1
|
Qin M, Li X, Gong X, Hu Y, Tang M. Integrative bioinformatics and machine learning identify key crosstalk genes and immune interactions in head and neck cancer and Hodgkin lymphoma. Sci Rep 2025; 15:15745. [PMID: 40328901 PMCID: PMC12056187 DOI: 10.1038/s41598-025-99017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy with complex molecular underpinnings. Hodgkin lymphoma (HL), another distinct cancer type, shares several biological characteristics with HNSCC, particularly regarding immune system involvement. However, the molecular crosstalk between HNSCC and HL remains largely unexplored. This study aims to elucidate shared molecular mechanisms, identify potential diagnostic biomarkers, and uncover therapeutic targets through an integrative approach combining bioinformatics and machine learning techniques. Publicly available RNA sequencing datasets were utilized to identify differentially expressed genes (DEGs) in HNSCC, while weighted gene co-expression network analysis (WGCNA) was applied to uncover HL-associated gene modules. The intersection of HNSCC DEGs and HL-related modules was evaluated using protein-protein interaction (PPI) network analysis. Candidate hub genes were selected via machine learning algorithms, including LASSO regression, random forest, and support vector machine-recursive feature elimination (SVM-RFE). Prognostic and diagnostic values were assessed using survival analysis and ROC curves. Furthermore, scRNA-seq data were analyzed to assess gene expression in the tumor microenvironment, and drug sensitivity was evaluated to identify potential therapeutic agents. A total of 150 shared genes were identified at the intersection of HNSCC DEGs and HL-associated gene modules. PPI network analysis highlighted 16 candidate hub genes, among which IL6, CXCL13, and PLAU were prioritized through machine learning methods. Survival analysis revealed that high expression of CXCL13 and PLAU, and low expression of IL6, were significantly associated with poor prognosis in HNSCC patients. ROC curve analysis validated their diagnostic performance. Single-cell RNA-seq data confirmed the expression of these biomarkers in macrophages, epithelial cells, and fibroblasts within the tumor microenvironment. Drug sensitivity analysis identified Andrographolide, Rituximab, and Amiloride as potential therapeutic agents. This study identified IL6, CXCL13, and PLAU as critical biomarkers involved in immune regulation and tumor progression in both HNSCC and HL. These findings provide valuable insights into the shared molecular mechanisms and suggest novel therapeutic strategies for patients affected by these diseases.
Collapse
Affiliation(s)
- Meiling Qin
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xinxin Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuan Hu
- Department of Otolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
2
|
He T, Geng J, Hou C, Li H, Zhang H, Zhao P, He P, Lu X. Predictive biomarkers and molecular subtypes in DLBCL: insights from PCD gene expression and machine learning. Discov Oncol 2025; 16:542. [PMID: 40240734 PMCID: PMC12003219 DOI: 10.1007/s12672-025-02349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, characterized by significant clinical and molecular heterogeneity, which leads to considerable variability in patient prognosis. Programmed cell death (PCD) plays a critical role in the development and progression of various cancers. A comprehensive analysis of PCD-related gene expression in DLBCL could enhance risk stratification and inform personalized treatment strategies. METHODS This study integrated five DLBCL datasets with 18 PCD-related gene expression profiles to identify differentially expressed genes (DEGs) associated with PCD. Patients were stratified into two subgroups (C1 and C2) using consensus clustering analysis. We further performed immune infiltration analysis, GSVA enrichment analysis, and WGCNA to uncover significant differences in the immune microenvironment and signaling pathways between the subgroups. Additionally, 12 machine learning algorithms were employed to construct predictive models for DLBCL, with performance evaluated using AUC and F-score metrics. Finally, transcriptome sequencing of the DLBCL cell line VAL and the normal human B lymphocyte cell line IM-9 was conducted to validate potential biomarkers. RESULTS A total of 1074 PCD-related DEGs were identified. Unsupervised clustering revealed two distinct molecular subtypes of DLBCL. The C2 subgroup exhibited upregulation of pathways involved in DNA repair, cell cycle, and energy metabolism, alongside significant downregulation of immune evasion-related pathways, indicating its classification as a high-risk group. Machine learning algorithms and transcriptome sequencing validation identified five potential biomarkers for DLBCL, including CTSB, DPYD, SCARB2, STOM, and GBP1. CONCLUSIONS This study identifies two distinct DLBCL subtypes based on PCD-related gene expression, with the C2 subtype characterized as high-risk due to enhanced DNA repair and cell cycle pathways. Five key biomarkers (CTSB, DPYD, SCARB2, STOM, GBP1) may improve risk stratification and understanding of DLBCL heterogeneity. These findings lay the groundwork for further exploration of DLBCL progression and potential prognostic improvements.
Collapse
Affiliation(s)
- Tiantian He
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jie Geng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Chuandong Hou
- PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Hongyi Li
- PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Hong Zhang
- Department of Respiratory and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Peng Zhao
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China.
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China.
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
3
|
Gottschlich A, Grünmeier R, Hoffmann GV, Nandi S, Kavaka V, Müller PJ, Jobst J, Oner A, Kaiser R, Gärtig J, Piseddu I, Frenz-Wiessner S, Fairley SD, Schulz H, Igl V, Janert TA, Di Fina L, Mulkers M, Thomas M, Briukhovetska D, Simnica D, Carlini E, Tsiverioti CA, Trefny MP, Lorenzini T, Märkl F, Mesquita P, Brabenec R, Strzalkowski T, Stock S, Michaelides S, Hellmuth J, Thelen M, Reinke S, Klapper W, Gelebart PF, Nicolai L, Marr C, Beltrán E, Megens RTA, Klein C, Baran-Marszak F, Rosenwald A, von Bergwelt-Baildon M, Bröckelmann PJ, Endres S, Kobold S. Dissection of single-cell landscapes for the development of chimeric antigen receptor T cells in Hodgkin lymphoma. Blood 2025; 145:1536-1552. [PMID: 40178843 PMCID: PMC12002222 DOI: 10.1182/blood.2023022197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/11/2024] [Indexed: 04/05/2025] Open
Abstract
ABSTRACT The success of targeted therapies for hematological malignancies has heralded their potential as both salvage treatment and early treatment lines, reducing the need for high-dose, intensive, and often toxic chemotherapeutic regimens. For young patients with classic Hodgkin lymphoma (cHL), immunotherapies provide the possibility to lessen long-term, treatment-related toxicities. However, suitable therapeutic targets are lacking. By integrating single-cell dissection of the tumor landscape and an in-depth, single-cell-based off-tumor antigen prediction, we identify CD86 as a promising therapeutic target in cHL. CD86 is highly expressed on Hodgkin and Reed-Sternberg cancer cells and cHL-specific tumor-associated macrophages. We reveal CD86-CTLA-4 as a key suppressive pathway in cHL, driving T-cell exhaustion. Cellular therapies targeting CD86 had extraordinary efficacy in vitro and in vivo and were safe in immunocompetent mouse models without compromising bacterial host defense in sepsis models. Our results prove the potential value of anti-CD86 immunotherapies for treating cHL.
Collapse
Affiliation(s)
- Adrian Gottschlich
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
| | - Ruth Grünmeier
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Gordon Victor Hoffmann
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Sayantan Nandi
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Vladyslav Kavaka
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Philipp Jie Müller
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Jakob Jobst
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Arman Oner
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Rainer Kaiser
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Jan Gärtig
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Ignazio Piseddu
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Frenz-Wiessner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Child and Adolescent Health, Partner Site Munich, Munich, Germany
| | - Savannah D. Fairley
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Institute of Cardiovascular Prevention, LMU Munich, Munich, Germany
| | - Heiko Schulz
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Veronika Igl
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Thomas Alexander Janert
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Lea Di Fina
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maité Mulkers
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Thomas
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Donjetë Simnica
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Christina Angeliki Tsiverioti
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Marcel P. Trefny
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Theo Lorenzini
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Florian Märkl
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Pedro Mesquita
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Ruben Brabenec
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| | - Thaddäus Strzalkowski
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Sophia Stock
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
| | - Stefanos Michaelides
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Johannes Hellmuth
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Thelen
- Department of General, Visceral, Thoracic, and Transplantation Surgery
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sarah Reinke
- Hematopathology Section, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfram Klapper
- Hematopathology Section, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Pascal Francois Gelebart
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Hematology, Haukeland University Hospital, Bergen, Norway
| | - Leo Nicolai
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Remco T. A. Megens
- Institute of Cardiovascular Prevention, LMU Munich, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Child and Adolescent Health, Partner Site Munich, Munich, Germany
- Gene Center, Ludwig Maximilian University Munich, Munich, Germany
| | - Fanny Baran-Marszak
- INSERM U978, University of Paris 13, Bobigny, France
- Service d’Hématologie Biologique, Hôpitaux Universitaire Paris Seine Saint Denis, Hôpital Avicenne, Université Sorbonne Paris Nord Bobigny, Paris, France
| | - Andreas Rosenwald
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
| | - Paul J. Bröckelmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf and German Hodgkin Study Group, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
- Einheit für Klinische Pharmakologie, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
- Einheit für Klinische Pharmakologie, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| |
Collapse
|
4
|
Küppers R. Advances in Hodgkin lymphoma research. Trends Mol Med 2025; 31:326-343. [PMID: 39443214 DOI: 10.1016/j.molmed.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Hodgkin lymphoma (HL) has been and still is the most enigmatic lymphoid malignancy in humans. Since the first molecular analysis of isolated Hodgkin and Reed-Sternberg (HRS) tumor cells of classic HL 30 years ago, substantial advances in our understanding of HL have been made. This review describes the cellular origin of HL, summarizes the current knowledge about the genetic lesions in HRS cells, and highlights the role of Epstein-Barr virus (EBV) in HL pathogenesis. Moreover, the pathobiological roles of altered gene expression and deregulated signaling pathways are discussed and key aspects of the HL microenvironment are presented.
Collapse
Affiliation(s)
- Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
5
|
Nagel S, Meyer C. Aberrant Expression and Oncogenic Activity of SPP1 in Hodgkin Lymphoma. Biomedicines 2025; 13:735. [PMID: 40149711 PMCID: PMC11940585 DOI: 10.3390/biomedicines13030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Hodgkin lymphoma (HL) is a B-cell-derived malignancy and one of the most frequent types of lymphoma. The tumour cells typically exhibit multiple genomic alterations together with aberrantly activated signalling pathways, driven by paracrine and/or autocrine modes. SPP1 (alias osteopontin) is a cytokine acting as a signalling activator and has been connected with relapse in HL patients. To understand its pathogenic role, here, we investigated the mechanisms and function of deregulated SPP1 in HL. Methods: We screened public patient datasets and cell lines for aberrant SPP1 expression. HL cell lines were stimulated with SPP1 and subjected to siRNA-mediated knockdown. Gene and protein activities were analyzed by RQ-PCR, ELISA, Western blot, and immuno-cytology. Results: SPP1 expression was detected in 8.3% of classic HL patients and in HL cell line SUP-HD1, chosen to serve as an experimental model. The gene encoding SPP1 is located at chromosomal position 4q22 and is genomically amplified in SUP-HD1. Transcription factor binding site analysis revealed TALE and HOX factors as potential regulators. Consistent with this finding, we showed that aberrantly expressed PBX1 and HOXB9 mediate the transcriptional activation of SPP1. RNA-seq data and knockdown experiments indicated that SPP1 signals via integrin ITGB1 in SUP-HD1. Accordingly, SPP1 activated NFkB in addition to MAPK/ERK which in turn mediated the nuclear import of ETS2, activating oncogenic JUNB expression. Conclusions: SPP1 is aberrantly activated in HL cell line SUP-HD1 via genomic copy number gain and by homeodomain transcription factors PBX1 and HOXB9. SPP1-activated NFkB and MAPK merit further investigation as potential therapeutic targets in affected HL patients.
