1
|
Gopalakrishnan S, Jayapal P, John J. Pneumococcal surface proteins as targets for next-generation vaccines: Addressing the challenges of serotype variation. Diagn Microbiol Infect Dis 2025; 113:116870. [PMID: 40347702 DOI: 10.1016/j.diagmicrobio.2025.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/20/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Streptococcus pneumoniae is a major global pathogen causing significant morbidity and mortality, particularly among children, the elderly, and immunocompromised populations. While pneumococcal conjugate vaccines (PCVs) have successfully reduced invasive pneumococcal disease (IPD), challenges such as serotype replacement and non-encapsulated strains necessitate serotype-independent vaccine strategies. Pneumococcal surface proteins, including pneumolysin (Ply), choline-binding proteins (CBPs), and histidine triad proteins (PHTs), represent promising universal vaccine targets due to their conserved nature and roles in adhesion, immune evasion, and biofilm formation. Advances in protein engineering, such as detoxified Ply derivatives and multivalent formulations incorporating PhtD and PspA, demonstrate potential in preclinical studies. Novel technologies, including reverse vaccinology and extracellular vesicle-based platforms, further accelerate innovation. This review highlights recent progress in pneumococcal surface protein research, emphasizing their potential to address the limitations of PCVs and mitigate antibiotic-resistant pneumococcal strains, representing a transformative approach to global pneumococcal disease prevention.
Collapse
Affiliation(s)
- Sangeetha Gopalakrishnan
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India; Division of Laboratories, Biochemistry & Hematology Section, Central Leprosy Teaching and Research Institute, Chengalpattu, India
| | - Premkumar Jayapal
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India; School of Bio & Chemical Engineering, Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, India.
| | - James John
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India.
| |
Collapse
|
2
|
Alishvandi A, Barancheshemeh M, Firuzpour F, Aram C, Kamali MJ, Keikha M. Decoding virulence and resistance in Klebsiella pneumoniae: Pharmacological insights, immunological dynamics, and in silico therapeutic strategies. Microb Pathog 2025; 205:107691. [PMID: 40355055 DOI: 10.1016/j.micpath.2025.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Klebsiella pneumoniae (K. pneumoniae) has become a serious global health concern due to its rising virulence and antibiotic resistance. As one of the leading members of ESKAPE pathogens, it plays a major role in a wide range of infections that cause pneumonia, urinary tract infections, and bacteremia, especially in immunocompromised and hospitalized patients. The recent increase in multidrug-resistant (MDR) and hypervirulent (hvKP) strains due to the production of extended-spectrum beta-lactamases (ESBLs) and carbapenemases, has greatly limited therapeutic options that highlights the need for novel approaches to combat the pathogen. This review outlines the virulence mechanisms, profiles of antibiotic resistance, and immune evasion strategies in K. pneumoniae. Also, it points out the role of capsular polysaccharides, lipopolysaccharides, and fimbriae in host colonization and immune evasion. Additionally, the review discusses the emerging therapeutic strategies of vaccine development, computational drug discovery, and the use of artificial intelligence (AI). The progress achieved in reverse vaccinology and structural biology enables the identification of new drug and vaccine targets, whereas AI and machine learning (ML) stand out as powerful candidates for high-throughput screening and drug design. However, challenges with antigenic variability, safety, and the need to collaborate globally still exist. This review focuses on the need for interdisciplinary approaches involving molecular biology and immunology with computational sciences to address K. pneumoniae infections and provide appropriate therapies in the era of antibiotic resistance.
Collapse
Affiliation(s)
- Ali Alishvandi
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran; Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Faezeh Firuzpour
- Research Committee, Babol University of Medical Sciences, Babol, Iran; Cancer Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Masoud Keikha
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran; Department of Medical Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
3
|
Gonçalves VM. Novel processes to obtain pneumococcal surface proteins for vaccines. Appl Microbiol Biotechnol 2025; 109:90. [PMID: 40210776 PMCID: PMC11985572 DOI: 10.1007/s00253-025-13440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 04/12/2025]
Abstract
Current pneumococcal vaccines are based on the protection offered by capsular polysaccharides from only a few from > 100 serotypes; therefore, serotype-independent vaccines composed of pneumococcal surface proteins are being developed. Despite the immense number of publications on the discovery, characterization, and evaluation of new pneumococcal vaccine candidates, there are very few that describe the bioprocess development, which is an essential step to generate material for pre-clinical and clinical tests, to obtain enough protein amount for physical-chemical, biochemical, and biological characterization, and to understand critical product and process attributes. Here, aspects of production and purification processes of pneumococcal surface proteins are reviewed, the most common bioreactor cultivation strategies are discussed, and important features of the purification process are explored to bring new insights about the correlation between protein structure and chromatography. The process development oriented to an industrial scale is an essential step for the success of novel protein-based pneumococcal vaccines and can preclude problems that could be hardly identified at flask scale production. Moreover, the early bioprocess development should favor a smooth scale-up and transfer of the process to GMP facilities for future production of new pneumococcal vaccines. KEY POINTS: • Early bioprocess development is crucial to advancing pneumococcal protein vaccines. • Bioreactor cultivation can help to identify possible process bottlenecks. • Structural features of similar proteins can orient purification process development.
Collapse
Affiliation(s)
- Viviane Maimoni Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, Av Vital Brasil 1500, 05503-900, Sao Paulo, Brazil.
| |
Collapse
|
4
|
He SWJ, Voß F, Nicolaie MA, Brummelman J, van de Garde MDB, Bijvank E, Poelen M, Wijmenga-Monsuur AJ, Wyllie AL, Trzciński K, Van Beek J, Rots NY, den Hartog G, Hammerschmidt S, van Els CACM. Serological Profiling of Pneumococcal Proteins Reveals Unique Patterns of Acquisition, Maintenance, and Waning of Antibodies Throughout Life. J Infect Dis 2024; 230:e1299-e1310. [PMID: 38679601 PMCID: PMC11646596 DOI: 10.1093/infdis/jiae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024] Open
Abstract
Streptococcus pneumoniae is a leading cause of morbidity and mortality in children and older adults. However, knowledge on the development of pneumococcal protein-specific antibody responses throughout life is limited. To investigate this, we measured serum immunoglobulin G (IgG) levels to 55 pneumococcal proteins in 11-month-old infants (n = 73), 24-month-old children (n = 101), parents (n = 99), adults without children <6 years of age (n = 99), and older adults aged >60 years (n = 100). Our findings revealed low IgG levels in infancy, with distinct development patterns peaking in adults. A decrease in levels was observed for 27 antigens towards older age. Adults and older adults had increased IgG levels during pneumococcal carriage and at increased exposure risk to S. pneumoniae. Carriage was a stronger predictor than exposure or age for antibody responses. These findings highlight the dynamic nature of naturally acquired humoral immunity to pneumococcal proteins throughout life, offering insights for age-targeted interventions. CLINICAL TRIALS REGISTRATION Participants were selected from three clinical studies (NTR3462, NTR5405 and NTR3386) conducted in the Netherlands by the National Institute for Public Health and the Environment (RIVM).
Collapse
Affiliation(s)
- Samantha W J He
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Mioara A Nicolaie
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elske Bijvank
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martien Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josine Van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Medical Immunology, Radboudumc, Nijmegen, The Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Xu Y, Zhou X, Zheng W, Cui B, Xie C, Liu Y, Qin X, Liu J. Serotype distribution, antibiotic resistance, multilocus sequence typing, and virulence factors of invasive and non-invasive Streptococcus pneumoniae in Northeast China from 2000 to 2021. Med Microbiol Immunol 2024; 213:12. [PMID: 38954065 DOI: 10.1007/s00430-024-00797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Streptococcus pneumoniae infection is a major public health concern with high morbidity and mortality rates. This study aimed to evaluate the serotype distribution, antimicrobial resistance changes, clonal composition, and virulence factors of S. pneumoniae isolates causing pneumococcal disease in northeast China from 2000 to 2021. A total of 1,454 S. pneumoniae isolates were included, with 568 invasive strains and 886 non-invasive strains. The patients from whom the S. pneumoniae were isolated ranged in age from 26 days to 95 years, with those ≤ 5 years old comprising the largest group (67.19%). 19 F, 19 A, 23 F, 14, and 6B were the most common serotypes, of which 19 A and 19 F were the main serotypes of invasive and non-invasive S. pneumoniae, respectively. CC271 was the most common multilocus sequence type. Serotype 14 had the lowest expression of cbpA, rrgA, and psrP genes, but expression levels of 19 A and 19 F genes were similar. All isolates were sensitive to ertapenem, moxifloxacin, linezolid, and vancomycin but highly resistant to macrolides, tetracyclines, and cotrimoxazole. Simultaneous resistance to erythromycin, clindamycin, tetracyclines, and trimethoprim/sulfamethoxazole was common pattern among multidrug-resistant isolates. Non-invasive S. pneumoniae had higher resistance to β-lactam antibiotics than invasive strains. 19 A and 19 F were the main strains of penicillin-resistant S. pneumoniae. The resistance rate of β-lactam antibiotics decreased from 2017 to 2021 compared to previous periods. Including PCV13 in the national immunization program can reduce the morbidity and mortality rates of pneumococcal disease effectively.
