
identified 11 proteins with at least one unique peptide, such as chaperones
HSP70-1 and HSP70-x, which likely are components of the secretion
machinery/PTEX translocon. PfEMP1 is involved in antigenic variation in
symptomatic infections and we found putative membrane proteins whose
functions are unknown. MAIN FINDINGS Our results suggest a potential role of old and new proteins, such as
antigenic variation proteins, iRBC remodelling, and membrane proteins, with
no assigned functions related to the immune response against P.
falciparum, providing insights into the pathogenesis,
erythrocyte remodelling, and secretion machinery important for alternative
diagnosis and/or malaria therapy.
Collapse
Affiliation(s)
- Fernanda J Cabral
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil.,Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | | | - Marcia M Medeiros
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil.,Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, Lisboa, Portugal
| | - Bianca Cechetto Carlos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | | | - Nadia Maria Silva
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Campinas, SP, Brasil
| | | | | | - Gerhard Wunderlich
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| |
Collapse
|
35
|
Nilsson Bark SK, Ahmad R, Dantzler K, Lukens AK, De Niz M, Szucs MJ, Jin X, Cotton J, Hoffmann D, Bric-Furlong E, Oomen R, Parrington M, Milner D, Neafsey DE, Carr SA, Wirth DF, Marti M. Quantitative Proteomic Profiling Reveals Novel Plasmodium falciparum Surface Antigens and Possible Vaccine Candidates. Mol Cell Proteomics 2017; 17:43-60. [PMID: 29162636 DOI: 10.1074/mcp.ra117.000076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Despite recent efforts toward control and elimination, malaria remains a major public health problem worldwide. Plasmodium falciparum resistance against artemisinin, used in front line combination drugs, is on the rise, and the only approved vaccine shows limited efficacy. Combinations of novel and tailored drug and vaccine interventions are required to maintain the momentum of the current malaria elimination program. Current evidence suggests that strain-transcendent protection against malaria infection can be achieved using whole organism vaccination or with a polyvalent vaccine covering multiple antigens or epitopes. These approaches have been successfully applied to the human-infective sporozoite stage. Both systemic and tissue-specific pathology during infection with the human malaria parasite P. falciparum is caused by asexual blood stages. Tissue tropism and vascular sequestration are the result of specific binding interactions between antigens on the parasite-infected red blood cell (pRBC) surface and endothelial receptors. The major surface antigen and parasite ligand binding to endothelial receptors, PfEMP1 is encoded by about 60 variants per genome and shows high sequence diversity across strains. Apart from PfEMP1 and three additional variant surface antigen families RIFIN, STEVOR, and SURFIN, systematic analysis of the infected red blood cell surface is lacking. Here we present the most comprehensive proteomic investigation of the parasitized red blood cell surface so far. Apart from the known variant surface antigens, we identified a set of putative single copy surface antigens with low sequence diversity, several of which are validated in a series of complementary experiments. Further functional and immunological investigation is underway to test these novel P. falciparum blood stage proteins as possible vaccine candidates.
