1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
Tohgasaki T, Sugimoto T, Sugimoto Y, Takeda A, Baba K. Development of a novel technology for long-term culture and live imaging of excised human tissue. Sci Rep 2025; 15:9259. [PMID: 40102595 PMCID: PMC11920518 DOI: 10.1038/s41598-025-94022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
An integrated understanding of the structure and reactivity of cells, extracellular matrices, and appendages is important for elucidating their functions and mechanisms in our bodies. Three-dimensional imaging using immuno-fluorescent staining with decolorization technology aids in comprehending the internal structure of human organs. However, live imaging of skin dynamics using animal models is highly invasive and unsuitable for humans. The aim of this study was to establish a non-invasive live imaging method for excised human tissue. In this study, to maintain excised human skin tissue in a state similar to a living body, we developed a novel microneedle-based culture technique. This method was evaluated for cytotoxicity detection, inflammatory cytokine release, and tissue morphology. Using microneedles, we cultured excised skin tissue and observed cellular organelles, reactive oxygen species (ROS), and fibrous structures via fluorescent probes and autofluorescence. The microneedle technique prevented cell death and inflammation, enabling long-term culturing. We live-imaged various skin cells, extracellular matrices, and appendage structures, visualizing epidermal cell membranes, mitochondria, and ROS. Collagen and elastin fibers were observed using autofluorescence and second harmonic generation. This approach enabled live imaging for 5 d, providing insights into skin metabolism, regeneration, and responses to stimuli and drugs, ultimately advancing dermatological research.
Collapse
Affiliation(s)
- Takeshi Tohgasaki
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan.
| | - Takayuki Sugimoto
- Department of Plastic and Aesthetic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshika Sugimoto
- Department of Plastic and Aesthetic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akira Takeda
- Department of Plastic and Aesthetic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kyoko Baba
- Department of Plastic and Aesthetic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
3
|
Mendes-da-Cruz DA, Lemos JP, Belorio EP, Savino W. Intrathymic Cell Migration: Implications in Thymocyte Development and T Lymphocyte Repertoire Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:139-175. [PMID: 40067586 DOI: 10.1007/978-3-031-77921-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
During the development of T cells in the thymus, differentiating thymocytes move through specific thymic compartments and interact with the cortical and medullary microenvironments of the thymic lobules. This migration is primarily controlled by adhesion molecules, such as extracellular matrix ligands and receptors, and soluble factors like chemokines that are important for thymocyte differentiation. The migration events driven by these molecules include the entry of lymphoid progenitors from the bone marrow, movement within the thymus, and the exit of mature thymocytes. Notably, the migration of developing T cells can also impact the positive and negative selection processes, which are crucial for preventing the development of self-reactive T cells. This chapter will focus on the key molecules involved in thymocyte migration and how their expression patterns may affect T cell development and the formation of T cell repertoires.
Collapse
Affiliation(s)
| | - Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Elizabeth Pinto Belorio
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Wille A, Weske S, von Wnuck Lipinski K, Wollnitzke P, Schröder NH, Thomas N, Nowak MK, Deister-Jonas J, Behr B, Keul P, Levkau B. Sphingosine-1-phosphate promotes osteogenesis by stimulating osteoblast growth and neovascularization in a vascular endothelial growth factor-dependent manner. J Bone Miner Res 2024; 39:357-372. [PMID: 38477738 PMCID: PMC11240155 DOI: 10.1093/jbmr/zjae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.
Collapse
Affiliation(s)
- Annalena Wille
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karin von Wnuck Lipinski
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Thomas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Melissa K Nowak
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jennifer Deister-Jonas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Björn Behr
- Department of Plastic Surgery, University Hospital BG Bergmannsheil, 44789 Bochum, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
6
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
7
|
Fernández-Villabrille S, Martín-Carro B, Martín-Vírgala J, Rodríguez-Santamaria MDM, Baena-Huerta F, Muñoz-Castañeda JR, Fernández-Martín JL, Alonso-Montes C, Naves-Díaz M, Carrillo-López N, Panizo S. Novel Biomarkers of Bone Metabolism. Nutrients 2024; 16:605. [PMID: 38474734 DOI: 10.3390/nu16050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone represents a metabolically active tissue subject to continuous remodeling orchestrated by the dynamic interplay between osteoblasts and osteoclasts. These cellular processes are modulated by a complex interplay of biochemical and mechanical factors, which are instrumental in assessing bone remodeling. This comprehensive evaluation aids in detecting disorders arising from imbalances between bone formation and reabsorption. Osteoporosis, characterized by a reduction in bone mass and strength leading to heightened bone fragility and susceptibility to fractures, is one of the more prevalent chronic diseases. Some epidemiological studies, especially in patients with chronic kidney disease (CKD), have identified an association between osteoporosis and vascular calcification. Notably, low bone mineral density has been linked to an increased incidence of aortic calcification, with shared molecules, mechanisms, and pathways between the two processes. Certain molecules emerging from these shared pathways can serve as biomarkers for bone and mineral metabolism. Detecting and evaluating these alterations early is crucial, requiring the identification of biomarkers that are reliable for early intervention. While traditional biomarkers for bone remodeling and vascular calcification exist, they suffer from limitations such as low specificity, low sensitivity, and conflicting results across studies. In response, efforts are underway to explore new, more specific biomarkers that can detect alterations at earlier stages. The aim of this review is to comprehensively examine some of the emerging biomarkers in mineral metabolism and their correlation with bone mineral density, fracture risk, and vascular calcification as well as their potential use in clinical practice.
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Francisco Baena-Huerta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Rafael Muñoz-Castañeda
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Nephrology Service, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
| | - José Luis Fernández-Martín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Sara Panizo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 28040 Madrid, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
8
|
Abstract
Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.
Collapse
Affiliation(s)
- Jiro Takito
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
9
|
Xu X, Han Y, Zhu T, Fan F, Wang X, Liu Y, Luo D. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed Pharmacother 2023; 169:115838. [PMID: 37944444 DOI: 10.1016/j.biopha.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
There are a large number of people worldwide who suffer from osteoporosis, which imposes a huge economic burden, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine kinase (SphK) is an enzyme that plays a crucial role in the synthesis of sphingosine-1-phosphate (S1P). S1P with paracrine and autocrine activities that act through its cell surface S1P receptors (S1PRs) and intracellular signals. In osteoporosis, S1P is indispensable for both normal and disease conditions. S1P has complicated roles in regulating osteoblast and osteoclast, respectively, and there have been exciting developments in understanding how SphK/S1P/S1PR signaling regulates these processes in response to osteoporosis therapy. Here, we review the proliferation, differentiation, apoptosis, and functions of S1P, specifically detailing the roles of S1P and S1PRs in osteoblasts and osteoclasts. Finally, we focus on the S1P-based therapeutic approaches in bone metabolism, which may provide valuable insights into potential therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yi Han
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Tianxin Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Faxin Fan
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Xin Wang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yuqing Liu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Duosheng Luo
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| |
Collapse
|
10
|
Engelmann J, Ragipoglu D, Ben-Batalla I, Loges S. The Role of TAM Receptors in Bone. Int J Mol Sci 2023; 25:233. [PMID: 38203403 PMCID: PMC10779100 DOI: 10.3390/ijms25010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The TAM (TYRO3, MERTK, and AXL) family of receptor tyrosine kinases are pleiotropic regulators of adult tissue homeostasis maintaining organ integrity and self-renewal. Disruption of their homeostatic balance fosters pathological conditions like autoinflammatory or degenerative diseases including rheumatoid arthritis, lupus erythematodes, or liver fibrosis. Moreover, TAM receptors exhibit prominent cell-transforming properties, promoting tumor progression, metastasis, and therapy resistance in various cancer entities. Emerging evidence shows that TAM receptors are involved in bone homeostasis by regulating osteoblastic bone formation and osteoclastic bone resorption. Therefore, TAM receptors emerge as new key players of the regulatory cytokine network of osteoblasts and osteoclasts and represent accessible targets for pharmacologic therapy for a broad set of different bone diseases, including primary and metastatic bone tumors, rheumatoid arthritis, or osteoporosis.
Collapse
Affiliation(s)
- Janik Engelmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Deniz Ragipoglu
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Isabel Ben-Batalla
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; (D.R.); (I.B.-B.)
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
11
|
Wagner JM, Wille A, Fueth M, Weske S, Lotzien S, Reinkemeier F, Wallner C, Sogorski A, Dittfeld S, Becerikli M, Schildhauer TA, Lehnhardt M, Levkau B, Behr B. Pharmacological elevation of sphingosine-1-phosphate by S1P lyase inhibition accelerates bone regeneration after post-traumatic osteomyelitis. J Cell Mol Med 2023; 27:3786-3795. [PMID: 37710406 PMCID: PMC10718149 DOI: 10.1111/jcmm.17952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Posttraumatic osteomyelitis and the ensuing bone defects are a debilitating complication after open fractures with little therapeutic options. We have recently identified potent osteoanabolic effects of sphingosine-1-phosphate (S1P) signalling and have now tested whether it may beneficially affect bone regeneration after infection. We employed pharmacological S1P lyase inhibition by 4-deoxypyrodoxin (DOP) to raise S1P levels in vivo in an unicortical long bone defect model of posttraumatic osteomyelitis in mice. In a translational approach, human bone specimens of clinical osteomyelitis patients were treated in organ culture in vitro with DOP. Bone regeneration was assessed by μCT, histomorphometry, immunohistology and gene expression analysis. The role of S1P receptors was addressed using S1PR3 deficient mice. Here, we present data that DOP treatment markedly enhanced osteogenesis in posttraumatic osteomyelitis. This was accompanied by greatly improved osteoblastogenesis and enhanced angiogenesis in the callus accompanied by osteoclast-mediated bone remodelling. We also identified the target of increased S1P to be the S1PR3 as S1PR3-/- mice showed no improvement of bone regeneration by DOP. In the human bone explants, bone mass significantly increased along with enhanced osteoblastogenesis and angiogenesis. Our data suggest that enhancement of S1P/S1PR3 signalling may be a promising therapeutic target for bone regeneration in posttraumatic osteomyelitis.