Collapse
Affiliation(s)
- Yiyun Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Xiuzhen Zhou
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Wei Zheng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Bing Cui
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Chonghong Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.
| |
Collapse
|
6
|
Majumder S, Li P, Das S, Nafiz TN, Kumar S, Bai G, Dellario H, Sui H, Guan Z, Curtiss R, Furuya Y, Sun W. A bacterial vesicle-based pneumococcal vaccine against influenza-mediated secondary Streptococcus pneumoniae pulmonary infection. Mucosal Immunol 2024; 17:169-181. [PMID: 38215909 PMCID: PMC11033695 DOI: 10.1016/j.mucimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
7
|
Liu X, Van Maele L, Matarazzo L, Soulard D, Alves Duarte da Silva V, de Bakker V, Dénéréaz J, Bock FP, Taschner M, Ou J, Gruber S, Nizet V, Sirard JC, Veening JW. A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection. Cell Host Microbe 2024; 32:304-314.e8. [PMID: 38417443 DOI: 10.1016/j.chom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against S. pneumoniae serotypes 2, 15A, and 24F in a murine model. In contrast to standard capsule-based vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4+ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, indicating LafB antigenicity in humans. Collectively, these findings present a universal pneumococcal vaccine antigen that remains effective following influenza infection.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Laurye Van Maele
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laura Matarazzo
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Daphnée Soulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vinicius Alves Duarte da Silva
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Julien Dénéréaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jinzhao Ou
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Claude Sirard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Croucher NJ. Immune interface interference vaccines: An evolution-informed approach to anti-bacterial vaccine design. Microb Biotechnol 2024; 17:e14446. [PMID: 38536702 PMCID: PMC10970203 DOI: 10.1111/1751-7915.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 10/17/2024] Open
Abstract
Developing protein-based vaccines against bacteria has proved much more challenging than producing similar immunisations against viruses. Currently, anti-bacterial vaccines are designed using methods based on reverse vaccinology. These identify broadly conserved, immunogenic proteins using a combination of genomic and high-throughput laboratory data. While this approach has successfully generated multiple rationally designed formulations that show promising immunogenicity in animal models, few have been licensed. The difficulty of inducing protective immunity in humans with such vaccines mirrors the ability of many bacteria to recolonise individuals despite recognition by natural polyvalent antibody repertoires. As bacteria express too many antigens to evade all adaptive immune responses through mutation, they must instead inhibit the efficacy of such host defences through expressing surface structures that interface with the immune system. Therefore, 'immune interface interference' (I3) vaccines that target these features should synergistically directly target bacteria and prevent them from inhibiting responses to other surface antigens. This approach may help us understand the efficacy of the two recently introduced immunisations against serotype B meningococci, which both target the Factor H-binding protein (fHbp) that inhibits complement deposition on the bacterial surface. Therefore, I3 vaccine designs may help overcome the current challenges of developing protein-based vaccines to prevent bacterial infections.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public HealthImperial College LondonLondonUK
| |
Collapse
|
9
|
Croucher NJ, Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Turner C, Nosten F, Bentley SD, Liang X, Turner P, Goldblatt D. Genomic and panproteomic analysis of the development of infant immune responses to antigenically-diverse pneumococci. Nat Commun 2024; 15:355. [PMID: 38191887 PMCID: PMC10774285 DOI: 10.1038/s41467-023-44584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.
Collapse
Affiliation(s)
- Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W12 0BZ, UK.
| | - Joseph J Campo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Timothy Q Le
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Jozelyn V Pablo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Christopher Hung
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Andy A Teng
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Claudia Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xiaowu Liang
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
10
|
Nahian M, Shahab M, Mazumder L, Oliveira JIN, Banu TA, Sarkar MH, Goswami B, Habib A, Begum S, Akter S. In silico design of an epitope-based vaccine against PspC in Streptococcus pneumoniae using reverse vaccinology. J Genet Eng Biotechnol 2023; 21:166. [PMID: 38085389 PMCID: PMC10716094 DOI: 10.1186/s43141-023-00604-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 05/01/2025]
Abstract
BACKGROUND Streptococcus pneumoniae is a major pathogen that poses a significant hazard to global health, causing a variety of infections including pneumonia, meningitis, and sepsis. The emergence of antibiotic-resistant strains has increased the difficulty of conventional antibiotic treatment, highlighting the need for alternative therapies such as multi-epitope vaccines. In this study, immunoinformatics algorithms were used to identify potential vaccine candidates based on the extracellular immunogenic protein Pneumococcal surface protein C (PspC). METHOD The protein sequence of PspC was retrieved from NCBI for the development of the multi-epitope vaccine (MEV), and potential B cell and T cell epitopes were identified. Linkers including EAAAK, AAY, and CPGPG were used to connect the epitopes. Through molecular docking, molecular dynamics, and immunological simulation, the affinity between MEV and Toll-like receptors was determined. After cloning the MEV construct into the PET28a ( +) vector, SnapGene was used to achieve expression in Escherichia coli. RESULT The constructed MEV was discovered to be stable, non-allergenic, and antigenic. Microscopic interactions between ligand and receptor are confirmed by molecular docking and molecular dynamics simulation. The use of an in-silico cloning approach guarantees the optimal expression and translation efficiency of the vaccine within an expression vector. CONCLUSION Our study demonstrates the potential of in silico approaches for designing effective multi-epitope vaccines against S. pneumoniae. The designated vaccine exhibits the required physicochemical, structural, and immunological characteristics of a successful vaccine against SPN. However, laboratory validation is required to confirm the safety and immunogenicity of the proposed vaccine design.
Collapse
Affiliation(s)
- Md Nahian
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Muhammad Shahab
- State key laboratories of chemical Resources Engineering. Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
- Department of Biology, Indiana State University, Terre Haute, United States
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biof ́ısica e Farmacologia, Universidade Federal do Rio Grande doNorte, 59072-970, Natal, RN, Brazil
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Murshed Hasan Sarkar
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Ahashan Habib
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh.
| |
Collapse
|
11
|
Kuroda E, Koizumi Y, Piao Z, Nakayama H, Tomono K, Oishi K, Hamaguchi S, Akeda Y. Establishment of a modified opsonophagocytic killing assay for anti-pneumococcal surface protein A antibody. J Microbiol Methods 2023; 212:106804. [PMID: 37543109 DOI: 10.1016/j.mimet.2023.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is a pathogenic gram-positive bacterium that causes pneumonia, meningitis, and sepsis. Pneumococcal surface protein A (PspA) induces antibodies that protect against lethal infections by pneumococci. PspA is a choline-binding protein present on the cell surface of almost all pneumococcal strains and is a non-capsular polysaccharide vaccine candidate. For research and development of PspA-based vaccines, an in-vitro test system to measure the activity of functional antibodies capable of killing pneumococci is essential. The opsonophagocytic killing (OPK) assay is used to evaluate the opsonic activity of functional antibodies induced by capsular polysaccharide (CPS)-based vaccines (standard OPK assay). Despite the potential of anti-PspA antibodies to protect against lethal infections in mice, the standard OPK assay fails to evaluate anti-PspA antibodies. Using a pneumococcal surface protein C-deficient strain and extending the incubation time of opsonized bacteria, complement, and HL-60 cells reportedly results in enhanced bactericidal activity (modified OPK assay). We aimed to measure the bactericidal activity of anti-PspA antibodies in intact pneumococcal strains. We optimized the pneumococcal culture method used in the OPK assay to increase the efficiency of anti-PspA antibody-mediated phagocytosis of HL-60 cells. As thick capsules hinder phagocytosis, we attempted to obtain pneumococci with thin capsules through an improved culture method. As pneumococci attached to cells exhibit thin capsules, pneumococci cultured in Todd Hewitt yeast extract (THY) broth were spread on blood agar plates and incubated for 4 h. cpsA mRNA transcript levels in pneumococci cultured on blood agar were lower than those in pneumococci cultured in THY broth. OPK activity against pneumococci expressing PspA of clades 1-5 was reasonably well detected using pneumococci cultured on blood agar in the modified OPK assay. The modified OPK assay for anti-PspA antibody using pneumococci cultured on blood agar represents a useful assay to determine the killing activity of functional anti-PspA antibodies against pneumococci.
Collapse
Affiliation(s)
- Eisuke Kuroda
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Department of Transformative Infection Control Development Studies, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Yuka Koizumi
- Discovery Research Department, Innovative Vaccine Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Zhenyu Piao
- Biotechnology Section, Biomedical Science Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Hiroki Nakayama
- Discovery Research Department, Innovative Vaccine Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | | | - Shigeto Hamaguchi
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Department of Transformative Analysis for Human Specimen, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Membrane particles evoke a serotype-independent cross-protection against pneumococcal infection that is dependent on the conserved lipoproteins MalX and PrsA. Proc Natl Acad Sci U S A 2022; 119:e2122386119. [PMID: 35648835 PMCID: PMC9191655 DOI: 10.1073/pnas.2122386119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificancePneumococcal infections are major contributors to morbidity and mortality worldwide. Introduction of pneumococcal conjugated vaccines (PCVs) into the childhood vaccination program has led to a decrease in invasive pneumococcal disease (IPD) in vaccinated children but concurrently to an increase of nonvaccine-type IPD, also in nonvaccinated age groups such as the elderly. Thus, novel vaccine approaches are urgently needed, especially for the elderly, targeting all pneumococci causing IPD. Here, we show that pneumococcal membrane particles (MPs) evoke a serotype-independent cross-protection against IPD. This protection is dependent on the presence of the two conserved lipoproteins MalX and PrsA. We suggest that MPs can be used for pneumococcal vaccine development.