Collapse
Affiliation(s)
- Stefan Nagel
- Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | |
Collapse
|
6
|
Salvaris RT, Allanson BM, Collins G, Cheah C. Nodular lymphocyte-predominant Hodgkin lymphoma: advances in disease biology, risk stratification, and treatment. Haematologica 2024; 109:3476-3487. [PMID: 39234861 PMCID: PMC11532684 DOI: 10.3324/haematol.2024.285903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Recent updates have detailed how patients with nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) may be better risk stratified using prognostic scoring systems. Most patients with NLPHL present with early-stage disease and have an indolent disease course. To reflect these differences from classic Hodgkin lymphoma, nomenclature has been updated to recognize nodular lymphocyte-predominant B-cell lymphoma as an alternative to NLPHL. The Global NLPHL One Working Group have published their pivotal dataset in 2024 which challenges the prognostic significance of variant immunoarchitectural (IAP) patterns and proposes a new prognostic scoring system. Key identified prognostic factors include age >45 years, stage III-IV disease, hemoglobin <10.5 g/dL and splenic involvement. After multivariate analysis, variant IAP was not shown to be associated with inferior outcome. As most patients with NLPHL have excellent long-term survival, identifying patients where treatment de-escalation is appropriate will help to minimize toxicity. De-escalation strategies include observation after fully resected stage I disease, active surveillance, anti-CD20 antibody monotherapy, radiotherapy in early-stage disease, and avoiding anthracycline- or bleomycin-containing chemotherapy regimens. Evidence supporting the use of novel therapies remains limited with disappointing results from a recently published study of ibrutinib in patients with relapsed NLPHL. Hopefully, future trials will investigate novel agents such as checkpoint inhibitors, T-cell engaging antibodies and chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Ross T Salvaris
- Department of Haematology, Monash Health, Clayton, Victoria, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria
| | | | - Graham Collins
- Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, United Kingdom; Barts and The London School of Medicine and Dentistry, London
| | - Chan Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Crawley, Western Australia.
| |
Collapse
|
7
|
Zhou F, Chen L, Liu Z, Cao Y, Deng C, Liu G, Liu C. Unveiling CKS2: A Key Player in Aggressive B-Cell Lymphoma Progression and a Target for Synergistic Therapy. Cancer Med 2024; 13:e70435. [PMID: 39560180 PMCID: PMC11574738 DOI: 10.1002/cam4.70435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The objective of this study was to investigate the expression levels and biological significance of CKS2 in Burkitt cell lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). Additionally, the potential synergistic anti-tumor effects of CKS2 knockdown in combination with etoposide in BL and DLBCL were explored for the first time. METHODS Bioinformatics analysis was utilized to explore the transcriptional levels, prognostic value, and gene function enrichment of CKS2 in BL and DLBCL. Specific shRNA sequences were designed to target CKS2 for the purpose of constructing a lentiviral expression vector, and therapeutic effects were assessed through analyses of cell proliferation, cell cycle distribution, and cell apoptosis. RESULTS First, the study examined the increased transcriptional and protein levels of CKS2 in BL and DLBCL through analysis of various databases and immunohistochemistry tests. Elevated CKS2 expression was found to be correlated with a worse prognosis in BL and DLBCL patients, as evidenced by data from the TCGA and GEO databases. Enrichment analysis indicated that CKS2 functions were primarily linked to protein kinase regulatory activity, G1/S phase transition of the cell cycle, and the p53 signaling pathway, among others. Second, stable suppression of CKS2 gene expression in Raji and SUDHL6 cells using shRNA resulted in a significant inhibition of cell proliferation. Moreover, CKS2-shRNA induced G0/G1 cell cycle arrest and apoptosis by activating the p53 signaling pathway in Raji and SUDHL6 cells. Third, the combined treatment of CKS2-shRNA and etoposide exhibited a synergistic effect on the proliferation and apoptosis of Raji and SUDHL6 cells. CONCLUSIONS Our findings suggest that CKS2 may play a critical role in the progression of BL and DLBCL and provide evidence for the potential therapeutic application of combining CKS2-shRNA and etoposide agents in the treatment of BL and DLBCL.
Collapse
MESH Headings
- Humans
- CDC2-CDC28 Kinases/metabolism
- CDC2-CDC28 Kinases/genetics
- Cell Proliferation
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Etoposide/pharmacology
- Etoposide/therapeutic use
- Cell Line, Tumor
- Apoptosis
- Gene Expression Regulation, Neoplastic
- Prognosis
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/metabolism
- Disease Progression
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle
- Computational Biology/methods
Collapse
Affiliation(s)
- Fenling Zhou
- Department of Hematology, Sun Yat-Sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Lu Chen
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Zhen Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Yuli Cao
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Cuilan Deng
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Gexiu Liu
- Institute of Hematology, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Chengcheng Liu
- Department of Hematology, Sun Yat-Sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Nie J, Wang C, Zheng L, Liu Y, Wang C, Chang Y, Hu Y, Guo B, Pan Y, Yang Q, Hu X, Han W. Epigenetic agents plus anti-PD-1 reprogram the tumor microenvironment and restore antitumor efficacy in Hodgkin lymphoma. Blood 2024; 144:1936-1950. [PMID: 39093981 DOI: 10.1182/blood.2024024487] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT DNA methyltransferase inhibitor decitabine plus anti-programmed cell death 1 (DP) therapy was effective in relapsed/refractory classic Hodgkin lymphoma (cHL). However, a subset of patients experienced primary resistance or relapse/progression after DP therapy. In this study, we evaluated the efficacy and safety of a triplet regimen consisting of the histone deacetylase inhibitor chidamide, decitabine, and anti-PD-1 camrelizumab (CDP) in 52 patients who previously received DP therapy. CDP treatment was well tolerated and resulted in an objective response rate of 94% (95% confidence interval [CI], 84-99), with 50% (95% CI, 36-64) of patients achieving complete response (CR). Notably, all patients who were recalcitrant to previous DP treatment exhibited therapeutic responses after CDP therapy, although their CR rate was lower than patients responsive to prior DP. Overall, the median progression-free survival was 29.4 months. Through single-cell RNA sequencing of pretreatment and on-treatment cHL tumor biopsy samples, we observed the heterogeneity of rare malignant Hodgkin Reed/Sternberg (HRS)-like cells. The classical CD30+ HRS-like cells interacted with abundant immunosuppressive IL21+CD4+ T helper cells, forming a positive feedback loop that supported their survival. While the CD30- HRS-like cell population showed potential resistance to anti-PD-1 immunotherapy. CDP treatment promoted the activation of diverse tumor-reactive CD8+ T cells and suppressed the proliferation of IL21+CD4+ T cells by inhibiting STAT1/3 signaling, thereby alleviating their immunosuppressive effects. These findings provide insights into the cHL microenvironment that contributes to anti-PD-1 resistance and highlight the therapeutic effectiveness of dual epi-immunotherapy in overcoming immunotherapy resistance. This trial was registered at www.clinicaltrials.gov as #NCT04233294.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunmeng Wang
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | - Yang Liu
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | - Yixin Chang
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yudi Hu
- Analytical Biosciences Limited, Beijing, China
| | - Bing Guo
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuting Pan
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qingming Yang
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xueda Hu
- Analytical Biosciences Limited, Beijing, China
| | - Weidong Han
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
9
|
El Hussein S, Fang H, Jelloul FZ, Wang W, Loghavi S, Miranda RN, Friedberg JW, Burack WR, Evans AG, Xu J, Medeiros LJ. T-Cell-Rich Hodgkin Lymphoma With Features of Classic Hodgkin Lymphoma and Nodular Lymphocyte-Predominant Hodgkin Lymphoma: A Borderline Category With Overlapping Morphologic and Immunophenotypic Features. Arch Pathol Lab Med 2024; 148:914-920. [PMID: 38059511 DOI: 10.5858/arpa.2023-0133-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 12/08/2023]
Abstract
CONTEXT.— It is known that a subset of cases of classic Hodgkin lymphoma (CHL) with B-cell-rich nodules (lymphocyte-rich CHL) exhibits morphologic and immunophenotypic features that overlap with nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL), raising diagnostic difficulties that can be resolved in most cases by performing an adequate battery of immunohistochemical studies. OBJECTIVE.— To fully characterize cases of T-cell-rich Hodgkin lymphoma where a specific diagnosis of NLPHL (ie, pattern D) or CHL could not be made even after complete immunophenotypic investigation. DESIGN.— The clinical, immunomorphologic, and molecular (when applicable) presentation of 3 cases of T-cell-rich Hodgkin lymphoma was thoroughly investigated. RESULTS.— These 3 cases harbored lymphocyte-predominant-like and Hodgkin and Reed-Sternberg-like cells that partially expressed B-cell and CHL markers and were negative for Tiftein-Barr virus-encoded small RNA, in a T-cell-rich background with residual follicular dendritic cell meshworks; 1 case had frequent and the other 2 cases scant/absent eosinophils and plasma cells. Two patients with advanced-stage (III or IV) disease presented with axillary and supraclavicular lymphadenopathy, respectively, and without B symptoms. These patients underwent NLPHL-like therapeutic management with 6 cycles of R-CHOP (rituximab, cyclophosphamide, doxorubicin hydrochloride [hydroxydaunorubicin], vincristine sulfate [Oncovin], and prednisone) chemotherapy; both are in complete remission 7 years posttherapy. One patient presented with stage I disease involving an internal mammary lymph node without B-symptoms and was treated with surgical excision alone; this patient is also in complete remission 1 year later. CONCLUSIONS.— These cases illustrate overlapping features of T-cell-rich NLPHL and CHL with neoplastic cells expressing both B-cell program and CHL markers. This underrecognized overlap has not been fully illustrated in the literature, although it portrays a therapeutic challenge. These neoplasms may deserve in-depth investigation in the future that may bring up diagnostic or theragnostic implications.
Collapse
Affiliation(s)
- Siba El Hussein
- the Department of Pathology (El Hussein, Burack, Evans), and the Wilmot Cancer Institute (Friedberg), University of Rochester Medical Center, Rochester, New York
| | - Hong Fang
- the Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Fang, Jelloul, Wang, Loghavi, Miranda, Xu, Medeiros)
| | - Fatima Zahra Jelloul
- the Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Fang, Jelloul, Wang, Loghavi, Miranda, Xu, Medeiros)
| | - Wei Wang
- the Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Fang, Jelloul, Wang, Loghavi, Miranda, Xu, Medeiros)
| | - Sanam Loghavi
- the Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Fang, Jelloul, Wang, Loghavi, Miranda, Xu, Medeiros)
| | - Roberto N Miranda
- the Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Fang, Jelloul, Wang, Loghavi, Miranda, Xu, Medeiros)
| | - Jonathan W Friedberg
- the Department of Pathology (El Hussein, Burack, Evans), and the Wilmot Cancer Institute (Friedberg), University of Rochester Medical Center, Rochester, New York
| | - W Richard Burack
- the Department of Pathology (El Hussein, Burack, Evans), and the Wilmot Cancer Institute (Friedberg), University of Rochester Medical Center, Rochester, New York
| | - Andrew G Evans
- the Department of Pathology (El Hussein, Burack, Evans), and the Wilmot Cancer Institute (Friedberg), University of Rochester Medical Center, Rochester, New York
| | - Jie Xu
- the Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Fang, Jelloul, Wang, Loghavi, Miranda, Xu, Medeiros)
| | - L Jeffrey Medeiros
- the Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston (Fang, Jelloul, Wang, Loghavi, Miranda, Xu, Medeiros)
| |
Collapse
|
10
|
Aloliqi AA. Insights into the Gene Expression Profile of Classical Hodgkin Lymphoma: A Study towards Discovery of Novel Therapeutic Targets. Molecules 2024; 29:3476. [PMID: 39124881 PMCID: PMC11314437 DOI: 10.3390/molecules29153476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a common B-cell cancer and a significant health concern, especially in Western and Asian countries. Despite the effectiveness of chemotherapy, many relapse cases are being reported, highlighting the need for improved treatments. This study aimed to address this issue by discovering biomarkers through the analysis of gene expression data specific to cHL. Additionally, potential anticancer inhibitors were explored to target the discovered biomarkers. This study proceeded by retrieving microarray gene expression data from cHL patients, which was then analyzed to identify significant differentially expressed genes (DEGs). Functional and network annotation of the upregulated genes revealed the active involvement of matrix metallopeptidase 12 (MMP12) and C-C motif metallopeptidase ligand 22 (CCL22) genes in the progression of cHL. Additionally, the mentioned genes were found to be actively involved in cancer-related pathways, i.e., oxidative phosphorylation, complement pathway, myc_targets_v1 pathway, TNFA signaling via NFKB, etc., and showed strong associations with other genes known to promote cancer progression. MMP12, topping the list with a logFC value of +6.6378, was selected for inhibition using docking and simulation strategies. The known anticancer compounds were docked into the active site of the MMP12 molecular structure, revealing significant binding scores of -7.7 kcal/mol and -7.6 kcal/mol for BDC_24037121 and BDC_27854277, respectively. Simulation studies of the docked complexes further supported the effective binding of the ligands, yielding MMGBSA and MMPBSA scores of -78.08 kcal/mol and -82.05 kcal/mol for MMP12-BDC_24037121 and -48.79 kcal/mol and -49.67 kcal/mol for MMP12-BDC_27854277, respectively. Our findings highlight the active role of MMP12 in the progression of cHL, with known compounds effectively inhibiting its function and potentially halting the advancement of cHL. Further exploration of downregulated genes is warranted, as associated genes may play a role in cHL. Additionally, CCL22 should be considered for further investigation due to its significant role in the progression of cHL.