Collapse
Affiliation(s)
- Johannes M. Wagner
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
- Department of Trauma Surgery and General SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Annalena Wille
- Institute of Molecular Medicine IIIUniversity Hospital Düsseldorf and Heinrich Heine Universität DüsseldorfDüsseldorfGermany
| | - Maria Fueth
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Sarah Weske
- Institute of Molecular Medicine IIIUniversity Hospital Düsseldorf and Heinrich Heine Universität DüsseldorfDüsseldorfGermany
| | - Sebastian Lotzien
- Department of Trauma Surgery and General SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Felix Reinkemeier
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Christoph Wallner
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Alexander Sogorski
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Stephanie Dittfeld
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Mustafa Becerikli
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Thomas A. Schildhauer
- Department of Trauma Surgery and General SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Marcus Lehnhardt
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Bodo Levkau
- Institute of Molecular Medicine IIIUniversity Hospital Düsseldorf and Heinrich Heine Universität DüsseldorfDüsseldorfGermany
| | - Björn Behr
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| |
Collapse
|
12
|
Li J, Huang Y, Zhang Y, Liu P, Liu M, Zhang M, Wu R. S1P/S1PR signaling pathway advancements in autoimmune diseases. BIOMOLECULES & BIOMEDICINE 2023; 23:922-935. [PMID: 37504219 PMCID: PMC10655875 DOI: 10.17305/bb.2023.9082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a versatile sphingolipid that is generated through the phosphorylation of sphingosine by sphingosine kinase (SPHK). S1P exerts its functional effects by binding to the G protein-coupled S1P receptor (S1PR). This lipid mediator plays a pivotal role in various cellular activities. The S1P/S1PR signaling pathway is implicated in the pathogenesis of immune-mediated diseases, significantly contributing to the functioning of the immune system. It plays a crucial role in diverse physiological and pathophysiological processes, including cell survival, proliferation, migration, immune cell recruitment, synthesis of inflammatory mediators, and the formation of lymphatic and blood vessels. However, the full extent of the involvement of this signaling pathway in the development of autoimmune diseases remains to be fully elucidated. Therefore, this study aims to comprehensively review recent research on the S1P/S1PR axis in diseases related to autoimmunity.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueqin Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxia Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Wang H, Li T, Jiang Y, Chen S, Zou S, Bonewald LF, Duan P. Force-Loaded Cementocytes Regulate Osteoclastogenesis via S1P/S1PR1/Rac1 Axis. J Dent Res 2023; 102:1376-1386. [PMID: 37735908 DOI: 10.1177/00220345231195765] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is the major iatrogenic complication of orthodontic treatment, seriously endangering tooth longevity and impairing masticatory function. Osteoclasts are thought to be the primary effector cells that initiate the pathological process of OIIRR; however, the cellular and molecular mechanisms responsible for OIIRR remain unclear. Our previous studies revealed that cementocytes, the major mechanically responsive cells in cementum, respond to compressive stress to activate and influence osteoclasts locally. For this study, we hypothesized that the sphingosine-1-phosphate (S1P) signaling pathway, a key mechanotransduction pathway in cementocytes, may regulate osteoclasts under the different magnitudes of either physiologic compressive stress that causes tooth movement or pathologic stress that causes OIIRR. Here, we show a biphasic effect of higher compression force stimulating the synthesis and secretion of S1P, whereas lower compression force reduced signaling in IDG-CM6 cementocytes. Using conditioned media from force-loaded cementocytes, we verified the cell-to-cell communication between cementocytes and osteoclasts and show that selective knockdown of S1PR1 and Rac1 plays a role in cementocyte-driven osteoclastogenesis via the S1P/S1PR1/Rac1 axis. Most importantly, the use of inhibitors of this axis reduced or prevented the pathological process of OIIRR. The intercellular communication mechanisms between cementocytes and osteoclasts may serve as a promising therapeutic target for OIIRR.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Y Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L F Bonewald
- Departments of Anatomy, Cell Biology & Physiology and Orthopaedic Surgery, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P Duan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Lee SH, Kim JS, Koh JM. The Fracture Risk Assessment Tool Probability and Trabecular Bone Score Mediate the Relationship between Sphingosine 1-phosphate Levels and Fracture Risk. J Bone Metab 2023; 30:355-364. [PMID: 38073269 PMCID: PMC10721379 DOI: 10.11005/jbm.2023.30.4.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The sphingosine 1-phosphate (S1P) concentration is a potential biomarker of osteoporotic fracture and is associated with both the fracture risk assessment tool (FRAX) probability and trabecular bone score (TBS), which are well-known predictors of fracture. We sought to estimate the effect of the S1P concentration on fracture risk using the FRAX probability and TBS as mediators. METHODS Plasma S1P concentrations, FRAX variables, and TBSs were measured in 66 postmenopausal women with fractures and 273 postmenopausal women without fractures. Associations between S1P concentration, FRAX probability, TBS, and fracture risk were analyzed using correlation, logistic regression, and mediation analyses. RESULTS Subjects in the highest S1P concentration tertile had a higher fracture risk (odds ratio [OR], 5.09; 95% confidence interval [CI], 2.22-11.67) than those in the lowest S1P concentration tertile before adjustment. Subjects in the highest FRAX probability tertile had a higher fracture risk (OR, 14.59; 95% CI, 5.01-42.53) than those in the lowest FRAX probability tertile before adjustment. Subjects in the lowest TBS tertile had a higher fracture risk (OR, 4.76; 95% CI, 2.28-9.93) than those in the highest TBS tertile before adjustment. After adjustment for FRAX probability and TBS, the highest S1P concentration tertile was still associated with a higher fracture risk (OR, 3.13; 95% CI, 1.28-7.66). The FRAX probability and TBS accounted for 32.6% and 21.7%, respectively, of the relationship between the S1P concentration and fracture risk. CONCLUSIONS The relationship between the circulating S1P concentration and fracture risk was partly mediated by the FRAX probability, bone microarchitecture, and other factors.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
15
|
Yang H, Xiong C, Yu Z, Yang Z, Zhang Y, Zhang J, Huang Y, Xu N, Zhou X, Jiang M, Xu Z. A functional polymorphism at the miR-25-3p binding site in the 3′-untranslated region of the S1PR1 gene decreases the risk of osteoporosis in Chinese postmenopausal women. ARAB J CHEM 2023; 16:104888. [DOI: 10.1016/j.arabjc.2023.104888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
|
16
|
Zhang F, Lu Y. The Sphingosine 1-Phosphate Axis: an Emerging Therapeutic Opportunity for Endometriosis. Reprod Sci 2023; 30:2040-2059. [PMID: 36662421 PMCID: PMC9857924 DOI: 10.1007/s43032-023-01167-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Endometriosis is a common condition in women of reproductive age, but its current interventions are unsatisfactory. Recent research discovered a dysregulation of the sphingosine 1-phosphate (S1P) signaling pathway in endometriosis and showed a positive outcome by targeting it. The S1P axis participates in a series of fundamental pathophysiological processes. This narrative review is trying to expound the reported and putative (due to limited reports in this area for now) interactions between the S1P axis and endometriosis in those pathophysiological processes, to provide some perspectives for future research. In short, S1P signaling pathway is highly activated in the endometriotic lesion. The S1P concentration has a surge in the endometriotic cyst fluid and the peritoneal fluid, with the downstream dysregulation of its receptors. The S1P axis plays an essential role in the migration and activation of the immune cells, fibrosis, angiogenesis, pain-related hyperalgesia, and innervation. S1P receptor (S1PR) modulators showed an impressive therapeutic effect by targeting the different S1P receptors in the endometriosis model, and many other conditions resemble endometriosis. And several of them already got approval for clinical application in many diseases, which means a drug repurposing direction and a rapid clinical translation for endometriosis treatments.
Collapse
Affiliation(s)
- Fengrui Zhang
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China
| | - Yuan Lu
- Department of Gynecology, The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
17
|
Schoenmaker T, Zwaak J, Loos BG, Volckmann R, Koster J, Eekhoff EMW, de Vries TJ. Transcriptomic Differences Underlying the Activin-A Induced Large Osteoclast Formation in Both Healthy Control and Fibrodysplasia Ossificans Progressiva Osteoclasts. Int J Mol Sci 2023; 24:ijms24076822. [PMID: 37047804 PMCID: PMC10095588 DOI: 10.3390/ijms24076822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a very rare genetic disease characterized by progressive heterotopic ossification (HO) of soft tissues, leading to immobility and premature death. FOP is caused by a mutation in the Activin receptor Type 1 (ACVR1) gene, resulting in altered responsiveness to Activin-A. We recently revealed that Activin-A induces fewer, but larger and more active, osteoclasts regardless of the presence of the mutated ACVR1 receptor. The underlying mechanism of Activin-A-induced changes in osteoclastogenesis at the gene expression level remains unknown. Transcriptomic changes induced by Activin-A during osteoclast formation from healthy controls and patient-derived CD14-positive monocytes were studied using RNA sequencing. CD14-positive monocytes from six FOP patients and six age- and sex-matched healthy controls were differentiated into osteoclasts in the absence or presence of Activin-A. RNA samples were isolated after 14 days of culturing and analyzed by RNA sequencing. Non-supervised principal component analysis (PCA) showed that samples from the same culture conditions (e.g., without or with Activin-A) tended to cluster, indicating that the variability induced by Activin-A treatment was larger than the variability between the control and FOP samples. RNA sequencing analysis revealed 1480 differentially expressed genes induced by Activin-A in healthy control and FOP osteoclasts with p(adj) < 0.01 and a Log2 fold change of ≥±2. Pathway and gene ontology enrichment analysis revealed several significantly enriched pathways for genes upregulated by Activin-A that could be linked to the differentiation or function of osteoclasts, cell fusion or inflammation. Our data showed that Activin-A has a substantial effect on gene expression during osteoclast formation and that this effect occurred regardless of the presence of the mutated ACVR1 receptor causing FOP.