Collapse
Affiliation(s)
- Sandra K Nilsson Bark
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Rushdy Ahmad
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Kathleen Dantzler
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,¶Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Amanda K Lukens
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,§The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Mariana De Niz
- ¶Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Matthew J Szucs
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Xiaoying Jin
- ‖Sanofi Biopharmaceutics Development, Framingham, Massachusetts 02142
| | - Joanne Cotton
- ‖Sanofi Biopharmaceutics Development, Framingham, Massachusetts 02142
| | | | | | - Ray Oomen
- **Sanofi Pasteur Biologics, Cambridge, Massachusetts 02139
| | | | - Dan Milner
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,‡‡Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Daniel E Neafsey
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Steven A Carr
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Dyann F Wirth
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,§The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Matthias Marti
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; .,¶Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
36
|
Chan JA, Stanisic DI, Duffy MF, Robinson LJ, Lin E, Kazura JW, King CL, Siba PM, Fowkes FJ, Mueller I, Beeson JG. Patterns of protective associations differ for antibodies to P. falciparum-infected erythrocytes and merozoites in immunity against malaria in children. Eur J Immunol 2017; 47:2124-2136. [PMID: 28833064 DOI: 10.1002/eji.201747032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022]
Abstract
Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Danielle I Stanisic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael F Duffy
- Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia
| | - Leanne J Robinson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Freya Ji Fowkes
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Knockdown of the Plasmodium falciparum SURFIN4.1 antigen leads to an increase of its cognate transcript. PLoS One 2017; 12:e0183129. [PMID: 28800640 PMCID: PMC5553854 DOI: 10.1371/journal.pone.0183129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022] Open
Abstract
The genome of the malaria parasite Plasmodium falciparum contains the surf gene family which encodes large transmembrane proteins of unknown function. While some surf alleles appear to be expressed in sexual stages, others occur in asexual blood stage forms and may be associated to virulence-associated processes and undergo transcriptional switching. We accessed the transcription of surf genes along multiple invasions by real time PCR. Based on the observation of persistent expression of gene surf4.1, we created a parasite line which expresses a conditionally destabilized SURFIN4.1 protein. Upon destabilization of the protein, no interference of parasite growth or morphological changes were detected. However, we observed a strong increase in the transcript quantities of surf4.1 and sometimes of other surf genes in knocked-down parasites. While this effect was reversible when SURFIN4.1 was stabilized again after a few days of destabilization, longer destabilization periods resulted in a transcriptional switch away from surf4.1. When we tested if a longer transcript half-life was responsible for increased transcript detection in SURFIN4.1 knocked-down parasites, no alteration was found compared to control parasite lines. This suggests a specific feedback of the expressed SURFIN protein to its transcript pointing to a novel type of regulation, inedited in Plasmodium.
Collapse
|
38
|
Abstract
Organisms with identical genome sequences can show substantial differences in their phenotypes owing to epigenetic changes that result in different use of their genes. Epigenetic regulation of gene expression plays a key role in the control of several fundamental processes in the biology of malaria parasites, including antigenic variation and sexual differentiation. Some of the histone modifications and chromatin-modifying enzymes that control the epigenetic states of malaria genes have been characterized, and their functions are beginning to be unraveled. The fundamental principles of epigenetic regulation of gene expression appear to be conserved between malaria parasites and model eukaryotes, but important peculiarities exist. Here, we review the current knowledge of malaria epigenetics and discuss how it can be exploited for the development of new molecular markers and new types of drugs that may contribute to malaria eradication efforts.
Collapse
Affiliation(s)
- Alfred Cortés
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
39
|
Metwally NG, Tilly AK, Lubiana P, Roth LK, Dörpinghaus M, Lorenzen S, Schuldt K, Witt S, Bachmann A, Tidow H, Gutsmann T, Burmester T, Roeder T, Tannich E, Bruchhaus I. Characterisation of Plasmodium falciparum populations selected on the human endothelial receptors P-selectin, E-selectin, CD9 and CD151. Sci Rep 2017. [PMID: 28642573 PMCID: PMC5481354 DOI: 10.1038/s41598-017-04241-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability of the parasite Plasmodium falciparum to evade the immune system and be sequestered within human small blood vessels is responsible for severe forms of malaria. The sequestration depends on the interaction between human endothelial receptors and P. falciparum erythrocyte membrane protein 1 (PfEMP1) exposed on the surface of the infected erythrocytes (IEs). In this study, the transcriptomes of parasite populations enriched for parasites that bind to human P-selectin, E-selectin, CD9 and CD151 receptors were analysed. IT4_var02 and IT4_var07 were specifically expressed in IT4 parasite populations enriched for P-selectin-binding parasites; eight var genes (IT4_var02/07/09/13/17/41/44/64) were specifically expressed in isolate populations enriched for CD9-binding parasites. Interestingly, IT4 parasite populations enriched for E-selectin- and CD151-binding parasites showed identical expression profiles to those of a parasite population exposed to wild-type CHO-745 cells. The same phenomenon was observed for the 3D7 isolate population enriched for binding to P-selectin, E-selectin, CD9 and CD151. This implies that the corresponding ligands for these receptors have either weak binding capacity or do not exist on the IE surface. Conclusively, this work expanded our understanding of P. falciparum adhesive interactions, through the identification of var transcripts that are enriched within the selected parasite populations.
