1
|
Li R, Yao F, Liu Y, Wu X, Su P, Li T, Wu N. Mining TCGA to reveal immunotherapy-related genes for soft tissue sarcoma. Medicine (Baltimore) 2025; 104:e41392. [PMID: 40020124 PMCID: PMC11875607 DOI: 10.1097/md.0000000000041392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/02/2024] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy of soft tissue sarcoma is considered an important development direction for the future. Bioinformatics analysis of genetic changes in tumors and the immune microenvironment around tumors has proven to be a mature and reliable method for predicting tumor prognosis. By mining the Cancer Genome Atlas Program database, we found immunotherapy targets of soft tissue sarcoma and analyzed their biological behavior. The data of 265 samples were downloaded to analyze the expression profile of soft tissue sarcomas. This included calculating tumor purity through the estimation of stromal and immune cells in malignant tumors using expression data, acquisition of differential genes as prognostic factors, and enrichment analysis of the differential genes. Survival analysis showed longer overall survival times for patients with higher immune scores. We obtained 83 survival-related differential genes through survival analysis, and 23 genes that could be used as independent risk factors for the prognosis of soft tissue sarcoma were obtained by multiple regression analysis of the differential genes and other recognized risk factors. Gene set enrichment analysis of the differential genes obtained immune and inflammatory gene ontology terms and signal pathways, including regulation of the T-cell apoptotic process and leukocyte transendothelial migration. After validation in an independent data set of the Gene Expression Omnibus database, 12 genes were confirmed as a result. We believe that these differential genes will be new targets for sarcoma immunotherapy and key genes for the prognosis of soft tissue sarcoma.
Collapse
Affiliation(s)
- Ruixin Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yijin Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaodan Wu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianran Li
- Department of Radiology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Nan Wu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Serhan CN, Levy BD. Proresolving Lipid Mediators in the Respiratory System. Annu Rev Physiol 2025; 87:491-512. [PMID: 39303274 PMCID: PMC11810588 DOI: 10.1146/annurev-physiol-020924-033209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
3
|
Sato H, Taketomi Y, Murase R, Park J, Hosomi K, Sanada TJ, Mizuguchi K, Arita M, Kunisawa J, Murakami M. Group X phospholipase A 2 links colonic lipid homeostasis to systemic metabolism via host-microbiota interaction. Cell Rep 2024; 43:114752. [PMID: 39298315 DOI: 10.1016/j.celrep.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Remi Murase
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Jonguk Park
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Takayuki Jujo Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
4
|
Murakami M. Extracellular vesicles as a hydrolytic platform of secreted phospholipase A 2. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159536. [PMID: 39032626 DOI: 10.1016/j.bbalip.2024.159536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Extracellular vesicles (EVs) represent small vesicles secreted from cells, including exosomes (40-150 nm in diameter), which are released via the multivesicular endosomal pathway, and microvesicles and ectosomes (100-1000 nm), which are produced by plasma membrane budding. Broadly, EVs also include vesicles generated from dying cells, such as apoptotic bodies (5-10 μm), as well as exomeres (< 50 nm), which are very small, non-membranous nanoparticles. EVs play important roles in cell-to-cell signaling in various aspects of cancer, immunity, metabolism, and so on by transferring proteins, microRNAs (miRNAs), and metabolites as cargos from donor cells to recipient cells. Although lipids are one of the major components of EVs, they have long been recognized as merely the "wall" that partitions the lumen of the vesicle from the outside. However, it has recently become obvious that lipid composition of EVs influences their properties and functions, that EVs act as a carrier of a variety of lipid mediators, and that lipid mediators are produced in EV membranes by the hydrolytic action of secreted phospholipase A2s (sPLA2s). In this article, we will make an overview of the roles of lipids in EVs, with a particular focus on sPLA2-driven mobilization of lipid mediators from EVs and its biological significance.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
