1
|
Wang W, Cao C, Pandian VD, Ye H, Chen H, Zhang L. Mac-1 regulates disease stage-specific immunosuppression via the nitric oxide pathway in autoimmune disease. SCIENCE ADVANCES 2025; 11:eads3728. [PMID: 40344054 PMCID: PMC12063669 DOI: 10.1126/sciadv.ads3728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Integrin Mac-1 plays a critical role in the development of multiple sclerosis (MS); however, the underlying mechanism is not fully understood. Here, we developed a myeloid-specific Mac-1-deficient mouse. Using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, we report that Mac-1 on myeloid cells is key to disease development. Our data reveal that myeloid-specific Mac-1 significantly increases EAE severity and hinders disease regression. Loss of Mac-1 increases Gr-1+ cells in peripheral tissues and the CNS and preferably accelerates the transition of Ly6Chi monocytes from a pro-inflammatory to an immunosuppressive phenotype in a disease stage-dependent manner. Mechanistically, our results demonstrate that Mac-1 suppresses interferon-γ production and prevents monocytes from acquiring immunosuppressive functions by reducing the expression of iNOS, IDO, and CD84. Administration of a NOS-specific inhibitor in Mac-1-deficient EAE mice abolishes disease regression. These insights could help develop Mac-1-targeting strategies for better treatment of MS.
Collapse
MESH Headings
- Animals
- Mice
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Nitric Oxide/metabolism
- Macrophage-1 Antigen/metabolism
- Macrophage-1 Antigen/genetics
- Disease Models, Animal
- Mice, Knockout
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Signal Transduction
- Monocytes/metabolism
- Monocytes/immunology
- Mice, Inbred C57BL
- Immune Tolerance
- Female
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Chunzhang Cao
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Vishnuprabu Durairaj Pandian
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Haofeng Ye
- Johns Hopkins Advanced Academic Programs, Johns Hopkins University of Arts and Sciences, Baltimore, MD, USA
| | - Hongxia Chen
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
2
|
Han X, Wang Y, Zhang K, Na T, Wu T, Hao X, Jin Y, Wang Y, Wang H, Meng S. Dosage and organic acid residue of myelin oligodendrocyte glycoprotein 35-55 peptide influences immunopathology and development of Bacillus Calmette-Guérin induced experimental autoimmune encephalomyelitis. Exp Anim 2025; 74:16-30. [PMID: 38987201 PMCID: PMC11742474 DOI: 10.1538/expanim.24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) serves as a model for studying multiple sclerosis, with immunization strategies utilizing myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, emulsified in adjuvant enriched with Mycobacterium tuberculosis (Mtb). This study examined the effects of Bacillus Calmette-Guérin (BCG) as an adjuvant, alongside the impact of MOG35-55 peptide doses and their residual counter ions on EAE development. We found that BCG can be effectively used to induce EAE with similar incidence and severity as heat-killed H37Ra, contingent upon the appropriate MOG35-55 peptide dose. Different immunization doses of MOG35-55 peptide significantly affect EAE development, with higher doses leading to a paradoxical reduction in disease activity, probably due to peripheral tolerance mechanisms. Furthermore, doses of MOG35-55 peptides with acetate showed a more pronounced effect on disease development compared to those containing trifluoroacetic acid (TFA), suggesting the potential influence of residual counter ions on EAE activity. We highlighted the feasibility of applying BCG to the establishment of EAE for the first time. Our findings emphasized the importance of MOG35-55 peptide dosage and composition in modulating EAE development, offering insights into the mechanisms of autoimmunity and tolerance. This could have implications for autoimmune disease research and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoyan Han
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Ying Wang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Kehua Zhang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Tao Na
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Tingting Wu
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Xiaofang Hao
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Yuxuan Jin
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Yuchun Wang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Haohan Wang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| | - Shufang Meng
- Cell Collection and Research Center, National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102629, P.R. China
| |
Collapse
|
3
|
Li Y, Lei Z, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the Integrin CD11b Mac-1 Limits Deleterious Responses to Traumatic Spinal Cord Injury and Improves Functional Recovery in Mice. Cells 2024; 13:1584. [PMID: 39329765 PMCID: PMC11430243 DOI: 10.3390/cells13181584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Simon Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| |
Collapse
|
4
|
Harjunpää H, Somermäki R, Saldo Rubio G, Fusciello M, Feola S, Faisal I, Nieminen AI, Wang L, Llort Asens M, Zhao H, Eriksson O, Cerullo V, Fagerholm SC. Loss of β2-integrin function results in metabolic reprogramming of dendritic cells, leading to increased dendritic cell functionality and anti-tumor responses. Oncoimmunology 2024; 13:2369373. [PMID: 38915784 PMCID: PMC11195491 DOI: 10.1080/2162402x.2024.2369373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of β2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of β2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for β2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Riku Somermäki
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Guillem Saldo Rubio
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Sara Feola
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Liang Wang
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ove Eriksson
- Biochemistry and Developmental biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Ehirchiou D, Bernabei I, Pandian VD, Nasi S, Chobaz V, Castelblanco M, So A, Martinon F, Li X, Acha-Orbea H, Hugle T, Zhang L, Busso N. The integrin CD11b inhibits MSU-induced NLRP3 inflammasome activation in macrophages and protects mice against MSU-induced joint inflammation. Arthritis Res Ther 2024; 26:119. [PMID: 38863059 PMCID: PMC11165854 DOI: 10.1186/s13075-024-03350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE In gout, monosodium urate crystals are taken up by macrophages, triggering the activation of the NLRP3 inflammasome and the maturation of IL-1β. This study aimed to investigate the role of integrin CD11b in inflammasome activation in macrophages stimulated by MSU. METHODS BMDM from WT and CD11b KO mice were stimulated in vitro with MSU crystals. Cellular supernatants were collected to assess the expression of the inflammatory cytokines by enzyme-linked immunosorbent assay and western blot methods. The role of integrin CD11b in MSU-induced gouty arthritis in vivo was investigated by intra-articular injection of MSU crystals. Real-time extracellular acidification rate and oxygen consumption rate of BMDMs were measured by Seahorse Extracellular Flux Analyzer. RESULTS We demonstrate that CD11b-deficient mice developed exacerbated gouty arthritis with increased recruitment of leukocytes in the joint and higher IL-1β levels in the sera. In macrophages, genetic deletion of CD11b induced a shift of macrophage metabolism from oxidative phosphorylation to glycolysis, thus decreasing the overall generation of intracellular ATP. Upon MSU stimulation, CD11b-deficient macrophages showed an exacerbated secretion of IL-1β. Treating wild-type macrophages with a CD11b agonist, LA1, inhibited MSU-induced release of IL-1β in vitro and attenuated the severity of experimental gouty arthritis. Importantly, LA1, was also effective in human cells as it inhibited MSU-induced release of IL-1β by peripheral blood mononuclear cells from healthy donors. CONCLUSION Our data identified the CD11b integrin as a principal cell membrane receptor that modulates NLRP3 inflammasome activation by MSU crystal in macrophages, which could be a potential therapeutic target to treat gouty arthritis in human patients.
Collapse
Grants
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
- 310030_173134 Fonds National Suisse de la recherche scientifique, Switzerland
Collapse
Affiliation(s)
- Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vishnuprabu Durairaj Pandian
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Veronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Fabio Martinon
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Xiaoyun Li
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Thomas Hugle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Li Y, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the integrin CD11b mac-1 limits deleterious responses to traumatic spinal cord injury and improves functional recovery in mice. RESEARCH SQUARE 2024:rs.3.rs-4196316. [PMID: 38645238 PMCID: PMC11030505 DOI: 10.21203/rs.3.rs-4196316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Spinal cord injury (SCI) causes long-term sensorimotor deficits and posttraumatic neuropathic pain, with no effective treatment. In part, this reflects an incomplete understanding of the complex secondary pathobiological mechanisms involved. SCI triggers microglial/macrophage activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18, αMβ2 or CR3), a heterodimer consisting of αM (CD11b) and β2 (CD18) chains, is generally regarded as a pro-inflammatory receptor in neurotrauma. Multiple immune cells of the myeloid lineage express CD11b, including microglia, macrophages, and neutrophils. In the present study, we examined the effects of CD11b gene ablation on posttraumatic neuroinflammation and functional outcomes after SCI. Methods Young adult age-matched female CD11b knockout (KO) mice and their wildtype (WT) littermates were subjected to moderate thoracic spinal cord contusion. Neuroinflammation in the injured spinal cord was assessed with qPCR, flow cytometry, NanoString, and RNAseq. Neurological function was evaluated with the Basso Mouse Scale (BMS), gait analysis, thermal hyperesthesia, and mechanical allodynia. Lesion volume was evaluated by GFAP-DAB immunohistochemistry, followed by analysis with unbiased stereology. Results qPCR analysis showed a rapid and persistent upregulation of CD11b mRNA starting from 1d after injury, which persisted up to 28 days. At 1d post-injury, increased expression levels of genes that regulate inflammation-resolving processes were observed in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen production in CD11b KO mice at d3 post-injury. Further examination of the injured spinal cord with NanoString Mouse Neuroinflammation Panel and RNAseq showed upregulated expression of pro-inflammatory genes, but downregulated expression of the reactive oxygen species pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Conclusion Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI. Thus, the integrin CD11b represents a potential target that may lead to novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yun Li
- University of Maryland School of Medicine
| | | | - Junyun He
- University of Maryland School of Medicine
| | - Simon Liu
- University of Maryland School of Medicine
| | - Li Zhang
- University of Maryland School of Medicine
| | - Junfang Wu
- University of Maryland School of Medicine
| |
Collapse
|
7
|
Gonciarz W, Brzeziński M, Orłowska W, Wawrzyniak P, Lewandowski A, Narayanan VHB, Chmiela M. Spray-dried pH-sensitive chitosan microparticles loaded with Mycobacterium bovis BCG intended for supporting treatment of Helicobacter pylori infection. Sci Rep 2024; 14:4747. [PMID: 38413775 PMCID: PMC10899647 DOI: 10.1038/s41598-024-55353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Gram-negative spiral-shaped Helicobacter pylori (Hp) bacteria induce the development of different gastric disorders. The growing resistance of Hp to antibiotics prompts to search for new therapeutic formulations. A promising candidate is Mycobacterium bovis BCG (BCG) with immunomodulatory properties. Biodegradable mucoadhesive chitosan is a good carrier for delivering BCG mycobacteria to the gastric mucosal environment. This study aimed to show whether BCG bacilli are able to increase the phagocytic activity of Cavia porcellus-guinea pig macrophages derived from the bone marrow towards fluorescently labeled Escherichia coli. Furthermore, to encapsulate live BCG bacilli, in spray-dried chitosan microparticles (CHI-MPs), and assess the pH-dependent release of mycobacteria in pH conditions mimicking gastric (acidic) or gut (alkaline) milieu. Microparticles (MPs) were made of chitosan and coated with Pluronic F-127-(Plur) or N-Acetyl-D-Glucosamine-(GlcNAc) to increase the MPs resistance to low pH or to increase anti-Hp effect, respectively. Spray-drying method was used for microencapsulation of live BCG. The biosafety of tested CHI-MPs has been confirmed using cell models in vitro and the model of guinea pig in vivo. The CHI-MPs loaded with BCG released live mycobacteria at pH 3.0 (CHI-GlcNAc-MPs) or pH 8.0. (CHI-Plur-MPs). The CHI-MPs loaded with live BCG can be used for per os inoculation of Cavia porcellus to check the effectiveness of delivered mycobacteria in increasing anti-H. pylori host response.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| | - Weronika Orłowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Paweł Wawrzyniak
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Artur Lewandowski
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
8
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
9
|
Erdem S, Haskologlu S, Haliloglu Y, Çelikzencir H, Arik E, Keskin O, Eltan SB, Yucel E, Canatan H, Avcilar H, Yilmaz E, Ozcan A, Unal E, Karakukcu M, Celiksoy MH, Kilic SS, Demir A, Genel F, Gulez N, Koker MY, Ozen AO, Baris S, Metin A, Guner SN, Reisli I, Keles S, Dogu EF, Ikinciogullari KA, Eken A. Defective Treg generation and increased type 3 immune response in leukocyte adhesion deficiency 1. Clin Immunol 2023:109691. [PMID: 37433423 DOI: 10.1016/j.clim.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
In 15 Turkish LAD-1 patients and controls, we assessed the impact of pathogenic ITGB2 mutations on Th17/Treg differentiation and functions, and innate lymphoid cell (ILC) subsets. The percentage of peripheral blood Treg cells, in vitro-generated induced Tregs differentiated from naive CD4+ T cells were decreased despite the elevated absolute counts of CD4+ cells in LAD1 patients. Serum IL-23 levels were elevated in LAD1 patients. Post-curdlan stimulation, LAD1 patient-derived PBMCs produced more IL-17A. Additionally, the percentages of CD18-deficient Th17 cells expanded from total or naïve CD4+ T cells were higher. The blood ILC3 subset was significantly elevated in LAD1. Finally, LAD1 PBMCs showed defects in trans-well migration and proliferation and were more resistant to apoptosis. Defects in de novo generation of Tregs from CD18-deficient naïve T cells and elevated Th17s, and ILC3s in LAD1 patients' peripheral blood suggest a type 3-skewed immunity and may contribute to LAD1-associated autoimmune symptoms.