Collapse
Affiliation(s)
- Abdulaziz A Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
11
|
Wang Y, Tsukamoto Y, Hori M, Iha H. Disulfidptosis: A Novel Prognostic Criterion and Potential Treatment Strategy for Diffuse Large B-Cell Lymphoma (DLBCL). Int J Mol Sci 2024; 25:7156. [PMID: 39000261 PMCID: PMC11241771 DOI: 10.3390/ijms25137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Diffuse Large B-cell Lymphoma (DLBCL), with its intrinsic genetic and epigenetic heterogeneity, exhibits significantly variable clinical outcomes among patients treated with the current standard regimen. Disulfidptosis, a novel form of regulatory cell death triggered by disulfide stress, is characterized by the collapse of cytoskeleton proteins and F-actin due to intracellular accumulation of disulfides. We investigated the expression variations of disulfidptosis-related genes (DRGs) in DLBCL using two publicly available gene expression datasets. The initial analysis of DRGs in DLBCL (GSE12453) revealed differences in gene expression patterns between various normal B cells and DLBCL. Subsequent analysis (GSE31312) identified DRGs strongly associated with prognostic outcomes, revealing eight characteristic DRGs (CAPZB, DSTN, GYS1, IQGAP1, MYH9, NDUFA11, NDUFS1, OXSM). Based on these DRGs, DLBCL patients were stratified into three groups, indicating that (1) DRGs can predict prognosis, and (2) DRGs can help identify novel therapeutic candidates. This study underscores the significant role of DRGs in various biological processes within DLBCL. Assessing the risk scores of individual DRGs allows for more precise stratification of prognosis and treatment strategies for DLBCL patients, thereby enhancing the effectiveness of clinical practice.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Mitsuo Hori
- Department of Hematology, Ibaraki Prefectural Central Hospital, Kasama 309-1703, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5503, Japan
| |
Collapse
|
12
|
Yang X, Ji Y, Mei L, Jing W, Yang X, Liu Q. Potential role of the P2X7 receptor in the proliferation of human diffused large B-cell lymphoma. Purinergic Signal 2024; 20:273-284. [PMID: 37222921 PMCID: PMC11189370 DOI: 10.1007/s11302-023-09947-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of invasive non-Hodgkin lymphoma. 60-70% of patients are curable with current chemoimmunotherapy, whereas the rest are refractory or relapsed. Understanding of the interaction between DLBCL cells and tumor microenvironment raises the hope of improving overall survival of DLBCL patients. P2X7, a member of purinergic receptors P2X family, is activated by extracellular ATP and subsequently promotes the progression of various malignancies. However, its role in DLBCL has not been elucidated. In this study, the expression level of P2RX7 in DLBCL patients and cell lines was analyzed. MTS assay and EdU incorporation assay were carried out to study the effect of activated/inhibited P2X7 signaling on the proliferation of DLBCL cells. Bulk RNAseq was performed to explore potential mechanism. The results demonstrated high level expression of P2RX7 in DLBCL patients, typically in patients with relapse DLBCL. 2'(3')-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (Bz-ATP), an agonist of P2X7, significantly accelerated the proliferation of DLBCL cells, whereas delayed proliferation was detected when administrated with antagonist A740003. Furthermore, a urea cycle enzyme named CPS1 (carbamoyl phosphate synthase 1), which up-regulated in P2X7-activated DLBCL cells while down-regulated in P2X7-inhibited group, was demonstrated to involve in such process. Our study reveals the role of P2X7 in the proliferation of DLBCL cells and implies that P2X7 may serve as a potential molecular target for the treatment of DLBCL.
Collapse
Affiliation(s)
- Xiao Yang
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenwen Jing
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xin Yang
- Department of Rheumatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qianwei Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
13
|
Ding Y, Jaffe ES. Histopathologic Features and Differential Diagnosis in Challenging Cases of Nodular Lymphocyte Predominant B-cell Lymphoma/Nodular Lymphocyte Predominant Hodgkin Lymphoma. JOURNAL OF CLINICAL AND TRANSLATIONAL PATHOLOGY 2024; 4:61-69. [PMID: 39070246 PMCID: PMC11271245 DOI: 10.14218/jctp.2024.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nodular lymphocyte predominant Hodgkin lymphoma was termed "nodular lymphocyte predominant B-cell lymphoma" in the International Consensus Classification (ICC), to emphasize clinical and biological differences from classic Hodgkin lymphoma (CHL). The abbreviation "NLP" represents both terms in the ICC and World Health Organization classifications. Variations in the growth pattern, originally reported as Fan patterns A-F, are designated as either grade 1 or grade 2 in the ICC. NLP is uncommon, and in some cases an accurate diagnosis is challenging. The objectives of this article were to review the histopathologic features of NLP and the differential diagnosis from other key entities including de novo T-cell/histiocyte-rich large B-cell lymphoma (THRLBL) and lymphocyte-rich classic Hodgkin lymphoma (LRCHL). Histologically, NLP Fan pattern E (THRLBL-like) can be indistinguishable from de novo THRLBL. However, focal nodular areas, clustering of tumor cells, presence of few admixed small B-cells or FDC meshworks, and T-cell rosettes favor NLP Fan pattern E and argue against de novo THRLBL. NLP may also be confused with LRCHL. Patients with NLP are younger than those with LRCHL, and LRCHL may show mediastinal involvement. In LRCHL, the nodular pattern often contains eccentrically located small regressed germinal centers and intact small dense FDC meshworks, in contrast to the expanded, and fragmented FDC meshworks in NLP. Neoplastic cells that are positive for CD30 and CD15 but negative for CD20 and CD79a are characteristic of LRCHL. Additionally, Fascin and Gata3 are commonly positive in LRCHL but usually negative in NLP.
Collapse
Affiliation(s)
- Yanna Ding
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
14
|
Younes S, Subramanian A, Khan A, Zhao S, Binkley M, Natkunam Y. Spatial phenotyping of nodular lymphocyte predominant Hodgkin lymphoma and T-cell/histiocyte-rich large B-cell lymphoma. Blood Cancer J 2024; 14:92. [PMID: 38821935 PMCID: PMC11143196 DOI: 10.1038/s41408-024-01073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024] Open
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare lymphoma with sparse tumor B-cells and a favorable prognosis. Variant growth patterns of NLPHL, however, often show advanced stage, progression to T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) and a worse prognosis. We studied the tumor microenvironment (TME) of NLPHL and THRLBCL using highplex imaging and spatial profiling at the single cell level. Our findings show distinct differences in TME composition and spatial configuration that differ among typical and variant NLPHL and THRLBCL. Typical NLPHL show abundant helper T-cell subsets, while THRLBCL show abundant cytotoxic T-cells and macrophages. Tumor B-cell size and content is lowest in typical NLPHL, followed by variant NLPHL, and highest in THRLBCL, whereas an opposite trend characterized TME B-cells. CD4/CD8 double-positive T-cells are seen in all NLPHL but not in the majority of THRLBCL and are spatially distant from LP-cells and TFH-rosettes. The differences in macrophage/monocyte content in distinguishing NLPHL pattern E from THRLBCL is further corroborated in independent cohorts of cases. Our results validate the current approach to classification and in addition provide novel insights that could be leveraged to refine clinical management for patients with this spectrum of lymphomas.
Collapse
Affiliation(s)
- Sheren Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ajay Subramanian
- Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anum Khan
- Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Binkley
- Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Kosydar S, Ansell SM. The biology of classical Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00059-3. [PMID: 38824068 DOI: 10.1053/j.seminhematol.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Classical Hodgkin lymphoma (cHL) is distinguished by several important biological characteristics. The presence of Hodgkin Reed Sternberg (HRS) cells is a defining feature of this disease. The tumor microenvironment with relatively few HRS cells in an expansive infiltrate of immune cells is another key feature. Numerous cell-cell mediated interactions and a plethora of cytokines in the tumor microenvironment collectively work to promote HRS cell growth and survival. Aberrancy and constitutive activation of core signal transduction pathways are a hallmark trait of cHL. Genetic lesions contribute to these dysregulated pathways and evasion of the immune system through a variety of mechanisms is another notable feature of cHL. While substantial elucidation of the biology of cHL has enabled advancements in therapy, increased understanding in the future of additional mechanisms driving cHL may lead to new treatment opportunities.
Collapse
Affiliation(s)
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
16
|
Prinz LF, Riet T, Neureuther DF, Lennartz S, Chrobok D, Hübbe H, Uhl G, Riet N, Hofmann P, Hösel M, Simon AG, Tetenborg L, Segbers P, Shimono J, Gödel P, Balke-Want H, Flümann R, Knittel G, Reinhardt HC, Scheid C, Büttner R, Chapuy B, Ullrich RT, Hallek M, Chmielewski MM. An anti-CD19/CTLA-4 switch improves efficacy and selectivity of CAR T cells targeting CD80/86-upregulated DLBCL. Cell Rep Med 2024; 5:101421. [PMID: 38340727 PMCID: PMC10897622 DOI: 10.1016/j.xcrm.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/05/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Chimeric antigen receptor T cell (CAR T) therapy is a potent treatment for relapsed/refractory (r/r) B cell lymphomas but provides lasting remissions in only ∼40% of patients and is associated with serious adverse events. We identify an upregulation of CD80 and/or CD86 in tumor tissue of (r/r) diffuse large B cell lymphoma (DLBCL) patients treated with tisagenlecleucel. This finding leads to the development of the CAR/CCR (chimeric checkpoint receptor) design, which consists of a CD19-specific first-generation CAR co-expressed with a recombinant CTLA-4-linked receptor with a 4-1BB co-stimulatory domain. CAR/CCR T cells demonstrate superior efficacy in xenograft mouse models compared with CAR T cells, superior long-term activity, and superior selectivity in in vitro assays with non-malignant CD19+ cells. In addition, immunocompetent mice show an intact CD80-CD19+ B cell population after CAR/CCR T cell treatment. The results reveal the CAR/CCR design as a promising strategy for further translational study.
Collapse
Affiliation(s)
- Lars Fabian Prinz
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany.
| | - Tobias Riet
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Daniel Felix Neureuther
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Simon Lennartz
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Danuta Chrobok
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Hanna Hübbe
- Heidelberg University, 69117 Heidelberg, Germany
| | - Gregor Uhl
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Nicole Riet
- Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Petra Hofmann
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Marianna Hösel
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Adrian Georg Simon
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Luis Tetenborg
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Paul Segbers
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Joji Shimono
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medical Center Berlin, Benjamin Franklin Campus, 12203 Berlin, Germany
| | - Philipp Gödel
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Hyatt Balke-Want
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ruth Flümann
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; University Hospital Essen, Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, Hufelandstr. 55, 45147 Essen, Germany
| | - Gero Knittel
- University Hospital Essen, Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, Hufelandstr. 55, 45147 Essen, Germany
| | - Hans Christian Reinhardt
- University Hospital Essen, Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, Hufelandstr. 55, 45147 Essen, Germany
| | - Christoph Scheid
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Björn Chapuy
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medical Center Berlin, Benjamin Franklin Campus, 12203 Berlin, Germany
| | - Roland Tillmann Ullrich
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Markus Martin Chmielewski
- Department I of Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany.
| |
Collapse
|
17
|
Krug A, Tosolini M, Madji Hounoum B, Fournié JJ, Geiger R, Pecoraro M, Emond P, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. Inhibition of choline metabolism in an angioimmunoblastic T-cell lymphoma preclinical model reveals a new metabolic vulnerability as possible target for treatment. J Exp Clin Cancer Res 2024; 43:43. [PMID: 38321568 PMCID: PMC10845598 DOI: 10.1186/s13046-024-02952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Angioimmunoblastic T-cell lymphoma (AITL) is a malignancy with very poor survival outcome, in urgent need of more specific therapeutic strategies. The drivers of malignancy in this disease are CD4+ follicular helper T cells (Tfh). The metabolism of these malignant Tfh cells was not yet elucidated. Therefore, we decided to identify their metabolic requirements with the objective to propose a novel therapeutic option. METHODS To reveal the prominent metabolic pathways used by the AITL lymphoma cells, we relied on metabolomic and proteomic analysis of murine AITL (mAITL) T cells isolated from our established mAITL model. We confirmed these results using AITL patient and healthy T cell expression data. RESULTS Strikingly, the mAITL Tfh cells were highly dependent on the second branch of the Kennedy pathway, the choline lipid pathway, responsible for the production of the major membrane constituent phosphatidylcholine. Moreover, gene expression data from Tfh cells isolated from AITL patient tumors, confirmed the upregulation of the choline lipid pathway. Several enzymes involved in this pathway such as choline kinase, catalyzing the first step in the phosphatidylcholine pathway, are upregulated in multiple tumors other than AITL. Here we showed that treatment of our mAITL preclinical mouse model with a fatty acid oxydation inhibitor, significantly increased their survival and even reverted the exhausted CD8 T cells in the tumor into potent cytotoxic anti-tumor cells. Specific inhibition of Chokα confirmed the importance of the phosphatidylcholine production pathway in neoplastic CD4 + T cells, nearly eradicating mAITL Tfh cells from the tumors. Finally, the same inhibitor induced in human AITL lymphoma biopsies cell death of the majority of the hAITL PD-1high neoplastic cells. CONCLUSION Our results suggest that interfering with choline metabolism in AITL reveals a specific metabolic vulnerability and might represent a new therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
| | - Blandine Madji Hounoum
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
- Labex TOUCAN, Toulouse, France
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrick Emond
- UMR iBrain, Université de Tours, Inserm, Tours, France
| | - Philippe Gaulard
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Département de Pathologie, 94010, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, 94010, Créteil, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, University Lyon1, CNRS, UMR5308, Lyon, 69007, France.