5
|
Jing H, Cao X, Li K, Liu Y, Meng M, Liu S, Ye M, Zhang J, Wu Y. PLA2G2D promotes immune escape in non-small cell lung cancer by regulating T cell immune function through PD-L1-expressing extracellular vesicles. Scand J Immunol 2024; 100:e13393. [PMID: 38922971 DOI: 10.1111/sji.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
It is urgent to explore factors affecting immunotherapy efficacy to benefit non-small cell lung cancer (NSCLC) patient survival. Bioinformatics predicted genes associated with programmed cell death ligand 1 (PD-L1) expression and analysed phospholipase A2 group IID (PLA2G2D) expression in NSCLC. BODIPY 493/503 dye staining and kits detected lipids, triglycerides, and phospholipids in H1299 cells, respectively. Extracellular vesicles (EVs) were extracted for morphology and size assessment using electron microscopy. Western blot assayed CD9, CD63, HSP90, EVs-PD-L1, PD-L1, and PLA2G2D expression. CCK-8, LDH, and ELISA tested proliferation and toxicity of CD8+ T cells, interleukin-2, and interferon-gamma secretion, respectively. PLA2G2D, PD-L1, and Ki67 expression was detected by immunohistochemistry. Immunofluorescence assayed PLA2G2D localisation and CD8+ T cell content. Flow cytometry assessed PD-L1 and CD8 expression. In NSCLC, upregulated EVs-PD-L1 and clinical characteristics showed a strong correlation. H1299 cells with overexpression PD-L1 significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. Bioinformatics revealed positive correlations between PLA2G2D and overexpressed PD-L1. PLA2G2D was expressed in macrophages and dendritic cells in NSCLC tissue. Overexpression PLA2G2D (oe-PLA2G2D) increased lipids, triglycerides, and phospholipids contents in H1299 cells. oe-PLA2G2D significantly reduced proliferation, toxicity of CD8+ T cells, and interleukin-2 and interferon-gamma levels. si-PD-L1 restored inhibition of oe-PLA2G2D on CD8+ T cells. oe-PLA2G2D significantly increased mice tumour volume and weight, upregulated expression of blood EVs-PD-L1 and tissue PD-L1, PLA2G2D, Ki67, and decreased CD8+ T cell content. PLA2G2D facilitated immune escape in NSCLC by regulating CD8+ T cell immune function by upregulating EVs-PD-L1.
Collapse
Affiliation(s)
- Hui Jing
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
- Department of Respiratory and Critical Care Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, China
| | - Xubo Cao
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Ke Li
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Meng Meng
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Shuan Liu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Mengjie Ye
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Jinghao Zhang
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Yanmin Wu
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Taketomi Y, Higashi T, Kano K, Miki Y, Mochizuki C, Toyoshima S, Okayama Y, Nishito Y, Nakae S, Tanaka S, Tokuoka SM, Oda Y, Shichino S, Ueha S, Matsushima K, Akahoshi N, Ishii S, Chun J, Aoki J, Murakami M. Lipid-orchestrated paracrine circuit coordinates mast cell maturation and anaphylaxis through functional interaction with fibroblasts. Immunity 2024; 57:1828-1847.e11. [PMID: 39002541 DOI: 10.1016/j.immuni.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chika Mochizuki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Allergy, and Division of Internal Medicine, Department of Respiratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Allergy and Internal Medicine, Misato Kenwa Hospital, Saitama 341-8555, Japan; Department of Internal Medicine, Division of Respiratory Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan; Advanced Medical Science Research Center, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
7
|
Oveisee M, Gholipour A, Moghaddam MB, Malakootian M. Bioinformatics Analysis of Differentially Expressed Genes in Carpal Tunnel Syndrome Using RNA Sequencing. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1871-1882. [PMID: 39415858 PMCID: PMC11475164 DOI: 10.18502/ijph.v53i8.16293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 10/19/2024]