Collapse
Affiliation(s)
- Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Medical Parasitology Department, Faculty of Medicine-Suez Canal University, Ismailia, Egypt
| | | | - Pedro Lubiana
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lisa K Roth
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kathrin Schuldt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Henning Tidow
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | - Thomas Roeder
- Zoological Institute, Department of Molecular Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
40
|
Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol 2017; 15:479-491. [DOI: 10.1038/nrmicro.2017.47] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Acharya P, Garg M, Kumar P, Munjal A, Raja KD. Host-Parasite Interactions in Human Malaria: Clinical Implications of Basic Research. Front Microbiol 2017; 8:889. [PMID: 28572796 PMCID: PMC5435807 DOI: 10.3389/fmicb.2017.00889] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
The malaria parasite, Plasmodium, is one of the oldest parasites documented to infect humans and has proven particularly hard to eradicate. One of the major hurdles in designing an effective subunit vaccine against the malaria parasite is the insufficient understanding of host–parasite interactions within the human host during infections. The success of the parasite lies in its ability to evade the human immune system and recruit host responses as physiological cues to regulate its life cycle, leading to rapid acclimatization of the parasite to its immediate host environment. Hence understanding the environmental niche of the parasite is crucial in developing strategies to combat this deadly infectious disease. It has been increasingly recognized that interactions between parasite proteins and host factors are essential to establishing infection and virulence at every stage of the parasite life cycle. This review reassesses all of these interactions and discusses their clinical importance in designing therapeutic approaches such as design of novel vaccines. The interactions have been followed from the initial stages of introduction of the parasite under the human dermis until asexual and sexual blood stages which are essential for transmission of malaria. We further classify the interactions as “direct” or “indirect” depending upon their demonstrated ability to mediate direct physical interactions of the parasite with host factors or their indirect manipulation of the host immune system since both forms of interactions are known to have a crucial role during infections. We also discuss the many ways in which this understanding has been taken to the field and the success of these strategies in controlling human malaria.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Manika Garg
- Department of Biochemistry, Jamia Hamdard UniversityNew Delhi, India
| | - Praveen Kumar
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Akshay Munjal
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - K D Raja
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|
42
|
Dinko B, King E, Targett GAT, Sutherland CJ. Antibody responses to surface antigens of Plasmodium falciparum gametocyte-infected erythrocytes and their relation to gametocytaemia. Parasite Immunol 2017; 38:352-64. [PMID: 27084060 PMCID: PMC5089589 DOI: 10.1111/pim.12323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Abstract
An essential element for continuing transmission of Plasmodium falciparum is the availability of mature gametocytes in human peripheral circulation for uptake by mosquitoes. Natural immune responses to circulating gametocytes may play a role in reducing transmission from humans to mosquitoes. Here, antibody recognition of the surface of mature intra‐erythrocytic gametocytes produced either by a laboratory‐adapted parasite, 3D7, or by a recent clinical isolate of Kenyan origin (HL1204), was evaluated longitudinally in a cohort of Ghanaian school children by flow cytometry. This showed that a proportion of children exhibited antibody responses that recognized gametocyte surface antigens on one or both parasite lines. A subset of the children maintained detectable anti‐gametocyte surface antigen (GSA) antibody levels during the 5 week study period. There was indicative evidence that children with anti‐GSA antibodies present at enrolment were less likely to have patent gametocytaemia at subsequent visits (odds ratio = 0·29, 95% CI 0·06–1·05; P = 0·034). Our data support the existence of antigens on the surface of gametocyte‐infected erythrocytes, but further studies are needed to confirm whether antibodies against them reduce gametocyte carriage. The identification of GSA would allow their evaluation as potential anti‐gametocyte vaccine candidates and/or biomarkers for gametocyte carriage.