| |
Collapse
|
18
|
Senchenko MA, Konovalov DM. [IgD expression in various immunoarchitectural patterns of nodular lymphocyte predominant Hodgkin lymphoma in children]. Arkh Patol 2024; 86:21-26. [PMID: 38319268 DOI: 10.17116/patol20248601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
BACKGROUND Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) consist of lymphocyte predominant cell or LP-cell. Despite their origin from active germinal centers, in some cases LP-cells express IgD, which is characteristic of naive B-lymphocytes of the mantle zone. Due to the rarity of NLPHL, assessing the frequency of IgD-positive cases is difficult. This marker can serve not only for differential diagnosis with other diseases, but also indicate the possible heterogeneity of NLPHL, which is currently represented by six immunoarchitectural patterns. OBJECTIVE To determine the frequency of IgD-positive cases of NLPHL in children with subsequent assessment of the association with types of immunoarchitectural patterns. MATERIAL AND METHODS The study included 52 cases of NLPHL, which were divided to typical and atypical patterns. Differences between two groups were compared using Fisher's exact tests. RESULTS IgD expression was found in LP-cells in 26 of 52 cases (50%) and was positively correlated with atypical types (typical - 5/23, 21.7% vs atypical - 21/29, 72.4%, p=0.0003), among which pattern C was most common. CONCLUSION Due to the high incidence of IgD-positive cases in NLPHL, this marker may be useful in differential diagnosis with histologic mimics. At the same time, positive IgD status was associated with atypical patterns, which may likely determine the different biology of neoplastic cells within the same form.
Collapse
Affiliation(s)
- M A Senchenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D M Konovalov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
19
|
Thurner L, Fadle N, Regitz E, Roth S, Cetin O, Kos IA, Hess SM, Bein J, Bohle RM, Vornanen M, Sundström C, De Leval L, Tiacci E, Borchmann P, Engert A, Poeschel V, Held G, Schwarz EC, Neumann F, Preuss KD, Hoth M, Küppers R, Lehman K, Hansmann ML, Becker SL, Bewarder M, Hartmann S. B-cell receptor reactivity against Rothia mucilaginosa in nodular lymphocyte-predominant Hodgkin lymphoma. Haematologica 2023; 108:3347-3358. [PMID: 37139600 PMCID: PMC10690923 DOI: 10.3324/haematol.2023.282698] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a Hodgkin lymphoma expressing functional B-cell receptors (BCR). Recently, we described a dual stimulation model of IgD+ lymphocyte-predominant cells by Moraxella catarrhalis antigen RpoC and its superantigen MID/hag, associated with extralong CDR3 and HLA-DRB1*04 or HLADRB1* 07 haplotype. The aim of the present study was to extend the antigen screening to further bacteria and viruses. The fragment antibody-binding (Fab) regions of seven new and 15 previously reported cases were analyzed. The reactivity of non-Moraxella spp.-reactive Fab regions against lysates of Rothia mucilaginosa was observed in 5/22 (22.7%) cases. Galactofuranosyl transferase (Gltf) and 2,3-butanediol dehydrogenase (Bdh) of R. mucilaginosa were identified by comparative silver- and immuno-staining in two-dimensional gels, with subsequent mass spectrometry and validation by western blots and enzyme-linked immunosorbent assay. Both R. mucilaginosa Gltf and Bdh induced BCR pathway activation and proliferation in vitro. Apoptosis was induced by recombinant Gltf/ETA'-immunotoxin conjugates in DEV cells expressing recombinant R. mucilaginosa-reactive BCR. Reactivity against M. catarrhalis RpoC was confirmed in 3/7 newly expressed BCR (total 10/22 reactive to Moraxella spp.), resulting in 15/22 (68.2%) cases with BCR reactivity against defined bacterial antigens. These findings strengthen the hypothesis of bacterial trigger contributing to subsets of NLPHL.
Collapse
Affiliation(s)
- Lorenz Thurner
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar.
| | - Natalie Fadle
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Evi Regitz
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Sophie Roth
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg
| | - Onur Cetin
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Igor Age Kos
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Simon Mauro Hess
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Julia Bein
- Dr. Senckenberg Institute of Pathology, Goethe University Hospital of Frankfurt am Main, Theodor-Stern-Kai
| | - Rainer Maria Bohle
- Saarland University Medical School, Institute of Pathology, Homburg/Saar
| | - Martine Vornanen
- Department of Pathology, Tampere University Hospital and University of Tampere, Tampere 33520, Finland.
| | - Christer Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden.
| | | | - Enrico Tiacci
- Institute of Hematology, Ospedale S. Maria della Misericordia, and the Department of Medicine, University of Perugia
| | - Peter Borchmann
- University of Cologne, First Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Cologne.
| | - Andreas Engert
- University of Cologne, First Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Cologne.
| | - Viola Poeschel
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Gerhard Held
- Department of Internal Medicine 1, Westpfalz-Klinikum, Kaiserslautern
| | - Eva C Schwarz
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg
| | - Frank Neumann
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Klaus-Dieter Preuss
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany; and Deutsches Konsortium für translationale Krebsforschung (DKTK)
| | | | - Martin-Leo Hansmann
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Institute of Pathology and Molecular Pathology, Helios University Hospital Wuppertal
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg
| | - Moritz Bewarder
- José Carreras Center for Immuno-and Gene Therapy and Internal Medicine I, Saarland University Medical School, Homburg/Saar
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Hospital of Frankfurt am Main, Theodor-Stern-Kai
| |
Collapse
|
20
|
Steidl C, Kridel R, Binkley M, Morton LM, Chadburn A. The pathobiology of select adolescent young adult lymphomas. EJHAEM 2023; 4:892-901. [PMID: 38024596 PMCID: PMC10660115 DOI: 10.1002/jha2.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 12/01/2023]
Abstract
Lymphoid cancers are among the most frequent cancers diagnosed in adolescents and young adults (AYA), ranging from approximately 30%-35% of cancer diagnoses in adolescent patients (age 10-19) to approximately 10% in patients aged 30-39 years. Moreover, the specific distribution of lymphoid cancer types varies by age with substantial shifts in the subtype distributions between pediatric, AYA, adult, and older adult patients. Currently, biology studies specific to AYA lymphomas are rare and therefore insight into age-related pathogenesis is incomplete. This review focuses on the paradigmatic epidemiology and pathogenesis of select lymphomas, occurring in the AYA patient population. With the example of posttransplant lymphoproliferative disorders, nodular lymphocyte-predominant Hodgkin lymphoma, follicular lymphoma (incl. pediatric-type follicular lymphoma), and mediastinal lymphomas (incl. classic Hodgkin lymphoma, primary mediastinal large B cell lymphoma and mediastinal gray zone lymphoma), we here illustrate the current state-of-the-art in lymphoma classification, recent molecular insights including genomics, and translational opportunities. To improve outcome and quality of life, international collaboration in consortia dedicated to AYA lymphoma is needed to overcome challenges related to siloed biospecimens and data collections as well as to develop studies designed specifically for this unique population.
Collapse
Affiliation(s)
- Christian Steidl
- Centre for Lymphoid CancerBC CancerVancouverBritish ColumbiaCanada
| | - Robert Kridel
- Princess Margaret Cancer Centre ‐ University Health NetworkTorontoOntarioCanada
| | - Michael Binkley
- Department of Radiation OncologyStanford UniversityStanfordCaliforniaUSA
| | - Lindsay M. Morton
- Radiation Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Amy Chadburn
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
21
|
Panayi C, Akarca AU, Ramsay AD, Shankar AG, Falini B, Piris MA, Linch D, Marafioti T. Microenvironmental immune cell alterations across the spectrum of nodular lymphocyte predominant Hodgkin lymphoma and T-cell/histiocyte-rich large B-cell lymphoma. Front Oncol 2023; 13:1267604. [PMID: 37854674 PMCID: PMC10579566 DOI: 10.3389/fonc.2023.1267604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Background The clinicopathological spectrum of nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), also known as nodular lymphocyte predominant B-cell lymphoma, partially overlaps with T-cell/histiocyte-rich large B-cell lymphoma (THRLCBL). NLPHL histology may vary in architecture and B-cell/T-cell composition of the tumour microenvironment. However, the immune cell phenotypes accompanying different histological patterns remain poorly characterised. Methods We applied a multiplexed immunofluorescence workflow to identify differential expansion/depletion of multiple microenvironmental immune cell phenotypes between cases of NLPHL showing different histological patterns (as described by Fan et al, 2003) and cases of THRLBCL. Results FOXP3-expressing T-regulatory cells were conspicuously depleted across all NLPHL cases. As histology progressed to variant Fan patterns C and E of NLPHL and to THRLBCL, there were progressive expansions of cytotoxic granzyme-B-expressing natural killer and CD8-positive T-cells, PD1-expressing CD8-positive T-cells, and CD163-positive macrophages including a PDL1-expressing subset. These occurred in parallel to depletion of NKG2A-expressing natural killer and CD8-positive T-cells. Discussion These findings provide new insights on the immunoregulatory mechanisms involved in NLPHL and THLRBCL pathogenesis, and are supportive of an increasingly proposed biological continuum between these two lymphomas. Additionally, the findings may help establish new biomarkers of high-risk disease, which could support a novel therapeutic program of immune checkpoint interruption targeting the PD1:PDL1 and/or NKG2A:HLA-E axes in the management of high-risk NLPHL and THRLBCL.
Collapse
Affiliation(s)
- Christos Panayi
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Ayse U. Akarca
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Alan D. Ramsay
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Ananth G. Shankar
- Children and Young People’s Cancer Services, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Brunangelo Falini
- Institute of Hematology and Center for Haemato-Oncological Research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Miguel A. Piris
- Pathology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - David Linch
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
22
|
Ally F, Gajzer D, Fromm JR. A Review of the Flow Cytometric Findings in Classic Hodgkin Lymphoma, Nodular Lymphocyte Predominant Hodgkin Lymphoma and T Cell/Histiocyte-Rich Large B Cell Lymphoma. Clin Lab Med 2023; 43:427-444. [PMID: 37481321 DOI: 10.1016/j.cll.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Classic Hodgkin lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, and T cell/histiocyte-rich large B cell lymphoma form a unique set of lymphomas with similar morphologic growth patterns (occasional neoplastic cells within a prominent cellular cell background) that are pathobiologically related. Distinguishing these entities has been historically difficult by flow cytometry; however, our laboratory has developed antibody-fluorochrome combinations capable of immunophenotyping these lymphomas. Additionally, characterization of the background reactive lymphocytes can aid in narrowing the differential diagnosis. This review summarizes the immunophenotypic features and insights of the neoplastic and reactive populations found in this unique group of lymphomas.