Collapse
Affiliation(s)
- Serife Erdem
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Sule Haskologlu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huriye Çelikzencir
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Elif Arik
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Ozlem Keskin
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Yucel
- Istanbul University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Halit Canatan
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huseyin Avcilar
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Ebru Yilmaz
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Alper Ozcan
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Musa Karakukcu
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Mehmet Halil Celiksoy
- İstanbul Başakşehir Çam ve Sakura City Hospital, Pediatric Allergy and Immunology Clinic Istanbul, Turkey
| | - Sara Sebnem Kilic
- Bursa Uludag University, Department of Pediatric Immunology and Rheumatology, Bursa, Turkey.
| | - Ayca Demir
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Ferah Genel
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Nesrin Gulez
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Mustafa Yavuz Koker
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Ahmet Oguzhan Ozen
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Safa Baris
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayse Metin
- Ankara City Hospital, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Sukru Nail Guner
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Ismail Reisli
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Sevgi Keles
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Esin Figen Dogu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | | | - Ahmet Eken
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| |
Collapse
|
10
|
Gonciarz W, Piątczak E, Chmiela M. The influence of Salvia cadmica Boiss. extracts on the M1/M2 polarization of macrophages primed with Helicobacter pylori lipopolysaccharide in conjunction with NF-kappa B activation, production of cytokines, phagocytic activity and total DNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116386. [PMID: 36921911 DOI: 10.1016/j.jep.2023.116386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The large number of secondary derivatives have been isolated from the genus Salvia with about 700 species, and used in the pharmacopoeia throughout the world. Various biological properties of Salvia formulations have been reported including as antioxidant, antimicrobial, hypotensive, anti-hyperglycemia, anti-hyperlipidemia, anti-cancer, and skin curative. Salvia cadmica Boiss. root and aerial part extracts enriched with polyphenols are bactericidal towards gastric pathogen Helicobacter pylori (Hp) and diminish deleterious effects induced by Hp lipopolysaccharide (LPS) towards gastric epithelial cells. AIM OF THIS STUDY To examine the influence of S. cadmica extracts on the M1/M2 polarization of macrophages primed with Hp LPS vs standard LPS Escherichia coli (Ec), and the macrophage cytokine as well as phagocytic activity, which are affected during Hp infection. MATERIAL AND METHODS Macrophages derived from THP-1 human monocytes primed with LPS Hp/Ec and/or S. cadmica extracts, were examined for the biomarkers of activation (surface, cytoplasmic or soluble), and phagocytic capacity. The bone marrow macrophages of Caviaporcellus were used to determine the engulfment of Hp. RESULTS Priming of THP-1 cells (24h) with LPS Hp/Ec resulted in polarization of M1 macrophages, activation of nuclear factor kappa B, secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1 beta, macrophage chemotactic protein (MCP)-1, immunoregulatory IL-10, and production of reactive oxygen species. These effects were diminished after restimulation of cells with S. cadmica extracts. THP-1 macrophages exposed to studied extracts showed an increased phagocytic capacity, in conjunction with elevated CD11b/CD11d expression and enhanced production of inducible nitric oxide synthase. They also increased Hp engulfment by bone marrow macrophages. These effects were not related to a global DNA methylation. CONCLUSIONS S. cadmica extracts possess an immunomodulating activity, which might be useful in control of H. pylori LPS driven activity of macrophages.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1 St., 90-151, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| |
Collapse
|
11
|
Collin-Faure V, Vitipon M, Torres A, Tanyeres O, Dalzon B, Rabilloud T. The internal dose makes the poison: higher internalization of polystyrene particles induce increased perturbation of macrophages. Front Immunol 2023; 14:1092743. [PMID: 37251378 PMCID: PMC10213243 DOI: 10.3389/fimmu.2023.1092743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Plastics are emerging pollutants of great concern. Macroplastics released in the environment degrade into microplastics and nanoplastics. Because of their small size, these micro and nano plastic particles can enter the food chain and contaminate humans with still unknown biological effects. Plastics being particulate pollutants, they are handled in the human body by scavenger cells such as macrophages, which are important players in the innate immune system. Using polystyrene as a model of micro and nanoplastics, with size ranging from under 100 nm to 6 microns, we have showed that although non-toxic, polystyrene nano and microbeads alter the normal functioning of macrophages in a size and dose-dependent manner. Alterations in the oxidative stress, lysosomal and mitochondrial functions were detected, as well as changes in the expression of various surface markers involved in the immune response such as CD11a/b, CD18, CD86, PD-L1, or CD204. For each beads size tested, the alterations were more pronounced for the cell subpopulation that had internalized the highest number of beads. Across beads sizes, the alterations were more pronounced for beads in the supra-micron range than for beads in the sub-micron range. Overall, this means that internalization of high doses of polystyrene favors the emergence of subpopulations of macrophages with an altered phenotype, which may not only be less efficient in their functions but also alter the fine balance of the innate immune system.
Collapse
|
12
|
Mycobacterium bovis BCG increase the selected determinants of monocyte/macrophage activity, which were diminished in response to gastric pathogen Helicobacter pylori. Sci Rep 2023; 13:3107. [PMID: 36813949 PMCID: PMC9944772 DOI: 10.1038/s41598-023-30250-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
High antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) and the ability to escape the host immune response prompt searching for therapeutic immunomodulators. Bacillus Calmette-Guerin (BCG) vaccine with Mycobacterium bovis (Mb) is a candidate for modulation the activity of immunocompetent cells, and onco-BCG formulation was successfully used in immunotherapy of bladder cancer. We determined the influence of onco-BCG on the phagocytic capacity of human THP-1 monocyte/macrophage cells, using the model of Escherichia coli bioparticles and Hp fluorescently labeled. Deposition of cell integrins CD11b, CD11d, CD18, membrane/soluble lipopolysaccharide (LPS) receptors, CD14 and sCD14, respectively, and the production of macrophage chemotactic protein (MCP)-1 were determined. Furthermore, a global DNA methylation, was also assessed. Human THP-1 monocytes/macrophages (TIB 202) primed or primed and restimulated with onco-BCG or Hp, were used for assessment of phagocytosis towards E. coli or Hp, surface (immunostaining) or soluble activity determinants, and global DNA methylation (ELISA). THP-1 monocytes/macrophages primed/restimulated with BCG showed increased phagocytosis capacity towards E. coli fluorescent particles, elevated expression of CD11b, CD11d, CD18, CD14, sCD14, increased MCP-1 secretion and DNA methylation. Preliminary results indicate that BCG mycobacteria may also induce the phagocytosis of H. pylori by THP-1 monocytes. Priming or priming and restimulation of monocytes/macrophages with BCG resulted in an increased activity of these cells, which was negatively modulated by Hp.
Collapse
|
13
|
Patel D, Goruk S, Richard C, Field CJ. Combined Supplementation with Arachidonic and Docosahexaenoic Acids in T Helper Type-2 Skewed Brown Norway Rat Offspring is Beneficial in the Induction of Oral Tolerance toward Ovalbumin and Immune System Development. J Nutr 2022; 152:2165-2178. [PMID: 35648474 DOI: 10.1093/jn/nxac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A T helper type-2 (Th2) skewed immune response is associated with food allergies. DHA and arachidonic acid (ARA) have been shown to promote oral tolerance (OT) in healthy rodents. OBJECTIVES We studied the effect of combined ARA + DHA supplementation during the suckling and weaning periods on OT and immune system development in Th2-skewed Brown Norway rat offspring. METHODS Dams were fed ARA + DHA (0.45% ARA, 0.8% DHA wt/wt of total fat; n = 10) as a suckling period diet (SPD) or control SPD (0% ARA, 0% DHA, n = 8). At 3 wk, offspring from each SPD group received ARA + DHA (0.5% ARA, 0.5% DHA wt/wt of total fat) weaning diet (WD), or control until 8 wk. For OT, offspring were orally exposed to either ovalbumin (OVA) or placebo between 21 and 25 d, followed by systemic immunization with OVA + adjuvant at 7 wk. Primary outcomes, ex vivo cytokine production by splenocytes and plasma OVA-specific Igs, were analyzed using a 3-way ANOVA. RESULTS At 8 wk, despite no lasting effect of SPD on splenocytes fatty acids, ARA + DHA WD resulted in 2× higher DHA in splenocyte phospholipid compositions without affecting ARA. OT development was observed in OVA-exposed groups with 15% lower plasma OVA-IgE (P = 0.04) and 35% lower OVA-IgG1 (P = 0.01) than placebo. ARA + DHA SPD resulted in 35% lower OVA-IgG1 and iIL-6 (P = 0.04) when stimulated with LPS, and a higher proportion of mature B cells (OX12+, P = 0.0004, and IgG+, P = 0.008). ARA + DHA WD resulted in 20% higher Th1 cytokines (TNF-α and IFN-γ) production to lymphocyte stimulant and higher splenocyte proportion of CD45RA+ (pan-B cells) and OX6+ (dendritic cells) than control WD (P values < 0.05). CONCLUSIONS Combined supplementation of ARA and DHA is beneficial for OT development, especially in the suckling period. Further, ARA + DHA supplementation can also counteract the Th2-skewed immunity of Brown Norway rat offspring through higher Th1 cytokine production by lymphocytes.