Collapse
|
13
|
Aceil J, Avci FY. Pneumococcal Surface Proteins as Virulence Factors, Immunogens, and Conserved Vaccine Targets. Front Cell Infect Microbiol 2022; 12:832254. [PMID: 35646747 PMCID: PMC9133333 DOI: 10.3389/fcimb.2022.832254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that causes over 1 million deaths annually despite the availability of several multivalent pneumococcal conjugate vaccines (PCVs). Due to the limitations surrounding PCVs along with an evolutionary rise in antibiotic-resistant and unencapsulated strains, conserved immunogenic proteins as vaccine targets continue to be an important field of study for pneumococcal disease prevention. In this review, we provide an overview of multiple classes of conserved surface proteins that have been studied for their contribution to pneumococcal virulence. Furthermore, we discuss the immune responses observed in response to these proteins and their promise as vaccine targets.
Collapse
|
14
|
Safarzadeh M, Mohammadi-Yeganeh S, Ghorbani-Bidkorbeh F, Haji Molla Hoseini M. Chitosan based nanoformulation expressing miR-155 as a promising adjuvant to enhance Th1-biased immune responses. Life Sci 2022; 297:120459. [PMID: 35248524 DOI: 10.1016/j.lfs.2022.120459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIM MiR-155 could act as a key modulator of different aspects of immune system including Th1 responses. In this study, we designed chitosan nanoparticles containing miR-155-expressing plasmid and explored their effects as an adjuvant to enhance Th1 responses for potential future application against intracellular pathogens. METHODS Nanoparticles were formulated by complex coacervation method and characterized for physicochemical and functional characteristics. Transfection efficiency in Raw 264.7 cells, effects on miR-155 target genes and NO production were evaluated. The prepared nanoparticles were co-administered as an adjuvant with ovalbumin to immunize mice and finally production of IFN-γ and IL-4 were measured by ELISA in splenocyte recall responses. RESULTS The prepared nanoparticles had the mean size of 244 nm and zeta potential of +17 mV, respectively. Electrophoresis analysis indicated the high capability of nanoparticles to protect the plasmid from DNaseI degradation. Furthermore, nanoparticles showed an appropriate transfection efficiency in Raw 264.7 cells and could downregulate the expression of miR-155 target genes and also upregulate NO production. In vivo immunization examinations revealed successful shift of T cell responses toward Th1. CONCLUSION Our data suggests the high potential of chitosan nanoparticles containing miR-155-expressing plasmid as an adjuvant for significantly enhanced Th1-biased immune responses upon immunization with a given antigen.
Collapse
Affiliation(s)
- Mehrnoush Safarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Alcorlo M, Martínez-Caballero S, Molina R, Hermoso JA. Regulation of Lytic Machineries by the FtsEX Complex in the Bacterial Divisome. Subcell Biochem 2022; 99:285-315. [PMID: 36151380 DOI: 10.1007/978-3-031-00793-4_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The essential membrane complex FtsE/FtsX (FtsEX), belonging to the ABC transporter superfamily and widespread among bacteria, plays a relevant function in some crucial cell wall remodeling processes such as cell division, elongation, or sporulation. FtsEX plays a double role by recruiting proteins to the divisome apparatus and by regulating lytic activity of the cell wall hydrolases required for daughter cell separation. Interestingly, FtsEX does not act as a transporter but uses the ATPase activity of FtsE to mechanically transmit a signal from the cytosol, through the membrane, to the periplasm that activates the attached hydrolases. While the complete molecular details of such mechanism are not yet known, evidence has been recently reported that clarify essential aspects of this complex system. In this chapter we will present recent structural advances on this topic. The three-dimensional structure of FtsE, FtsX, and some of the lytic enzymes or their cognate regulators revealed an unexpected scenario in which a delicate set of intermolecular interactions, conserved among different bacterial genera, could be at the core of this regulatory mechanism providing exquisite control in both space and time of this central process to assist bacterial survival.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain
| | - Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain
- Department of Chemistry of Biomacromolecules, Universidade Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain.
| |
Collapse
|
16
|
Zangari T, Zafar MA, Lees JA, Abruzzo AR, Bee GCW, Weiser JN. Pneumococcal capsule blocks protection by immunization with conserved surface proteins. NPJ Vaccines 2021; 6:155. [PMID: 34930916 PMCID: PMC8688510 DOI: 10.1038/s41541-021-00413-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Vaccines targeting Streptococcus pneumoniae (Spn) are limited by dependence on capsular polysaccharide and its serotype diversity. More broadly-based approaches using common protein antigens have not resulted in a licensed vaccine. Herein, we used an unbiased, genome-wide approach to find novel vaccine antigens to disrupt carriage modeled in mice. A Tn-Seq screen identified 198 genes required for colonization of which 16 are known to express conserved, immunogenic surface proteins. After testing defined mutants for impaired colonization of infant and adult mice, 5 validated candidates (StkP, PenA/Pbp2a, PgdA, HtrA, and LytD/Pce/CbpE) were used as immunogens. Despite induction of antibody recognizing the Spn cell surface, there was no protection against Spn colonization. There was, however, protection against an unencapsulated Spn mutant. This result correlated with increased antibody binding to the bacterial surface in the absence of capsule. Our findings demonstrate how the pneumococcal capsule interferes with mucosal protection by antibody to common protein targets.
Collapse
Affiliation(s)
- Tonia Zangari
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - M. Ammar Zafar
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.241167.70000 0001 2185 3318Present Address: Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - John A. Lees
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.7445.20000 0001 2113 8111Present Address: Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Annie R. Abruzzo
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Gavyn Chern Wei Bee
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Jeffrey N. Weiser
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| |
Collapse
|
17
|
Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021; 433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Kupčík
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
18
|
Yan Z, Cui Y, Huang X, Lei S, Zhou W, Tong W, Chen W, Shen M, Wu K, Jiang Y. Molecular Characterization Based on Whole-Genome Sequencing of Streptococcus pneumoniae in Children Living in Southwest China During 2017-2019. Front Cell Infect Microbiol 2021; 11:726740. [PMID: 34796125 PMCID: PMC8593041 DOI: 10.3389/fcimb.2021.726740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 01/30/2023] Open
Abstract
Background Streptococcus pneumoniae is an important pathogen causing high morbidity and high mortality in children and undergoes frequent recombination for capsule switching to neutralize the 13-valent pneumococcal conjugate vaccine (PCV13). This study aimed to investigate the prevalence, and molecular characteristics including serotypes and antibiotic susceptibility of S. pneumoniae isolated from children living in Southwest China from 2017 to 2019 to facilitate the selection of effective vaccine formulations and appropriate antibiotic treatment regimens. Methods This study was conducted at West China Second University Hospital (Chengdu, Sichuan Province, China), Zunyi Medical University Third Affiliated Hospital/First People's Hospital of Zunyi (Zunyi, Guizhou Province, China) and Chengdu Jinjiang District Maternal and Child Healthcare Hospital (Chengdu, Sichuan Province, China). Demographic and clinical characteristics of children infected with S. pneumoniae were collected and analysed. Next-generation sequencing and sequence analysis were used to determine the serotypes, sequence types, antibiotic resistance and potential protein vaccine target genes of the pneumococcal isolates. The coverage rate provided by PCV13 was estimated by calculating the percentage of the specific serotypes that were specifically the PCV13-included serotypes. Antimicrobial susceptibility was determined by the microdilution broth method. Results The most prevalent pneumococcal serotypes were 19F (25.8%), 19A (14.1%), 6B (12.5%), 6A (9.4%) and 14 (7.8%). The predominant STs were ST271 (23.3%), ST320 (15.5%) and ST90 (8.6%), dominated by the clonal complex Taiwan19F-14 (39.1%). The coverage rate of PCV13 was 77.3% in all the isolates, with relatively higher values in invasive isolates (86.4%). Over the decade, the rates of resistance to penicillin, amoxicillin and cefotaxime were 5.6%, 5.3% and 5.1%, respectively, with significantly higher values in invasive isolates (22.4%, 14.9% and 11.9%). Almost all the isolates were resistant to erythromycin (99.1%) and clindamycin (95.9%). All isolates carried virulence-related genes, including ply, psaA, piaA, piuA, phtE, nanA, pepO, danJ, pvaA, clpP, pcsB, stkP, potD, and strH. The carriage of virulence and resistance genes varied among serotypes and clades, with serotype 19F/ST271 showing higher resistance to antibiotics and being more likely to carry pilus genes and other virulence genes. Conclusion These data provide valuable information for the understanding of pneumococcal pathogenesis, antimicrobial resistance and the development of protein-based vaccines against pneumococcal infection.