Collapse
Affiliation(s)
- B Dinko
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - E King
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G A T Targett
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - C J Sutherland
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
43
|
Zhu X, He Y, Liang Y, Kaneko O, Cui L, Cao Y. Tryptophan-rich domains of Plasmodium falciparum SURFIN 4.2 and Plasmodium vivax PvSTP2 interact with membrane skeleton of red blood cell. Malar J 2017; 16:121. [PMID: 28320404 PMCID: PMC5359885 DOI: 10.1186/s12936-017-1772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Background Plasmodium falciparum dramatically alters the morphology and properties of the infected red blood cells (iRBCs). A large group of exported proteins participate in these parasite-host interactions occurring at the iRBC membrane skeleton. SURFIN4.2 is one of iRBC surface protein that belongs to surface-associated interspersed protein (SURFIN) family. Although the intracellular tryptophan-rich domain (WRD) was proposed to be important for the translocation of SURFINs from Maurer’s clefts to iRBC surface, the molecular basis of this observation has yet to be defined. The WRDs of P. falciparum SURFIN proteins and their orthologous Plasmodium vivax subtelomeric transmembrane proteins (PvSTPs) show homology to the intracellular regions of PfEMP1 and Pf332, both of which are involved in RBC membrane skeleton interactions, and contribute to malaria pathology. Methods Two transfected lines expressing recombinant SURFINs (NTC-GFP and NTC-4.2WRD2-GFP) of the 3D7 sequence were generated by transfection in P. falciparum. In vitro binding assays were performed by using recombinant WRDs of SURFIN4.2/PvSTP2 and inside-out vesicles (IOVs). The interactions between the recombinant WRDs of SURFIN4.2/PvSTP2 with actin and spectrin were evaluated by the actin spin down assay and an enzyme-linked immunosorbent assay based binding assays, respectively. Results The recombinant SURFINs (NTC-4.2WRD2-GFP), in which the second WRD from SURFIN4.2 was added back to NTC-GFP, show diffused pattern of fluorescence in the iRBC cytosol. Furthermore, WRDs of SURFIN4.2/PvSTP2 were found to directly interact with the IOVs of RBC, with binding affinities ranging from 0.26 to 0.68 μM, values that are comparable to other reported parasite proteins that bind to the RBC membrane skeleton. Further experiments revealed that the second WRD of SURFIN4.2 bound to F-actin (Kd = 5.16 μM) and spectrin (Kd = 0.51 μM). Conclusions Because PfEMP1 and Pf332 also bind to actin and/or spectrin, the authors propose that the interaction between WRD and RBC membrane skeleton might be a common feature of WRD-containing proteins and may be important for the translocation of these proteins from Maurer’s clefts to the iRBC surface. The findings suggest a conserved mechanism of host-parasite interactions and targeting this interaction may disrupt the iRBC surface exposure of Plasmodium virulence-related proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1772-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yang He
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yifan Liang
- 98K 73B Seven-year Programme 127306, China Medical University, Shenyang, 110001, Liaoning, China
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China. .,Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
44
|
Gitaka JN, Takeda M, Kimura M, Idris ZM, Chan CW, Kongere J, Yahata K, Muregi FW, Ichinose Y, Kaneko A, Kaneko O. Selections, frameshift mutations, and copy number variation detected on the surf 4.1 gene in the western Kenyan Plasmodium falciparum population. Malar J 2017; 16:98. [PMID: 28253868 PMCID: PMC5335827 DOI: 10.1186/s12936-017-1743-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum SURFIN4.1 is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf 4.1 sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand. RESULTS Positively significant departures from neutral expectations were detected on the surf 4.1 region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf 4.1 gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36). CONCLUSIONS The authors infer that the high polymorphism of SURFIN4.1 Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1 Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1 on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.
Collapse
Affiliation(s)
- Jesse N. Gitaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Mika Takeda
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Masatsugu Kimura
- Radioisotope Centre, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Chim W. Chan
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
| | - James Kongere
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Kazuhide Yahata
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Francis W. Muregi
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Yoshio Ichinose
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Akira Kaneko
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Osamu Kaneko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| |
Collapse
|
45
|
Bruske EI, Dimonte S, Enderes C, Tschan S, Flötenmeyer M, Koch I, Berger J, Kremsner P, Frank M. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription. PLoS One 2016; 11:e0166135. [PMID: 27907004 PMCID: PMC5132323 DOI: 10.1371/journal.pone.0166135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections.