Collapse
Affiliation(s)
- Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Joy Zwaak
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Bruno G. Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Richard Volckmann
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - E. Marelise W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Rare Bone Disease Center Amsterdam, Bone Center, 1081 HV Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
18
|
Yari S, Kikuta J, Shigyo H, Miyamoto Y, Okuzaki D, Furusawa Y, Minoshima M, Kikuchi K, Ishii M. JAK inhibition ameliorates bone destruction by simultaneously targeting mature osteoclasts and their precursors. Inflamm Regen 2023; 43:18. [PMID: 36869390 PMCID: PMC9983229 DOI: 10.1186/s41232-023-00268-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is characterized by chronic inflammation and resultant cartilage/bone destruction because of aberrantly activated osteoclasts. Recently, novel treatments with several Janus kinase (JAK) inhibitors have been shown to successfully ameliorate arthritis-related inflammation and bone erosion, although their mechanisms of action for limiting bone destruction remain unclear. Here, we examined the effects of a JAK inhibitor on mature osteoclasts and their precursors by intravital multiphoton imaging. METHODS Inflammatory bone destruction was induced by local injection of lipopolysaccharides into transgenic mice carrying reporters for mature osteoclasts or their precursors. Mice were treated with the JAK inhibitor, ABT-317, which selectively inhibits the activation of JAK1, and then subjected to intravital imaging with multiphoton microscopy. We also used RNA sequencing (RNA-Seq) analysis to investigate the molecular mechanism underlying the effects of the JAK inhibitor on osteoclasts. RESULTS The JAK inhibitor, ABT-317, suppressed bone resorption by blocking the function of mature osteoclasts and by targeting the migratory behaviors of osteoclast precursors to the bone surface. Further exhaustive RNA-Seq analysis demonstrated that Ccr1 expression on osteoclast precursors was suppressed in the JAK inhibitor-treated mice; the CCR1 antagonist, J-113863, altered the migratory behaviors of osteoclast precursors, which led to the inhibition of bone destruction under inflammatory conditions. CONCLUSIONS This is the first study to determine the pharmacological actions by which a JAK inhibitor blocks bone destruction under inflammatory conditions; this inhibition is beneficial because of its dual effects on both mature osteoclasts and immature osteoclast precursors.
Collapse
Affiliation(s)
- Shinya Yari
- grid.136593.b0000 0004 0373 3971Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. .,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Hotaka Shigyo
- grid.136593.b0000 0004 0373 3971Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871 Japan
| | - Yu Miyamoto
- grid.136593.b0000 0004 0373 3971Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | - Masafumi Minoshima
- grid.136593.b0000 0004 0373 3971Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Kazuya Kikuchi
- grid.136593.b0000 0004 0373 3971WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. .,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| |
Collapse
|
19
|
Yang C, Liu Y, Wang Z, Lin M, Liu C. Controlled mechanical loading improves bone regeneration by regulating type H vessels in a S1Pr1-dependent manner. FASEB J 2022; 36:e22530. [PMID: 36063128 DOI: 10.1096/fj.202200339rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Despite the best treatment, approximately 10% of fractures still face undesirable repair and result in delayed unions or non-unions. Dynamic mechanical stimulation promotes bone formation, when applied at the correct time frame, with optimal loading magnitude, frequency, and repetition. Controlled mechanical loading significantly increases osteogenic cells during the matrix deposition phase of bone repair. In the bone defect, the blood vessel network guides the initial bone formation activities. A unique blood vessel subtype (Type H) exists in bone, which expresses high levels of CD31 and endomucin, and functions to couple angiogenesis and osteogenesis. However, how this form of controlled mechanical loading regulates the Type H vessels and promotes bone formation is still not clear. Sphingosine 1-phosphate (S1P) participates in the bone anabolic process and is a key regulator of the blood vessel. Its receptor, sphingosine 1-phosphate receptor 1 (S1Pr1), is a mechanosensitive protein that regulates vascular integrity. Therefore, we hypothesis that controlled anabolic mechanical loading promotes bone repair by acting on Type H vessels. To study the effect of S1Pr1 on loading induced-bone repair, we utilized a stabilized tibial defect model, which allows for the application of anabolic mechanical loading. Mechanical loading upregulated S1Pr1 within the entire defect, with up to 80% expressed in blood vessels, as observed by deep tissue imaging. Additionally, S1Pr1 antagonism by W146 inhibited the anabolic effects of mechanical loading. We showed that mechanical loading or activating S1Pr1 could induce YAP nuclear translocation, a key regulator in the cell's mechanical response, in endothelial cells (ECs) in vitro. Inhibition of S1Pr1 in endothelial cells by siRNA reduced loading-induced YAP nuclear translocation and expressions of angiogenic genes. In vivo, YAP nuclear translocation in Type H vessels was up-regulated after mechanical loading but was inhibited by antagonizing S1Pr1. S1Pr1 agonist, FTY720, increased bone volume and Type H vessel volume, similar to that of mechanical stimulation. In conclusion, controlled anabolic mechanical loading enhanced bone formation mainly through Type H vessels in a S1Pr1-dependent manner.
Collapse
Affiliation(s)
- Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Ziyan Wang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
20
|
Sharma N, Weivoda MM, Søe K. Functional Heterogeneity Within Osteoclast Populations-a Critical Review of Four Key Publications that May Change the Paradigm of Osteoclasts. Curr Osteoporos Rep 2022; 20:344-355. [PMID: 35838878 DOI: 10.1007/s11914-022-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically evaluate the literature for osteoclast heterogeneity, including heterogeneity in osteoclast behavior, which has hitherto been unstudied and has only recently come to attention. We give a critical review centered on four recent high-impact papers on this topic and aim to shed light on the elusive biology of osteoclasts and focus on the variant features of osteoclasts that diverge from the classical viewpoint. RECENT FINDINGS Osteoclasts originate from the myeloid lineage and are best known for their unique ability to resorb bone. For decades, osteoclasts have been defined simply as multinucleated cells positive for tartrate-resistant acid phosphatase activity and quantified relative to the bone perimeter or surface in histomorphometric analyses. However, several recent, high-profile studies have demonstrated the existence of heterogeneous osteoclast populations, with variable origins and functions depending on the microenvironment. This includes long-term persisting osteoclasts, inflammatory osteoclasts, recycling osteoclasts (osteomorphs), and bone resorption modes. Most of these findings have been revealed through murine studies and have helped identify new targets for human studies. These studies have also uncovered distinct sets of behavioral patterns in heterogeneous osteoclast cultures. The underlying osteoclast heterogeneity likely drives differences in bone remodeling, altering patient risk for osteoporosis and fracture. Thus, identifying the underlying key features of osteoclast heterogeneity may help in better targeting bone diseases.
Collapse
Affiliation(s)
- Neha Sharma
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 1. Floor, 5000, Odense C, Denmark
| | | | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.
- Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 25, 1. Floor, 5000, Odense C, Denmark.
| |
Collapse
|
21
|
Li B, Wang Y, Gong S, Yao W, Gao H, Liu M, Wei M. Puerarin improves OVX-induced osteoporosis by regulating phospholipid metabolism and biosynthesis of unsaturated fatty acids based on serum metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154198. [PMID: 35636175 DOI: 10.1016/j.phymed.2022.154198] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a serious problem for the women over 50 years old. Natural product puerarin (PUE) has been proven to improve PMOP with high safety. PMOP is a metabolic disorder affecting bone metabolism, indicating that endogenous metabolites amelioration may be a novel strategy for PMOP therapy. However, what the metabolic profile of POMP will be after PUE treatment is still obscure. PURPOSE We purpose to figure out the metabolic characteristics of PMOP and to explore the intrinsic mechanism on the anti-osteoporosis efficacy after PUE treatment based on the serum metabolomics. METHODS We established OVX rats as osteoporosis model, and the animals were distributed into Sham, OVX, and OVX+PUE (100 mg/kg/d) group. The femurs were analyzed by μ-CT and three-point bending test. Serum metabolomics was performed by UPLC/Q-TOF-MS. We also determined the body weight, liver weight, and the levels of serum TC, TG, LDL-C, and HDL-C. The key proteins of the PPARγ pathway and Wnt pathway were analyzed by Western blot and qPCR experiments. RESULTS PUE treatment for 14 weeks both improved the bone structure and ameliorated lipid metabolism in ovariectomized rats. By determination and further analysis of serum metabolomics, we revealed that the endogenous metabolites was significantly changed in ovariectomized rats, and PUE treatment adjusted 23 differential metabolites, which were involved in phospholipid metabolism metabolism and PUFAs metabolic pathways. Close correlationships were futher found between the indexes of bone metabolism, lipid metabolism and the differential metabolites, particularly LysoPA, S1P and n-3/n-6 PUFAs. Further, we discovered that PUE regulated differentiation of BMSCs to elicit anti-osteoporosis efficacy, attributing to Wnt/β-catenin signaling activation and PPARγ pathway inhibition initiated by metabolomics. CONCLUSION PUE improves OVX-induced osteoporosis and lipid metabolism by regulating phospholipid metabolism and biosynthesis of PUFAs, resulting in reducing the adipogenic differentiation and promoting osteogenic differentiation of BMSCs via Wnt pathway activation and PPARγ pathway inhibition in ovariectomized rats. The study provides us a novel mechanism to explain the improvement of osteoporosis by PUE, depicts a metabolic profile of PMOP, and gives us another point cut for further exploring the pathogenesis of PMOP and looking for biomarkers of osteoporosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| |
Collapse
|
22
|
Auxological and Endocrinological Features in Children and Adolescents with Cystic Fibrosis. J Clin Med 2022; 11:jcm11144041. [PMID: 35887806 PMCID: PMC9323690 DOI: 10.3390/jcm11144041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystem autosomal recessive disease caused by mutations that lead to deficient or dysfunctional CF transmembrane conductance regulator (CFTR) proteins. Patients typically present malnutrition resulting from the malabsorption of fundamental nutrients and recurring lung infections, with a progressive worsening of the respiratory function. For these reasons, the clinical management of CF requires a multidisciplinary team. From an endocrinological point of view, patients often present major complications, such as diabetes, bone disease, thyroid disorders, delayed growth and puberty, hypogonadism and infertility, which negatively affect their quality of life and, in some cases, significantly reduce life expectancy. These complications can arise as a direct result of CFTR dysfunction and/or as a consequence of a deterioration in the function of the organs affected. The objective of this review is to analyze all the possible endocrinological complications that can occur in patients with CF by evaluating the most recent papers in the literature.