Collapse
Affiliation(s)
- Feras Ally
- Department of Laboratory Medicine and Pathology, University of Washington
| | - David Gajzer
- Department of Laboratory Medicine and Pathology, University of Washington
| | - Jonathan R Fromm
- Department of Laboratory Medicine and Pathology, University of Washington.
| |
Collapse
|
23
|
Han N, Yuan M, Yan L, Tang H. Emerging Insights into Liver X Receptor α in the Tumorigenesis and Therapeutics of Human Cancers. Biomolecules 2023; 13:1184. [PMID: 37627249 PMCID: PMC10452869 DOI: 10.3390/biom13081184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Liver X receptor α (LXRα), a member of the nuclear receptor superfamily, is identified as a protein activated by ligands that interacts with the promoters of specific genes. It regulates cholesterol, bile acid, and lipid metabolism in normal physiological processes, and it participates in the development of some related diseases. However, many studies have demonstrated that LXRα is also involved in regulating numerous human malignancies. Aberrant LXRα expression is emerging as a fundamental and pivotal factor in cancer cell proliferation, invasion, apoptosis, and metastasis. Herein, we outline the expression levels of LXRα between tumor tissues and normal tissues via the Oncomine and Tumor Immune Estimation Resource (TIMER) 2.0 databases; summarize emerging insights into the roles of LXRα in the development, progression, and treatment of different human cancers and their diversified mechanisms; and highlight that LXRα can be a biomarker and therapeutic target in diverse cancers.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Nagel S, Meyer C, Pommerenke C. Establishment of the lymphoid ETS-code reveals deregulated ETS genes in Hodgkin lymphoma. PLoS One 2023; 18:e0288031. [PMID: 37428779 DOI: 10.1371/journal.pone.0288031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
The human family of ETS transcription factors numbers 28 genes which control multiple aspects of development, notably the differentiation of blood and immune cells. Otherwise, aberrant expression of ETS genes is reportedly involved in forming leukemia and lymphoma. Here, we comprehensively mapped ETS gene activities in early hematopoiesis, lymphopoiesis and all mature types of lymphocytes using public datasets. We have termed the generated gene expression pattern lymphoid ETS-code. This code enabled identification of deregulated ETS genes in patients with lymphoid malignancies, revealing 12 aberrantly expressed members in Hodgkin lymphoma (HL). For one of these, ETS gene ETV3, expression in stem and progenitor cells in addition to that in developing and mature T-cells was mapped together with downregulation in B-cell differentiation. In contrast, subsets of HL patients aberrantly overexpressed ETV3, indicating oncogenic activity in this B-cell malignancy. Analysis of ETV3-overexpressing HL cell line SUP-HD1 demonstrated genomic duplication of the ETV3 locus at 1q23, GATA3 as mutual activator, and suppressed BMP-signalling as mutual downstream effect. Additional examination of the neighboring ETS genes ETS1 and FLI1 revealed physiological activities in B-cell development and aberrant downregulation in HL patient subsets. SUP-HD1 showed genomic loss on chromosome 11, del(11)(q22q25), targeting both ETS1 and FLI1, underlying their downregulation. Furthermore, in the same cell line we identified PBX1-mediated overexpression of RIOK2 which inhibited ETS1 and activated JAK2 expression. Collectively, we codified normal ETS gene activities in lymphopoiesis and identified oncogenic ETS members in HL.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
25
|
Zhou F, Chen L, Lu P, Cao Y, Deng C, Liu G. An integrative bioinformatics investigation and experimental validation of chromobox family in diffuse large B-cell lymphoma. BMC Cancer 2023; 23:641. [PMID: 37430195 DOI: 10.1186/s12885-023-11108-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is one of the most aggressive malignant tumors. Chromobox (CBX) family plays the role of oncogenes in various malignancies. METHODS The transcriptional and protein levels of CBX family were confirmed by GEPIA, Oncomine, CCLE, and HPA database. Screening of co-expressed genes and gene function enrichment analysis were performed by GeneMANIA and DAVID 6.8. The prognostic value, immune cell infiltration and drug sensitivity analysis of CBX family in DLBCL were performed by Genomicscape, TIMER2.0, and GSCALite database. Confirmatory Tests of CBX family protein expression in DLBCL were performed by immunohistochemistry. RESULTS The mRNA and protein expressions of CBX1/2/3/5/6 were higher in DLBCL tissues than control groups. Enrichment analysis showed that the functions of CBX family were mainly related to chromatin remodeling, methylation-dependent protein binding, and VEGF signaling pathway. The high mRNA expressions of CBX2/3/5/6 were identified to be associated with short overall survival (OS) in DLBCL patients. Multivariate COX regression indicated that CBX3 was independent prognostic marker. Immune infiltration analysis revealed that the mRNA expressions of CBX family (especially CBX1, CBX5, and CBX6) in DLBCL were significantly correlated with the infiltration of most immune cells (including B cells, CD8 + T cells, CD4 + T cells, neutrophils, monocytes, macrophages, and Treg cells). Meanwhile, there was a strong correlation between the expression levels of CBX1/5/6 and surface markers of immune cells, such as the widely studied PVR-like protein receptor/ligand and PDL-1 immune checkpoint. Notably, our study found that DLBCL cells with CBX1 over-expression were resistant to the common anti-tumor drugs, but CBX2/5 had two polarities. Finally, we confirmed the higher expressions of CBX1/2/3/5/6 in DLBCL tissues compared with control groups by immunohistochemistry. CONCLUSION We provided a detailed analysis of the relationship between the CBX family and the prognosis of DLBCL. Distinguished from other studies, We found that high mRNA expressions of CBX2/3/5/6 were associated with poor prognosis in DLBCL patients, and Multivariate COX regression indicated that CBX3 was independent prognostic marker. Besides, our study also found an association between the CBX family and anti-tumour drug resistance, and provided a relationship between CBX family expression and immune cell infiltration.
Collapse
Affiliation(s)
- Fenling Zhou
- Institute of Hematology, Jinan University, HuangPu Da Dao Xi, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Lu Chen
- Institute of Hematology, Jinan University, HuangPu Da Dao Xi, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Peng Lu
- Departpent of Vascular Surgery, The Second Xiangya Hospital, Central South University, Hunan Province, No. 139, Renmin Road, Changsha, China
| | - Yuli Cao
- Institute of Hematology, Jinan University, HuangPu Da Dao Xi, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Cuilan Deng
- Department of Hematology, First Affiliated Hospital, Jinan University, HuangPu Da Dao Xi, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Gexiu Liu
- Institute of Hematology, Jinan University, HuangPu Da Dao Xi, Guangzhou, Guangdong, 510632, People's Republic of China.
| |
Collapse
|
26
|
Nakanishi S, Li J, Berglund AE, Kim Y, Zhang Y, Zhang L, Yang C, Song J, Mirmira RG, Cleveland JL. The Polyamine-Hypusine Circuit Controls an Oncogenic Translational Program Essential for Malignant Conversion in MYC-Driven Lymphoma. Blood Cancer Discov 2023; 4:294-317. [PMID: 37070973 PMCID: PMC10320645 DOI: 10.1158/2643-3230.bcd-22-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
The MYC oncoprotein is activated in a broad spectrum of human malignancies and transcriptionally reprograms the genome to drive cancer cell growth. Given this, it is unclear if targeting a single effector of MYC will have therapeutic benefit. MYC activates the polyamine-hypusine circuit, which posttranslationally modifies the eukaryotic translation factor eIF5A. The roles of this circuit in cancer are unclear. Here we report essential intrinsic roles for hypusinated eIF5A in the development and maintenance of MYC-driven lymphoma, where the loss of eIF5A hypusination abolishes malignant transformation of MYC-overexpressing B cells. Mechanistically, integrating RNA sequencing, ribosome sequencing, and proteomic analyses revealed that efficient translation of select targets is dependent upon eIF5A hypusination, including regulators of G1-S phase cell-cycle progression and DNA replication. This circuit thus controls MYC's proliferative response, and it is also activated across multiple malignancies. These findings suggest the hypusine circuit as a therapeutic target for several human tumor types. SIGNIFICANCE Elevated EIF5A and the polyamine-hypusine circuit are manifest in many malignancies, including MYC-driven tumors, and eIF5A hypusination is necessary for MYC proliferative signaling. Not-ably, this circuit controls an oncogenic translational program essential for the development and maintenance of MYC-driven lymphoma, supporting this axis as a target for cancer prevention and treatment. See related commentary by Wilson and Klein, p. 248. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Shima Nakanishi
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jiannong Li
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anders E. Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yonghong Zhang
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ling Zhang
- Department of Pathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chunying Yang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jinming Song
- Department of Pathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - John L. Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
27
|
Eichenauer DA, Hartmann S. Nodular lymphocyte-predominant Hodgkin lymphoma: current management strategies and evolving approaches to individualize treatment. Expert Rev Hematol 2023; 16:607-615. [PMID: 37337881 DOI: 10.1080/17474086.2023.2226859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare lymphoma entity accounting for roughly 5% of all Hodgkin lymphoma (HL) cases. In contrast to classical HL, the malignant cells in NLPHL are positive for CD20 but lack CD30. The disease usually has an indolent clinical course resulting in high long-term survival rates. AREAS COVERED In this review, treatment options for NLPHL are summarized and factors that may help to individualize treatment are discussed. EXPERT OPINION Stage IA NLPHL without clinical risk factors should be treated with limited-field radiotherapy alone. In all other stages, NLPHL patients have excellent outcomes after standard HL approaches. The question of whether the addition of an anti-CD20 antibody to standard HL chemotherapy protocols or the use of approaches typically applied in B-cell non-Hodgkin lymphoma improve treatment results is unanswered until now. Different management strategies ranging from low-intensity treatment to high-dose chemotherapy and autologous stem cell transplantation have demonstrated activity in relapsed NLPHL. Second-line treatment is thus chosen individually. The major aim of NLPHL research is to spare toxicity and reduce the risk for treatment-related adverse events in low-risk patients while treating higher-risk patients with appropriate intensity. To this end, novel tools to guide treatment are required.
Collapse
Affiliation(s)
- Dennis A Eichenauer
- First Department of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), First Department of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| |
Collapse
|
28
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
29
|
Li Y, Cao H, Jiang Z, Yan K, Shi J, Wang S, Wang F, Wang W, Li X, Sun N, Liu L, Chen L, Chen Y, Guo R, Song Y. CCL17 acts as an antitumor chemokine in micromilieu‐driven immune skewing. Int Immunopharmacol 2023; 118:110078. [PMID: 37001380 DOI: 10.1016/j.intimp.2023.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Chemokines are critical players in the local immune responses to tumors. CCL17 (thymus and activation-regulated chemokine, TARC) and CCL22 (macrophage-derived chemokine, MDC) can attract CCR4-bearing cells involving the immune landscape of cancer. However, their direct roles and functional states in tumors remain largely unclear. METHODS We analyzed the lymphoma-related scRNA-seq and bulk RNA-seq datasets and identified the CCL17/CCL22-CCR4 axis as the unique participant of the tumor microenvironment. Then we edited the A20 lymphoma cell line to express CCL17 and CCL22 and assessed their function using three mouse models (Balb/C mouse, Nude mouse, and NSG mouse). In addition, we retrospectively checked the relationship between the CCL17/CCL22-CCR4 axis and the survival rates of cancer patients. RESULTS The active CCL17/CCL22-CCR4 axis is a distinctive feature of the Hodgkin lymphoma microenvironment. CCR4 is widely expressed in immune cells but highly exists on the surface of NK, NKT, and Treg cells. The tumor model of Balb/C mice showed that CCL17 acts as an anti-tumor chemokine mediated by activated T cell response. In addition, the tumor model of Nude mice showed that CCL17 recruits NK cells for inhibiting lymphoma growth and enhances the NK-cDC1 interaction for resisting IL4i1-mediated immunosuppression. Interestingly, CCL17-mediated antitumor immune responses depend on lymphoid lineages but not mainly myeloid ones. Furthermore, we found CCL17/CCL22-CCR4 axis cannot be regarded as biomarkers of poor prognosis in most cancer types from the TCGA database. CONCLUSION We provided direct evidence of antitumor functions of CCL17 mediated by the recruitment of conventional T cells, NKT cells, and NK cells. Clinical survival outcomes of target gene (CCL17, CCL22, and CCR4) expression also identified that CCL17/CCL22-CCR4 axis is not a marker of poor prognosis.
Collapse
|
30
|
Nejati R, Amador C, Czader M, Thacker E, Thakkar D, Dave SS, Dogan A, Duffield A, Goodlad JR, Ott G, Wasik MA, Xiao W, Cook JR. Progression of Hodgkin lymphoma and plasma cell neoplasms: Report from the 2021 SH/EAHP Workshop. Am J Clin Pathol 2023:7135990. [PMID: 37085150 DOI: 10.1093/ajcp/aqad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVES To summarize cases submitted to the 2021 Society for Hematopathology/European Association for Haematopathology Workshop under the categories of progression of Hodgkin lymphoma, plasmablastic myeloma, and plasma cell myeloma. METHODS The workshop panel reviewed 20 cases covered in this session. In addition, whole-exome sequencing (WES) and whole-genome RNA expression analysis were performed on 10 submitted cases, including 6 Hodgkin lymphoma and 4 plasma neoplasm cases. RESULTS The cases of Hodgkin lymphoma included transformed cases to or from various types of B-cell lymphoma with 1 exception, which had T-cell differentiation. The cases of plasma cell neoplasms included cases with plasmablastic progression, progression to plasma cell leukemia, and secondary B-lymphoblastic leukemia. Gene variants identified by WES included some known to be recurrent in Hodgkin lymphoma and plasma cell neoplasm. All submitted Hodgkin lymphoma samples showed 1 or more of these mutations: SOCS1, FGFR2, KMT2D, RIT1, SPEN, STAT6, TET2, TNFAIP3, and ZNF217. CONCLUSIONS Better molecular characterization of both of these neoplasms and mechanisms of progression will help us to better understand mechanisms of progression and perhaps develop better prognostic models, as well as identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Catalina Amador
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Magdalena Czader
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Devang Thakkar
- Department of Medcine, Duke University School of Medicine, Durham, NC, USA
| | - Sandeep S Dave
- Department of Medcine, Duke University School of Medicine, Durham, NC, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy Duffield
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John R Goodlad
- Department of Pathology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wenbin Xiao
- Department of Medcine, Duke University School of Medicine, Durham, NC, USA
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
31
|
Binkley MS, Advani RH. Treatment approaches for nodular lymphocyte-predominant Hodgkin lymphoma. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2023:S2152-2650(23)00111-8. [PMID: 37076366 DOI: 10.1016/j.clml.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare variant of Hodgkin lymphoma characterized by a persistent risk of relapse but an excellent overall survival. Historically, it was treated similarly to classic Hodgkin lymphoma, but efforts have been made to deintensify treatment due to risk of late toxicity associated with intensive therapy. For patients with completely resected stage IA NLPHL, no further treatment may be considered, particularly for pediatric patients. For those with stage I-II NLPHL without risk factors such as B symptoms, sites>2, or variant pattern histology, lower intensity treatment with radiotherapy or chemotherapy alone may be sufficient. However, combined modality therapy is a standard treatment for favorable and unfavorable risk stage I-II NLPHL associated with excellent progression-free and overall survival rates. For patients with advanced stage NLPHL, the optimal chemotherapy is not defined, but R-CHOP appears to be an effective treatment. Efforts to study NLPHL through multicenter collaborative efforts are crucial to develop evidence based and individualized treatments for patients with NLPHL.