Collapse
Affiliation(s)
- Ellen Inga Bruske
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Corinna Enderes
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Serena Tschan
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | | | - Iris Koch
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
- * E-mail:
| |
Collapse
|
46
|
Abstract
Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses.
Collapse
Affiliation(s)
- Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
47
|
Chan JA, Howell KB, Langer C, Maier AG, Hasang W, Rogerson SJ, Petter M, Chesson J, Stanisic DI, Duffy MF, Cooke BM, Siba PM, Mueller I, Bull PC, Marsh K, Fowkes FJI, Beeson JG. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell Mol Life Sci 2016; 73:4141-58. [PMID: 27193441 PMCID: PMC5042999 DOI: 10.1007/s00018-016-2267-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Katherine B Howell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christine Langer
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
| | - Alexander G Maier
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Wina Hasang
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Michaela Petter
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Joanne Chesson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Michael F Duffy
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian M Cooke
- Programs in Infection and Immunity and Cardiovascular Disease, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter C Bull
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Melbourne School of Public Health, University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia.
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
48
|
Lucky AB, Sakaguchi M, Katakai Y, Kawai S, Yahata K, Templeton TJ, Kaneko O. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the 'Sinton and Mulligan' Stipplings in the Cytoplasm of Monkey and Human Erythrocytes. PLoS One 2016; 11:e0164272. [PMID: 27732628 PMCID: PMC5061513 DOI: 10.1371/journal.pone.0164272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as ‘Sinton and Mulligan’ stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Leading program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, Tsukuba 305-0843, Japan
| | - Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Thomas J. Templeton
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York 10021, United States of America
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Leading program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- * E-mail:
| |
Collapse
|
49
|
Sutherland CJ. Persistent Parasitism: The Adaptive Biology of Malariae and Ovale Malaria. Trends Parasitol 2016; 32:808-819. [PMID: 27480365 DOI: 10.1016/j.pt.2016.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
Plasmodium malariae causes malaria in humans throughout the tropics and subtropics. Plasmodium ovale curtisi and Plasmodium ovale wallikeri are sympatric sibling species common in sub-Saharan Africa and also found in Oceania and Asia. Although rarely identified as the cause of malaria cases in endemic countries, PCR detection has confirmed all three parasite species to be more prevalent, and persistent, than previously thought. Chronic, low-density, multispecies asymptomatic infection is a successful biological adaptation by these Plasmodium spp., a pattern also observed among malaria parasites of wild primates. Current whole-genome analyses are illuminating the species barrier separating the ovale parasite species and reveal substantial expansion of subtelomeric gene families. The evidence for and against a quiescent pre-erythrocytic form of P. malariae is reviewed.
Collapse
Affiliation(s)
- Colin J Sutherland
- Department of Immunology and Infection and Public Health England Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Clinical Parasitology, Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, Mortimer Market Centre, Capper Street, London WC1E 6JB, UK.
| |
Collapse
|
50
|
Ansari HR, Templeton TJ, Subudhi AK, Ramaprasad A, Tang J, Lu F, Naeem R, Hashish Y, Oguike MC, Benavente ED, Clark TG, Sutherland CJ, Barnwell JW, Culleton R, Cao J, Pain A. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species. Int J Parasitol 2016; 46:685-96. [PMID: 27392654 DOI: 10.1016/j.ijpara.2016.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 12/13/2022]
Abstract
Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.
Collapse
Affiliation(s)
- Hifzur Rahman Ansari
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Thomas J Templeton
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Microbiology and Immunology, Weill Cornell Medical College, New York 10021, USA
| | - Amit Kumar Subudhi
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Abhinay Ramaprasad
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China
| | - Feng Lu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China
| | - Raeece Naeem
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Yasmeen Hashish
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Mary C Oguike
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ernest Diez Benavente
- Department of Pathogen Molecular Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Department of Pathogen Molecular Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Pathogen Molecular Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Public Health England Malaria Reference Laboratory, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - John W Barnwell
- Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Jun Cao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Saudi Arabia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo 001-0020, Japan.
| |
Collapse
|