Collapse
Affiliation(s)
- Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Devcic J, Dussol M, Collin-Faure V, Pérard J, Fenel D, Schoehn G, Carrière M, Rabilloud T, Dalzon B. Immediate and Sustained Effects of Cobalt and Zinc-Containing Pigments on Macrophages. Front Immunol 2022; 13:865239. [PMID: 35928812 PMCID: PMC9343594 DOI: 10.3389/fimmu.2022.865239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Pigments are among the oldest nanoparticulate products known to mankind, and their use in tattoos is also very old. Nowadays, 25% of American people aged 18 to 50 are tattooed, which poses the question of the delayed effects of tattoos. In this article, we investigated three cobalt [Pigment Violet 14 (purple color)] or cobalt alloy pigments [Pigment Blue 28 (blue color), Pigment Green 14 (green color)], and one zinc pigment [Pigment White 4 (white color)] which constitute a wide range of colors found in tattoos. These pigments contain microparticles and a significant proportion of submicroparticles or nanoparticles (in either aggregate or free form). Because of the key role of macrophages in the scavenging of particulate materials, we tested the effects of cobalt- and zinc-based pigments on the J774A.1 macrophage cell line. In order to detect delayed effects, we compared two exposure schemes: acute exposure for 24 hours and an exposure for 24 hours followed by a 3-day post-exposure recovery period. The conjunction of these two schemes allowed for the investigation of the delayed or sustained effects of pigments. All pigments induced functional effects on macrophages, most of which were pigment-dependent. For example, Pigment Green 19, Pigment Blue 28, and Pigment White 4 showed a delayed alteration of the phagocytic capacity of cells. Moreover, all the pigments tested induced a slight but significant increase in tumor necrosis factor secretion. This effect, however, was transitory. Conversely, only Pigment Blue 28 induced both a short and sustained increase in interleukin 6 secretion. Results showed that in response to bacterial stimuli (LPS), the secretion of tumor necrosis factor and interleukin 6 declined after exposure to pigments followed by a recovery period. For chemoattractant cytokines (MCP-1 or MIP-1α), delayed effects were observed with a secretion decreased in presence of Pigment Blue 28 and Pigment violet 14, both with or without LPS stimuli. The pigments also induced persisting changes in some important macrophage membrane markers such as CD11b, an integrin contributing to cell adhesion and immunological tolerance. In conclusion, the pigments induced functional disorders in macrophages, which, in some cases, persist long after exposure, even at non-toxic doses.
Collapse
Affiliation(s)
- Julie Devcic
- Chemistry and Biology of Metals, Université Grenoble Alpes, Centre National de la recherche Scientifique (CNRS) UMR5249, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble, (IRIG)-Département des Interfaces pour l’Energie, la Santé et l’Environnement (DIESE)-Laboratoire de Chimie et Biologie des Métaux (LCBM)- Équipe Protéomique pour la Microbiologie, l'Immunologie et la Toxicologie (ProMIT), Grenoble, France
| | - Manon Dussol
- Université Grenoble-Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la recherche Scientifique (CNRS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG)-Département des Interfaces pour l’Energie, la Santé et l’Environnement (DIESE), Systèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SyMMES), Chemistry Interface Biology for the Environment, Health and Toxicology (CIBEST), Grenoble, France
| | - Véronique Collin-Faure
- Chemistry and Biology of Metals, Université Grenoble Alpes, Centre National de la recherche Scientifique (CNRS) UMR5249, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble, (IRIG)-Département des Interfaces pour l’Energie, la Santé et l’Environnement (DIESE)-Laboratoire de Chimie et Biologie des Métaux (LCBM)- Équipe Protéomique pour la Microbiologie, l'Immunologie et la Toxicologie (ProMIT), Grenoble, France
| | - Julien Pérard
- Chemistry and Biology of Metals, Université Grenoble Alpes, Centre National de la recherche Scientifique (CNRS) UMR5249, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble, (IRIG)-Département des Interfaces pour l’Energie, la Santé et l’Environnement (DIESE)-Laboratoire de Chimie et Biologie des Métaux (LCBM)- Équipe Protéomique pour la Microbiologie, l'Immunologie et la Toxicologie (ProMIT), Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Marie Carrière
- Université Grenoble-Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la recherche Scientifique (CNRS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG)-Département des Interfaces pour l’Energie, la Santé et l’Environnement (DIESE), Systèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SyMMES), Chemistry Interface Biology for the Environment, Health and Toxicology (CIBEST), Grenoble, France
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, Université Grenoble Alpes, Centre National de la recherche Scientifique (CNRS) UMR5249, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble, (IRIG)-Département des Interfaces pour l’Energie, la Santé et l’Environnement (DIESE)-Laboratoire de Chimie et Biologie des Métaux (LCBM)- Équipe Protéomique pour la Microbiologie, l'Immunologie et la Toxicologie (ProMIT), Grenoble, France
- *Correspondence: Thierry Rabilloud, ; Bastien Dalzon,
| | - Bastien Dalzon
- Chemistry and Biology of Metals, Université Grenoble Alpes, Centre National de la recherche Scientifique (CNRS) UMR5249, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble, (IRIG)-Département des Interfaces pour l’Energie, la Santé et l’Environnement (DIESE)-Laboratoire de Chimie et Biologie des Métaux (LCBM)- Équipe Protéomique pour la Microbiologie, l'Immunologie et la Toxicologie (ProMIT), Grenoble, France
- *Correspondence: Thierry Rabilloud, ; Bastien Dalzon,
| |
Collapse
|
15
|
Villanueva V, Li X, Jimenez V, Faridi HM, Gupta V. CD11b agonists offer a novel approach for treating lupus nephritis. Transl Res 2022; 245:41-54. [PMID: 35288363 PMCID: PMC9167730 DOI: 10.1016/j.trsl.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) develops in more than a third of all systemic lupus erythematosus (SLE) patients and is the strongest predictor of morbidity and mortality. Increased circulating levels of type I interferon (IFN I) and anti-double stranded DNA (anti-dsDNA) and anti-RNA binding protein (anti-RNP) antibodies lead to increased glomerular injury via leukocyte activation and glomerular infiltration. Uncontrolled Toll-like receptor (TLR) signaling in leukocytes results in increased production of IFN I and anti-dsDNA antibodies. ITGAM gene codes for integrin CD11b, the α-chain of integrin heterodimer CD11b/CD18, that is highly expressed in leukocytes and modulates TLR-dependent pro-inflammatory signaling. Three nonsynonymous SNPs in the ITGAM gene strongly correlate with increased risk for SLE and LN and with IFN I levels. Here we review the literature on the role of CD11b on leukocytes in LN. We also incorporate conclusions from several recent studies that show that these ITGAM SNPs result in a CD11b protein that is less able to suppress TLR-dependent pro-inflammatory pathways in leukocytes, that activation of CD11b via novel small molecule agonists suppresses TLR-dependent pathways, including reductions in circulating levels of IFN I and anti-dsDNA antibodies, and that CD11b activation reduces LN in model systems. Recent data strongly suggest that integrin CD11b is an exciting new therapeutic target in SLE and LN and that allosteric activation of CD11b is a novel therapeutic paradigm for effectively treating such autoimmune diseases.
Collapse
Affiliation(s)
- Veronica Villanueva
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Xiaobo Li
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Viviana Jimenez
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Hafeez M Faridi
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, Illinois
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
16
|
Yildiz O, Schroth J, Lombardi V, Pucino V, Bobeva Y, Yip PK, Schmierer K, Mauro C, Tree T, Henson SM, Malaspina A. The Expression of Active CD11b Monocytes in Blood and Disease Progression in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:3370. [PMID: 35328793 PMCID: PMC8952310 DOI: 10.3390/ijms23063370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Monocytes expressing the inflammation suppressing active CD11b, a beta2 integrin, may regulate neuroinflammation and modify clinical outcomes in amyotrophic lateral sclerosis (ALS). In this single site, retrospective study, peripheral blood mononuclear cells from 38 individuals living with ALS and 20 non-neurological controls (NNC) were investigated using flow cytometry to study active CD11b integrin classical (CM), intermediate (IM) and non-classical (NCM) monocytes during ALS progression. Seventeen ALS participants were sampled at the baseline (V1) and at two additional time points (V2 and V3) for longitudinal analysis. Active CD11b+ CM frequencies increased steeply between the baseline and V3 (ANOVA repeated measurement, p < 0.001), and the V2/V1 ratio negatively correlated with the disease progression rate, similar to higher frequencies of active CD11b+ NCM at the baseline (R = −0.6567; p = 0.0031 and R = 0.3862; p = 0.0168, respectively). CD11b NCM, clinical covariates and neurofilament light-chain plasma concentration at the baseline predicted shorter survival in a multivariable and univariate analysis (CD11b NCM—HR: 1.05, CI: 1.01−1.11, p = 0.013. Log rank: above median: 43 months and below median: 21.22 months; p = 0.0022). Blood samples with the highest frequencies of active CD11b+ IM and NCM contained the lowest concentrations of soluble CD11b. Our preliminary data suggest that the levels of active CD11b+ monocytes and NCM in the blood predict different clinical outcomes in ALS.
Collapse
Affiliation(s)
- Ozlem Yildiz
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Johannes Schroth
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London EC1M 6BQ, UK; (J.S.); (S.M.H.)
| | - Vittoria Lombardi
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Valentina Pucino
- Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK; (V.P.); (C.M.)
| | - Yoana Bobeva
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ping Kei Yip
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
| | - Klaus Schmierer
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Claudio Mauro
- Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK; (V.P.); (C.M.)