Collapse
|
23
|
Agemura T, Hasegawa T, Yari S, Kikuta J, Ishii M. Arthritis-associated osteoclastogenic macrophage, AtoM, as a key player in pathological bone erosion. Inflamm Regen 2022; 42:17. [PMID: 35650653 PMCID: PMC9161570 DOI: 10.1186/s41232-022-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoclasts are myeloid lineage cells with a unique bone-destroying ability that maintains bone homeostasis together with bone formation by osteoblasts. An advanced intravital imaging system using a two-photon microscopy has enabled the observation and evaluation of osteoclast dynamics and behaviors in the bone marrow of living mice. Using this system, it has become clear that pathological osteoclasts under inflamed conditions differ from physiological osteoclasts under a steady-state. Recently, we identified novel osteoclast precursors in arthritis, called arthritis-associated osteoclastogenic macrophages (AtoMs), which differentiate into pathological osteoclasts and induce inflammatory bone destruction. In this review, we introduce the in vivo imaging of physiological and pathological osteoclasts and their differentiation mechanism.
Collapse
Affiliation(s)
- Tomoya Agemura
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shinya Yari
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi Saito, Osaka, Ibaraki, 567-0085, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Asagi Saito, Osaka, Ibaraki, 567-0085, Japan.
| |
Collapse
|
24
|
Zhang X, Sun Q, Ye C, Li T, Jiao F, Gao Y, Huo B. Finite element analysis on mechanical state on the osteoclasts under gradient fluid shear stress. Biomech Model Mechanobiol 2022; 21:1067-1078. [PMID: 35477827 DOI: 10.1007/s10237-022-01574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
Abstract
Mechanical loading, such as fluid shear stress (FSS), is regarded as the main factor that regulates the biological responses of bone cells. Our previous studies have demonstrated that the RAW264.7 osteoclast precursors migrate toward the low-FSS region under the gradient FSS field by a cone-and-plate flow chamber, in which the FSS in the outer region is larger than that in the inner region along the radial direction. Whether the FSS distribution on a cell depends on the gradient direction of FSS field should be clarified to explain this experimental observation. In this study, the finite element models of the discretely distributed or closely packed cells adherent on the bottom plate in a cone-and-plate flow chamber were constructed, and cells were regarded as compressible isotropic Hookean solid. Results showed that the average FSS of each discretely distributed cell at the quarter sector far from the center (SFC) was about 0.1% greater than that at the quarter sector near the center (SNC). In the bands with different orientations for a cell, the relative difference between the average FSS in the SFC and the SNC becomes smaller with increased band height. For the hexagonal closely packed cells, the relative value of SFC and SNC increases with increasing cell spacing. The difference between the local wall FSS in the SFC and the SNC may activate mechanosensitive ion channels and further regulate the migration of osteoclast precursors toward the low-FSS region under the gradient FSS field.
Collapse
Affiliation(s)
- Xiao Zhang
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China
| | - Chongyang Ye
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China
| | - Taiyang Li
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China
| | - Fei Jiao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China
| | - Yan Gao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China.
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
25
|
Choi B, Kim JE, Park SO, Kim EY, Oh S, Choi H, Yoon D, Min HJ, Kim HR, Chang EJ. Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways. Int J Oral Sci 2022; 14:21. [PMID: 35459199 PMCID: PMC9033766 DOI: 10.1038/s41368-022-00173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dohee Yoon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Jin Min
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Korea.
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea. .,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Mutabaruka MS, Pata M, Vacher J. A Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis is a critical mediator of Ostm1 regulatory network in T lymphopoiesis. iScience 2022; 25:104160. [PMID: 35434560 PMCID: PMC9010627 DOI: 10.1016/j.isci.2022.104160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Ostm1 mutations cause the severe form of osteopetrosis with bone marrow deficiency in humans and mice, yet a role in T cell ontogeny remains to be determined. Herein, we show that thymi of the Ostm1-null mice (gl/gl) from P8-to-P15 become markedly hypocellular with disturbed architecture. Analysis of gl/gl early T cell program determined a major decrease of 3-fold in bone marrow common lymphoid precursors (CLP), 35-fold in early thymic precursors (ETPs) and 100-fold in T cell double positive subpopulations. Ostm1 ablation in T cell double negative (DN) also appears to induce fast-paced differentiation kinetics with a transitory intermediate CD44+CD25int subpopulation. Transgenic targeting Ostm1 expression from the gl/gl DN1 population partially rescued T cell subpopulations from ETP onwards and normalized the accelerated DN differentiation, indicating a cell-autonomous role for Ostm1. Transcriptome of early DN1 population identified an Ostm1 crosstalk with a Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis. Our findings establish that Ostm1 is an essential regulator of T cell ontogeny. Loss of Ostm1 causes severe thymus hypocellularity Ostm1 is a modulator of the T cell differentiation program from the CLPs onwards Targeted CD2-Ostm1 in Ostm1 null mice leads to partial rescue of DN differentiation Ostm1 null DN1 transcriptome identifies a Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis
Collapse
Affiliation(s)
- Marie S Mutabaruka
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| | - Monica Pata
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada.,Département de Médecine, Université de Montréal, Montréal, QC H3T 3J7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
27
|
Grewe JM, Knapstein PR, Donat A, Jiang S, Smit DJ, Xie W, Keller J. The role of sphingosine-1-phosphate in bone remodeling and osteoporosis. Bone Res 2022; 10:34. [PMID: 35396384 PMCID: PMC8993882 DOI: 10.1038/s41413-022-00205-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic bone disease that affects more than 200 million people worldwide and is caused by the disruption of the equilibrium between osteoclastic bone resorption and osteoblastic bone formation. Sphingosine-1-phosphate (S1P) is a natural, bioactive sphingolipid that has been shown to play a major role in cardiovascular and immunological pathologies by regulating biological and cellular processes, including migration, differentiation, proliferation and survival. Recent studies also suggest a central role for S1P in bone diseases, including osteoporosis; however, the effects of S1P, particularly in bone metabolism, remain to be further elucidated. In this review, we summarize the available literature on the role of S1P in bone metabolism with a focus on osteoporosis. On the cellular level, S1P acts as an osteoclast-osteoblast coupling factor to promote osteoblast proliferation and bone formation. Moreover, the recruitment of osteoclast precursors to resorption sites is regulated by the interplay of S1P gradients and S1P receptor expression. From a clinical perspective, increasing evidence suggests that systemically elevated S1P blood levels may serve as an independent risk factor for osteoporosis-related fractures. Taken together, S1P signaling is a potential therapeutic target and may serve as a novel biomarker in patients with systemic bone disease.
Collapse
Affiliation(s)
- Justus M Grewe
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Clinic and Polyclinic for Vascular Medicine, University Heart Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Paul-Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
28
|
Hasegawa T, Ishii M. Pathological Osteoclasts and Precursor Macrophages in Inflammatory Arthritis. Front Immunol 2022; 13:867368. [PMID: 35464401 PMCID: PMC9024112 DOI: 10.3389/fimmu.2022.867368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Macrophages comprise a variety of subsets with diverse biological functions, including inflammation, tissue repair, regeneration, and fibrosis. In the bone marrow, macrophages differentiate into multinucleated osteoclasts, which have a unique bone-destroying capacity and play key roles in physiological bone remodelling. In contrast, osteoclasts are also involved in inflammatory bone erosion in arthritis and it has been unclear whether the osteoclasts in different tissue settings arise from similar monocytoid precursors and share similar phenotypes. Rapid progresses in the sequencing technologies have provided many important insights regarding the heterogeneity of different types of osteoclasts. The application of single-cell RNA sequencing (scRNA-seq) to the osteoclast precursor-containing macrophages enabled to identify the specific subpopulation differentiating into pathological mature osteoclasts in joints. Furthermore, an intravital imaging technology using two-photon microscopy has succeeded in visualizing the real-time dynamics of immune cells in the synovial microenvironment. These technologies together contributed to characterize the unique macrophages in the inflamed synovium, termed “arthritis-associated osteoclastogenic macrophages (AtoMs)”, causing the pathological bone destruction in inflammatory arthritis. Here, we review and discuss how novel technologies help to better understand the role of macrophages in inflammatory arthritis, especially focusing of osteoclastogenesis at the pannus-bone interface.