Abstract
Background Carpal tunnel syndrome (CTS) is a common disease resulting from the median nerve entrapment at the wrist. Although CTS (prevalence=5%-10% in the general population) is the most common neuropathy, its molecular mechanisms need elucidation. We used bioinformatics to detect genes with differential expressions in CTS and introduce the molecular regulatory noncoding RNAs and signaling pathways involved. Methods The raw files of the RNA sequencing of CTS patients and controls were obtained from GEO (accession: GSE108023), and the samples were analyzed. Differentially expressed genes were isolated using DESeq2 R. Functional analyses were conducted on the signaling pathways, biological processes, molecular functions, and cellular components of the differentially expressed genes. Additionally, interactions between the most differentially expressed genes and miRNAs and lncRNAs were investigated bioinformatically. Results Upregulation and downregulation were observed in 790 and 922 genes, respectively. The signaling pathway analysis identified the metabolism pathways of arachidonic acid, linoleic acid, and tyrosine as the most significant pathways in CTS. Moreover, PLA2G2D and PLA2G2A with upregulated expressions and PLA2G2F, PLA2G4F, PLA2G4D, PLA2G3, and PLA2G4E with downregulated expressions were genes from the phospholipase family playing significant roles in the pathways. Further analyses demonstrated that hsa-miR-3150b-3p targeted PLA2G2A and PLA2G4F, and RP11-573D15.8-018 lncRNA had regulatory interactions with the aforementioned genes. Conclusion Molecular studies on CTS will clarify the involved signaling pathways and provide critical data for biomedical research, drug development, and clinical applications.
Collapse
Affiliation(s)
- Maziar Oveisee
- Department of Orthopedic, School of Medicine, Bam University of Medical Sciences, Bam, Iran
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahrokh Bagheri Moghaddam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal associations of plasma levels of the secreted phospholipase A 2 family and mortality in severe COVID-19. Eur J Immunol 2024:e2350721. [PMID: 38651231 DOI: 10.1002/eji.202350721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Previous research suggests that group IIA-secreted phospholipase A2 (sPLA2-IIA) plays a role in and predicts lethal COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal relationship between levels of several members of a family of sPLA2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA2 isoforms, sPLA2-IIA, sPLA2-V, sPLA2-X, sPLA2-IB, sPLA2-IIC, and sPLA2-XVI, increased over the first 7 ICU days in those who succumbed to the disease but attenuated over the same time period in survivors. In contrast, a reversed pattern in sPLA2-IID and sPLA2-XIIB levels over 7 days suggests a protective role of these two isoforms. Furthermore, decision tree models demonstrated that sPLA2-IIA outperformed top-ranked cytokines and chemokines as a predictor of patient outcome. Taken together, proteomic analysis revealed temporal sPLA2 patterns that reflect the critical roles of sPLA2 isoforms in severe COVID-19 disease.
Collapse
Affiliation(s)
- Eric Lu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Aki Hara
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Shudong Sun
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Brian Hallmark
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Michael C Seeds
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Charles E McCall
- Departments of Internal Medicine, Microbiology and Immunology, and Clinical and Translational Sciences Institute, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Hao Helen Zhang
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
- Statistics Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Center for Precision Nutrition and Wellness, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Hamu-Tanoue A, Takagi K, Taketomi Y, Miki Y, Nishito Y, Kano K, Aoki J, Matsuyama T, Kondo K, Dotake Y, Matsuyama H, Machida K, Murakami M, Inoue H. Group III secreted phospholipase A 2 -driven lysophospholipid pathway protects against allergic asthma. FASEB J 2024; 38:e23428. [PMID: 38236184 DOI: 10.1096/fj.202301976r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Asako Hamu-Tanoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyotaka Kondo