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London WC2R 2LS, UK;
| | - Sian Mari Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London EC1M 6BQ, UK; (J.S.); (S.M.H.)
| | - Andrea Malaspina
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
17
|
Peckert-Maier K, Schönberg A, Wild AB, Royzman D, Braun G, Stich L, Hadrian K, Tripal P, Cursiefen C, Steinkasserer A, Zinser E, Bock F. Pre-incubation of corneal donor tissue with sCD83 improves graft survival via the induction of alternatively activated macrophages and tolerogenic dendritic cells. Am J Transplant 2022; 22:438-454. [PMID: 34467638 DOI: 10.1111/ajt.16824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 01/25/2023]
Abstract
Immune responses reflect a complex interplay of cellular and extracellular components which define the microenvironment of a tissue. Therefore, factors that locally influence the microenvironment and re-establish tolerance might be beneficial to mitigate immune-mediated reactions, including the rejection of a transplant. In this study, we demonstrate that pre-incubation of donor tissue with the immune modulator soluble CD83 (sCD83) significantly improves graft survival using a high-risk corneal transplantation model. The induction of tolerogenic mechanisms in graft recipients was achieved by a significant upregulation of Tgfb, Foxp3, Il27, and Il10 in the transplant and an increase of regulatory dendritic cells (DCs), macrophages (Mφ), and T cells (Tregs) in eye-draining lymph nodes. The presence of sCD83 during in vitro DC and Mφ generation directed these cells toward a tolerogenic phenotype leading to reduced proliferation-stimulating activity in MLRs. Mechanistically, sCD83 induced a tolerogenic Mφ and DC phenotype, which favors Treg induction and significantly increased transplant survival after adoptive cell transfer. Conclusively, pre-incubation of corneal grafts with sCD83 significantly prolongs graft survival by modulating recipient Mφ and DCs toward tolerance and thereby establishing a tolerogenic microenvironment. This functional strategy of donor graft pre-treatment paves the way for new therapeutic options in the field of transplantation.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alfrun Schönberg
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gabriele Braun
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Karina Hadrian
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Tripal
- Optical Imaging Centre, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Cursiefen
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Bock
- Department of Experimental Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Zhang L. Meet the Editorial Board Member. Curr Drug Targets 2022. [DOI: 10.2174/138945012302220118152057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L. Zhang
- University of Maryland School of Medicine
Baltimore, MD
USA
| |
Collapse
|
19
|
Guenther C, Faisal I, Fusciello M, Sokolova M, Harjunpää H, Ilander M, Tallberg R, Vartiainen MK, Alon R, Gonzalez-Granado JM, Cerullo V, Fagerholm SC. β2-Integrin Adhesion Regulates Dendritic Cell Epigenetic and Transcriptional Landscapes to Restrict Dendritic Cell Maturation and Tumor Rejection. Cancer Immunol Res 2021; 9:1354-1369. [PMID: 34561280 DOI: 10.1158/2326-6066.cir-21-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/29/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DC), the classic antigen-presenting cells of the immune system, switch from an adhesive, phagocytic phenotype in tissues, to a mature, nonadhesive phenotype that enables migration to lymph nodes to activate T cells and initiate antitumor responses. Monocyte-derived DCs are used in cancer immunotherapy, but their clinical efficacy is limited. Here, we show that cultured bone marrow-derived DCs (BM-DC) expressing dysfunctional β2-integrin adhesion receptors displayed enhanced tumor rejection capabilities in B16.OVA and B16-F10 melanoma models. This was associated with an increased CD8+ T-cell response. BM-DCs expressing dysfunctional β2-integrins or manipulated to disrupt integrin adhesion or integrin/actin/nuclear linkages displayed spontaneous maturation in ex vivo cultures (increased costimulatory marker expression, IL12 production, and 3D migration capabilities). This spontaneous maturation was associated with an altered DC epigenetic/transcriptional profile, including a global increase in chromatin accessibility and H3K4me3/H3K27me3 histone methylation. Genome-wide analyses showed that H3K4me3 methylation was increased on DC maturation genes, such as CD86, Il12, Ccr7, and Fscn1, and revealed a role for a transcription factor network involving Ikaros and RelA in the integrin-regulated phenotype of DCs. Manipulation of the integrin-regulated epigenetic landscape in wild-type ex vivo-cultured BM-DCs enhanced their functionality in tumor rejection in vivo. Thus, β2-integrin-mediated adhesion to the extracellular environment plays an important role in restricting DC maturation and antitumor responses through regulation of the cellular epigenetic and transcriptional landscape. Targeting β2-integrins could therefore be a new strategy to improve the performance of current DC-based cancer immunotherapies.
Collapse
Affiliation(s)
- Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Heidi Harjunpää
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mette Ilander
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Robert Tallberg
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Ronen Alon
- Weizmann Institute of Science, Rehovot, Israel
| | - Jose-Maria Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Susanna Carola Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
Ebrahimiyan H, Mostafaei S, Aslani S, Faezi ST, Farhadi E, Jamshidi A, Mahmoudi M. Association between complement gene polymorphisms and systemic lupus erythematosus: a systematic review and meta-analysis. Clin Exp Med 2021; 22:427-438. [PMID: 34519938 DOI: 10.1007/s10238-021-00758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
Complement dysfunction results in impaired ability in clearing apoptotic cell debris that may stimulate autoantibody production in systemic lupus erythematosus (SLE). Herein, we provided a comprehensive search to find and meta-analyze any complement gene polymorphisms associated with SLE. The ITGAM, C1q, and MBL gene polymorphisms were included in this meta-analysis to reveal the exact association with SLE risk. Electronic databases, including Scopus, PubMed, and Google Scholar, were searched to find studies investigating the ITGAM, C1q, and MBL gene polymorphisms and SLE risk in different populations. The pooled odds ratio (OR) and its corresponding 95% confidence interval (CI) were used to analyze the association between ITGAM, C1q, and MBL gene polymorphisms and susceptibility to SLE. According to inclusion criteria, a total of 24 studies, comprising 4 studies for C1QA rs292001, 5 studies for C1QA rs172378, 9 studies for ITGAM rs1143679, 8 studies for MBL rs1800450, 3 studies for MBL2 rs1800451, and 3 studies for MBL2 rs5030737, were included in the final meta-analysis. A significant positive association was found between rs1143679 and SLE risk, while rs1800451 significantly associated with decreased SLE susceptibility. In summary, ITGAM gene rs1143679 SNP and MBL gene rs1800451 SNP were positively and negatively associated with SLE risk, respectively.
Collapse
Affiliation(s)
- Hamidreza Ebrahimiyan
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave., Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Sorkheh-Ligeh Blvd, Kermanshah, Iran.
| | - Saeed Aslani
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave., Tehran, Iran
| | - Seyedeh Tahereh Faezi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave., Tehran, Iran.
| | - Elham Farhadi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave., Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave., Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave., Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Houser MC, Caudle WM, Chang J, Kannarkat GT, Yang Y, Kelly SD, Oliver D, Joers V, Shannon KM, Keshavarzian A, Tansey MG. Experimental colitis promotes sustained, sex-dependent, T-cell-associated neuroinflammation and parkinsonian neuropathology. Acta Neuropathol Commun 2021; 9:139. [PMID: 34412704 PMCID: PMC8375080 DOI: 10.1186/s40478-021-01240-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background The etiology of sporadic Parkinson’s disease (PD) remains uncertain, but genetic, epidemiological, and physiological overlap between PD and inflammatory bowel disease suggests that gut inflammation could promote dysfunction of dopamine-producing neurons in the brain. Mechanisms behind this pathological gut-brain effect and their interactions with sex and with environmental factors are not well understood but may represent targets for therapeutic intervention. Methods We sought to identify active inflammatory mechanisms which could potentially contribute to neuroinflammation and neurological disease in colon biopsies and peripheral blood immune cells from PD patients. Then, in mouse models, we assessed whether dextran sodium sulfate-mediated colitis could exert lingering effects on dopaminergic pathways in the brain and whether colitis increased vulnerability to a subsequent exposure to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We assessed the involvement of inflammatory mechanisms identified in the PD patients in colitis-related neurological dysfunction in male and female mice, utilizing mice lacking the Regulator of G-Protein Signaling 10 (RGS10)—an inhibitor of nuclear factor kappa B (NFκB)—to model enhanced NFκB activity, and mice in which CD8+ T-cells were depleted. Results High levels of inflammatory markers including CD8B and NFκB p65 were found in colon biopsies from PD patients, and reduced levels of RGS10 were found in immune cells in the blood. Male mice that experienced colitis exhibited sustained reductions in tyrosine hydroxylase but not in dopamine as well as sustained CD8+ T-cell infiltration and elevated Ifng expression in the brain. CD8+ T-cell depletion prevented colitis-associated reductions in dopaminergic markers in males. In both sexes, colitis potentiated the effects of MPTP. RGS10 deficiency increased baseline intestinal inflammation, colitis severity, and neuropathology. Conclusions This study identifies peripheral inflammatory mechanisms in PD patients and explores their potential to impact central dopaminergic pathways in mice. Our findings implicate a sex-specific interaction between gastrointestinal inflammation and neurologic vulnerability that could contribute to PD pathogenesis, and they establish the importance of CD8+ T-cells in this process in male mice. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40478-021-01240-4.
Collapse
|
22
|
Schittenhelm L, Robertson J, Pratt AG, Hilkens CM, Morrison VL. Dendritic cell integrin expression patterns regulate inflammation in the rheumatoid arthritis joint. Rheumatology (Oxford) 2021; 60:1533-1542. [PMID: 33123735 PMCID: PMC7937020 DOI: 10.1093/rheumatology/keaa686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/19/2020] [Indexed: 11/14/2022] Open
Abstract
Objectives Immune dysregulation contributes to the development of RA. Altered surface expression patterns of integrin adhesion receptors by immune cells is one mechanism by which this may occur. We investigated the role of β2 integrin subunits CD11a and CD11b in dendritic cell (DC) subsets of RA patients. Methods Total β2 integrin subunit expression and its conformation (‘active’ vs ‘inactive’ state) were quantified in DC subsets from peripheral blood (PB) and SF of RA patients as well as PB from healthy controls. Ex vivo stimulation of PB DC subsets and in vitro-generated mature and tolerogenic monocyte-derived DCs (moDCs) were utilized to model the clinical findings. Integrin subunit contribution to DC function was tested by analysing clustering and adhesion, and in co-cultures to assess T cell activation. Results A significant reduction in total and active CD11a expression in DCs in RA SF compared with PB and, conversely, a significant increase in CD11b expression was found. These findings were modelled in vitro using moDCs: tolerogenic moDCs showed higher expression of active CD11a and reduced levels of active CD11b compared with mature moDCs. Finally, blockade of CD11b impaired T cell activation in DC–T cell co-cultures. Conclusion For the first time in RA, we show opposing expression of CD11a and CD11b in DCs in environments of inflammation (CD11alow/CD11bhigh) and steady state/tolerance (CD11ahigh/CD11blow), as well as a T cell stimulatory role for CD11b. These findings highlight DC integrins as potential novel targets for intervention in RA.