Collapse
Affiliation(s)
- Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Department of Laboratory Medicine, Meishan Women and Children's Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, China
| | - Xiaocui Huang
- Department of Laboratory Medicine, Chengdu Jinjiang District Maternal and Child Healthcare Hospital, Chengdu, China
| | - Shikun Lei
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wei Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wen Tong
- Department of Laboratory Medicine, Sichuan Jinxin Women and Children Hospital, Chengdu, China
| | - Wen Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meijing Shen
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/First People's Hospital of Zunyi, Zunyi, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, Zunyi Medical University Third Affiliated Hospital/First People's Hospital of Zunyi, Zunyi, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
19
|
Approaching In Vivo Models of Pneumococcus-Host Interaction: Insights into Surface Proteins, Capsule Production, and Extracellular Vesicles. Pathogens 2021; 10:pathogens10091098. [PMID: 34578131 PMCID: PMC8471892 DOI: 10.3390/pathogens10091098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Infections caused by the Gram-positive bacterium Streptococcus pneumoniae have become a major health problem worldwide because of their high morbidity and mortality rates, especially in developing countries. This microorganism colonizes the human upper respiratory tract and becomes pathogenic under certain circumstances, which are not well known. In the interaction with the host, bacterial surface structures and proteins play major roles. To gain knowledge into gradual changes and adaptive mechanisms that this pathogen undergoes from when it enters the host, we mimicked several in vivo situations representing interaction with epithelial and macrophage cells, as well as a condition of presence in blood. Then, we analyzed, in four pneumococcal strains, two major surface structures, the capsule and extracellular vesicles produced by the pneumococci, as well as surface proteins by proteomics, using the “shaving” approach, followed by LC-MS/MS. We found important differences in both surface ultrastructures and proteins among the culture conditions and strains used. Thus, this work provides insights into physiological adaptations of the pneumococcus when it interacts with the host, which may be useful for the design of strategies to combat infections caused by this pathogen.
Collapse
|
20
|
van Beek LF, Surmann K, van den Berg van Saparoea HB, Houben D, Jong WSP, Hentschker C, Ederveen THA, Mitsi E, Ferreira DM, van Opzeeland F, van der Gaast-de Jongh CE, Joosten I, Völker U, Schmidt F, Luirink J, Diavatopoulos DA, de Jonge MI. Exploring metal availability in the natural niche of Streptococcus pneumoniae to discover potential vaccine antigens. Virulence 2021; 11:1310-1328. [PMID: 33017224 PMCID: PMC7550026 DOI: 10.1080/21505594.2020.1825908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite for pneumococcal transmission and disease. Current vaccines protect only against disease and colonization caused by a limited number of serotypes, consequently allowing serotype replacement and transmission. Therefore, the development of a broadly protective vaccine against colonization, transmission and disease is desired but requires a better understanding of pneumococcal adaptation to its natural niche. Hence, we measured the levels of free and protein-bound transition metals in human nasal fluid, to determine the effect of metal concentrations on the growth and proteome of S. pneumoniae. Pneumococci cultured in medium containing metal levels comparable to nasal fluid showed a highly distinct proteomic profile compared to standard culture conditions, including the increased abundance of nine conserved, putative surface-exposed proteins. AliA, an oligopeptide binding protein, was identified as the strongest protective antigen, demonstrated by the significantly reduced bacterial load in a murine colonization and a lethal mouse pneumonia model, highlighting its potential as vaccine antigen.
Collapse
Affiliation(s)
- Lucille F van Beek
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany
| | | | | | | | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Elena Mitsi
- Liverpool School of Tropical medicine, Respiratory Infection Group , Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Daniela M Ferreira
- Liverpool School of Tropical medicine, Respiratory Infection Group , Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Fred van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Christa E van der Gaast-de Jongh
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Irma Joosten
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany.,Proteomics Core, Weill Cornell Medicine-Qatar , Doha, Qatar
| | - Joen Luirink
- Abera Bioscience AB , Solna, Sweden.,Department of Molecular Microbiology, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| |
Collapse
|
21
|
Barker KA, Etesami NS, Shenoy AT, Arafa EI, Lyon de Ana C, Smith NM, Martin IM, Goltry WN, Barron AM, Browning JL, Kathuria H, Belkina AC, Guillon A, Zhong X, Crossland NA, Jones MR, Quinton LJ, Mizgerd JP. Lung-resident memory B cells protect against bacterial pneumonia. J Clin Invest 2021; 131:e141810. [PMID: 34060477 DOI: 10.1172/jci141810] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts - as well as their functional significance - have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Ms Smith
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and
| | | | | | | | | | | | - Anna C Belkina
- Pulmonary Center.,Department of Pathology and Laboratory Medicine, and.,Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Antoine Guillon
- Pulmonary Center.,Centre Hospitalier Régional Universitaire de (CHRU) de Tours, Service de Médecine Intensive Réanimation, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, University of Tours, Tours, France
| | | | | | | | - Lee J Quinton
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Pathology and Laboratory Medicine, and
| | - Joseph P Mizgerd
- Pulmonary Center.,Department of Microbiology.,Department of Medicine.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Bedeley E, Gori A, Yeboah-Manu D, Diallo K. Control of Streptococcal Infections: Is a Common Vaccine Target Achievable Against Streptococcus agalactiae and Streptococcus pneumoniae. Front Microbiol 2021; 12:658824. [PMID: 33967998 PMCID: PMC8103614 DOI: 10.3389/fmicb.2021.658824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Both Streptococcus agalactiae [group B streptococcus (GBS)] and Streptococcus pneumoniae (pneumococcus) remain significant pathogens as they cause life threatening infections mostly in children and the elderly. The control of diseases caused by these pathogens is dependent on antibiotics use and appropriate vaccination. The introduction of the pneumococcal conjugate vaccines (PCVs) against some serotypes has led to reduction in pneumococcal infections, however, the subsequent serotype switching, and replacement has been a serious challenge. On the other hand, no vaccine is yet licensed for use in the control of GBS diseases. In this review, we provide an overview of the history and global disease burden, disease pathophysiology and management, vaccines update, and the biology of both pathogens. Furthermore, we address recent findings regarding structural similarities that could be explored for vaccine targets across both mucosal pathogens. Finally, we conclude by proposing future genomic sequence comparison using the wealth of available sequences from both species and the possibility of identifying more related structural components that could be exploited for pan-pathogen vaccine development.
Collapse
Affiliation(s)
- Edmund Bedeley
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kanny Diallo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Centre Suisse de Recherche Scientifique de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| |
Collapse
|
23
|
Martín-Galiano AJ, Escolano-Martínez MS, Corsini B, de la Campa AG, Yuste J. Immunization with SP_1992 (DiiA) Protein of Streptococcus pneumoniae Reduces Nasopharyngeal Colonization and Protects against Invasive Disease in Mice. Vaccines (Basel) 2021; 9:vaccines9030187. [PMID: 33668195 PMCID: PMC7995960 DOI: 10.3390/vaccines9030187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge-based vaccinology can reveal uncharacterized antigen candidates for a new generation of protein-based anti-pneumococcal vaccines. DiiA, encoded by the sp_1992 locus, is a surface protein containing either one or two repeats of a 37mer N-terminal motif that exhibits low interstrain variability. DiiA belongs to the core proteome, contains several conserved B-cell epitopes, and is associated with colonization and pathogenesis. Immunization with DiiA protein via the intraperitoneal route induced a strong IgG response, including different IgG subtypes. Vaccination with DiiA increased bacterial clearance and induced protection against sepsis, conferring 70% increased survival at 48 h post-infection when compared to the adjuvant control. The immunogenic response and survival rates in mice immunized with a truncated DiiA version lacking 119 N-terminal residues were remarkably lower, confirming the relevance of the repeat zone in the immunoprotection by DiiA. Intranasal immunization of mice with the entire recombinant protein elicited mucosal IgG and IgA responses that reduced bacterial colonization of the nasopharynx, confirming that this protein might be a vaccine candidate for reducing the carrier rate. DiiA constitutes an example of how functionally unannotated proteins may still represent promising candidates that can be used in prophylactic strategies against the pneumococcal carrier state and invasive disease.
Collapse
Affiliation(s)
- Antonio J. Martín-Galiano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| | - María S. Escolano-Martínez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Bruno Corsini
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Adela G. de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Presidencia Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| |
Collapse
|
24
|
Vaccination with LytA, LytC, or Pce of Streptococcus pneumoniae Protects against Sepsis by Inducing IgGs That Activate the Complement System. Vaccines (Basel) 2021; 9:vaccines9020186. [PMID: 33672306 PMCID: PMC7926378 DOI: 10.3390/vaccines9020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of non-vaccine serotypes of Streptococcus pneumoniae after the use of vaccines based in capsular polysaccharides demonstrates the need of a broader protection vaccine based in protein antigens and widely conserved. In this study, we characterized three important virulence factors of S. pneumoniae namely LytA, LytC, and Pce as vaccine candidates. These proteins are choline-binding proteins that belong to the cell wall hydrolases’ family. Immunization of mice with LytA, LytC, or Pce induced high titers of immunoglobulins G (IgGs) of different subclasses, with IgG1, IgG2a, and IgG2b as the predominant immunoglobulins raised. These antibodies activated the classical pathway of the complement system by increasing the recognition of C1q on the surface of pneumococcal strains of different serotypes. Consequently, the key complement component C3 recognized more efficiently these strains in the presence of specific antibodies elicited by these proteins, activating, therefore, the phagocytosis. Finally, a mouse sepsis model of infection was established, confirming that vaccination with these proteins controlled bacterial replication in the bloodstream, increasing the survival rate. Overall, these results demonstrate that LytA, LytC, and Pce can be protein antigens to be contained in a future universal vaccine against S. pneumoniae.