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Dotake
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromi Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Hakoi H, Miki Y, Nomura S, Nakajima K, Terashima-Murase C, Takeichi T, Sano S, Akiyama M, Sakasegawa SI, Murakami M, Yamamoto K. Lysophospholipase D from Thermocrispum limits psoriatic inflammation by hydrolyzing epidermal lysoplasmalogen produced by group IIF secreted phospholipase A 2. Biochimie 2023; 215:75-87. [PMID: 37802209 DOI: 10.1016/j.biochi.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Epidermal lipids play important roles in skin homeostasis and diseases. Psoriasis is an inflammatory disease characterized by keratinocyte hyperproliferation and Th17 immune responses. We previously reported that ethanolamine-type lysoplasmalogen (P-LPE), preferentially produced by group IIF secreted PLA2 (sPLA2-IIF/PLA2G2F) that is expressed in the suprabasal epidermis, promotes epidermal hyperplasia in psoriatic inflammation. Herein, we show that forcible degradation of epidermal P-LPE by topical application of recombinant lysophospholipase D (LyPls-PLD) from Thermocrispum, a lysoplasmalogen-specific hydrolase, attenuated epidermal hyperplasia and inflammation in imiquimod-induced and K5.Stat3C-transgenic mouse psoriasis models. In humans, P-LPE levels were elevated in the tape-stripped stratum corneum of patients with psoriasis. Moreover, in primary cultured human epidermal keratinocytes, aberrant cell proliferation and activation by psoriatic cytokines were sPLA2-IIF/P-LPE-dependent and were suppressed by the addition of LyPls-PLD with a decrease in P-LPE. These findings confirm that the sPLA2-IIF/P-LPE axis in the epidermis indeed regulates psoriasis, that P-LPE is a lipid biomarker that predicts the severity of psoriasis, and that pharmacological removal of this bioactive lipid is useful to prevent the disease. Thus, our study may lead to the development of drug discovery and diagnostic techniques based on this pathway.
Collapse
Affiliation(s)
- Haruka Hakoi
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| | - Yoshimi Miki
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Saki Nomura
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.
| | | | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shin-Ichi Sakasegawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Asahi Kasei Pharma Corporation, Shizuoka, Japan.
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - Kei Yamamoto
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
11
|
Nakamura A, Sakai S, Taketomi Y, Tsuyama J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M, Shichita T. PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron 2023; 111:2995-3010.e9. [PMID: 37490917 DOI: 10.1016/j.neuron.2023.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Laboratory for Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
12
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Rasquel-Oliveira FS, Silva MDVD, Martelossi-Cebinelli G, Fattori V, Casagrande R, Verri WA. Specialized Pro-Resolving Lipid Mediators: Endogenous Roles and Pharmacological Activities in Infections. Molecules 2023; 28:5032. [PMID: 37446699 DOI: 10.3390/molecules28135032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
During an infection, inflammation mobilizes immune cells to eliminate the pathogen and protect the host. However, inflammation can be detrimental when exacerbated and/or chronic. The resolution phase of the inflammatory process is actively orchestrated by the specialized pro-resolving lipid mediators (SPMs), generated from omega-3 and -6 polyunsaturated fatty acids (PUFAs) that bind to different G-protein coupled receptors to exert their activity. As immunoresolvents, SPMs regulate the influx of leukocytes to the inflammatory site, reduce cytokine and chemokine levels, promote bacterial clearance, inhibit the export of viral transcripts, enhance efferocytosis, stimulate tissue healing, and lower antibiotic requirements. Metabolomic studies have evaluated SPM levels in patients and animals during infection, and temporal regulation of SPMs seems to be essential to properly coordinate a response against the microorganism. In this review, we summarize the current knowledge on SPM biosynthesis and classifications, endogenous production profiles and their effects in animal models of bacterial, viral and parasitic infections.