Collapse
Affiliation(s)
- Leonie Schittenhelm
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK.,Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK
| | - Jamie Robertson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Arthur G Pratt
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Catharien M Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK
| | - Vicky L Morrison
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK
| |
Collapse
|
23
|
Zenobia C, Herpoldt KL, Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021; 6:80. [PMID: 34078913 PMCID: PMC8172910 DOI: 10.1038/s41541-021-00341-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Freire
- Departments of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Pillai VB, Gupta MP. Is nuclear sirtuin SIRT6 a master regulator of immune function? Am J Physiol Endocrinol Metab 2021; 320:E399-E414. [PMID: 33308014 PMCID: PMC7988780 DOI: 10.1152/ajpendo.00483.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
The ability to ward off pathogens with minimal damage to the host determines the immune system's robustness. Multiple factors, including pathogen processing, identification, secretion of mediator and effector molecules, and immune cell proliferation and differentiation into various subsets, constitute the success of mounting an effective immune response. Cellular metabolism controls all of these intricate processes. Cells utilize diverse fuel sources and switch back and forth between different metabolic pathways depending on their energy needs. The three most critical metabolic pathways on which immune cells depend to meet their energy needs are oxidative metabolism, glycolysis, and glutaminolysis. Dynamic switching between these metabolic pathways is needed for optimal function of the immune cells. Moreover, switching between these metabolic pathways needs to be tightly regulated to achieve the best results. Immune cells depend on the Warburg effect for their growth, proliferation, secretory, and effector functions. Here, we hypothesize that the sirtuin, SIRT6, could be a negative regulator of the Warburg effect. We also postulate that SIRT6 could act as a master regulator of immune cell metabolism and function by regulating critical signaling pathways.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Altorki T, Muller W, Brass A, Cruickshank S. The role of β 2 integrin in dendritic cell migration during infection. BMC Immunol 2021; 22:2. [PMID: 33407124 PMCID: PMC7789014 DOI: 10.1186/s12865-020-00394-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Dendritic cells (DCs) play a key role in shaping T cell responses. To do this, DCs must be able to migrate to the site of the infection and the lymph nodes to prime T cells and initiate the appropriate immune response. Integrins such as β2 integrin play a key role in leukocyte adhesion, migration, and cell activation. However, the role of β2 integrin in DC migration and function in the context of infection-induced inflammation in the gut is not well understood. This study looked at the role of β2 integrin in DC migration and function during infection with the nematode worm Trichuris muris. Itgb2tm1Bay mice lacking functional β2 integrin and WT littermate controls were infected with T. muris and the response to infection and kinetics of the DC response was assessed. Results In infection, the lack of functional β2 integrin significantly reduced DC migration to the site of infection but not the lymph nodes. The lack of functional β2 integrin did not negatively impact T cell activation in response to T. muris infection. Conclusions This data suggests that β2 integrins are important in DC recruitment to the infection site potentially impacting the initiation of innate immunity but is dispensible for DC migration to lymph nodes and T cell priming in the context of T. muris infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-020-00394-5.
Collapse
Affiliation(s)
- Tarfa Altorki
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, A.V. Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Present address: Faculty of Medical Applied Sciences, Department of Medical Laboratory Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Werner Muller
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, A.V. Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew Brass
- Faculty of Biology, Medicine and Health, Division of Informatics, Imaging and Data Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sheena Cruickshank
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, A.V. Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Wei H, Lin CK, Lu SJ, Wen YX, Yuan S, Liu YL. CD11b is involved in coxsackievirus B3-induced viral myocarditis in mice by inducing Th17 cells. Open Life Sci 2020; 15:1024-1032. [PMID: 33817288 PMCID: PMC7874557 DOI: 10.1515/biol-2020-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/14/2023] Open
Abstract
Viral myocarditis (VMC) caused by coxsackievirus B3 (CVB3) infection is a life-threatening disease. The cardiac damage during VMC is not mainly due to the direct cytotoxic effect of the virus on cardiomyocytes but mostly involves the induction of immune responses. Integrin CD11b plays an important role in immune response, for instance, in the induction of Th17 cells. However, the role of CD11b in the pathogenesis of VMC remains largely unknown. In the present study, a mouse model of VMC was established by CVB3 infection and CD11b was knocked down in the VMC mice by transfection with siRNA-CD11b. The expression of CD11b and IL-17 in heart tissues, frequency of Th17 cells in spleen tissues and serum IL-17 levels were measured using quantitative RT-PCR, Western blot, immunohistochemistry, flow cytometry and ELISA. Results showed that CVB3 infection caused the pathological changes in heart tissues with the increases in the following indexes: expression of CD11b and IL-17 in heart tissues, frequency of Th17 cells in spleen tissues and serum IL-17 levels. The expression of CD11b was positively correlated with IL-17 expression in heart tissues. Depletion of CD11b attenuated the damage caused by CVB3 and decreased the frequency of Th17 cells in spleen tissues as well as in IL-17, IL-23 and STAT3 expression in heart tissues. In summary, our findings reveal that disruption of CD11b function reduced CVB3-induced myocarditis, suggesting that CD11b may be a novel therapeutic target for VMC.
Collapse
Affiliation(s)
- Heng Wei
- Department of Geriatric Cardiovascular Medicine, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning City, 530021, China
| | - Chong-Kai Lin
- Graduate School of Guangxi Medical University, No. 22 Shuangyong Road, Nanning City, 530021, China
| | - Sheng-Jian Lu
- Graduate School of Guangxi Medical University, No. 22 Shuangyong Road, Nanning City, 530021, China
| | - Yu-Xin Wen
- Graduate School of Guangxi Medical University, No. 22 Shuangyong Road, Nanning City, 530021, China
| | - Shuai Yuan
- Graduate School of Guangxi Medical University, No. 22 Shuangyong Road, Nanning City, 530021, China
| | - Yan-Li Liu
- Department of Geriatric Cardiovascular Medicine, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning City, 530021, China
| |
Collapse
|
27
|
Ehirchiou D, Bernabei I, Chobaz V, Castelblanco M, Hügle T, So A, Zhang L, Busso N, Nasi S. CD11b Signaling Prevents Chondrocyte Mineralization and Attenuates the Severity of Osteoarthritis. Front Cell Dev Biol 2020; 8:611757. [PMID: 33392201 PMCID: PMC7775404 DOI: 10.3389/fcell.2020.611757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a progressive joint disease that is strongly associated with calcium-containing crystal formation (mineralization) by chondrocytes leading ultimately to cartilage calcification. However, this calcification process is poorly understood and treatments targeting the underlying disease mechanisms are lacking. The CD11b/CD18 integrin (Mac-1 or αMβ2), a member of the beta 2 integrin family of adhesion receptors, is critically involved in the development of several inflammatory diseases, including rheumatoid arthritis and systemic lupus erythematosus. We found that in a collagen-induced arthritis, CD11b-deficient mice exhibited increased cartilage degradation compared to WT control animals. However, the functional significance of CD11b integrin signaling in the pathophysiology of chondrocytes remains unknown. CD11b expression was found in the extracellular matrix and in chondrocytes in both healthy and damaged human and murine articular cartilage. Primary murine CD11b KO chondrocytes showed increased mineralization when induced in vitro by secondary calciprotein particles (CPP) and quantified by Alizarin Red staining. This increased propensity to mineralize was associated with an increased alkaline phosphatase (Alp) expression (measured by qRT-PCR and activity assay) and an enhanced secretion of the pro-mineralizing IL-6 cytokine compared to control wild-type cells (measured by ELISA). Accordingly, addition of an anti-IL-6 receptor antibody to CD11b KO chondrocytes reduced significantly the calcification and identified IL-6 as a pro-mineralizing factor in these cells. In the same conditions, the ratio of qRT-PCR expression of collagen X over collagen II, and that of Runx2 over Sox9 (both ratio being indexes of chondrocyte hypertrophy) were increased in CD11b-deficient cells. Conversely, the CD11b activator LA1 reduced chondrocyte mineralization, Alp expression, IL-6 production and collagen X expression. In the meniscectomy (MNX) model of murine knee osteoarthritis, deficiency of CD11b led to more severe OA (OARSI scoring of medial cartilage damage in CD11b: 5.6 ± 1.8, in WT: 1.2 ± 0.5, p < 0.05, inflammation in CD11b: 2.8 ± 0.2, in WT: 1.4 ± 0.5). In conclusion, these data demonstrate that CD11b signaling prevents chondrocyte hypertrophy and chondrocyte mineralization in vitro and has a protective role in models of OA in vivo.
Collapse
Affiliation(s)
- Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Véronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Thomas Hügle
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
The Role of HIF in Immunity and Inflammation. Cell Metab 2020; 32:524-536. [PMID: 32853548 DOI: 10.1016/j.cmet.2020.08.002] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
HIF is a transcription factor that plays an essential role in the cellular response to low oxygen, orchestrating a metabolic switch that allows cells to survive in this environment. In immunity, infected and inflamed tissues are often hypoxic, and HIF helps immune cells adapt. HIF-α stabilization can also occur under normoxia during immunity and inflammation, where it regulates metabolism but in addition can directly regulate expression of immune genes. Here we review the role of HIF in immunity, including its role in macrophages, dendritic cells, neutrophils, T cells, and B cells. Its role in immunity is as essential for cellular responses as it is in its original role in hypoxia, with HIF being implicated in multiple inflammatory diseases and in immunosuppression in tumors.
Collapse
|
29
|
Xu W, Zhang Y, Wang X, Liu P, Gao D, Gu B, Zhang J, Li C, Ren Q, Yang L, Yuan H, Shen M, Chen X. Clinical features and expression of type I interferon-inducible genes in systemic lupus erythematosus patients harboring rs1143679 polymorphism in China: a single-center, retrospective study. Clin Rheumatol 2020; 40:1093-1101. [PMID: 32785810 DOI: 10.1007/s10067-020-05330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This case-control study aimed to analyze the clinical features and determine the expression of type I interferon-induced genes in systemic lupus erythematosus (SLE) patients harboring the CD11b rs1143679 single-nucleotide polymorphism (SNP) and elucidate whether it is involved in the relapses of SLE. METHODS One hundred twenty-five relatively inactive SLE patients with SLEDAI scores < 6, including 102 CD11b rs1143679 G allele patients as controls and 23 rs1143679 A allele carriers as cases, were enrolled from the SLE patient specimen bank in the Department of Rheumatology and Immunology. The sample set was retrospectively analyzed for differences in clinical features, and quantitative PCR and Western blot analyses were performed to evaluate the relative expression of type I interferon (IFN)-inducible genes. RESULTS The 24-h urinary protein levels in the case group were significantly elevated, and serum C3 levels were significantly reduced compared with those in the control group (P = 0.019 and P = 0.021, respectively). The relative mRNA levels of IFN-inducible genes IFIT1, IFIT4, and ISG15 in the case group were higher than that in the control group (P = 0.0257, 0.0344, and 0.0311, respectively) and matched with the Western blot results. CONCLUSIONS The relative expression of type I IFN-inducible genes in inactive SLE patients harboring the CD11b rs1143679 polymorphism was higher than that in other lupus patients. These findings suggest that the rs1143679 SNP can precipitate relapses in inactive SLE patients. KEY POINTS • The rs1143679 GA genotype was associated with SLE clinical features. • The rs1143679 GA genotype showed higher interferon-inducible gene expression relative to the GG genotype.