Collapse
Affiliation(s)
- Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- World Premier International Research Center Initiative (WPI)-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- *Correspondence: Masaru Ishii,
| |
Collapse
|
29
|
Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nat Commun 2022; 13:1066. [PMID: 35210428 PMCID: PMC8873258 DOI: 10.1038/s41467-022-28673-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Bone metabolism is regulated by the cooperative activity between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the mechanisms mediating the switch between the osteoblastic and osteoclastic phases have not been fully elucidated. Here, we identify a specific subset of mature osteoblast-derived extracellular vesicles that inhibit bone formation and enhance osteoclastogenesis. Intravital imaging reveals that mature osteoblasts secrete and capture extracellular vesicles, referred to as small osteoblast vesicles (SOVs). Co-culture experiments demonstrate that SOVs suppress osteoblast differentiation and enhance the expression of receptor activator of NF-κB ligand, thereby inducing osteoclast differentiation. We also elucidate that the SOV-enriched microRNA miR-143 inhibits Runt-related transcription factor 2, a master regulator of osteoblastogenesis, by targeting the mRNA expression of its dimerization partner, core-binding factor β. In summary, we identify SOVs as a mode of cell-to-cell communication, controlling the dynamic transition from bone-forming to bone-resorbing phases in vivo.
Collapse
|
30
|
Qi T, Li L, Weidong T. The Role of Sphingolipid Metabolism in Bone Remodeling. Front Cell Dev Biol 2021; 9:752540. [PMID: 34912800 PMCID: PMC8666436 DOI: 10.3389/fcell.2021.752540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging studies of bioactive lipids have made many exciting discoveries in recent years. Sphingolipids and their metabolites perform a wide variety of cellular functions beyond energy metabolism. Emerging evidence based on genetically manipulated mouse models and molecular biology allows us to obtain new insights into the role sphingolipid played on skeletal remodeling. This review summarizes studies or understandings of the crosstalk between sphingomyelin, ceramide, and sphingosine-1-phosphate (S1P) of sphingolipids family and the cells, especially osteoblasts and osteoclasts of the bone through which bone is remodeled during life constantly. This review also shows agonists and antagonists of S1P as possible therapeutic options and opportunities on bone diseases.
Collapse
Affiliation(s)
- Tang Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tian Weidong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Germain RN, Radtke AJ, Thakur N, Schrom EC, Hor JL, Ichise H, Arroyo-Mejias AJ, Chu CJ, Grant S. Understanding immunity in a tissue-centric context: Combining novel imaging methods and mathematics to extract new insights into function and dysfunction. Immunol Rev 2021; 306:8-24. [PMID: 34918351 DOI: 10.1111/imr.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
A central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time-efficient interactions upon pathogen sensing. Such pre-organization also provides an effective barrier to movement of pathogens from parenchymal tissues into the blood circulation. Various molecular mechanisms maintain effective intercellular communication among otherwise rapidly moving cells. These and related discoveries have benefited from recent increases in the number of parameters that can be measured simultaneously in a single tissue section and the extension of such multiplex analyses to 3D tissue volumes. The application of new computational methods to such imaging data has provided a quantitative, in vivo context for cell trafficking and signaling pathways traditionally explored in vitro or with dissociated cell preparations. Here, we summarize our efforts to devise and employ diverse imaging tools to probe immune system organization and function, concluding with a commentary on future developments, which we believe will reveal even more about how the immune system operates in health and disease.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Nishant Thakur
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Edward C Schrom
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Jyh Liang Hor
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Hiroshi Ichise
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Armando J Arroyo-Mejias
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Colin J Chu
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Spencer Grant
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Lin S, Pandruvada S, Yu H. Inhibition of Sphingosine-1-Phosphate Receptor 2 by JTE013 Promoted Osteogenesis by Increasing Vesicle Trafficking, Wnt/Ca 2+, and BMP/Smad Signaling. Int J Mol Sci 2021; 22:ijms222112060. [PMID: 34769490 PMCID: PMC8584480 DOI: 10.3390/ijms222112060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Sphingosine-1-phosphate receptor 2 (S1PR2) is a G protein-coupled receptor that regulates various immune responses. Herein, we determine the effects of a S1PR2 antagonist (JTE013) or a S1PR2 shRNA on osteogenesis by culturing murine bone marrow stromal cells (BMSCs) in osteogenic media with JTE013, dimethylsulfoxide (DMSO), a S1PR2 shRNA, or a control shRNA. Treatment with JTE013 or the S1PR2 shRNA increased alkaline phosphatase and alizarin red s staining, and enhanced alkaline phosphatase, RUNX2, osteocalcin, and osterix mRNA levels in BMSCs compared with the controls. Protein analysis revealed that a high dose of JTE013 (4 or 8 μM) increased vesicle trafficking-associated proteins (F-actin, clathrin, Early Endosome Antigen 1 (EEA1), and syntaxin 6) and Wnt/Ca2+ signaling. On the other hand, a low dose of JTE013 (1 to 2 μM) increased BMP/Smad signaling. In contrast, the S1PR2 shRNA reduced vesicle trafficking-associated proteins and attenuated Wnts and BMP/Smad signaling, but enhanced p-CaMKII compared with the control, suggesting that the S1PR2 shRNA influenced osteogenesis via different signaling pathways. Moreover, inhibiting protein trafficking by brefeldin A in BMSCs suppressed Wnts and BMPRs expressions. These data supported that enhanced osteogenesis in JTE013-treated BMSCs is associated with increased vesicle trafficking, which promotes the synthesis and transport of osteogenic protein and matrix vesicles and enhances matrix mineralization.
Collapse
|
33
|
Cui M, Göbel V, Zhang H. Uncovering the 'sphinx' of sphingosine 1-phosphate signalling: from cellular events to organ morphogenesis. Biol Rev Camb Philos Soc 2021; 97:251-272. [PMID: 34585505 PMCID: PMC9292677 DOI: 10.1111/brv.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite, functioning as a signalling molecule in diverse cellular processes. Over the past few decades, studies of S1P signalling have revealed that the physiological activity of S1P largely depends on S1P metabolizing enzymes, transporters and receptors on the plasma membrane, as well as on the intracellular proteins that S1P binds directly to. In addition to its roles in cancer signalling, immunity and inflammation, a large body of evidence has identified a close link of S1P signalling with organ morphogenesis. Here we discuss the vital role of S1P signalling in orchestrating various cellular events during organ morphogenesis through analysing each component along the extracellular and intracellular S1P signalling axes. For each component, we review advances in our understanding of S1P signalling and function from the upstream regulators to the downstream effectors and from cellular behaviours to tissue organization, primarily in the context of morphogenetic mechanisms. S1P-mediated vesicular trafficking is also discussed as a function independent of its signalling function. A picture emerges that reveals a multifaceted role of S1P-dependent pathways in the development and maintenance of organ structure and function.
Collapse
Affiliation(s)
- Mengqiao Cui
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, U.S.A
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
34
|
Inhibition of sphingosine 1-phosphate protects mice against chondrocyte catabolism and osteoarthritis. Osteoarthritis Cartilage 2021; 29:1335-1345. [PMID: 34144150 DOI: 10.1016/j.joca.2021.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage loss observed in osteoarthritis (OA) is prevented when osteoclasts in the subchondral bone are inhibited in mice. Here, we investigated the role of the osteoclast secretome and of the lipid mediator sphingosine 1-phosphate (S1P) in chondrocyte metabolism and OA. MATERIALS AND METHODS We used SphK1LysMCre and wild type mice to assess the effect of murine osteoclast secretome in chondrocyte metabolism. Gene and protein expressions of matrix metalloproteinase (Mmp) were quantified in chondrocytes and explants by RT-qPCR and Western blots. SphK1LysMCre mice or wild type mice treated with S1P2 receptor inhibitor JTE013 or anti-S1P neutralizing antibody sphingomab are analyzed by OA score and immunohistochemistry. RESULTS The osteoclast secretome increased the expression of Mmp3 and Mmp13 in murine chondrocytes and cartilage explants and activated the JNK signaling pathway, which led to matrix degradation. JTE013 reversed the osteoclast-mediated chondrocyte catabolism and protected mice against OA, suggesting that osteoclastic S1P contributes to cartilage damage in OA via S1P/S1P2 signaling. The activity of sphingosine kinase 1 (SphK1) increased with osteoclast differentiation, and its expression was enhanced in subchondral bone of mice with OA. The expression of Mmp3 and Mmp13 in chondrocytes was low upon stimulation with the secretome of Sphk1-lacking osteoclasts. Cartilage damage was significantly reduced in SphK1LysMCre mice, but not the synovial inflammation. Finally, intra-articular administration of sphingomab inhibited the cartilage damage and synovial inflammation. CONCLUSIONS Lack of S1P in myeloid cells and local S1P neutralization alleviates from osteoarthritis in mice. These data identify S1P as a therapeutic target in OA.