Collapse
Affiliation(s)
- Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| |
Collapse
|
14
|
Yamamoto K, Hakoi H, Nomura S, Murakami M. The Roles of sPLA 2s in Skin Homeostasis and Disease. Biomolecules 2023; 13:biom13040668. [PMID: 37189415 DOI: 10.3390/biom13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Among the phospholipase A2 (PLA2) family, the secreted PLA2 (sPLA2) family in mammals contains 11 members that exhibit unique tissue or cellular distributions and enzymatic properties. Current studies using knockout and/or transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed the diverse pathophysiological roles of sPLA2s in various biological events. Individual sPLA2s exert specific functions within tissue microenvironments, likely through the hydrolysis of extracellular phospholipids. Lipids are an essential biological component for skin homeostasis, and disturbance of lipid metabolism by deletion or overexpression of lipid-metabolizing enzymes or lipid-sensing receptors often leads to skin abnormalities that are easily visible on the outside. Over the past decades, our studies using knockout and transgenic mice for various sPLA2s have uncovered several new aspects of these enzymes as modulators of skin homeostasis and disease. This article summarizes the roles of several sPLA2s in skin pathophysiology, providing additional insight into the research fields of sPLA2s, lipids, and skin biology.
Collapse
Affiliation(s)
- Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Haruka Hakoi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Saki Nomura
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
15
|
Manson A, Winter T, Aukema HM. Phospholipase A 2 enzymes differently impact PUFA release and oxylipin formation ex vivo in rat hearts. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102555. [PMID: 36878084 DOI: 10.1016/j.plefa.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Phospholipase A2 (PLA2) enzymes cleave cell membrane phospholipids and release polyunsaturated fatty acids (PUFA), which can be converted into oxylipins. However, little is known about PLA2 preference for PUFA, and even less is known about how this further impacts oxylipin formation. Therefore, we investigated the role of different PLA2 groups in PUFA release and oxylipin formation in rat hearts. Sprague-Dawley rat heart homogenates were incubated without or with varespladib (VAR), methyl arachidonyl fluorophosphonate (MAFP) or EDTA. Free PUFA and oxylipins were determined by HPLC-MS/MS, and isoform expressions by RT-qPCR. Inhibition of sPLA2 IIA and/or V by VAR reduced the release of ARA and DHA, but only DHA oxylipins were inhibited. MAFP reduced the release of ARA, DHA, ALA, and EPA, and the formation of ARA, LA, DGLA, DHA, ALA, and EPA oxylipins. Interestingly, cyclooxygenase and 12-lipoxygenase oxylipins were not inhibited. mRNA expression levels of sPLA2 and iPLA2 isoforms were highest whereas levels of cPLA2 were low, consistent with activity. In conclusion, sPLA2 enzymes lead to the formation of DHA oxylipins, while iPLA2 is likely responsible for the formation of most other oxylipins in healthy rat hearts. Oxylipin formation cannot be implied from PUFA release, thus, both should be evaluated in PLA2 activity studies.
Collapse
Affiliation(s)
- Anne Manson
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada
| | - Tanja Winter
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada
| | - Harold M Aukema
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada.
| |
Collapse
|
16
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
17
|
Hirabayashi T, Kawaguchi M, Harada S, Mouri M, Takamiya R, Miki Y, Sato H, Taketomi Y, Yokoyama K, Kobayashi T, Tokuoka SM, Kita Y, Yoda E, Hara S, Mikami K, Nishito Y, Kikuchi N, Nakata R, Kaneko M, Kiyonari H, Kasahara K, Aiba T, Ikeda K, Soga T, Kurano M, Yatomi Y, Murakami M. Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups. Cell Rep 2023; 42:111940. [PMID: 36719796 DOI: 10.1016/j.celrep.2022.111940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
Abstract
Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Mai Kawaguchi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sayaka Harada
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Misa Mouri
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Rina Takamiya