Collapse
Affiliation(s)
- Wenyu Xu
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Yueyue Zhang
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Xiaoqin Wang
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Peiyu Liu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Dayu Gao
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Bingjie Gu
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Junyu Zhang
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Chunmei Li
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Qijie Ren
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Leilei Yang
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Hai Yuan
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Minning Shen
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China
| | - Xingguo Chen
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
30
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
31
|
Integrin CD11b Deficiency Aggravates Retinal Microglial Activation and RGCs Degeneration After Acute Optic Nerve Injury. Neurochem Res 2020; 45:1072-1085. [PMID: 32052258 DOI: 10.1007/s11064-020-02984-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays a vital role in the process of a variety of retinal ganglion cells (RGCs) degenerative diseases including traumatic optic neuropathy (TON). Retinal microglial activation is believed as a harbinger of TON, and robust microglial activation can aggravate trauma-induced RGCs degeneration, which ultimately leads to RGCs loss. Toll like receptor 4 (TLR4)-triggered inflammation is of great importance in retinal inflammatory response after optic nerve injury. CD11b on macrophage and brain microglia can inhibit TLR4-triggered inflammation. However, the functional role of CD11b in retinal microglia is not well understood. Here, using an optic nerve crush model and CD11b gene deficient mice, we found that CD11b protein expression was mainly on retinal microglia, significantly increased after optic nerve injury, and still maintained at a high level till at least 28 days post crush. Compared with wild type mice, following acute optic nerve injury, CD11b deficient retinae exhibited more exacerbated microglial activation, accelerated RGCs degeneration, less growth associated protein-43 expression, as well as more proinflammatory cytokines such as interleukin-6 and tumor necrosis factor α while less anti-inflammatory factors such as arginase-1 and interleukin-10 production. We conclude that CD11b is essential in regulating retinal microglial activation and neuroinflammatory responses after acute optic nerve injury, which is critical for subsequent RGCs degeneration and loss.
Collapse
|
32
|
Regulation of the complement system and immunological tolerance in pregnancy. Semin Immunol 2019; 45:101337. [PMID: 31757607 DOI: 10.1016/j.smim.2019.101337] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a serious vascular complication of the human pregnancy, whose etiology is still poorly understood. In preeclampsia, exacerbated apoptosis and fragmentation of the placental tissue occurs due to developmental qualities of the placental trophoblast cells and/or mechanical and oxidative distress to the syncytiotrophoblast, which lines the placental villi. Dysregulation of the complement system is recognized as one of the mechanisms of the disease pathology. Complement has the ability to promote inflammation and facilitate phagocytosis of placenta-derived particles and apoptotic cells by macrophages. In preeclampsia, an overload of placental cell damage or dysregulated complement system may lead to insufficient clearance of apoptotic particles and placenta-derived debris. Excess placental damage may lead to sequestration of microparticles, such as placental vesicles, to capillaries in the glomeruli of the kidney and other vulnerable tissues. This phenomenon could contribute to the manifestations of typical diagnostic symptoms of preeclampsia: proteinuria and new-onset hypertension. In this review we propose that the complement system may serve as a regulator of the complex tolerance and clearance processes that are fundamental in healthy pregnancy. It is therefore recommended that further research be conducted to elucidate the interactions between components of the complement system and immune responses in the context of complicated and healthy pregnancy.
Collapse
|
33
|
Avery JT, Jimenez RV, Blake JL, Wright TT, Leόn-Ruiz B, Schoeb TR, Szalai AJ, Bullard DC. Mice expressing the variant rs1143679 allele of ITGAM (CD11b) show impaired DC-mediated T cell proliferation. Mamm Genome 2019; 30:245-259. [PMID: 31673770 PMCID: PMC6842653 DOI: 10.1007/s00335-019-09819-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies (GWAS) and functional genomic analyses have implicated several ITGAM (CD11b) single-nucleotide polymorphisms (SNPs) in the development of SLE and other disorders. ITGAM encodes the αM chain of the β2 integrin Mac-1, a receptor that plays important roles in myeloid cell functions. The ITGAM SNP rs1143679, which results in an arginine to histidine change at amino acid position 77 of the CD11b protein, has been shown to reduce binding to several ligands and to alter Mac-1-mediated cellular response in vitro. Importantly, however, the potential contribution of this SNP variant to the initiation and/or progression of immune and inflammatory processes in vivo remains unexplored. Herein, we describe for the first time the generation and characterization of a mouse line expressing the 77His variant of CD11b. Surprisingly, we found that 77His did not significantly affect Mac-1-mediated leukocyte migration and activation as assessed using thioglycollate-induced peritonitis and LPS/TNF-α-induced dermal inflammation models. In contrast, expression of this variant did alter T cell immunity, as evidenced by significantly reduced proliferation of ovalbumin (OVA)-specific transgenic T cells in 77His mice immunized with OVA. Reduced antigen-specific T cell proliferation was also observed when either 77His splenic dendritic cells (DCs) or bone marrow-derived DCs were used as antigen-presenting cells (APCs). Although more work is necessary to determine how this alteration might influence the development of SLE or other diseases, these in vivo findings suggest that the 77His variant of CD11b can compromise the ability of DCs to induce antigen-driven T cell proliferation.
Collapse
Affiliation(s)
- Justin T Avery
- Department of Genetics, University of Alabama at Birmingham, 1700 University Blvd., Birmingham, AL, 35294-0013, USA
| | - Rachel V Jimenez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph L Blake
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler T Wright
- Department of Clinical and Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz Leόn-Ruiz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, 1700 University Blvd., Birmingham, AL, 35294-0013, USA
| | - Alexander J Szalai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel C Bullard
- Department of Genetics, University of Alabama at Birmingham, 1700 University Blvd., Birmingham, AL, 35294-0013, USA.
| |
Collapse
|
34
|
Holvoet S, Perrot M, de Groot N, Prioult G, Mikogami T, Verhasselt V, Nutten S. Oral Tolerance Induction to Newly Introduced Allergen is Favored by a Transforming Growth Factor-β-Enriched Formula. Nutrients 2019; 11:E2210. [PMID: 31540231 PMCID: PMC6769637 DOI: 10.3390/nu11092210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Food allergies have become a major healthcare concern, hence preventive efforts to ensure oral tolerance induction to newly introduced antigens are particularly relevant. Given that transforming growth factor-β (TGF-β) plays a key role in immune tolerance, we tested whether an infant formula enriched with TGF-β would improve oral tolerance induction. A partially hydrolyzed whey protein-based formula was enriched with cow's-milk-derived TGF-β (TGF-β-enriched formula) by adding a specific whey protein isolate (WPI). The manufacturing process was optimized to achieve a concentration of TGF-β within the range of human breast milk concentrations. Protection from allergic sensitization and immune response was assessed in a mouse model. Adult mice received the TGF-β-enriched formula, a control non-enriched formula, or water ad libitum for 13 days before sensitization and suboptimal tolerization to ovalbumin (OVA). When compared to non-tolerized mice, suboptimally-tolerized mice supplemented with the TGF-β-enriched formula showed significantly lower levels of total immunoglobulin-E (IgE) and OVA-specific (IgG1). Mouse mast-cell protease-1 (mMCP-1) and cytokine levels were also significantly decreased in suboptimally-tolerized mice fed the TGF-β-enriched formula. In conclusion, oral supplementation with cow's-milk-derived TGF-β decreased allergic responses to newly introduced allergens and thus reduced the risk of developing food allergy.
Collapse
Affiliation(s)
- Sébastien Holvoet
- Nestlé Institute of Health Science, Gastro Intestinal Health Department, 1000 Lausanne, Switzerland.
| | - Marie Perrot
- Nestlé Institute of Health Science, Gastro Intestinal Health Department, 1000 Lausanne, Switzerland.
| | | | - Guénolée Prioult
- Nestlé Product Technology Center Nutrition, 3510 Konolfingen, Switzerland.
| | | | - Valérie Verhasselt
- University Nice Sophia Antipolis, Hopital de l'Archet, 06200 Nice, France.
| | - Sophie Nutten
- Nestlé Institute of Health Science, Gastro Intestinal Health Department, 1000 Lausanne, Switzerland.
| |
Collapse
|
35
|
Donskow-Łysoniewska K, Krawczak K, Machcińska M, Głaczyńska M, Doligalska M. Effects of intestinal nematode treatment on CD11b activation state in an EAE mouse model of multiple sclerosis. Immunobiology 2019; 224:817-826. [PMID: 31466733 DOI: 10.1016/j.imbio.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/07/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
Abstract
The experimental autoimmune encephalomyelitis (EAE) animal model of Multiple Sclerosis (MS) is characterized by episodic neurologic dysfunction arising as a consequence of perivascular mononuclear cell infiltration and demyelination in the CNS. Leukocyte integrins, which are responsible for migration through the endothelial, play key roles in the pathogenesis of autoimmune diseases and chronic inflammation. Intestinal infection of mice with Heligmosomoides polygyrus appears to target CD11b (integrin αM), which is highly expressed on myeloid cells and is critical for their migration and function. H. polygyrus infection induces suppression of ongoing experimental EAE and extensive infiltration of CD11b+ cells to the CNS. Therefore, the aim of the present study was to characterize the phenotype and activity of CD11b+ cells accompanying the tissue phase infection of L4 H. polygyrus in EAE mice. It was found that the cells displayed a CD11b+ state with a distinct phenotype characterised by the expression of co-stimulatory CD80/CD86, CD40, MHCII, F4/80 and the mannose receptor CD206. This activation state illustrates the heterogeneity of CD11b+ cells in EAE mice following nematode invasion; these may have important consequences for understanding the effects of CD11b integrin, which is involved in the downregulation of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Katarzyna Donskow-Łysoniewska
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland; Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Katarzyna Krawczak
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maja Machcińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Głaczyńska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Maria Doligalska
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Association of ITGAX and ITGAM gene polymorphisms with susceptibility to IgA nephropathy. J Hum Genet 2019; 64:927-935. [PMID: 31227791 DOI: 10.1038/s10038-019-0632-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 02/02/2023]
Abstract
Previous genome-wide association studies have discovered significant association at ITGAX-ITGAM on 16p11.2 for IgA nephropathy (IgAN). In this study, we performed a two-stage association study that enrolled 1700 IgAN cases and 2400 controls to further investigate the relationship of ITGAX and ITGAM gene polymorphisms with IgAN. Seven single-nucleotide polymorphisms (SNPs) were selected for genotyping in 1000 IgAN cases and 1000 healthy controls in the discovery stage, and the significant SNP was further validated in additional 700 IgAN cases and 1400 healthy controls. We found that four SNPs (rs11150619, rs11150614, rs7190997, and rs4597342) showed potential associations with IgAN susceptibility in the discovery stage, but only SNP rs11150619 was further genotyped in the validation stage after multiple testing. The results indicated that rs11150619 was significantly associated with IgAN in the combined samples (OR = 0.81, 95%CI = 0.71-0.91, and dominant P = 6.68 × 10-4). Moreover, patients with TT genotype of rs11150619 exhibited increased estimated glomerular filtration rate levels and a reduced proportion of global sclerosis compared with those with TC and CC genotypes. Our results suggested that ITGAX and ITGAM gene polymorphisms were associated with IgAN in a Chinese Han population, and the rs11150619-T allele showed a potential protective role for IgAN.