Collapse
|
35
|
Mechanisms of sphingosine-1-phosphate (S1P) signaling on excessive stress-induced root resorption during orthodontic molar intrusion. Clin Oral Investig 2021; 26:1003-1016. [PMID: 34363103 DOI: 10.1007/s00784-021-04084-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate cementocyte mechanotransduction during excessive orthodontic intrusive force-induced root resorption and the role of S1P signaling in this process. MATERIALS AND METHODS Fifty-four 12-week-old male Wistar rats were randomly divided into 3 groups: control group (Control), intrusive stress application group (Stress), and intrusive stress together with S1PR2-specific antagonist injection group (Stress + JTE). A rat molar intrusion model was established on animals in the Stress and the Stress + JTE groups. The animals in the Stress + JTE group received daily intraperitoneal (i.p.) injection of S1PR2 antagonist JTE-013, while the Control and Stress groups received only the vehicle. Histomorphometric, immunohistochemical, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses were performed after euthanizing of the rats. RESULTS Root resorption was promoted in the Stress group with increased volumes of resorption pits and amounts of molar intrusion compared with the Control group. The expression levels of cementogenic- and cementoclastic-related factors were affected under excessive intrusive force. Immunohistochemical staining and qRT-PCR analysis showed promoted S1P signaling activities during molar intrusion. Western blot analysis indicated decreased nuclear translocation of β-catenin under excessive intrusive force. Through the administration of JTE-013, S1P signaling activity was suppressed and excessive intrusive force-induced root resorption was reversed. The regulation of S1P signaling could also influence the nuclear translocation of β-catenin and the expressions of cementogenic- and cementoclastic-related factors. CONCLUSIONS Root resorption was promoted under excessive orthodontic intrusive force due to the disruption of cementum homeostasis. S1P signaling pathway might play an important role in cementocyte mechanotransduction in this process. CLINICAL RELEVANCE The S1P signaling might be a promising therapeutic target for novel therapeutic approaches to prevent external root resorption caused by excessive orthodontic intrusive force.
Collapse
|
36
|
Hasegawa T, Kikuta J, Ishii M. Imaging of bone and joints in vivo: pathological osteoclastogenesis in arthritis. Int Immunol 2021; 33:679-686. [PMID: 34324641 DOI: 10.1093/intimm/dxab047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Osteoimmunology highlights the reciprocal interactions between the skeletal and immune systems. Over the past two decades, many molecules that link the two have been identified, including cytokines, receptors and transcription factors, leading to successful translation of research into therapeutic approaches to autoimmune diseases such as rheumatoid arthritis. The development of an intravital imaging system using multi-photon microscopy, combined with a variety of fluorescent probes and reporter mouse strains, has provided valuable insights into the real-time dynamics of osteoclasts and immune cells in the bone marrow. This technique is now applied to the synovial tissue of arthritic mice to investigate the pathogenesis of osteoimmune diseases and enables direct observation of complex biological phenomena in vivo. In addition, rapid progress in the next-generation sequencing technologies has provided important insights into the field of osteoimmunology through characterizing individual cells in the synovial microenvironment. Single-cell RNA sequencing (scRNA-seq) dissects cellular heterogeneity within a biological system and enables the identification of specific cells differentiating into mature osteoclasts within the previously defined "osteoclast precursor (OP)-containing population". In this review, we will explain the cellular interactions and cytokine milieu involved in inflammatory bone destruction and update how the novel technologies, such as scRNA-seq and intravital imaging, have contributed to better understand the pathogenesis of bone destruction in arthritis.
Collapse
Affiliation(s)
- Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka, Suita, Osaka, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka, Suita, Osaka, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
37
|
Lee SH, Lee JY, Lim KH, Lee YS, Kim SH, Choi S, Cho SH, Kim JS, Koh JM. Associations of Circulating Levels of Sphingosine 1-Phosphate with the Trabecular Bone Score and Bone Mineral Density in Postmenopausal Women. J Clin Densitom 2021; 24:414-421. [PMID: 33846060 DOI: 10.1016/j.jocd.2021.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023]
Abstract
Despite the potential roles of sphingosine 1-phosphate (S1P) as a biomarker of osteoporotic fracture (OF), independent of bone mineral density (BMD) and clinical risk factors (CRFs), its association with bone microarchitecture, a key determinant of bone quality, have not been studied yet. We here investigated the association of S1P with the trabecular bone score (TBS), an index of the bone microarchitecture. The plasma S1P concentrations, TBS, and BMD were measured in the 339 postmenopausal women. The S1P level was inversely correlated with the TBS (γ=-0.096, p=0.049) and BMD at the femur neck (FN-BMD: γ=-0.122, p=0.025) and tended to be inversely correlated the BMD at the total hip (TH-BMD: γ=-0.096, p=0.079), but not at the lumbar spine (LS-BMD). After adjusting for fracture risk assessment tool probabilities of major OF from CRFs, the S1P level was inversely associated with the TBS (β=-0.096, p=0.049) and FN-BMD (β=-0.118, p=0.025) and tended to be inversely associated with the TH-BMD (β=-0.092, p=0.083). Compared with subjects in the lowest S1P tertile, those in the highest S1P tertile had a significantly lower TBS (p=0.032) and BMD at femur (p=0.004-0.036). These findings indicated that a high S1P level in postmenopausal women was inversely associated with the both bone mass and microarchitecture, reflecting the compromised bone strength.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jee Yang Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyeong-Hye Lim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul 05505, Republic of Korea
| | - Seong-Hee Kim
- SEJONG BIOMED CO., LTD., Paju 10880, Republic of Korea
| | - Sooyoung Choi
- SEJONG BIOMED CO., LTD., Paju 10880, Republic of Korea
| | | | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
38
|
Agemura T, Hasegawa T, Yari S, Kikuta J, Ishii M. Arthritis-associated osteoclastogenic macrophages (AtoMs) participate in pathological bone erosion in rheumatoid arthritis. Immunol Med 2021; 45:22-26. [PMID: 34187325 DOI: 10.1080/25785826.2021.1944547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Rheumatoid arthritis is a chronic form of arthritis that causes bone destruction in joints such as the knees and fingers. Over the past two decades, the clinical outcomes of rheumatoid arthritis have improved substantially with the development of biological agents and Janus kinase inhibitors. Osteoclasts are myeloid lineage cells with a unique bone-destroying ability that can lead to joint destruction. On the other hand, osteoclasts play an important role in skeletal homeostasis by supporting bone remodeling together with osteoblasts in the bone marrow under steady-state conditions. However, the same osteoclasts are considered to participate in physiological bone remodeling and joint destruction. We found that pathological osteoclasts have different differentiation pathways and regulatory transcription factors compared to physiological osteoclasts. We also identified arthritis-associated osteoclastogenic macrophages (AtoMs), which are common progenitors of pathological osteoclasts in mice and humans that develop specifically in inflamed synovial tissue. This review presents details of the newly identified AtoMs and the original intravital imaging systems that can visualize synovial tissue and pathological osteoclasts at the pannus-bone interface.
Collapse
Affiliation(s)
- Tomoya Agemura
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuo Hasegawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Shinya Yari
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|
39
|
Mora Vallellano J, Delgado Pecellín C, Delgado Pecellín I, Quintana Gallego E, López-Campos JL. Evaluation of bone metabolism in children with cystic fibrosis. Bone 2021; 147:115929. [PMID: 33737192 DOI: 10.1016/j.bone.2021.115929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) bone disease (CFBD) has attracted considerable recent interest from researchers, although several aspects of CFBD pathophysiology remain poorly understood. The objective of this research was to investigate CFBD in children with CF and its relation to clinical and bone metabolism markers. METHODS In a prospective observational study of 68 patients with CF and 63 healthy controls, we studied bone turnover biomarkers and bone mineral density (BMD). The biomarkers included osteocalcin, total-alkaline phosphatase, bone-alkaline phosphatase, N-terminal propeptide of type-1-procollagen, osteoprotegerin (OPG), interleukine-6, tumor necrosis factor alpha (TNF-α), type-1-collagen cross-linked C-telopeptide (CTX), parathormone (PTH), 25-vitamin D, 1,25-vitamin D, calcium and phosphorus. BMD was examined in lumbar spine, comparing two healthy Spanish populations. Two regression analyses were applied to any significant associations to evaluate predictors of BMD and of CF, expressed as odds ratios (OR) with 95% confidence intervals. RESULTS After adjusting for age, sex, and height Z-score, gains in BMD LS in children and adolescents (6-16 years) with CF were not less than in healthy reference population. Patients with CF showed significant associations with different bone turnover biomarkers. Age, gender, body mass index, PTH, CTX and OPG were significant predictors of BMD (R2 = 0.866, p < 0,001). Moreover, we found that PTH (OR = 1.070; 95% CI 1.019-1.123), and TNFα (OR = 2.173; 95% CI 1.514-3.118) were significantly linked to CF, and calcium (OR = 0.115; 95% CI 0.025-0.524), 1,25-vitamin D (OR = 0.979; 95% CI 0.962 0.996) and OPG (OR = 0.189; 95% CI 0.073-0.489) were significant reduced. CONCLUSION A normal bone mineral density along with altered remodeling was found in CF patients with a normal nutritional status and without acute lung disease.
Collapse
Affiliation(s)
| | | | - Isabel Delgado Pecellín
- Hospital Universitario Virgen del Rocío, Unidad de Fibrosis Quística, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Quintana Gallego
- Hospital Universitario Virgen del Rocío, Unidad de Fibrosis Quística, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Hospital Universitario Virgen del Rocío, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS)/Universidad de Sevilla, Sevilla, Spain
| | - José Luis López-Campos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Hospital Universitario Virgen del Rocío, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS)/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
40
|
Targeting S1PRs as a Therapeutic Strategy for Inflammatory Bone Loss Diseases-Beyond Regulating S1P Signaling. Int J Mol Sci 2021; 22:ijms22094411. [PMID: 33922596 PMCID: PMC8122917 DOI: 10.3390/ijms22094411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.