Collapse
Affiliation(s)
- Michael S Binkley
- Department of Radiation Oncology, Stanford University, Palo Alto, CA.
| | - Ranjana H Advani
- Department of Medicine, Division of Oncology, Stanford University, Palo Alto, CA
| |
Collapse
|
32
|
Li XY, Wu JC, Liu P, Li ZJ, Wang Y, Chen BY, Hu CL, Fei MY, Yu PC, Jiang YL, Xu CH, Chang BH, Chen XC, Zong LJ, Zhang JY, Fang Y, Sun XJ, Xue K, Wang L, Chen SB, Jiang SY, Gui AL, Yang L, Gu JJ, Yu BH, Zhang QL, Wang L. Inhibition of USP1 reverses the chemotherapy resistance through destabilization of MAX in the relapsed/refractory B-cell lymphoma. Leukemia 2023; 37:164-177. [PMID: 36352191 PMCID: PMC9883169 DOI: 10.1038/s41375-022-01747-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
The patients with relapsed and refractory diffuse large B-cell lymphoma (DLBCL) have poor prognosis, and a novel and effective therapeutic strategy for these patients is urgently needed. Although ubiquitin-specific protease 1 (USP1) plays a key role in cancer, the carcinogenic effect of USP1 in B-cell lymphoma remains elusive. Here we found that USP1 is highly expressed in DLBCL patients, and high expression of USP1 predicts poor prognosis. Knocking down USP1 or a specific inhibitor of USP1, pimozide, induced cell growth inhibition, cell cycle arrest and autophagy in DLBCL cells. Targeting USP1 by shRNA or pimozide significantly reduced tumor burden of a mouse model established with engraftment of rituximab/chemotherapy resistant DLBCL cells. Pimozide significantly retarded the growth of lymphoma in a DLBCL patient-derived xenograft (PDX) model. USP1 directly interacted with MAX, a MYC binding protein, and maintained the stability of MAX through deubiquitination, which promoted the transcription of MYC target genes. Moreover, pimozide showed a synergetic effect with etoposide, a chemotherapy drug, in cell and mouse models of rituximab/chemotherapy resistant DLBCL. Our study highlights the critical role of USP1 in the rituximab/chemotherapy resistance of DLBCL through deubiquitylating MAX, and provides a novel therapeutic strategy for rituximab/chemotherapy resistant DLBCL.
Collapse
Affiliation(s)
- Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Chuan Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Ying Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Bei Chen
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology, Shanghai, China
| | - Shi-Yu Jiang
- Department of lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ai-Ling Gui
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juan J Gu
- Department of Medicine & Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Bao-Hua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qun-Ling Zhang
- Department of lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
33
|
Kosari F, Bakhshi T, Ameli F, Mokhtari M. The utility of IMP3 immunohistochemical staining in differentiating nodular lymphocyte predominant Hodgkin Lymphoma from T-Cell/Histiocyte-Rich large B-Cell lymphoma. BMC Cancer 2022; 22:1359. [PMID: 36577979 PMCID: PMC9795661 DOI: 10.1186/s12885-022-10321-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and T cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have overlapping histological features that make their diagnosis challenging. Insulin-like growth factor II mRNA-binding protein 3 (IMP3) is a recently proposed diagnostic marker for Hodgkin's lymphoma. The aim of this study was to determine the ability of IMP3 in differentiating NLPHL from THRLBCL. METHODS In this retrospective study, the formalin-fixed paraffin-embedded blocks from 56 patients (28 NLPHL and 28 large B cell lymphoma (LBCL, including 16 THRLBCL and 12 DLBCL, NOS) cases based on immunohistochemistry (IHC) were included. Sample sections were stained for IMP3 using IHC method. Moderate to strong staining in at least 10% of tumor cells was considered positive IMP3 expression. RESULTS The mean age of the patients was 41.25 ± 16.08 years old. The majority of the patients were male. There was a significant age difference between NLPHL (34.61 ± 16.44 years old) and LBCL (47.89 ± 12.85 years) groups (p = 0.001). No significant difference was seen in gender and site between NLPHL and LBCL groups. The expression of IMP3 was mainly strong in LBCL group, while it was heterogeneously distributed among NLPHL samples ranging from weak to strong (p < 0.001). It was determined that strong IMP3 expression at 55.00% can differentiate LBCL from NLPHL with 71.4% sensitivity and 71.4% specificity. CONCLUSION Our findings showed that IMP3 may be a good complement in differentiating NLPHL cases from THRLBCL.
Collapse
Affiliation(s)
- Farid Kosari
- grid.411705.60000 0001 0166 0922Fellowship of Hematopathology, Department of Pathology, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Trifeh Bakhshi
- grid.411705.60000 0001 0166 0922Department of Pathology, Cancer Institute Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Iran
| | - Fereshteh Ameli
- grid.411705.60000 0001 0166 0922Department of Pathology, Cancer Institute Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Iran
| | - Maral Mokhtari
- grid.412571.40000 0000 8819 4698Fellowship of Hematopathology, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
34
|
Bioinformatics Analysis of miRNAs Targeting TRAF5 in DLBCL Involving in NF- κB Signaling Pathway and Affecting the Apoptosis and Signal Transduction. Genet Res (Camb) 2022; 2022:3222253. [PMID: 36619898 PMCID: PMC9803564 DOI: 10.1155/2022/3222253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma with high heterogeneity. There is an unmet need to investigate valid indicators for the diagnosis and therapy of DLBCL. Methods GEO database was utilized to screen for differentially expressed genes (DEGs) and differential miRNAs in DLBCL tissues. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyse DEGs. Then multiple databases were searched for related miRNAs within DLBCL, TNF receptor-associated factor 5 (TRAF5) and NF-kappa B (NF-κB) signaling pathways. The KOBAS database was used to assist in the screening of miRNAs of interest and construct the regulatory network of miRNA-mRNA. Finally, the expression level and diagnostic performance of miRNAs were analyzed with GEO datasets, and DEGs were identified from the GEPIA database. Results DEGs were significantly concentrated in the NF-κB signaling pathway and cytokine-cytokine receptor interaction, and involved in the process of immune response and protein binding. MiR-15a-5p, miR-147a, miR-192-5p, miR-197-3p, miR-532-5p, and miR-650 were revealed to be targeting TRAF5 and participating in NF-κB signaling pathway and might impact the apoptosis and signal transduction of DLBCL. In the GEPIA database, TRAF5 was significantly overexpressed in DLBCL. The expression of miR-197-3p was upregulated within GEO datasets, while the rest of the miRNAs were downregulated in DLBCL. Conclusions Subsets of miRNAs may participate in the NF-κB signaling pathway by co-targeting TRAF5 and could be prospective biomarkers exploring the pathogenesis of DLBCL.
Collapse
|
35
|
Li J, Li P, Su H, Feng H, Bai Z, Xi Y. Expression and Significance of Cyclin-Dependent Protein Kinase 6 in Diffuse Large B-Cell Lymphoma. Int J Gen Med 2022; 15:7265-7276. [PMID: 36133914 PMCID: PMC9483138 DOI: 10.2147/ijgm.s380496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To study the relationship between cyclin-dependent protein kinase 6 (CDK6) expression in diffuse large B-cell lymphoma (DLBCL) and the clinical biological behavior and prognosis. Methods Data mining was performed using the Oncomine and The Cancer Genome Atlas (TCGA) databases to analyze the expression level of CDK6 in DLBCL. CDK6 alterations in DLBCL and related functional networks were analyzed with c-BioPortal and the Gene Set Enrichment Analysis was performed by using DAVID and FunRich software. In addition, screening for differential gene expression of CDK6 was done and enriched by using LinkedOmics. Finally, formalin-fixed and paraffin-embedded (FFPE) tissue samples from 102 patients with DLBCL were collected from the Department of Pathology, Shanxi Cancer Hospital (Taiyuan, Shanxi, China) from January 2015 through December 2020. All cases had complete clinical course records. Thirty cases of lymph node reactive hyperplasia tissues were used as controls. The expression of CDK6 in DLBCL tissues was detected by qRT‑PCR and immunohistochemistry. Results Bioinformatics analysis: The data showed that mRNA expression level and DNA copy number variations (CNVs) of CDK6 were significantly higher in DLBCL as compared to normal tissue (P ˂ 0.05). Based on C-BioPortal analysis, we speculated that amplification was the most common copy of CDK6 CNV in DLBCL. Through Gene Ontology (GO) analysis of these genes, it was found that the proteins were mainly located in the nucleus and cytoplasm. The biological interaction network of CDK6 alterations were found to participate primarily in the G1-S phase of the process. Analysis of LinkedOmics mRNA sequencing data showed that three genes were positively correlated with CDK6 expression: PSMD1, C2orf29 and ASB1. Through experimental verification, we found that CDK6 was overexpressed in DLBCL, and the expression of CDK6 mRNA and protein in DLBCL were positively correlated with Ann Arbor staging and IPI score (P<0.05), and negatively correlated with overall survival (P<0.001). Conclusion Data mining results and experiments revealed and confirmed multi-level evidence for the importance of CDK6 in DLBCL; hence, CDK6 may be a potential marker in DLBCL. Thus, our study will perhaps lay the foundation for further research on the role of CDK6 in the genesis and development of DLBCL.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, 030013, People’s Republic of China
| | - Peng Li
- Department of Breast Surgery, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, 030013, People’s Republic of China
| | - Hong Su
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, 030013, People’s Republic of China
| | - Haonan Feng
- Department of Pathology, Chengdu Second People’s Hospital, Chengdu, Sichuan, 610000, People’s Republic of China
| | - Zhongyuan Bai
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Yanfeng Xi
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, 030013, People’s Republic of China
- Correspondence: Yanfeng Xi, Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, 3 Workers’ New Village Street, Xing Hua Ling, Taiyuan, Shanxi, 030013, People’s Republic of China, Email
| |
Collapse
|
36
|
Downregulation of STAT3 in Epstein-Barr Virus-Positive Hodgkin Lymphoma. Biomedicines 2022; 10:biomedicines10071608. [PMID: 35884913 PMCID: PMC9313380 DOI: 10.3390/biomedicines10071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
STAT3 is a transcription factor which is activated via various signaling transduction pathways or Epstein-Barr virus (EBV) infection and plays an oncogenic role in lymphoid malignancies including Hodgkin lymphoma (HL). The tumor cells of HL are derived from germinal center B-cells and transformed by chromosomal rearrangements, aberrant signal transduction, deregulation of developmental transcription factors, and EBV activity. HL cell lines represent useful models to investigate molecular principles and deduced treatment options of this malignancy. Using cell line L-540, we have recently shown that constitutively activated STAT3 drives aberrant expression of hematopoietic NKL homeobox gene HLX. Here, we analyzed HL cell line AM-HLH which is EBV-positive but, nevertheless, HLX-negative. Consistently, AM-HLH expressed decreased levels of STAT3 proteins which were additionally inactivated and located in the cytoplasm. Combined genomic and expression profiling data revealed several amplified and overexpressed gene candidates involved in opposed regulation of STAT3 and EBV. Corresponding knockdown studies demonstrated that IRF4 and NFATC2 inhibited STAT3 expression. MIR155 (activated by STAT3) and SPIB (repressed by HLX) showed reduced and elevated expression levels in AM-HLH, respectively. However, treatment with IL6 or IL27 activated STAT3, elevated expression of HLX and MIR155, and inhibited IRF4. Taken together, this cell line deals with two conflicting oncogenic drivers, namely, JAK2-STAT3 signaling and EBV infection, but is sensitive to switch after cytokine stimulation. Thus, AM-HLH represents a unique cell line model to study the pathogenic roles of STAT3 and EBV and their therapeutic implications in HL.