Collapse
|
37
|
MiR-21 binding site SNP within ITGAM associated with psoriasis susceptibility in women. PLoS One 2019; 14:e0218323. [PMID: 31211819 PMCID: PMC6581264 DOI: 10.1371/journal.pone.0218323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Great progress has been made in the understanding of inflammatory processes in psoriasis. However, clarifying the role of genetic variability in processes regulating inflammation, including post-transcriptional regulation by microRNA (miRNA), remains a challenge. OBJECTIVES We therefore investigated single nucleotide polymorphisms (SNPs) with a predicted change in the miRNA/mRNA interaction of genes involved in the psoriasis inflammatory processes. METHODS Studied SNPs rs2910164 C/G-miR-146a, rs4597342 T/C-ITGAM, rs1368439 G/T-IL12B, rs1468488 C/T-IL17RA were selected using a bioinformatics analysis of psoriasis inflammation-associated genes. These SNPs were then genotyped using a large cohort of women with psoriasis (n = 241) and healthy controls (n = 516). RESULTS No significant association with psoriasis was observed for rs2910164, rs1368439, and rs1468488 genotypes. However, the major allele T of rs4597342 -ITGAM was associated with approximately 28% higher risk for psoriasis in comparison to the patients with the C allele (OR = 1.28, 95% CI 1.01-1.61, p = 0.037). In case of genotypes, the effect of the T allele indicates the dominant model of disease penetrance as the CT and TT genotypes increase the chance of psoriasis up to 42% in comparison to CC homozygotes of rs4597342 (OR = 1.42, 95% CI = 1.05-1.94, p = 0.025). CONCLUSION SNP rs4597342 in 3'UTR of ITGAM influencing miR-21 binding may be considered a risk factor for psoriasis development. Upregulated miR-21 in psoriasis is likely to inhibit CD11b production in the case of the rs4597342 T allele which may lead to Mac-1 dysfunction, resulting in an aberrant function of innate immune cells and leading to the production of cytokines involved in psoriasis pathogenesis.
Collapse
|
38
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Regulation of CD11b by HIF-1α and the STAT3 signaling pathway contributes to the immunosuppressive function of B cells in inflammatory bowel disease. Mol Immunol 2019; 111:162-171. [PMID: 31063937 DOI: 10.1016/j.molimm.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
B cells have been reported to have a suppressive function in autoimmune diseases, which appears to require an increase of CD11b expression on B cells. However, little is known how CD11b is induced in B cells to play the function. In this study, we found that the high expression of CD11b in B cells occurred not only in the mucosal immune organs, but also in systemically immune organs such as the spleen during dextran sulfate sodium (DSS)-induced colitis. Since the inflammatory lesions in mouse models of inflammatory bowel disease (IBD) were revealed to be significantly hypoxic or even anoxic, the B cells from colitic mice Peyer's patches (PP) were investigated to express higher levels of hypoxia-inducible factor-1α (HIF-1α) than naïve B cells from wildtype (WT) mice. HIF-1α siRNA transfection or HIF-1α protein inhibition led to decreased CD11b expression at both the mRNA and protein levels in vitro. B cells with HIF-1α specific knockdown were then adoptively transferred to Rag-1-/- mice. The result displayed that CD11b expression was decreased in B cells and an exacerbated colitis occurred. The bio-informatics promoter analysis and ChIP assay showed that HIF-1α was the critical transcription factor for CD11b and cooperatively formed a complex with the p-STAT3 homodimers to bind onto hypoxia-responsive element (HRE) regions, which was guaranteed by MEK/ERK pathway activation and IL-10 secretion. In conclusion, our study demonstrated the key function of the hypoxia-associated transcription factor HIF-1α together with p-STAT3 in driving CD11b transcription in B cells and controlling B cell's protective activity in experimental inflammatory bowel disease (IBD).
Collapse
|
40
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Figliuolo da Paz V, Jamwal DR, Gurney M, Midura-Kiela M, Harrison CA, Cox C, Wilson JM, Ghishan FK, Kiela PR. Rapid Downregulation of DAB2 by Toll-Like Receptor Activation Contributes to a Pro-Inflammatory Switch in Activated Dendritic Cells. Front Immunol 2019; 10:304. [PMID: 30873168 PMCID: PMC6400992 DOI: 10.3389/fimmu.2019.00304] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are pivotal in regulating tolerogenic as well as immunogenic responses against microorganisms by directing both the innate and adaptive immune response. In health, phenotypically different DC subsets found in the gut mucosa are maintained in their tolerogenic state but switch to a pro-inflammatory phenotype during infection or chronic autoinflammatory conditions such as inflammatory bowel disease (IBD). The mechanisms that promote the switch among the mucosal DCs from a tolerogenic to an immunogenic, pro-inflammatory phenotype are incompletely understood. We hypothesized that disabled homolog 2 (DAB2), recently described as a negative regulator of DC immunogenicity during their development, is regulated during intestinal inflammation and modulates mucosal DC function. We show that DAB2 is highly expressed in colonic CD11b+CD103− DCs, a subset known for its capacity to induce inflammatory Th1/Th17 responses in the colon, and is downregulated predominantly in this DC subset during adoptive T cell transfer colitis. Administration of Dab2-deficient DCs (DC2.4Dab2−/− cells) modulated the course of DSS colitis in wild-type mice, enhanced mucosal expression of Tnfa, Il6, and Il17a, and promoted neutrophil recruitment. In bone-marrow derived dendritic cells (BMDC), DAB2 expression correlated with CD11b levels and DAB2 was rapidly and profoundly inhibited by TLR ligands in a TRIF- and MyD88-dependent manner. The negative modulation of DAB2 was biphasic, initiated with a quick drop in DAB2 protein, followed by a sustained reduction in Dab2 mRNA. DAB2 downregulation promoted a more functional and activated DC phenotype, reduced phagocytosis, and increased CD40 expression after TLR activation. Furthermore, Dab2 knockout in DCs inhibited autophagy and promoted apoptotic cell death. Collectively, our results highlight the immunoregulatory role for DAB2 in the intestinal dendritic cells and suggest that DAB2 downregulation after microbial exposure promotes their switch to an inflammatory phenotype.
Collapse
Affiliation(s)
| | - Deepa R Jamwal
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Michael Gurney
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | | | - Christy A Harrison
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Christopher Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Fayez K Ghishan
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
42
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Yao X, Dong G, Zhu Y, Yan F, Zhang H, Ma Q, Fu X, Li X, Zhang Q, Zhang J, Shi H, Ning Z, Dai J, Li Z, Li C, Wang B, Ming J, Yang Y, Hong F, Meng X, Xiong H, Si C. Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction. Front Immunol 2019; 10:215. [PMID: 30809230 PMCID: PMC6379471 DOI: 10.3389/fimmu.2019.00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
Dysregulation of macrophage has been demonstrated to contribute to aberrant immune responses and inflammatory diseases. CD11b, expressed on macrophages, plays a critical role in regulating pathogen recognition, phagocytosis, and cell survival. In the present study, we explored the effect of leukadherin-1 (LA1), an agonist of CD11b, on regulating LPS-induced pro-inflammatory response in macrophages and endotoxic shock. Intriguingly, we found that LA1 could significantly reduce mortalities of mice and alleviated pathological injury of liver and lung in endotoxic shock. In vivo studies showed that LA1-induced activation of CD11b significantly inhibited the LPS-induced pro-inflammatory response in macrophages of mice. Moreover, LA1-induced activation of CD11b significantly inhibited LPS/IFN-γ-induced pro-inflammatory response in macrophages by inhibiting MAPKs and NF-κB signaling pathways in vitro. Furthermore, the mice injected with LA1-treated BMDMs showed fewer pathological lesions than those injected with vehicle-treated BMDMs in endotoxic shock. In addition, we found that activation of TLR4 by LPS could endocytose CD11b and activation of CD11b by LA1 could endocytose TLR4 in vitro and in vivo, subsequently blocking the binding of LPS with TLR4. Based on these findings, we concluded that LA1-induced activation of CD11b negatively regulates LPS-induced pro-inflammatory response in macrophages and subsequently protects mice from endotoxin shock by partially blocking LPS-TLR4 interaction. Our study provides a new insight into the role of CD11b in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoying Yao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yuzhen Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xingqin Fu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xuehui Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - QingQing Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Bo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jiankuo Ming
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yonghong Yang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Feng Hong
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| |
Collapse
|
44
|
Yao X, Dong G, Zhu Y, Yan F, Zhang H, Ma Q, Fu X, Li X, Zhang Q, Zhang J, Shi H, Ning Z, Dai J, Li Z, Li C, Wang B, Ming J, Yang Y, Hong F, Meng X, Xiong H, Si C. Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction. Front Immunol 2019. [PMID: 30809230 DOI: 10.3389/fimmu.2019.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Dysregulation of macrophage has been demonstrated to contribute to aberrant immune responses and inflammatory diseases. CD11b, expressed on macrophages, plays a critical role in regulating pathogen recognition, phagocytosis, and cell survival. In the present study, we explored the effect of leukadherin-1 (LA1), an agonist of CD11b, on regulating LPS-induced pro-inflammatory response in macrophages and endotoxic shock. Intriguingly, we found that LA1 could significantly reduce mortalities of mice and alleviated pathological injury of liver and lung in endotoxic shock. In vivo studies showed that LA1-induced activation of CD11b significantly inhibited the LPS-induced pro-inflammatory response in macrophages of mice. Moreover, LA1-induced activation of CD11b significantly inhibited LPS/IFN-γ-induced pro-inflammatory response in macrophages by inhibiting MAPKs and NF-κB signaling pathways in vitro. Furthermore, the mice injected with LA1-treated BMDMs showed fewer pathological lesions than those injected with vehicle-treated BMDMs in endotoxic shock. In addition, we found that activation of TLR4 by LPS could endocytose CD11b and activation of CD11b by LA1 could endocytose TLR4 in vitro and in vivo, subsequently blocking the binding of LPS with TLR4. Based on these findings, we concluded that LA1-induced activation of CD11b negatively regulates LPS-induced pro-inflammatory response in macrophages and subsequently protects mice from endotoxin shock by partially blocking LPS-TLR4 interaction. Our study provides a new insight into the role of CD11b in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoying Yao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yuzhen Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xingqin Fu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Xuehui Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - QingQing Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Bo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Jiankuo Ming
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| | - Yonghong Yang
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Feng Hong
- Department of Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, United States
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China
| |
Collapse
|
45
|
Dmochowska N, Tieu W, Keller MD, Wardill HR, Mavrangelos C, Campaniello MA, Takhar P, Hughes PA. Immuno-PET of Innate Immune Markers CD11b and IL-1β Detects Inflammation in Murine Colitis. J Nucl Med 2018; 60:858-863. [PMID: 30413657 DOI: 10.2967/jnumed.118.219287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing and remitting inflammatory disease of the gastrointestinal tract. The diagnosis and monitoring of IBD are reliant on endoscopy, which is invasive and does not provide information on specific mediators. Symptom flare in IBD is associated with increased activation of innate immune pathways. Immuno-PET approaches have previously demonstrated the ability to detect colitis; however, a direct comparison of antibodies targeted to innate immune mediators and cells has not been done. We aimed to compare immuno-PET of antibodies to IL-1β and CD11b against standard 18F-FDG and MRI approaches to detect colonic inflammation. Methods: Colonic concentrations of IL-1β and myeloperoxidase were determined by ELISA, and colonic infiltration by CD11b-positive CD3-negative innate immune cells was determined by flow cytometry and compared between healthy and dextran sodium sulphate-treated colitic mice. PET of 89Zr-lα-IL-1β, 89Zr-α-CD11b, and 18F-FDG was compared by volume-of-interest analysis and with MRI by region-of-interest analysis. Imaging results were confirmed by ex vivo biodistribution analysis. Results: Colonic inflammation was associated with impaired colonic epithelial barrier permeability, increased colonic IL-1β and myeloperoxidase concentrations, and increased CD11b-positive CD3-negative innate immune cell infiltration into the colon. 89Zr-α-IL-1β and 89Zr-α-CD11b immuno-PET detected colonic inflammation, as did 18F-FDG, and all PET tracers were more sensitive than MRI. Although 18F-FDG volumes of interest correlated with colitis severity and a strong trend was observed with 89Zr-α-IL-1β, no correlation was observed for 89Zr-α-CD11b or MRI. 89Zr-α-IL-1β was distributed mainly to the gastrointestinal tract, whereas 89Zr-α-CD11b was distributed to more tissue types. Conclusion: Immuno-PET using antibodies directed to innate immune markers detected colonic inflammation, with 89Zr-α-IL-1β providing a more tissue-specific signal than 89Zr-α-CD11b. Development of these technologies for human subjects will potentially provide a less invasive approach than endoscopy for diagnosing and monitoring IBD.