Collapse
|
41
|
Molstad DHH, Mattson AM, Begun DL, Westendorf JJ, Bradley EW. Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. J Biol Chem 2021; 295:17713-17723. [PMID: 33454009 DOI: 10.1074/jbc.ra120.013573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Hdac3 is a lysine deacetylase that removes acetyl groups from histones and additional proteins. Although Hdac3 functions within mesenchymal lineage skeletal cells are defined, little is known about Hdac3 activities in bone-resorbing osteoclasts. In this study we conditionally deleted Hdac3 within Ctsk-expressing cells and examined the effects on bone modeling and osteoclast differentiation in mice. Hdac3 deficiency reduced femur and tibia periosteal circumference and increased cortical periosteal osteoclast number. Trabecular bone was likewise reduced and was accompanied by increased osteoclast number per trabecular bone surface. We previously showed that Hdac3 deacetylates the p65 subunit of the NF-κB transcriptional complex to decrease DNA-binding and transcriptional activity. Hdac3-deficient osteoclasts demonstrate increased K310 NF-κB acetylation and NF-κB transcriptional activity. Hdac3-deficient osteoclast lineage cells were hyper-responsive to RANKL and showed elevated ex vivo osteoclast number and size and enhanced bone resorption in pit formation assays. Osteoclast-directed Hdac3 deficiency decreased cortical and trabecular bone mass parameters, suggesting that Hdac3 regulates coupling of bone resorption and bone formation. We surveyed a panel of osteoclast-derived coupling factors and found that Hdac3 suppression diminished sphingosine-1-phosphate production. Osteoclast-derived sphingosine-1-phosphate acts in paracrine to promote bone mineralization. Mineralization of WT bone marrow stromal cells cultured with conditioned medium from Hdac3-deficient osteoclasts was markedly reduced. Expression of alkaline phosphatase, type 1a1 collagen, and osteocalcin was also suppressed, but no change in Runx2 expression was observed. Our results demonstrate that Hdac3 controls bone modeling by suppressing osteoclast lineage cell responsiveness to RANKL and coupling to bone formation.
Collapse
Affiliation(s)
- David H H Molstad
- Department of Orthopedics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna M Mattson
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Dana L Begun
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer J Westendorf
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth W Bradley
- Department of Orthopedics, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
42
|
Yamada C, Ho A, Akkaoui J, Garcia C, Duarte C, Movila A. Glycyrrhizin mitigates inflammatory bone loss and promotes expression of senescence-protective sirtuins in an aging mouse model of periprosthetic osteolysis. Biomed Pharmacother 2021; 138:111503. [PMID: 33770668 PMCID: PMC8653540 DOI: 10.1016/j.biopha.2021.111503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Although periprosthetic osteolysis induced by wear debris particles is significantly elevated in senior (65+ years old) patients, most of the published pre-clinical studies were performed using young (less than three-month old) mice indicating the critical need to employ experimental models of particle-induced osteolysis involving mice with advanced age. Emerging evidence indicates that currently available antiresorptive bone therapies have serious age-dependent side effects. However, a resurgence of healthcare interest has occurred in glycyrrhizin (GLY), a natural extract from the licorice roots, as alternative sources of drugs for treating inflammatory bone lytic diseases and prevention of cellular senescence. This study investigated the effects of GLY on inflammatory bone loss as well as expression patterns of senescence-associated secretory phenotype and senescence-protective markers using an experimental calvarium osteolytic model induced in aged (twenty-four-month-old) mice by polymethylmethacrylate (PMMA) particles. Our results indicate that local treatment with GLY significantly diminished the size of inflammatory osteolytic lesions in aged mice via the number of CXCR4+OCPs and Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts. Furthermore, GLY dramatically decreased the amounts of senescence-associated secretory phenotype markers, including pro-inflammatory macrophage migration inhibitory factor (MIF) chemokine, and cathepsins B and K in the bone lesions of aged mice. By contrast, GLY significantly elevated expression patterns of senescence-protective markers, including homeostatic stromal derived factor-1 (SDF-1) chemokine, and sirtuin-1, and sirtuin-6, in the PMMA particle-induced calvarial lesions of aged mice. Collectively, these data suggest that GLY can be used for the development of novel therapies to control bone loss and tissue aging in senior patients with periprosthetic osteolysis.
Collapse
Affiliation(s)
- Chiaki Yamada
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Anny Ho
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Juliet Akkaoui
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States.
| |
Collapse
|
43
|
Wang Y, Zhang Z, Wan W, Liu Y, Jing H, Dong F. FAM19A5/S1PR1 signaling pathway regulates the viability and proliferation of mantle cell lymphoma. J Recept Signal Transduct Res 2021; 42:225-229. [PMID: 33685344 DOI: 10.1080/10799893.2021.1895220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Several intracellular pathological processes have been reported to be regulated by the FAM19A5/S1PR1 signaling pathway. However, the role of FAM19A5/S1PR1 signaling pathway in the viability and proliferation of mantle cell lymphoma is not been completely understood. The task of this study is to explore the influence of FAM19A5/S1PR1 signaling pathway in affecting the survival and growth of mantle cell lymphoma. shRNAs against FAM19A5 or S1PR1 were transfected into mantle cell lymphom. Cell viability and proliferation were measured through MTT assay and CCK8 assay, respectively. Our results demonstrated that loss of FAM19A5 significantly reduced the viability of mantle cell lymphom, an effect that was followed by a drop in cell proliferation capacity. Besides, inhibition of S1PR1 also impairs cell survival and interrupt mantle cell lymphom proliferation in vitro. Taken together, our results illustrate that FAM19A5/S1PR1 signaling pathway is associated with the regulation of mantle cell lymphom viability and proliferation. This finding will provide a potential target for the treatment of malignant lymphoma in the clinical practice.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Zhenhao Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Wei Wan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Fei Dong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
44
|
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, Butt D, Nguyen A, Corr A, Warren S, Biro M, Butterfield NC, Guilfoyle SE, Komla-Ebri D, Dack MRG, Dewhurst HF, Logan JG, Li Y, Mohanty ST, Byrne N, Terry RL, Simic MK, Chai R, Quinn JMW, Youlten SE, Pettitt JA, Abi-Hanna D, Jain R, Weninger W, Lundberg M, Sun S, Ebetino FH, Timpson P, Lee WM, Baldock PA, Rogers MJ, Brink R, Williams GR, Bassett JHD, Kemp JP, Pavlos NJ, Croucher PI, Phan TG. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 2021; 184:1330-1347.e13. [PMID: 33636130 PMCID: PMC7938889 DOI: 10.1016/j.cell.2021.02.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Michelle M McDonald
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Weng Hua Khoo
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Pei Ying Ng
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Ya Xiao
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jad Zamerli
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Thatcher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Wunna Kyaw
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Abigail K Grootveld
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Imogen Moran
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Danyal Butt
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Akira Nguyen
- Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Alexander Corr
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Sean Warren
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Yongxiao Li
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sindhu T Mohanty
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Niall Byrne
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rachael L Terry
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Marija K Simic
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Ryan Chai
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Julian M W Quinn
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Scott E Youlten
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jessica A Pettitt
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Abi-Hanna
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Rohit Jain
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, Centenary Institute, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mischa Lundberg
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | | | | | - Paul Timpson
- Cancer, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Woei Ming Lee
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Paul A Baldock
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Michael J Rogers
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Robert Brink
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - John P Kemp
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nathan J Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Peter I Croucher
- Healthy Ageing Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia.
| | - Tri Giang Phan
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Immunology Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Hegarty-Cremer SGD, Simpson MJ, Andersen TL, Buenzli PR. Modelling cell guidance and curvature control in evolving biological tissues. J Theor Biol 2021; 520:110658. [PMID: 33667542 DOI: 10.1016/j.jtbi.2021.110658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/20/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Tissue geometry is an important influence on the evolution of many biological tissues. The local curvature of an evolving tissue induces tissue crowding or spreading, which leads to differential tissue growth rates, and to changes in cellular tension, which can influence cell behaviour. Here, we investigate how directed cell motion interacts with curvature control in evolving biological tissues. Directed cell motion is involved in the generation of angled tissue growth and anisotropic tissue material properties, such as tissue fibre orientation. We develop a new cell-based mathematical model of tissue growth that includes both curvature control and cell guidance mechanisms to investigate their interplay. The model is based on conservation principles applied to the density of tissue synthesising cells at or near the tissue's moving boundary. The resulting mathematical model is a partial differential equation for cell density on a moving boundary, which is solved numerically using a hybrid front-tracking method called the cell-based particle method. The inclusion of directed cell motion allows us to model new types of biological growth, where tangential cell motion is important for the evolution of the interface, or for the generation of anisotropic tissue properties. We illustrate such situations by applying the model to simulate both the resorption and infilling components of the bone remodelling process, and to simulate root hair growth. We also provide user-friendly MATLAB code to implement the algorithms.
Collapse
Affiliation(s)
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Thomas L Andersen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark; Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
46
|
Lewis JW, Edwards JR, Naylor AJ, McGettrick HM. Adiponectin signalling in bone homeostasis, with age and in disease. Bone Res 2021; 9:1. [PMID: 33414405 PMCID: PMC7790832 DOI: 10.1038/s41413-020-00122-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
Adiponectin is the most abundant circulating adipokine and is primarily involved in glucose metabolism and insulin resistance. Within the bone, osteoblasts and osteoclasts express the adiponectin receptors, however, there are conflicting reports on the effects of adiponectin on bone formation and turnover. Many studies have shown a pro-osteogenic role for adiponectin in in vivo murine models and in vitro: with increased osteoblast differentiation and activity, alongside lower levels of osteoclastogenesis. However, human studies often demonstrate an inverse relationship between adiponectin concentration and bone activity. Moreover, the presence of multiple isoforms of adiponectin and multiple receptor subtypes has the potential to lead to more complex signalling and functional consequences. As such, we still do not fully understand the importance of the adiponectin signalling pathway in regulating bone homeostasis and repair in health, with age and in disease. In this review, we explore our current understanding of adiponectin bioactivity in the bone; the significance of its different isoforms; and how adiponectin biology is altered in disease. Ultimately, furthering our understanding of adiponectin regulation of bone biology is key to developing pharmacological and non-pharmacological (lifestyle) interventions that target adiponectin signalling to boost bone growth and repair in healthy ageing, following injury or in disease.