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kohei Yokoyama
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Kyohei Mikami
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Norihito Kikuchi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara, 630-8506, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshiki Aiba
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazutaka Ikeda
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
18
|
Zhang H, Zhang Y, Mu T, Cao J, Liu X, Yang X, Ren D, Zhao K. Response of gut microbiota and ileal transcriptome to inulin intervention in HFD induced obese mice. Int J Biol Macromol 2023; 225:861-872. [PMID: 36402387 DOI: 10.1016/j.ijbiomac.2022.11.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Inulin, as a dietary fiber, exerted prominent anti-obesity effects by modulating gut microbiota. However, the possible relationship and interplay of gut microbiome and function of distal intestine is still unclear now. This study aimed to investigate the possible targets of microbes and the related intestinal genes mediated by inulin. C57 BL/6 male mice were randomly allocated to chow diet (Chow) group, high-fat diet (HFD) group, and HFD supplemented with 3 % inulin (Inulin) group. Compared with HFD treatment, inulin supplementation significantly decreased the body weight, fat deposition, and fasting blood glucose level. In addition, mice treated with inulin had a remarkable alteration in the structure of cecal microbiota and transcriptomic profiling of ileum. In particular, inulin supplementation significantly reversed the HFD induced expression of Bacteroides, Allobaculum and nonrank_f_Bacteroidates_S24-7_group, and reversed the expression of genes belonging to phospholipase A2 (PLA2) family and cytochrome P450 (CYP450) family. In summary, inulin might alleviate HFD-induced fat deposition and metabolic disorders via regulating lipid metabolism of ileum, while the interaction between the sPLA2s and gut microbes might play important roles in the process.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Yunhui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Tong Mu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Jianxin Cao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xiaoxia Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
19
|
Kuksis A, Pruzanski W. Hydrolysis of polyhydroxy polyunsaturated fatty acid-glycerophosphocholines by Group IIA, V, and X secretory phospholipases A 2. Lipids 2023; 58:3-17. [PMID: 36114729 DOI: 10.1002/lipd.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
It is widely accepted that unesterified polyunsaturated ω-6 and ω-3 fatty acids (PUFA) are converted through various lipoxygenases, cyclooxygenases, and cytochrome P450 enzymes to a range of oxygenated derivatives (oxylipins), among which the polyhydroxides of unesterified PUFA have recently been recognized as cell signaling molecules with anti-inflammatory and pro-resolving properties, known as specialized pro-resolving mediators (SPMs). This study investigates the mono-, di-, and trihydroxy 16:0/PUFA-GPCs, and the corresponding 16:0/SPM-GPC, in plasma lipoproteins. We describe the isolation and identification of mono-, di-, and trihydroxy AA, EPA, and DHA-GPC in plasma LDL, HDL, HDL3, and acute phase HDL using normal phase LC/ESI-MS, as previously reported. The lipoproteins contained variable amounts of the polyhydroxy-PUFA-GPC (0-10 nmol/mg protein), likely the product of lipid peroxidation and the action of various lipoxygenases and cytochrome P450 enzymes on both free fatty acids and the parent GPCs. Polyhydroxy-PUFA-GPC was hydrolyzed to variable extent (20%-80%) by the different secretory phospholipases A2 (sPLA2 s), with Group IIA sPLA2 showing the lowest and Group X sPLA2 the highest activity. Surprisingly, the trihydroxy-16:0/PUFA-GPC of APHDL was largely absent, while large amounts of unidentified material had migrated in the free fatty acid elution area. The free fatty acid mass spectra were consistent with that anticipated for branched chain polyhydroxy fatty acids. There was general agreement between the masses determined by LC/ESI-MS for the polyhydroxy PUFA-GPC and the masses calculated for the GPC equivalents of resolvins, protectins, and maresins using the fatty acid structures reported in the literature.