Collapse
Affiliation(s)
- Nicole Dmochowska
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute, Adelaide, Australia; and
| | - Marianne D Keller
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia.,Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hannah R Wardill
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Prab Takhar
- Molecular Imaging and Therapy Research Unit, South Australian Health and Medical Research Institute, Adelaide, Australia; and
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Diseases, Adelaide Medical School, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
46
|
Yang M, Xu W, Wang Y, Jiang X, Li Y, Yang Y, Yuan H. CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol Pain 2018; 14:1744806918808150. [PMID: 30280656 PMCID: PMC6311569 DOI: 10.1177/1744806918808150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation plays an important role in the induction and maintenance of chronic pain. Orchestra of pattern-recognition receptor-induced pro-inflammatory and anti-inflammatory cytokines is critical for inflammation homeostasis. CD11b on macrophages could inhibit toll-like receptor (TLR) activation-induced inflammatory responses. However, the function of CD11b on microglia remains unknown. In the current study, we demonstrated that CD11b-deficient microglia cells produced more inflammatory cytokines, such as interleukin-6 and tumor necrosis factor alpha, while less anti-inflammatory cytokines. Signal transduction assay confirmed that nuclear factor-κB activation was increased in CD11b-deficient microglia cells, which resulted from decreased activation of Src. Inhibition of Src by PP1 increased inflammation in wild-type microglia cells significantly, but not in CD11b-deficient microglia cells. In vivo, CD11b-deficient mice were more susceptible to chronic constrictive injury-induced allodynia and hyperalgesia with significantly more inflammatory cytokines expression. All these results indicated that the regulatory function of CD11b-Src signal pathway on both inflammatory and anti-inflammatory cytokines in microglia cells is a potential target in neuropathic pain treatment.
Collapse
Affiliation(s)
- Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wenyun Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yiru Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yajuan Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Wang Z, Zhang H, Liu R, Qian T, Liu J, Huang E, Lu Z, Zhao C, Wang L, Chu Y. Peyer's patches-derived CD11b + B cells recruit regulatory T cells through CXCL9 in dextran sulphate sodium-induced colitis. Immunology 2018; 155:356-366. [PMID: 29969845 DOI: 10.1111/imm.12977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Regulatory T (Treg) cells play an essential role in the maintenance of intestinal homeostasis. In Peyer's patches (PPs), which comprise the most important IgA induction site in the gut-associated lymphoid tissue, Treg cells promote IgA isotype switching. However, the mechanisms underlying their entry into PPs and isotype switching facilitation in activated B cells remain unknown. This study, based on the dextran sulphate sodium (DSS)-induced colitis model, revealed that Treg cells are significantly increased in PPs, along with CD11b+ B-cell induction. Immunofluorescence staining showed that infiltrated Treg cells were located around CD11b+ B cells and produced transforming growth factor-β, thereby inducing IgA+ B cells. Furthermore, in vivo and in vitro studies revealed that CD11b+ B cells in PPs had the capacity to recruit Treg cells into PPs rather than promoting their proliferation. Finally, we found that Treg cell recruitment was mediated by the chemokine CXCL9 derived from CD11b+ B cells in PPs. These findings demonstrate that CD11b+ B cells induced in PPs during colitis actively recruit Treg cells to accomplish IgA isotype switch in a CXCL9-dependent manner.
Collapse
Affiliation(s)
- Zhiming Wang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hushan Zhang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tingting Qian
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiajing Liu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Enyu Huang
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chujun Zhao
- Northfield Mount Hermon School, Mount Hermon, MA, USA
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Nowatzky J, Manches O, Khan SA, Godefroy E, Bhardwaj N. Modulation of human Th17 cell responses through complement receptor 3 (CD11 b/CD18) ligation on monocyte-derived dendritic cells. J Autoimmun 2018; 92:57-66. [PMID: 29908907 DOI: 10.1016/j.jaut.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Apoptotic cell receptors contribute to the induction of tolerance by modulating dendritic cell function following the uptake of apoptotic cells or microparticles. Dendritic cells that have bound or ingested apoptotic cells produce only low amounts of pro-inflammatory cytokines and fail to prime effector T cell responses. Specifically, ligation of the apoptotic cell receptor CR3 (CD11 b/CD18) on human monocyte-derived dendritic cells (moDC) down-modates proinflammatory cytokine secretion, but the consequences for human Th17 cell homeostasis and effector responses remain unknown. Here, we aimed to establish whether CD11b-ligated moDC modulate Th17 cell effector reponses to assess their potential for future use in moDC-based suppressive immunotherapy. METHODS We generated a bead-based surrogate system to target CD11b on monocyte-derived human dendritic cells and examined the effects of CD11b ligation on Th17-skewing cytokine secretion, priming, expansion and functional plasticity in DC/T cell co-culture systems at the poly- and monoclonal level. RESULTS We show that Th17 cell expansion within the human memory CD4+ T cell compartment was efficiently constricted by targeting the CD11b receptor on moDC. This tolerogenic capacity was primarily dependent on cytokine skewing. Furthermore, ligation of CD11b on healthy homozygous carriers of the rs11143679 (ITGAM) variant - a strong genetic susceptibility marker for human systemic lupus erythematosus - also down-modulated the secretion of Th17-skewing cytokines. CONCLUSION Overall, our findings underline the potential of targeted CD11b ligation on human dendritic cells for the engineering of suppressive immunotherapy for Th17-related autoimmune disorders.
Collapse
Affiliation(s)
| | | | | | | | - Nina Bhardwaj
- New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
49
|
Khan SQ, Khan I, Gupta V. CD11b Activity Modulates Pathogenesis of Lupus Nephritis. Front Med (Lausanne) 2018; 5:52. [PMID: 29600248 PMCID: PMC5862812 DOI: 10.3389/fmed.2018.00052] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) with unclear etiology and limited treatment options. Immune cell infiltration into the kidneys, a hallmark of LN, triggers tissue damage and proteinuria. CD11b, the α-chain of integrin receptor CD11b/CD18 (also known as αMβ2, Mac-1, and CR3), is highly expressed on the surface of innate immune cells, including macrophages and neutrophils. Genetic variants in the human ITGAM gene, which encodes for CD11b, are strongly associated with susceptibility to SLE, LN, and other complications of SLE. CD11b modulates several key biological functions in innate immune cells, including cell adhesion, migration, and phagocytosis. CD11b also modulates other signaling pathways in these cells, such as the Toll-like receptor signaling pathways, that mediate generation of type I interferons, a key proinflammatory cytokine and circulating biomarker in SLE and LN patients. However, how variants in ITGAM gene contribute to disease pathogenesis has not been completely established. Here, we provide an overview of CD11b modulated mechanisms and the functional consequences of the genetic variants that can drive disease pathogenesis. We also present recent insights from studies after pharmacological activation of CD11b. These studies offer novel mechanisms for development of therapeutics for LN, SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Samia Q Khan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical School, Chicago, IL, United States
| | - Imran Khan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical School, Chicago, IL, United States
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical School, Chicago, IL, United States
| |
Collapse
|
50
|
Zhou H, Li Y, Gui H, Zhao H, Wu M, Li G, Li Y, Bai Z, Yin Z, Redmond HP, Wang J, Wang JH, Zhao Z. Antagonism of Integrin CD11b Affords Protection against Endotoxin Shock and Polymicrobial Sepsis via Attenuation of HMGB1 Nucleocytoplasmic Translocation and Extracellular Release. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1771-1780. [PMID: 29343555 DOI: 10.4049/jimmunol.1701285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/15/2017] [Indexed: 09/13/2023]
Abstract
High mobility group box 1 (HMGB1), a chromatin-binding nuclear protein, plays a critical role in sepsis by acting as a key "late-phase" inflammatory mediator. Integrin CD11b is essential for inflammatory cell activation and migration, thus mediating inflammatory responses. However, it is unclear whether CD11b participates in the development of sepsis. In this study, we report that CD11b contributes to LPS-induced endotoxin shock and microbial sepsis, as antagonism of CD11b with the CD11b blocking Ab or CD11b inhibitor Gu-4 protects mice against LPS- and microbial sepsis-related lethality, which is associated with significantly diminished serum HMGB1 levels. Consistent with this, CD11b-deficient mice were more resistant to microbial sepsis with a much lower serum HMGB1 level compared with wild-type mice. Pharmacological blockage and genetic knockdown/knockout of CD11b in murine macrophages hampered LPS-stimulated HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, silencing CD11b interrupted the interaction of HMGB1 with either a nuclear export factor chromosome region maintenance 1 or classical protein kinase C and inhibited classical protein kinase C-induced HMGB1 phosphorylation, the potential underlying mechanism(s) responsible for CD11b blockage-induced suppression of HMGB1 nucleocytoplasmic translocation and subsequent extracellular release. Thus, our results highlight that CD11b contributes to the development of sepsis, predominantly by facilitating nucleocytoplasmic translocation and active release of HMGB1.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; and
| | - Yanhong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Huan Gui
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Ming Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Gang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Yiping Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; and
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork T12YN60, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China;
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork T12YN60, Ireland
| | - Zhihui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; and
| |
Collapse
|