Collapse
|
25
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
26
|
Jamalkandi SA, Kouhsar M, Salimian J, Ahmadi A. The identification of co-expressed gene modules in Streptococcus pneumonia from colonization to infection to predict novel potential virulence genes. BMC Microbiol 2020; 20:376. [PMID: 33334315 PMCID: PMC7745498 DOI: 10.1186/s12866-020-02059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/02/2020] [Indexed: 11/14/2022] Open
Abstract
Background Streptococcus pneumonia (pneumococcus) is a human bacterial pathogen causing a range of mild to severe infections. The complicated transcriptome patterns of pneumococci during the colonization to infection process in the human body are usually determined by measuring the expression of essential virulence genes and the comparison of pathogenic with non-pathogenic bacteria through microarray analyses. As systems biology studies have demonstrated, critical co-expressing modules and genes may serve as key players in biological processes. Generally, Sample Progression Discovery (SPD) is a computational approach traditionally used to decipher biological progression trends and their corresponding gene modules (clusters) in different clinical samples underlying a microarray dataset. The present study aimed to investigate the bacterial gene expression pattern from colonization to severe infection periods (specimens isolated from the nasopharynx, lung, blood, and brain) to find new genes/gene modules associated with the infection progression. This strategy may lead to finding novel gene candidates for vaccines or drug design. Results The results included essential genes whose expression patterns varied in different bacterial conditions and have not been investigated in similar studies. Conclusions In conclusion, the SPD algorithm, along with differentially expressed genes detection, can offer new ways of discovering new therapeutic or vaccine targeted gene products. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02059-0.
Collapse
Affiliation(s)
- Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Kouhsar
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Pneumonia in endangered aquatic mammals and the need for developing low-coverage vaccination for their management and conservation. Anim Health Res Rev 2020; 21:122-130. [PMID: 33292914 DOI: 10.1017/s1466252320000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anthropogenic activities can lead to several devastating effects on the environment. The pollutants, which include the discharge of effluents, runoffs in the form of different lethal and sub-lethal concentrations of pesticides, heavy metals, and other contaminants, can harm exposed fauna and flora. The aquatic environment is the ultimate destination for many pollutants which negatively affect aquatic biodiversity and even can cause a species to become extinct. A pollutant can directly affect the behavior of an animal, disrupt cellular systems, and impair the immune system. This harm can be reduced and even mitigated by adopting proper approaches for the conservation of the target biota. Among aquatic organisms, cetaceans, such as the Yangtze finless porpoise, Irrawaddy dolphin, Ganges River dolphin, Amazon River dolphin, and Indus River dolphin, are at a higher risk of extinction because of lack of knowledge and research, and thus insufficient information with respect to their conservation status, management, and policies. Pneumonia is one of the leading causes of mass mortalities of cetaceans. This article reviews the limited research reported on stress and pneumonia induced by pollution, stress-induced pneumonia and immunosuppression, pneumonia-caused mass mortalities of aquatic mammals, and vaccination in wildlife with a specific focus on aquatic mammals, the role of genomics in vaccine development and vaccination, and the major challenges in vaccine development for biodiversity conservation.
Collapse
|
28
|
Iovino F, Nannapaneni P, Henriques-Normark B, Normark S. The impact of the ancillary pilus-1 protein RrgA of Streptococcus pneumoniae on colonization and disease. Mol Microbiol 2020; 113:650-658. [PMID: 32185835 DOI: 10.1111/mmi.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae, the pneumococcus, is an important commensal resident of the human nasopharynx. Carriage is usually asymptomatic, however, S. pneumoniae can become invasive and spread from the upper respiratory tract to the lungs causing pneumonia, and to other organs to cause severe diseases such as bacteremia and meningitis. Several pneumococcal proteins important for its disease-causing capability have been described and many are expressed on the bacterial surface. The surface located pneumococcal type-1 pilus has been associated with virulence and the inflammatory response, and it is present in 20%-30% of clinical isolates. Its tip protein RrgA has been shown to be a major adhesin to human cells and to promote invasion through the blood-brain barrier. In this review we discuss recent findings of the impact of RrgA on bacterial colonization of the upper respiratory tract and on pneumococcal virulence, and use epidemiological data and genome-mining to suggest trade-off mechanisms potentially explaining the rather low prevalence of pilus-1 expressing pneumococci in humans.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
29
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
30
|
Structural Characterization of the Essential Cell Division Protein FtsE and Its Interaction with FtsX in Streptococcus pneumoniae. mBio 2020; 11:mBio.01488-20. [PMID: 32873757 PMCID: PMC7468199 DOI: 10.1128/mbio.01488-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial cell division is a central process that requires exquisite orchestration of both the cell wall biosynthetic and lytic machineries. The essential membrane complex FtsEX, widely conserved across bacteria, plays a central role by recruiting proteins to the divisome apparatus and by regulating periplasmic muralytic activity from the cytosol. FtsEX is a member of the type VII family of the ABC-superfamily, but instead of being a transporter, it couples the ATP hydrolysis catalyzed by FtsE to mechanically transduce a conformational signal that provokes the activation of peptidoglycan (PG) hydrolases. So far, no structural information is available for FtsE. Here, we provide the structural characterization of FtsE, confirming its ATPase nature and revealing regions with high structural plasticity which are key for FtsE binding to FtsX. The complementary binding region in FtsX has also been identified and validated in vivo. Our results provide evidence on how the difference between the ATP/ADP-bound states in FtsE would dramatically alter the interaction of FtsEX with the PG hydrolase PcsB in pneumococcal division. FtsEX is a membrane complex widely conserved across diverse bacterial genera and involved in critical processes such as recruitment of division proteins and in spatial and temporal regulation of muralytic activity during cell division or sporulation. FtsEX is a member of the ABC transporter superfamily. The component FtsX is an integral membrane protein, whereas FtsE is an ATPase and is required for the transmission of a conformational signal from the cytosol through the membrane to regulate the activity of cell wall hydrolases in the periplasm. Both proteins are essential in the major human respiratory pathogenic bacterium Streptococcus pneumoniae, and FtsX interacts with the modular peptidoglycan hydrolase PcsB at the septum. Here, we report high-resolution structures of pneumococcal FtsE bound to different nucleotides. Structural analysis revealed that FtsE contains all the conserved structural motifs associated with ATPase activity and afforded interpretation of the in vivo dimeric arrangement in both the ADP and ATP states. Interestingly, three specific FtsE regions with high structural plasticity were identified that shape the cavity in which the cytosolic region of FtsX would be inserted. The residues corresponding to the FtsX coupling helix, responsible for contacting FtsE, were identified and validated by in vivo mutagenesis studies showing that this interaction is essential for cell growth and proper morphology.
Collapse
|
31
|
Another Breaker of the Wall: the Biological Function of the Usp45 Protein of Lactococcus lactis. Appl Environ Microbiol 2020; 86:AEM.00903-20. [PMID: 32532874 DOI: 10.1128/aem.00903-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is a Gram-positive bacterium that is widely used as a cell factory for the expression of heterologous proteins that are relevant in the pharmaceutical and nutraceutical fields. The signal peptide of the major secreted protein of L. lactis, Usp45, has been employed extensively in engineering strategies to secrete proteins of interest. However, the biological function of Usp45 has remained obscure despite more than 25 years of research. Studies on Usp45 homologs in other Gram-positive bacteria suggest that Usp45 may play a role in cell wall turnover processes. Here, we show the effect of inactivation and overexpression of the usp45 gene on L. lactis growth, phenotype, and cell division. Our results are in agreement with those obtained in streptococci and demonstrate that the L. lactis Usp45 protein is essential for proper cell division. We also show that the usp45 promoter is highly activated by galactose. Overall, our results indicate that Usp45 mediates cell separation, probably by acting as a peptidoglycan hydrolase.IMPORTANCE The cell wall, composed mainly of peptidoglycan, is key to maintaining the cell shape and protecting the cell from bursting. Peptidoglycan degradation by peptidoglycan hydrolysis and autolysins occurs during growth and cell division. Since peptidoglycan hydrolases are important for virulence, envelope integrity, and regulation of cell division, it is valuable to investigate their function and regulation. Notably, PcsB-like proteins such as Usp45 have been proposed as new targets for antimicrobial drugs and could also be target for the development of food-grade suicide systems. In addition, although various other expression and secretion systems have been developed for use in Lactococcus lactis, the most-used signal peptide for protein secretion in this bacterium is that of the Usp45 protein. Thus, elucidating the biological function of Usp45 and determining the factors affecting its expression would contribute to optimize several applications.
Collapse
|
32
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
33
|
Malekan M, Siadat SD, Aghasadeghi M, Shahrokhi N, Afrough P, Behrouzi A, Ahmadi K, Mousavi SF. Evaluation of protective immunity responses against pneumococcal PhtD and its C-terminal in combination with outer-membrane vesicles as adjuvants. J Med Microbiol 2020; 69:465-477. [DOI: 10.1099/jmm.0.001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction.
Streptococcus pneumoniae
is a significant bacterial pathogen in humans. Currently, there are two types of pneumococcal vaccines, but there are concerns regarding their application.
Aim. Since many pneumococcal proteins are serotype-independent, polyhistidine triad protein D (PhtD) has been selected as a vaccine candidate.
Methodology. We prepared recombinant PhtD and its C-terminal fragment (PhtD-C) using alum and outer-membrane vesicles (OMVs) as adjuvants. The combinations were injected intraperitoneally into mice, and then total immunoglobulin G (IgG) and specific IgG, IgG1 and IgG2a were measured. A serum bactericidal assay and opsonophagocytosis were also performed as complementary tests. Meningococcal OMVs were used as an adjuvant.
Results. The levels of specific IgG and IgG1 against combinations of PhtD and its C-terminal with OMVs and alum as adjuvants increased at the time of the third mouse immunization on day 35. Forty per cent and 60% of
S. pneumoniae
ATCC 6303 (serotype 3) as a virulent pneumococcal strain, respectively, were killed in the opsonophagocytosis test and these results could also be observed in the serum bactericidal assay. Mice mmunized iwith PhtD and its C-terminal with OMVs and alum as adjuvants survived after 10 days of pneumococcal challenge.