Collapse
|
37
|
Integrated analysis of the clinical consequence and associated gene expression of ALK in ALK-positive human cancers. Heliyon 2022; 8:e09878. [PMID: 35865984 PMCID: PMC9293659 DOI: 10.1016/j.heliyon.2022.e09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/30/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is genetically altered in several cancers, including NSCLC, melanoma, lymphoma, and other tumors. Although ALK is associated with various cancers, the relationship between ALK expression and patient prognosis in different cancers is poorly understood. Here, using multidimensional approaches, we revealed the correlation between ALK expression and the clinical outcomes of patients with LUAD, melanoma, OV, DLBC, AML, and BC. We analyzed ALK transcriptional expression, patient survival rate, genetic alteration, protein network, and gene and microRNA (miRNA) co-expression. Compared to that in normal tissues, higher ALK expression was found in LUAD, melanoma, and OV, which are associated with poor patient survival rates. In contrast, lower transcriptional expression was found to decrease the survival rate of patients with DLBC, AML, and BC. A total of 202 missense mutations, 17 truncating mutations, 7 fusions, and 3 in-frame mutations were identified. Further, 17 genes and 19 miRNAs were found to be exclusively co-expressed and echinoderm microtubule-associated protein-like 4 (EML4) was identified as the most positively correlated gene (log odds ratio >3). The gene ontology and signaling pathways of the genes co-expressed with ALK in these six cancers were also identified. Our findings offer a basis for ALK as a prognostic biomarker and therapeutic target in cancers, which will potentially contribute to precision oncology and assist clinicians in identifying suitable treatment options.
Collapse
|
38
|
Hodgkin Lymphoma: Biology and Differential Diagnostic Problem. Diagnostics (Basel) 2022; 12:diagnostics12061507. [PMID: 35741318 PMCID: PMC9221773 DOI: 10.3390/diagnostics12061507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Hodgkin lymphomas (HLs) are lymphoid neoplasms that are morphologically defined as being composed of dysplastic cells, namely, Hodgkin and Reed–Sternberg cells, in a reactive inflammatory background. The biological nature of HLs has long been unclear; however, our understanding of HL-related genetics and tumor microenvironment interactions is rapidly expanding. For example, cell surface overexpression of programmed cell death 1 ligand 1 (CD274/PD-L1) is now considered a defining feature of an HL subset, and targeting such immune checkpoint molecules is a promising therapeutic option. Still, HLs comprise multiple disease subtypes, and some HL features may overlap with its morphological mimics, posing challenging diagnostic and therapeutic problems. In this review, we summarize the recent advances in understanding the biology of HLs, and discuss approaches to differentiating HL and its mimics.
Collapse
|
39
|
Cao P, Yang M, Chang C, Wu H, Lu Q. Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials. Clin Rev Allergy Immunol 2022; 63:357-370. [PMID: 35674978 DOI: 10.1007/s12016-022-08936-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Germinal center (GC) reaction greatly contributes to the humoral immune response, which begins in lymph nodes or other secondary lymphoid organs after follicular B cells are activated by T-dependent antigens. The GCs then serve as a platform for follicular B cells to complete clonal expansion and somatic hypermutation and then interact with follicular dendritic cells (FDC) and follicular helper T cells (Tfh). Through the interaction between the immune cells, significant processes of the humoral immune response are accomplished, such as antibody affinity maturation, class switching, and production of memory B cells and plasma cells. Cell positioning during the GC reaction is mainly mediated by the chemokine receptors and lipid receptors, which both belong to G protein-coupled receptors (GPCRs) family. There are some orphan GPCRs whose endogenous ligands are unclear yet contribute to the regulation of GC reaction as well. This review will give an introduction on the ligands and functions of two types of GC-relating GPCRs-chemokine receptors like CXCR4 and CXCR5, as well as emerging de-orphanized GPCRs like GPR183, GPR174, and P2RY8. The roles these GPCRs play in several antibody-mediated autoimmune skin diseases will be also discussed, including systemic lupus erythematosus (SLE), pemphigus, scleroderma, and dermatomyositis. Besides, GPCRs are excellent drug targets due to the unique structure and vital functions. Therefore, this review is aimed at providing readers with a focused knowledge about the role that GPCRs play in GC reaction, as well as in provoking the development of GPCR-targeting agents for immune-mediated diseases besides autoimmune diseases.
Collapse
Affiliation(s)
- Pengpeng Cao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China. .,Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China. .,Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
40
|
Satou A, Takahara T, Nakamura S. An Update on the Pathology and Molecular Features of Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14112647. [PMID: 35681627 PMCID: PMC9179292 DOI: 10.3390/cancers14112647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hodgkin lymphomas (HLs) include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular findings in HLs have contributed to dramatic changes in the treatment and identification of tumor characteristics. For example, PD-1/PD-L1 blockade and brentuximab vedotin, an anti-CD30 antibody bearing a cytotoxic compound, are now widely used in patients with CHL. Biological continuity between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma has been highlighted. An era of novel therapeutics for HL has begun. The aim of this paper is to review the morphologic, immunophenotypic, and molecular features of CHL and NLPHL, which must be understood for the development of novel therapeutics. Abstract Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular analyses have revealed that an immune evasion mechanism, particularly the PD-1/PD-L1 pathway, plays a key role in the development of CHL. Other highlighted key pathways in CHL are NF-κB and JAK/STAT. These advances have dramatically changed the treatment for CHL, particularly relapsed/refractory CHL. For example, PD-1 inhibitors are now widely used in relapsed/refractory CHL. Compared with CHL, NLPHL is more characterized by preserved B cell features. Overlapping morphological and molecular features between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have been reported, and biological continuity between these two entities has been highlighted. Some THRLBCLs are considered to represent progression from NLPHLs. With considerable new understanding becoming available from molecular studies in HLs, therapies and classification of HLs are continually evolving. This paper offers a summary of and update on the pathological and molecular features of HLs for a better understanding of the diseases.
Collapse
Affiliation(s)
- Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311; Fax: +81-561-61-3811
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan;
| |
Collapse
|
41
|
Nodular Lymphocyte-predominant Hodgkin Lymphoma With Nodular Sclerosis: An Underrecognized Feature Associated With Pattern D. Am J Surg Pathol 2022; 46:1291-1297. [PMID: 35575765 DOI: 10.1097/pas.0000000000001917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) with unusual features, including some that can overlap morphologically with classic Hodgkin lymphoma (CHL), have been described. Herein, we describe 12 cases of NLPHL with fibrous bands and capsular fibrosis resembling, in part, nodular sclerosis (NS) CHL. Seven of 12 cases harbored Reed-Sternberg-like cells, further suggestive of CHL, but all cases lacked associated eosinophils and/or plasma cells in the background. In this cohort, all cases had areas of so-called pattern D (nodular T-cell rich) as a sole component in 7 (58%) cases or as a hybrid pattern along with pattern E (diffuse T-cell/histiocyte-rich) in 5 (42%) cases. The immunophenotype of the large neoplastic cells in these cases supported their being lymphocyte predominant cells of NLPHL, positive for CD20, CD79a, and OCT2, and negative for CD15 and CD30. However, PAX5 was weak in 9 of 11 cases similar to Hodgkin/Reed-Sternberg cells in CHL. We conclude that some cases of NLPHL are associated with fibrous bands and capsular fibrosis and resemble, in part, NS CHL. In our experience, NLPHL with NS-like features occurs in 10% to 15% of cases of NLPHL and is associated with a variant pattern (D and/or E). In addition, all patients in this cohort were not treated before biopsy, suggesting that the prominent sclerosis in these cases is inherent to disease biology. Recognition of NLPHL with NS-like features further expands the morphologic spectrum of NLPHL and helps avoid potential misdiagnosis as CHL.
Collapse
|
42
|
Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis. DATA 2022. [DOI: 10.3390/data7050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) family comprises STEAP1-4. Several studies have pointed out STEAP proteins as putative biomarkers, as well as therapeutic targets in several types of human cancers, particularly in prostate cancer. However, the relationships and significance of the expression pattern of STEAP1-4 in cancer cases are barely known. Herein, the Oncomine database and cBioPortal platform were selected to predict the differential expression levels of STEAP members and clinical prognosis. The most common expression pattern observed was the combination of the over- and underexpression of distinct STEAP genes, but cervical and gastric cancer and lymphoma showed overexpression of all STEAP genes. It was also found that STEAP genes’ expression levels were already deregulated in benign lesions. Regarding the prognostic value, it was found that STEAP1 (prostate), STEAP2 (brain and central nervous system), STEAP3 (kidney, leukemia and testicular) and STEAP4 (bladder, cervical, gastric) overexpression correlate with lower patient survival rate. However, in prostate cancer, overexpression of the STEAP4 gene was correlated with a higher survival rate. Overall, this study first showed that the expression levels of STEAP genes are highly variable in human cancers, which may be related to different patients’ outcomes.
Collapse
|
43
|
Comprehensive analysis of the expression and significance of CXCLs in human diffuse large B-cell lymphoma. Sci Rep 2022; 12:2817. [PMID: 35181719 PMCID: PMC8857324 DOI: 10.1038/s41598-022-06877-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
CXCL chemokines (CXCLs) are small cytokines or signal proteins secreted by cells that have been proven to be linked to the occurrence and development of many kinds of cancer. However, the expression and diagnostic and prognostic value of CXCLs in diffuse large B-cell lymphoma (DLBCL) remain to be further studied. We obtained CXCL transcription and survival data of patients with DLBCL from Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), TIMER and cBioPortal databases. R software, STRING and EXCEL were used to process the data. This study discovered that the expression levels of CXCL9-14 in DLBCL were higher than those in normal tissues, while CXCL4, CXCL7 and CXCL8 were lower in tumor than in normal tissues. The expression levels of CXCL2, CXCL10 and CXCL11 were related to tumor stage. CXCL9-14 could be used as an auxiliary molecular marker for the diagnosis of DLBCL. CXCL17 might be a potential prognostic marker of DLBCL.
Collapse
|
44
|
Martig DS, Fromm JR. A comparison and review of the flow cytometric findings in classic Hodgkin lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, T cell/histiocyte rich large B cell lymphoma, and primary mediastinal large B cell lymphoma. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:14-25. [PMID: 34878224 DOI: 10.1002/cyto.b.22045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The "Hodgkin-like" lymphomas including classic Hodgkin lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, T cell/histiocyte rich large B cell lymphoma, and primary mediastinal large B cell lymphoma have been shown to be pathobiologically related. With the exception of primary mediastinal large B cell lymphoma, these lymphomas have similar morphologic growth patterns with occasional neoplastic cells within a prominent reactive cell background. Historically, distinguishing these entities was difficult by flow cytometry; however, over the past 15 years, our laboratory has developed antibody-fluorochrome combinations capable of accurately distinguishing these entities by their immunoprofile. Additionally, an algorithmic approach based on characterization of the background reactive B-cell and T-cell populations can aid in narrowing the differential diagnosis. This review summarizes both the morphologic and immunophenotypic features and the current flow cytometric insights of the neoplastic and reactive populations found in this unique subset of lymphomas.