Collapse
Affiliation(s)
- Jonathan W Lewis
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - James R Edwards
- Ageing & Regeneration Research Group, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
47
|
Matsuzaki E, Minakami M, Matsumoto N, Anan H. Dental regenerative therapy targeting sphingosine-1-phosphate (S1P) signaling pathway in endodontics. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:127-134. [PMID: 33088365 PMCID: PMC7567953 DOI: 10.1016/j.jdsr.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
The establishment of regenerative therapy in endodontics targeting the dentin-pulp complex, cementum, periodontal ligament tissue, and alveolar bone will provide valuable information to preserve teeth. It is well known that the application of stem cells such as induced pluripotent stem cells, embryonic stem cells, and somatic stem cells is effective in regenerative medicine. There are many somatic stem cells in teeth and periodontal tissues including dental pulp stem cells (DPSCs), stem cells from the apical papilla, and periodontal ligament stem cells. Particularly, several studies have reported the regeneration of clinical pulp tissue and alveolar bone by DPSCs transplantation. However, further scientific issues for practical implementation remain to be addressed. Sphingosine-1-phosphate (S1P) acts as a bioactive signaling molecule that has multiple biological functions including cellular differentiation, and has been shown to be responsible for bone resorption and formation. Here we discuss a strategy for bone regeneration and a possibility for regenerative endodontics targeting S1P signaling pathway as one of approaches for induction of regeneration by improving the regenerative capacity of endogenous cells. SCIENTIFIC FIELD OF DENTAL SCIENCE Endodontology.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiko Minakami
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hisashi Anan
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
48
|
Nagata Y, Miyagawa K, Ohata Y, Petrusca DN, Pagnotti GM, Mohammad KS, Guise TA, Windle JJ, David Roodman G, Kurihara N. Increased S1P expression in osteoclasts enhances bone formation in an animal model of Paget's disease. J Cell Biochem 2020; 122:335-348. [PMID: 33107091 PMCID: PMC7887003 DOI: 10.1002/jcb.29861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 01/11/2023]
Abstract
Paget's disease (PD) is characterized by increased numbers of abnormal osteoclasts (OCLs) that drive exuberant bone formation, but the mechanisms responsible for the increased bone formation remain unclear. We previously reported that OCLs from 70% of PD patients express measles virus nucleocapsid protein (MVNP), and that transgenic mice with targeted expression of MVNP in OCLs (MVNP mice) develop bone lesions and abnormal OCLs characteristic of PD. In this report, we examined if OCL-derived sphingosine-1-phosphate (S1P) contributed to the abnormal bone formation in PD, since OCL-derived S1P can act as a coupling factor to increase normal bone formation via binding S1P-receptor-3 (S1PR3) on osteoblasts (OBs). We report that OCLs from MVNP mice and PD patients expressed high levels of sphingosine kinase-1 (SphK-1) compared with wild-type (WT) mouse and normal donor OCLs. SphK-1 production by MVNP-OCLs was interleukin-6 (IL-6)-dependent since OCLs from MVNP/IL-6-/- mice expressed lower levels of SphK-1. Immunohistochemistry of bone biopsies from a normal donor, a PD patient, WT and MVNP mice confirmed increased expression levels of SphK-1 in OCLs and S1PR3 in OBs of the PD patient and MVNP mice compared with normal donor and WT mice. Further, MVNP-OCLs cocultured with OBs from MVNP or WT mice increased OB-S1PR3 expression and enhanced expression of OB differentiation markers in MVNP-OBs precursors compared with WT-OBs, which was mediated by IL-6 and insulin-like growth factor 1 secreted by MVNP-OCLs. Finally, the addition of an S1PR3 antagonist (VPC23019) to WT or MVNP-OBs treated with WT and MVNP-OCL-conditioned media (CM) blocked enhanced OB differentiation of MVNP-OBs treated with MVNP-OCL-CM. In contrast, the addition of the SIPR3 agonist, VPC24191, to the cultures enhanced osterix and Col-1A expression in MVNP-OBs treated with MVNP-OCL-CM compared with WT-OBs treated with WT-OCL-CM. These results suggest that IL-6 produced by PD-OCLs increases S1P in OCLs and S1PR3 on OBs, to increase bone formation in PD.
Collapse
Affiliation(s)
- Yuki Nagata
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Kazuaki Miyagawa
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Yasuhisa Ohata
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Daniela N Petrusca
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Gabriel M Pagnotti
- Department of Medicine/Endocrinology, Indiana University, Indianapolis, Indiana, USA
| | - Khalid S Mohammad
- Department of Medicine/Endocrinology, Indiana University, Indianapolis, Indiana, USA
| | - Theresa A Guise
- Department of Medicine/Endocrinology, Indiana University, Indianapolis, Indiana, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - G David Roodman
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Noriyoshi Kurihara
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
49
|
Snipes M, Sun C, Yu H. Inhibition of sphingosine-1-phosphate receptor 2 attenuated ligature-induced periodontitis in mice. Oral Dis 2020; 27:1283-1291. [PMID: 32945579 PMCID: PMC7969475 DOI: 10.1111/odi.13645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Objectives Periodontitis is an inflammatory bone loss disease initiated by oral bacterial inflammation. Herein, we determined whether inhibition of sphingosine‐1‐phosphate receptor 2 (S1PR2, a G protein‐coupled receptor) by its specific antagonist, JTE013, could alleviate ligature‐induced periodontitis in mice. Materials and Methods C57BL/6 mice were placed with silk ligatures at the left maxillary second molar to induce experimental periodontitis. Mice were treated with JTE013 or control vehicle (dimethyl sulfoxide, DMSO) oral topically on the ligatures once daily. After 15 days of treatment, RNA was extracted from the lingual mucosal tissues to quantify IL‐1β, IL‐6, and TNF mRNA levels in the tissues. Alveolar bone loss was determined by micro‐computed tomography. Sagittal periodontal tissue sections were cut and stained by hematoxylin and eosin (H&E) for general histology, or stained by tartrate‐resistant acid phosphatase (TRAP) for osteoclasts. Results Treatment with JTE013 attenuated ligature‐induced alveolar bone loss compared with DMSO treatment. Treatment with JTE013 reduced IL‐1β, IL‐6, and TNF mRNA levels in murine gingival mucosal tissues, inhibited leukocyte infiltration in the periodontal tissues, and decreased the number of osteoclasts in the periodontal tissues compared with controls. Conclusion Oral topical administration of JTE013 alleviated periodontal inflammatory bone loss induced by ligature placement in mice.
Collapse
Affiliation(s)
- Marquise Snipes
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chao Sun
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hong Yu
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
50
|
Lee SH, Lee JY, Lim KH, Lee YS, Kim SH, Choi S, Cho SH, Koh JM. High Circulating Sphingosine 1-Phosphate is a Risk Factor for Osteoporotic Fracture Independent of Fracture Risk Assessment Tool. Calcif Tissue Int 2020; 107:362-370. [PMID: 32719936 DOI: 10.1007/s00223-020-00731-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023]
Abstract
Circulating sphingosine 1-phosphate (S1P) levels may be a biomarker for osteoporotic fracture (OF). This study assessed whether the addition of S1P levels to the fracture risk assessment tool (FRAX) could improve predictability of OF risk. Plasma S1P concentrations and FRAX variables were measured in 81 subjects with and 341 subjects without OF. S1P levels were higher in subjects with than those without OF (3.11 ± 0.13 μmol/L vs. 2.65 ± 0.61 μmol/L, P = 0.001). Higher S1P levels were associated with a higher likelihood of OF (odds ratio [OR] = 1.33, 95% confidence interval [CI] = 1.05-1.68), even after adjusting for FRAX probabilities. Compared with the lowest S1P tertile, subjects in the middle (OR = 3.37, 95% CI = 1.58-7.22) and highest (OR = 3.65, 95% CI = 1.66-8.03) S1P tertiles had higher rates of OF after adjustment. The addition of S1P levels to FRAX probabilities improved the area under the receiver-operating characteristics curve (AUC) for OF, from 0.708 to 0.769 (P = 0.013), as well as enhancing category-free net reclassification improvement (NRI = 0.504, 95% CI = 0.271-0.737, P < 0.001) and integrated discrimination improvement (IDI = 0.044, 95% CI = 0.022-0.065, P < 0.001). Adding S1P levels to FRAX probabilities especially in 222 subjects with osteopenia having a FRAX probability of 3.66-20.0% markedly improved the AUC for OF from 0.630 to 0.741 (P = 0.012), as well as significantly enhancing category-free NRI (0.571, 95% CI = 0.221-0.922, P = 0.001) and IDI (0.060, 95% CI = 0.023-0.097, P = 0.002). S1P is a consistent and significant risk factor of OF independent of FRAX, especially in subjects with osteopenia and low FRAX probability.
Collapse
Affiliation(s)
- Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jee Yang Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Kyeong-Hye Lim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul, 05505, Republic of Korea
| | - Seong-Hee Kim
- Sejong Biomed Co., Ltd., Paju, 10880, Republic of Korea
| | - Sooyoung Choi
- Sejong Biomed Co., Ltd., Paju, 10880, Republic of Korea
| | | | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|