Conclusion. The combination of PhtD and PhtD-C with alum produced optimal results, but the combination of PhtD and PhtD-C with OMVs produced minimal results by comparison. The survival rates were also measured, and these corresponded with the results of the immunological assessments. Our findings showed that mice receiving PhtD and PhtD-C plus OMV and alum had higher survival rates than the mice in the other groups.
Collapse
Affiliation(s)
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nader Shahrokhi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Afrough
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Ahmadi
- Department of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
34
|
Bettencourt P. Current Challenges in the Identification of Pre-Erythrocytic Malaria Vaccine Candidate Antigens. Front Immunol 2020; 11:190. [PMID: 32153565 PMCID: PMC7046804 DOI: 10.3389/fimmu.2020.00190] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Plasmodium spp.-infected mosquitos inject sporozoites into the skin of a mammalian host during a blood meal. These enter the host's circulatory system and establish an infection in the liver. After a silent metamorphosis, merozoites invade the blood leading to the symptomatic and transmissible stages of malaria. The silent pre-erythrocytic malaria stage represents a bottleneck in the disease which is ideal to block progression to clinical malaria, through chemotherapeutic and immunoprophylactic interventions. RTS,S/AS01, the only malaria vaccine close to licensure, although with poor efficacy, blocks the sporozoite invasion mainly through the action of antibodies against the CSP protein, a major component of the pellicle of the sporozoite. Strikingly, sterile protection against malaria can be obtained through immunization with radiation-attenuated sporozoites, genetically attenuated sporozoites or through chemoprophylaxis with infectious sporozoites in animals and humans, but the deployability of sporozoite-based live vaccines pose tremendous challenges. The protection induced by sporozoites occurs in the pre-erythrocytic stages and is mediated mainly by antibodies against the sporozoite and CD8+ T cells against peptides presented by MHC class I molecules in infected hepatocytes. Thus, the identification of malaria antigens expressed in the sporozoite and liver-stage may provide new vaccine candidates to be included, alone or in combination, as recombinant protein-based, virus-like particles or sub-unit virally-vectored vaccines. Here I review the efforts being made to identify Plasmodium falciparum antigens expressed during liver-stage with focus on the development of parasite, hepatocyte, mouse models, and resulting rate of infection in order to identify new vaccine candidates and to improve the efficacy of the current vaccines. Finally, I propose new approaches for the identification of liver-stage antigens based on immunopeptidomics.
Collapse
|
35
|
Converso TR, Assoni L, André GO, Darrieux M, Leite LCC. The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccines 2020; 19:57-70. [PMID: 31903805 DOI: 10.1080/14760584.2020.1711055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Serotype replacement - a consequence of polysaccharide vaccine use - will continue to drive the inclusion of new serotypes on conjugate vaccines, increasing production complexity and costs, and making an already expensive vaccine less accessible to developing countries, where prevalence is higher and resources available for health systems, scarcer. Serotype-independent formulations are a promising option, but so far they have not been successful in reducing colonization/transmission.Areas covered: Protein-based and whole-cell vaccine candidates studied in the past 30 years. Challenges for serotype-independent vaccine development and alternative approaches.Expert opinion: Clinical trials performed so far demonstrated the importance to establish more reliable animal models and better correlates of protection. Defining appropriate endpoints for clinical trials of serotype-independent vaccine candidates has been a challenge. Inhibition of colonization has been evaluated, but concern on the extent of bacterial elimination is still a matter of debate. Challenges on establishing representative sites for clinical trials, sample sizes and appropriate age groups are discussed. On a whole, although many challenges will have to be overcome, establishing protein-based antigens as serotype-independent vaccines is still the best alternative against the huge burden of pneumococcal diseases in the world.
Collapse
Affiliation(s)
- T R Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - G O André
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - M Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
36
|
The Modified Surface Killing Assay Distinguishes between Protective and Nonprotective Antibodies to PspA. mSphere 2019; 4:4/6/e00589-19. [PMID: 31826968 PMCID: PMC6908419 DOI: 10.1128/msphere.00589-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The most important finding of this study is that the MSKA can be used as an in vitro functional assay. Such an assay will be critical for the development of PspA-containing vaccines. The other important findings relate to the locations and nature of the protection-eliciting epitopes of PspA. There are limited prior data on the locations of protection-eliciting PspA epitopes, but those data along with the data presented here make it clear that there is not a single epitope or domain of PspA that can elicit protective antibody and there exists at least one region of the αHD which seldom elicits protective antibody. Moreover, these data, in concert with prior data, strongly make the case that protective epitopes in the αHD are highly conformational (≥100-amino-acid fragments of the αHD are required), whereas at least some protection-eliciting epitopes in the proline-rich domain are encoded by ≤15-amino-acid sequences. Pneumococcal surface protein A (PspA) elicits antibody protective against lethal challenge by Streptococcus pneumoniae and is a candidate noncapsular antigen for inclusion in vaccines. Evaluation of immunity to PspA in human trials would be greatly facilitated by an in vitro functional assay able to distinguish protective from nonprotective antibodies to PspA. Mouse monoclonal antibodies (MAbs) to PspA can mediate killing by human granulocytes in the modified surface killing assay (MSKA). To determine if the MSKA can distinguish between protective and nonprotective MAbs, we examined seven MAbs to PspA. All bound recombinant PspA, as detected by enzyme-linked immunosorbent assay and Western blotting; four gave strong passive protection against fatal challenge, two were nonprotective, and the seventh one only delayed death. The four that were able to provide strong passive protection were also most able to enhance killing in the MSKA, the two that were not protective in mice were not effective in the MSKA, and the MAb that was only weakly protective in mice was weakly effective in the MSKA (P < 0.001). One of the four most protective MAbs tested reacted to the proline-rich domain of PspA. Two of the other most protective MAbs and the weakly protective MAb reacted with a fragment from PspA’s α-helical domain (αHD), containing amino acids (aa) 148 to 247 from the N terminus of PspA. The fourth highly protective MAb recognized none of the overlapping 81- or 100-aa fragments of PspA. The two nonprotective MAbs recognized a more N-terminal αHD fragment (aa 48 to 147). IMPORTANCE The most important finding of this study is that the MSKA can be used as an in vitro functional assay. Such an assay will be critical for the development of PspA-containing vaccines. The other important findings relate to the locations and nature of the protection-eliciting epitopes of PspA. There are limited prior data on the locations of protection-eliciting PspA epitopes, but those data along with the data presented here make it clear that there is not a single epitope or domain of PspA that can elicit protective antibody and there exists at least one region of the αHD which seldom elicits protective antibody. Moreover, these data, in concert with prior data, strongly make the case that protective epitopes in the αHD are highly conformational (≥100-amino-acid fragments of the αHD are required), whereas at least some protection-eliciting epitopes in the proline-rich domain are encoded by ≤15-amino-acid sequences.
Collapse
|
37
|
Harth-Chu EN, Alves LA, Theobaldo JD, Salomão MF, Höfling JF, King WF, Smith DJ, Mattos-Graner RO. PcsB Expression Diversity Influences on Streptococcus mitis Phenotypes Associated With Host Persistence and Virulence. Front Microbiol 2019; 10:2567. [PMID: 31798545 PMCID: PMC6861525 DOI: 10.3389/fmicb.2019.02567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
S. mitis is an abundant member of the commensal microbiota of the oral cavity and pharynx, which has the potential to promote systemic infections. By analyzing a collection of S. mitis strains isolated from the oral cavity at commensal states or from systemic infections (blood strains), we established that S. mitis ubiquitously express the surface immunodominant protein, PcsB (also called GbpB), required for binding to sucrose-derived exopolysaccharides (EPS). Immuno dot blot assays with anti-PcsB antibodies and RT-qPCR transcription analyses revealed strain-specific profiles of PcsB production associated with diversity in pcsB transcriptional activities. Additionally, blood strains showed significantly higher levels of PcsB expression compared to commensal isolates. Because Streptococcus mutans co-colonizes S. mitis dental biofilms, and secretes glucosyltransferases (GtfB/C/D) for the synthesis of highly insoluble EPS from sucrose, profiles of S. mitis binding to EPS, biofilm formation and evasion of the complement system were assessed in sucrose-containing BHI medium supplemented or not with filter-sterilized S. mutans culture supernatants. These analyses showed significant S. mitis binding to EPS and biofilm formation in the presence of S. mutans supernatants supplemented with sucrose, compared to BHI or BHI-sucrose medium. In addition, these phenotypes were abolished if strains were grown in culture supernatants of a gtfBCD-defective S. mutans mutant. Importantly, GtfB/C/D-associated phenotypes were enhanced in high PcsB-expressing strains, compared to low PcsB producers. Increased PcsB expression was further correlated with increased resistance to deposition of C3b/iC3b of the complement system after exposure to human serum, when strains were previously grown in the presence of S. mutans supernatants. Finally, analyses of PcsB polymorphisms and bioinformatic prediction of epitopes with significant binding to MHC class II alleles revealed that blood isolates harbor PcsB polymorphisms in its functionally conserved CHAP-domain, suggesting antigenic variation. These findings reveal important roles of PcsB in S. mitis-host interactions under commensal and pathogenic states, highlighting the need for studies to elucidate mechanisms regulating PcsB expression in this species.