Collapse
Affiliation(s)
- Daniel S Martig
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jonathan R Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Nagel S, Meyer C. Establishment of the TBX-code reveals aberrantly activated T-box gene TBX3 in Hodgkin lymphoma. PLoS One 2021; 16:e0259674. [PMID: 34807923 PMCID: PMC8608327 DOI: 10.1371/journal.pone.0259674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
T-box genes encode transcription factors which control basic processes in development of several tissues including cell differentiation in the hematopoietic system. Here, we analyzed the physiological activities of all 17 human T-box genes in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells. The resultant expression pattern comprised six genes, namely EOMES, MGA, TBX1, TBX10, TBX19 and TBX21. We termed this gene signature TBX-code which enables discrimination of normal and aberrant activities of T-box genes in lymphoid malignancies. Accordingly, expression analysis of T-box genes in Hodgkin lymphoma (HL) patients using a public profiling dataset revealed overexpression of EOMES, TBX1, TBX2, TBX3, TBX10, TBX19, TBX21 and TBXT while MGA showed aberrant downregulation. Analysis of T-cell acute lymphoid leukemia patients indicated aberrant overexpression of six T-box genes while no deregulated T-box genes were detected in anaplastic large cell lymphoma patients. As a paradigm we focused on TBX3 which was ectopically activated in about 6% of HL patients analyzed. Normally, TBX3 is expressed in tissues like lung, adrenal gland and retina but not in hematopoiesis. HL cell line KM-H2 expressed enhanced TBX3 levels and was used as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line showed focal amplification of the TBX3 locus at 12q24 which may underlie its aberrant expression. In addition, promoter analysis and comparative expression profiling of HL cell lines followed by knockdown experiments revealed overexpressed transcription factors E2F4 and FOXC1 and chromatin modulator KDM2B as functional activators. Furthermore, we identified repressed target genes of TBX3 in HL including CDKN2A, NFKBIB and CD19, indicating its respective oncogenic function in proliferation, NFkB-signaling and B-cell differentiation. Taken together, we have revealed a lymphoid TBX-code and used it to identify an aberrant network around deregulated T-box gene TBX3 in HL which promotes hallmark aberrations of this disease. These findings provide a framework for future studies to evaluate deregulated T-box genes in lymphoid malignancies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
46
|
Cuesta-Mateos C, Terrón F, Herling M. CCR7 in Blood Cancers - Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Front Oncol 2021; 11:736758. [PMID: 34778050 PMCID: PMC8589249 DOI: 10.3389/fonc.2021.736758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
According to the classical paradigm, CCR7 is a homing chemokine receptor that grants normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more than a facilitator of lymphatic spread of tumor cells. Here, we review published data to catalogue CCR7 expression across blood cancers and appraise which classical and novel roles are attributed to this receptor in the pathogenesis of specific hematologic neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide clinical benefits to patients with CCR7-positive hematopoietic tumors.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto la Princesa (IIS-IP), Madrid, Spain.,Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Fernando Terrón
- Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Marco Herling
- Clinic of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Charwudzi A, Meng Y, Hu L, Ding C, Pu L, Li Q, Xu M, Zhai Z, Xiong S. Integrated bioinformatics analysis reveals dynamic candidate genes and signaling pathways involved in the progression and prognosis of diffuse large B-cell lymphoma. PeerJ 2021; 9:e12394. [PMID: 34760386 PMCID: PMC8570165 DOI: 10.7717/peerj.12394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous malignancy with varied outcomes. However, the fundamental mechanisms remain to be fully defined. Aim We aimed to identify core differentially co-expressed hub genes and perturbed pathways relevant to the pathogenesis and prognosis of DLBCL. Methods We retrieved the raw gene expression profile and clinical information of GSE12453 from the Gene Expression Omnibus (GEO) database. We used integrated bioinformatics analysis to identify differentially co-expressed genes. The CIBERSORT analysis was also applied to predict tumor-infiltrating immune cells (TIICs) in the GSE12453 dataset. We performed survival and ssGSEA (single-sample Gene Set Enrichment Analysis) (for TIICs) analyses and validated the hub genes using GEPIA2 and an independent GSE31312 dataset. Results We identified 46 differentially co-expressed hub genes in the GSE12453 dataset. Gene expression levels and survival analysis found 15 differentially co-expressed core hub genes. The core genes prognostic values and expression levels were further validated in the GEPIA2 database and GSE31312 dataset to be reliable (p < 0.01). The core genes’ main KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichments were Ribosome and Coronavirus disease-COVID-19. High expressions of the 15 core hub genes had prognostic value in DLBCL. The core genes showed significant predictive accuracy in distinguishing DLBCL cases from non-tumor controls, with the area under the curve (AUC) ranging from 0.992 to 1.00. Finally, CIBERSORT analysis on GSE12453 revealed immune cells, including activated memory CD4+ T cells and M0, M1, and M2-macrophages as the infiltrates in the DLBCL microenvironment. Conclusion Our study found differentially co-expressed core hub genes and relevant pathways involved in ribosome and COVID-19 disease that may be potential targets for prognosis and novel therapeutic intervention in DLBCL.
Collapse
Affiliation(s)
- Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Linhui Hu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen Ding
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lianfang Pu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qian Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengling Xu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
48
|
Chen ZW, Wizniak J, Shang C, Lai R. Flow Cytometric Detection of the Double-Positive (CD4+CD8+)/PD-1bright T-Cell Subset Is Useful in Diagnosing Nodular Lymphocyte-Predominant Hodgkin Lymphoma. Arch Pathol Lab Med 2021; 146:718-726. [PMID: 34506624 DOI: 10.5858/arpa.2020-0726-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is characterized by neoplastic lymphocyte-predominant cells frequently rimmed by CD3+/CD57+/programmed death receptor-1 (PD-1)+ T cells. Because of the rarity of lymphocyte-predominant cells in most cases, flow cytometric studies on NLPHL often fail to show evidence of malignancy. OBJECTIVE.— To evaluate the diagnostic utility of PD-1 in detecting NLPHL by flow cytometry, in conjunction with the CD4:CD8 ratio and the percentage of T cells doubly positive for CD4 and CD8. DESIGN.— Flow cytometric data obtained from cases of NLPHL (n = 10), classical Hodgkin lymphoma (n = 20), B-cell non-Hodgkin lymphoma (n = 22), T-cell non-Hodgkin lymphoma (n = 5), benign lymphoid lesions (n = 20), angioimmunoblastic T-cell lymphomas (n = 6) and T-cell/histiocyte-rich large B-cell lymphomas (n = 2) were analyzed and compared. RESULTS.— Compared with the other groups, NLPHL showed significantly higher values in the following parameters: CD4:CD8 ratio, percentage of T cells doubly positive for CD4 and CD8, percentage of PD-1-positive T cells, and median fluorescence intensity of PD-1 expression in the doubly positive for CD4 and CD8 subset. Using a scoring system (0-4) based on arbitrary cutoffs for these 4 parameters, all 10 NLPHL cases scored 3 or higher, as compared with only 3 cases from the other groups, producing an overall sensitivity of 100% and a specificity of 96% (72 of 75). Two of the 3 outliers were non-Hodgkin lymphoma, and both showed definitive immunophenotypic abnormalities leading to the correct diagnosis. The remaining outlier was a case of T-cell/histiocyte-rich large B-cell lymphoma. CONCLUSIONS.— The inclusion of anti-PD-1 in flow cytometry is useful for detecting NLPHL in fresh tissue samples, most of which would have otherwise been labeled as nondiagnostic or reactive lymphoid processes.
Collapse
Affiliation(s)
- Zhongchuan Will Chen
- From the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada (Chen, Wizniak, Shang, Lai).,Alberta Precision Laboratories, Edmonton, Alberta, Canada (Chen, Wizniak, Shang).,Co-first authors Chen and Wizniak contributed equally
| | - Juanita Wizniak
- From the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada (Chen, Wizniak, Shang, Lai).,Alberta Precision Laboratories, Edmonton, Alberta, Canada (Chen, Wizniak, Shang).,Co-first authors Chen and Wizniak contributed equally
| | - Chuquan Shang
- From the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada (Chen, Wizniak, Shang, Lai).,Alberta Precision Laboratories, Edmonton, Alberta, Canada (Chen, Wizniak, Shang)
| | - Raymond Lai
- From the Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada (Chen, Wizniak, Shang, Lai)
| |
Collapse
|
49
|
Menke JR, Spinner MA, Natkunam Y, Warnke RA, Advani RH, Gratzinger DA. CD20-Negative Nodular Lymphocyte-Predominant Hodgkin Lymphoma: A 20-Year Consecutive Case Series From a Tertiary Cancer Center. Arch Pathol Lab Med 2021; 145:753-758. [PMID: 32991677 DOI: 10.5858/arpa.2020-0135-oa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare, indolent Hodgkin lymphoma subtype with distinct clinicopathologic features and treatment paradigms. The neoplastic lymphocyte-predominant cells typically express bright CD20 and other B-cell antigens, which distinguishes them from Hodgkin/Reed-Sternberg cells of lymphocyte-rich classic Hodgkin lymphoma. OBJECTIVE.— To characterize the clinicopathologic features of CD20-negative NLPHL at a single institution. DESIGN.— A retrospective search for CD20-negative NLPHL in our pathology archives and medical records was conducted. RESULTS.— Of 486 NLPHL patients identified with CD20 available for review, 14 (2.8%) had LP cells with absent CD20 expression. Patients with prior rituximab administration (n = 7) and insufficient clinical history (n = 1) were excluded, leaving 6 patients with rituximab-naïve, CD20-negative NLPHL. A broad immunohistochemical panel showed the LP cells in all cases expressed B-cell antigens, particularly Oct-2, although PAX5 and CD79a were frequently also dim. CD30, CD15, and Epstein-Barr virus-encoded small RNAs were negative in all evaluated cases. Two patients had high-risk variant immunoarchitectural pattern D. One patient had extranodal disease, involving the spleen and bone, and was suspected to have large cell transformation. Standard NLPHL therapy was given, including local radiation and/or chemotherapy. Of 5 patients with available follow-up, 4 are alive in complete remission after therapy, and 1 is alive with relapsed disease. CONCLUSIONS.— NLPHL can lack CD20 de novo without prior rituximab therapy. In such cases, extensive immunophenotyping helps distinguish NLPHL from lymphocyte-rich classic Hodgkin lymphoma, which differ in clinical behavior and therapy. In our series, CD20-negative NLPHL showed both classic and variant histologic patterns and the expected range of clinical behavior seen in NLPHL, including 1 case with suspected large cell transformation.
Collapse
Affiliation(s)
- Joshua R Menke
- From the Department of Pathology (Menke, Natkunam, Warnke, Gratzinger), at Stanford University Medical Center, Stanford, California
| | - Michael A Spinner
- Division of Oncology, Department of Medicine (Spinner, Advani), at Stanford University Medical Center, Stanford, California
| | - Yasodha Natkunam
- From the Department of Pathology (Menke, Natkunam, Warnke, Gratzinger), at Stanford University Medical Center, Stanford, California
| | - Roger A Warnke
- From the Department of Pathology (Menke, Natkunam, Warnke, Gratzinger), at Stanford University Medical Center, Stanford, California
| | - Ranjana H Advani
- Division of Oncology, Department of Medicine (Spinner, Advani), at Stanford University Medical Center, Stanford, California
| | - Dita A Gratzinger
- From the Department of Pathology (Menke, Natkunam, Warnke, Gratzinger), at Stanford University Medical Center, Stanford, California
| |
Collapse
|
50
|
Pan PJ, Liu JX. Diagnostic and prognostic value of secreted protein acidic and rich in cysteine in the diffuse large B-cell lymphoma. World J Clin Cases 2021; 9:6287-6299. [PMID: 34434995 PMCID: PMC8362571 DOI: 10.12998/wjcc.v9.i22.6287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix-associated protein. Studies have revealed that SPARC is involved in the cell interaction and function including proliferation, differentiation, and apoptosis. However, the role of SPARC in cancer is controversial, as it was reported as the promoter or suppressor in different cancers. Further, the role of SPARC in lymphoma is unclear.
AIM To identify the expression and significance of SPARC in lymphoma, especially in diffuse large B-cell lymphoma (DLBCL).
METHODS The expression analysis of SPARC in different cancers was evaluated with Oncomine. The Brune, Eckerle, Piccaluga, Basso, Compagno, Alizadeh, and Rosenwald datasets were included to evaluate the mRNA expression of SPARC in lymphoma. The Cancer Genome Atlas (TCGA)-DLBCL was used to analyze the diagnostic value of SPARC in DLBCL. The Compagno and Brune DLBCL datasets were used for validation. Then, the diagnostic value was evaluated with the receiver operating characteristic (ROC) curve. The Kaplan-Meier plot was conducted with TCGA-DLBCL, and the ROC analysis was performed based on the survival time. Further, the overall survival analysis based on the level of SPARC expression was performed with the GSE4475 and E-TABM-346. The Gene Set Enrichment Analyses (GSEA) was performed to make the underlying mechanism-regulatory networks.
RESULTS The pan-cancer analysis of SPARC showed that SPARC was highly expressed in the brain and central nervous system, breast, colon, esophagus, stomach, head and neck, pancreas, and sarcoma, especially in lymphoma. The overexpression of SPARC in lymphoma, especially DLBCL, was confirmed in several datasets. The ROC analysis revealed that SPARC was a valuable diagnostic biomarker. More importantly, compared with DLBCL patients with low SPARC expression, those with higher SPARC expression represented a higher overall survival rate. The ROC analysis showed that SPARC was a favorable prognostic biomarker for DLBCL. Results of the GSEA confirmed that the high expression of SPARC was closely associated with focal adhesion, extracellular matrix receptor interaction, and leukocyte transendothelial migration, which suggested that SPARC may be involved in the regulation of epithelial-mesenchymal transition, KRAS, and myogenesis in DLBCL.
CONCLUSION SPARC was highly expressed in DLBCL, and the overexpression of SPARC showed sound diagnostic value. More interestingly, the overexpression of SPARC might be a favorable prognostic biomarker for DLBCL, suggesting that SPARC might be an inducible factor in the development of DLBCL, and inducible SPARC was negative in some oncogenic pathways. All the evidence suggested that inducible SPARC might be a good diagnostic and prognostic biomarker for DLBCL.
Collapse
Affiliation(s)
- Peng-Ji Pan
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jun-Xia Liu
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|