Collapse
Affiliation(s)
- Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Jéssica D Theobaldo
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Mariana F Salomão
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - William F King
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Daniel J Smith
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
38
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
39
|
Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4 + T Cells. Infect Immun 2019; 87:IAI.00098-19. [PMID: 30910792 PMCID: PMC6529658 DOI: 10.1128/iai.00098-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
CD4+ T-cell mechanisms are implied in protection against pneumococcal colonization; however, their target antigens and function are not well defined. In contrast to high-throughput protein arrays for serology, basic antigen tools for CD4+ T-cell studies are lacking. CD4+ T-cell mechanisms are implied in protection against pneumococcal colonization; however, their target antigens and function are not well defined. In contrast to high-throughput protein arrays for serology, basic antigen tools for CD4+ T-cell studies are lacking. Here, we evaluate the potential of a bioinformatics tool for in silico prediction of immunogenicity as a method to reveal domains of pneumococcal proteins targeted by human CD4+ T cells. For 100 pneumococcal proteins, CD4+ T-cell immunogenicity was predicted based on HLA-DRB1 binding motifs. For 20 potentially CD4+ T-cell immunogenic proteins, epitope regions were verified by testing synthetic peptides in T-cell assays using peripheral blood mononuclear cells from healthy adults. Peptide pools of 19 out of 20 proteins evoked T-cell responses. The most frequent responses (detectable in ≥20% of donors tested) were found to SP_0117 (PspA), SP_0468 (putative sortase), SP_0546 (BlpZ), SP_1650 (PsaA), SP_1923 (Ply), SP_2048 (conserved hypothetical protein), SP_2216 (PscB), and SPR_0907 (PhtD). Responding donors had diverging recognition patterns and profiles of signature cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-13 [IL-13], and/or IL-17A) against single-epitope regions. Natural HLA-DR-restricted presentation and recognition of a predicted SP_1923-derived epitope were validated through the isolation of a CD4+ T-cell clone producing IFN-γ, TNF-α, and IL-17A in response to the synthetic peptide, whole protein, and heat-inactivated pneumococcus. This proof of principle for a bioinformatics tool to identify pneumococcal protein epitopes targeted by human CD4+ T cells provides a peptide-based strategy to study cell-mediated immune mechanisms for the pneumococcal proteome, advancing the development of immunomonitoring assays and targeted vaccine approaches.
Collapse
|
40
|
Cohen A, Troib S, Dotan S, Najmuldeen H, Yesilkaya H, Kushnir T, Shagan M, Portnoi M, Nachmani H, Benisty R, Tal M, Ellis R, Chalifa-Caspi V, Dagan R, Nebenzahl YM. Streptococcus pneumoniae Cell Wall-Localized Trigger Factor Elicits a Protective Immune Response and Contributes to Bacterial Adhesion to the Host. Sci Rep 2019; 9:4295. [PMID: 30862841 PMCID: PMC6414539 DOI: 10.1038/s41598-019-40779-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Trigger factor (TF) has a known cytoplasmic function as a chaperone. In a previous study we showed that pneumococcal TF is also cell-wall localized and this finding combined with the immunogenic characteristic of TF, has led us to determine the vaccine potential of TF and decipher its involvement in pneumococcal pathogenesis. Bioinformatic analysis revealed that TF is conserved among pneumococci and has no human homologue. Immunization of mice with recombinant (r)TF elicited a protective immune response against a pneumococcal challenge, suggesting that TF contributes to pneumococcal pathogenesis. Indeed, rTF and an anti-rTF antiserum inhibited bacterial adhesion to human lung derived epithelial cells, indicating that TF contributes to the bacterial adhesion to the host. Moreover, bacteria lacking TF demonstrated reduced adhesion, in vitro, to lung-derived epithelial cells, neural cells and glial cells. The reduced adhesion could be restored by chromosomal complementation. Furthermore, bacteria lacking TF demonstrated significantly reduced virulence in a mouse model. Taken together, the ability of rTF to elicit a protective immune response, involvement of TF in bacterial adhesion, conservation of the protein among pneumococcal strains and the lack of human homologue, all suggest that rTF can be considered as a future candidate vaccine with a much broader coverage as compared to the currently available pneumococcal vaccines.
Collapse
Affiliation(s)
- Aviad Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shani Troib
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Hastyar Najmuldeen
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maxim Portnoi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hannie Nachmani
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Benisty
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
41
|
Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Sci Rep 2019; 9:4049. [PMID: 30858412 PMCID: PMC6411942 DOI: 10.1038/s41598-019-40346-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae, a normal commensal of the upper respiratory tract, is a major public health concern, responsible for substantial global morbidity and mortality due to pneumonia, meningitis and sepsis. Why some pneumococci invade the bloodstream or CSF (so-called invasive pneumococcal disease; IPD) is uncertain. In this study we identify genes associated with IPD. We transform whole genome sequence (WGS) data into a sequence typing scheme, while avoiding the caveat of using an arbitrary genome as a reference by substituting it with a constructed pangenome. We then employ a random forest machine-learning algorithm on the transformed data, and find 43 genes consistently associated with IPD across three geographically distinct WGS data sets of pneumococcal carriage isolates. Of the genes we identified as associated with IPD, we find 23 genes previously shown to be directly relevant to IPD, as well as 18 uncharacterized genes. We suggest that these uncharacterized genes identified by us are also likely to be relevant for IPD.
Collapse
|
42
|
Ramos-Sevillano E, Ercoli G, Brown JS. Mechanisms of Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2019; 10:358. [PMID: 30881363 PMCID: PMC6405633 DOI: 10.3389/fimmu.2019.00358] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
In this review we give an update on the mechanisms of naturally acquired immunity against Streptococcus pneumoniae, one of the major human bacterial pathogens that is a common cause of pneumonia, septicaemia, and meningitis. A clear understanding of the natural mechanisms of immunity to S. pneumoniae is necessary to help define why the very young and elderly are at high risk of disease, and for devising new prevention strategies. Recent data has shown that nasopharynx colonization by S. pneumoniae induces antibody responses to protein and capsular antigens in both mice and humans, and also induces Th17 CD4+ cellular immune responses in mice and increases pre-existing responses in humans. These responses are protective, demonstrating that colonization is an immunizing event. We discuss the data from animal models and humans on the relative importance of naturally acquired antibody and Th17 cells on immunity to S. pneumoniae at three different anatomical sites of infection, the nasopharynx (the site of natural asymptomatic carriage), the lung (site of pneumonia), and the blood (site of sepsis). Mouse data suggest that CD4+ Th17 cells prevent both primary and secondary nasopharyngeal carriage with no role for antibody induced by previous colonization. In contrast, antibody is necessary for prevention of sepsis but CD4+ cellular responses are not. Protection against pneumonia requires a combination of both antibody and Th17 cells, in both cases targeting protein rather than capsular antigen. Proof of which immune component prevents human infection is less easily available, but two recent papers demonstrate that human IgG targeting S. pneumoniae protein antigens is highly protective against septicaemia. The role of CD4+ responses to prior nasopharyngeal colonization for protective immunity in humans is unclear. The evidence that there is significant naturally-acquired immunity to S. pneumoniae independent of anti-capsular polysaccharide has clinical implications for the detection of subjects at risk of S. pneumoniae infections, and the data showing the importance of protein antigens as targets for antibody and Th17 mediated immunity should aid the development of new vaccine strategies.
Collapse
Affiliation(s)
| | | | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, United Kingdom
| |
Collapse
|
43
|
Lagousi T, Basdeki P, Routsias J, Spoulou V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines (Basel) 2019; 7:vaccines7010009. [PMID: 30669439 PMCID: PMC6466302 DOI: 10.3390/vaccines7010009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Non-serotype-specific protein-based pneumococcal vaccines have received extensive research focus due to the limitations of polysaccharide-based vaccines. Pneumococcal proteins (PnPs), universally expressed among serotypes, may induce broader immune responses, stimulating humoral and cellular immunity, while being easier to manufacture and less expensive. Such an approach has raised issues mainly associated with sequence/level of expression variability, chemical instability, as well as possible undesirable reactogenicity and autoimmune properties. A step forward employs the identification of highly-conserved antigenic regions within PnPs with the potential to retain the benefits of protein antigens. Besides, their low-cost and stable construction facilitates the combination of several antigenic regions or peptides that may impair different stages of pneumococcal disease offering even wider serotype coverage and more efficient protection. This review discusses the up-to-date progress on PnPs that are currently under clinical evaluation and the challenges for their licensure. Focus is given on the progress on the identification of antigenic regions/peptides within PnPs and their evaluation as vaccine candidates, accessing their potential to overcome the issues associated with full-length protein antigens. Particular mention is given of the use of newer delivery system technologies including conjugation to Toll-like receptors (TLRs) and reformulation into nanoparticles to enhance the poor immunogenicity of such antigens.
Collapse
Affiliation(s)
- Theano Lagousi
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| | - Paraskevi Basdeki
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| | - John Routsias
- Department of Microbiology, Athens Medical School, 11527 Athens, Greece.
| | - Vana Spoulou
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
44
|
Williams KL. The Biologics Revolution and Endotoxin Test Concerns. ENDOTOXIN DETECTION AND CONTROL IN PHARMA, LIMULUS, AND MAMMALIAN SYSTEMS 2019. [PMCID: PMC7123716 DOI: 10.1007/978-3-030-17148-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The advent of “at will” production of biologics in lieu of harvesting animal proteins (i.e. insulin) or human cadaver proteins (i.e. growth hormone) has revolutionized the treatment of disease. While the fruits of the biotechnology revolution are widely acknowledged, the realization of the differences in the means of production and changes in the manner of control of potential impurities and contaminants in regard to the new versus the old are less widely appreciated. This chapter is an overview of the biologics revolution in terms of the rigors of manufacturing required to produce them, their mechanism of action, and caveats of endotoxin control. It is a continulation of the previous chapter that established a basic background knowledge of adaptive immune principles necessary to understand the mode of action of both disease causation and biologics therapeutic treatment via immune modulation.
Collapse
|
45
|
Li W, Li Y, Hu YZ, Mo XB, Xu GH, Xie LW, Li AX. GroEL, a novel vaccine candidate of piscine Streptococcus agalactiae identified by immunoproteome. FISH & SHELLFISH IMMUNOLOGY 2019; 84:377-383. [PMID: 30308296 DOI: 10.1016/j.fsi.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Streptococcus agalactiae is the major etiological agent of streptococcosis, which is responsible for huge economic losses in fishery, particularly in tilapia (Oreochromis niloticus) aquaculture. A research priority to control streptococcosis is to develop vaccines, so we sought to figure out the immunogenic proteins of S. agalactiae and screen the vaccine candidates for streptococcosis in the present study. Immunoproteomics, a technique involving two-dimensional gel electrophoresis (2-DE) followed by immunoblotting and mass spectrometry (MS), was employed to investigate the immunogenic proteins of S. agalactiae THN0901. Whole-cell soluble proteins were separated using 2-DE, and the immunogenic proteins were detected by western blotting using rabbit anti-S. agalactiae sera. A total of 17 immunoreactive spots on the soluble protein profile, corresponding to 15 different proteins, were identified by MALDI-TOF/TOF MS. Among the immunogenic proteins, GroEL attracted our attention as it was demonstrated to be immunogenic and protective against other streptococci. Nevertheless, to date, there have been no published reports on the immunogenicity and protective efficacy of GroEL against piscine S. agalactiae. Therefore, recombinant GroEL (rGroEL) was expressed in Escherichia coli BL21 (DE3) and purified by affinity chromatography. Immunization of tilapia with rGroEL resulted in an increase in antibody titers and conferred protection against S. agalactiae, with the relative percentage survival of 68.61 ± 7.39%. The immunoproteome in the present study narrows the scope of vaccine candidates, and the evaluation of GroEL immunogenicity and protective efficacy shows that GroEL forms an ideal candidate molecule in subunit vaccine against S. agalactiae.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, Guangdong Province, PR China
| | - Yun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Ya-Zhou Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Xu-Bing Mo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Guo-Huan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, Guangdong Province, PR China
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China.
| |
Collapse
|
46
|
Modular core-shell polymeric nanoparticles mimicking viral structures for vaccination. J Control Release 2019; 293:48-62. [DOI: 10.1016/j.jconrel.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
|
47
|
Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Tettelin H, Tate A, Hanage WP, Alderson MR, Liang X, Malley R, Lipsitch M, Croucher NJ. Panproteome-wide analysis of antibody responses to whole cell pneumococcal vaccination. eLife 2018; 7:e37015. [PMID: 30592459 PMCID: PMC6344088 DOI: 10.7554/elife.37015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/25/2018] [Indexed: 11/13/2022] Open
Abstract
Pneumococcal whole cell vaccines (WCVs) could cost-effectively protect against a greater strain diversity than current capsule-based vaccines. Immunoglobulin G (IgG) responses to a WCV were characterised by applying longitudinally-sampled sera, available from 35 adult placebo-controlled phase I trial participants, to a panproteome microarray. Despite individuals maintaining distinctive antibody 'fingerprints', responses were consistent across vaccinated cohorts. Seventy-two functionally distinct proteins were associated with WCV-induced increases in IgG binding. These shared characteristics with naturally immunogenic proteins, being enriched for transporters and cell wall metabolism enzymes, likely unusually exposed on the unencapsulated WCV's surface. Vaccine-induced responses were specific to variants of the diverse PclA, PspC and ZmpB proteins, whereas PspA- and ZmpA-induced antibodies recognised a broader set of alleles. Temporal variation in IgG levels suggested a mixture of anamnestic and novel responses. These reproducible increases in IgG binding to a limited, but functionally diverse, set of conserved proteins indicate WCV could provide species-wide immunity. Clinical trial registration: The trial was registered with ClinicalTrials.gov with Identifier NCT01537185; the results are available from https://clinicaltrials.gov/ct2/show/results/NCT01537185.
Collapse
Affiliation(s)
| | | | | | | | - Andy A Teng
- Antigen Discovery IncCaliforniaUnited States
| | - Hervé Tettelin
- Institute for Genome Sciences, School of MedicineUniversity of MarylandBaltimoreUnited States
| | | | - William P Hanage
- Center for Communicable Disease Dynamics, Department of EpidemiologyHarvard TH Chan School of Public HealthBostonUnited States
| | | | | | - Richard Malley
- Division of Infectious Diseases, Department of MedicineBoston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of EpidemiologyHarvard TH Chan School of Public HealthBostonUnited States
- Department of Immunology and Infectious DiseasesHarvard TH Chan School of Public HealthBostonUnited States
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease EpidemiologyImperial College LondonLondonUnited Kingdom
| |
Collapse
|
48
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
49
|
Lu YJ, Oliver E, Zhang F, Pope C, Finn A, Malley R. Screening for Th17-Dependent Pneumococcal Vaccine Antigens: Comparison of Murine and Human Cellular Immune Responses. Infect Immun 2018; 86:e00490-18. [PMID: 30150255 PMCID: PMC6204694 DOI: 10.1128/iai.00490-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Conjugate vaccines against Streptococcus pneumoniae have significantly reduced the incidence of diseases caused by the serotypes included in those vaccines; however, there is still a need for vaccines that confer serotype-independent protection. In the current study, we have constructed a library of conserved surface proteins from S. pneumoniae and have screened for IL-17A and IL-22 production in human immune cells obtained from adenoidal/tonsillar tissues of children and IL-17A production in splenocytes from mice that had been immunized with a killed whole-cell vaccine or previously exposed to pneumococcus. A positive correlation was found between the rankings of proteins from human IL-17A and IL-22 screens, but not between those from human and mouse screens. All proteins were tested for protection against colonization, and we identified protective antigens that are IL-17A dependent. We found that the likelihood of finding a protective antigen is significantly higher for groups of proteins ranked in the top 50% of all three screens than for groups of proteins ranked in the bottom 50% of all three. The results thus confirmed the value of such screens for identifying Th17 antigens. Further, these experiments have evaluated and compared the breadth of human and mouse Th17 responses to pneumococcal colonization and have enabled the identification of potential vaccine candidates based on immunological responses in mouse and human cells.
Collapse
Affiliation(s)
- Ying-Jie Lu
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Pope
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Hsu CF, Hsiao CH, Tseng SF, Chen JR, Liao YJ, Chen SJ, Lin CS, Sytwu HK, Chuang YP. PrtA immunization fails to protect against pulmonary and invasive infection by Streptococcus pneumoniae. Respir Res 2018; 19:187. [PMID: 30253765 PMCID: PMC6157060 DOI: 10.1186/s12931-018-0895-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Streptococcus pneumoniae is a respiratory pathogen causing severe lung infection that may lead to complications such as bacteremia. Current polysaccharide vaccines have limited serotype coverage and therefore cannot provide maximal and long-term protection. Global efforts are being made to develop a conserved protein vaccine candidate. PrtA, a pneumococcal surface protein, was identified by screening a pneumococcal genomic expression library using convalescent patient serum. The prtA gene is prevalent and conserved among S. pneumoniae strains. Its protective efficacy, however, has not been described. Mucosal immunization could sensitize both local and systemic immunity, which would be an ideal scenario for preventing S. pneumoniae infection. Methods We immunized BALB/c mice intranasally with a combination of a PrtA fragment (amino acids 144–1041) and Th17 potentiated adjuvant, curdlan. We then measured the T-cell and antibody responses. The protective efficacy conferred to the immunized mice was further evaluated using a murine model of acute pneumococcal pneumonia and pneumococcal bacteremia. Results There was a profound antigen-specific IL-17A and IFN-γ response in PrtA-immunized mice compared with that of adjuvant control group. Even though PrtA-specific IgG and IgA titer in sera was elevated in immunized mice, only a moderate IgA response was observed in the bronchoalveolar lavage fluid. The PrtA-immunized antisera facilitated the activated murine macrophage, RAW264.7, to opsonophagocytose S. pneumoniae D39 strain; however, PrtA-specific immunoglobulins bound to pneumococcal surfaces with a limited potency. Finally, PrtA-induced immune reactions failed to protect mice against S. pneumoniae-induced acute pneumonia and bacterial propagation through the blood. Conclusions Immunization with recombinant PrtA combined with curdlan produced antigen-specific antibodies and elicited IL-17A response. However, it failed to protect the mice against S. pneumoniae-induced infection. Electronic supplementary material The online version of this article (10.1186/s12931-018-0895-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen-Fang Hsu
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan.,Taipei Medical University, Taipei, Taiwan.,Kaohsiung Medical University, Kaohsiung, Taiwan.,Chung Shan Medical University, Taichung, Taiwan
| | - Chen-Hao Hsiao
- Cheng Hsin General Hospital, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Jian-Ru Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Jou Liao
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Injury Prevention and Control, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ping Chuang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|