Collapse
Affiliation(s)
- Arnis Kuksis
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | |
Collapse
|
20
|
Pan G, Zhang P, Yang J, Wu Y. The regulatory effect of specialized pro-resolving mediators on immune cells. Biomed Pharmacother 2022; 156:113980. [DOI: 10.1016/j.biopha.2022.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
21
|
Lu E, Hara A, Sun S, Hallmark B, Snider JM, Seeds MC, Watkins JC, McCall CE, Zhang HH, Yao G, Chilton FH. Temporal Associations of Plasma Levels of the Secreted Phospholipase A 2 Family and Mortality in Severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.21.22282595. [PMID: 36451888 PMCID: PMC9709788 DOI: 10.1101/2022.11.21.22282595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Previous research suggests that group IIA secreted phospholipase A 2 (sPLA 2 -IIA) plays a role in and predicts severe COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal (days 0, 3 and 7) relationship between the levels of several members of a family of sPLA 2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA 2 isoforms, sPLA 2 -IIA, sPLA 2 -V, sPLA 2 -X, sPLA 2 -IB, sPLA 2 -IIC, and sPLA 2 -XVI, increased over the first 7 ICU days in those who succumbed to the disease. sPLA 2 -IIA outperformed top ranked cytokines and chemokines as predictors of patient outcome. A decision tree corroborated these results with day 0 to day 3 kinetic changes of sPLA 2 -IIA that separated the death and severe categories from the mild category and increases from day 3 to day 7 significantly enriched the lethal category. In contrast, there was a time-dependent decrease in sPLA 2 -IID and sPLA 2 -XIIB in patients with severe or lethal disease, and these two isoforms were at higher levels in mild patients. Taken together, proteomic analysis revealed temporal sPLA 2 patterns that reflect the critical roles of sPLA 2 isoforms in severe COVID-19 disease.
Collapse
|
22
|
Dong Y, Zhao Z, Simayi M, Chen C, Xu Z, Lv D, Tang B. Transcriptome profiles of fatty acid metabolism-related genes and immune infiltrates identify hot tumors for immunotherapy in cutaneous melanoma. Front Genet 2022; 13:860067. [PMID: 36199579 PMCID: PMC9527329 DOI: 10.3389/fgene.2022.860067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Immunotherapy with checkpoint inhibitors usually has a low response rate in some cutaneous melanoma (CM) cases due to its cold nature. Hence, identification of hot tumors is important to improve the immunotherapeutic efficacy and prognoses of CMs. Methods: Fatty acid (FA) metabolism-related genes were extracted from the Gene Set Enrichment Analysis and used in the non-negative matrix factorization (NMF), copy number variation frequency, tumor mutation burden (TMB), and immune-related analyses, such as immunophenoscore (IPS). We generate a risk model and a nomogram for predicting patient prognoses and predicted the potential drugs for therapies using the Connectivity Map. Moreover, the NMF and the risk model were validated in a cohort of cases in the GSE65904 and GSE54467. At last, immunohistochemistry (IHC) was used for further validation. Results: Based on the NMF of 11 FA metabolism-related DEGs, CM cases were stratified into two clusters. Cluster 2 cases had the characteristics of a hot tumor with higher immune infiltration levels, higher immune checkpoint (IC) molecules expression levels, higher TMB, and more sensitivity to immunotherapy and more potential immunotherapeutic drugs and were identified as hot tumors for immunotherapy. The risk model and nomogram displayed excellent predictor values. In addition, there were more small potential molecule drugs for therapies of CM patients, such as ambroxol. In immunohistochemistry (IHC), we could find that expression of PLA2G2D, ACOXL, and KMO was upregulated in CM tissues, while the expression of IL4I1, BBOX1, and CIDEA was reversed or not detected. Conclusion: The transcriptome profiles of FA metabolism-related genes were effective for distinguishing CM into hot–cold tumors. Our findings may be valuable for development of effective immunotherapy for CM patients and for proposing new therapy strategies.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maijimi Simayi
- Department of General Surgery, The First People’s Hospital of Kashgar, Kashgar, China
| | - Chufen Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Bing Tang,
| |
Collapse
|
23
|
Radbakhsh S, Katsiki N, Santos RD, Mikhailidis DP, Mantzoros CS, Sahebkar A. Effects of statins on specialized pro-resolving mediators: An additional pathway leading to resolution of inflammation. Metabolism 2022; 132:155211. [PMID: 35533891 DOI: 10.1016/j.metabol.2022.155211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
Statins are a class of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Anti-inflammatory and antioxidant properties, as well as improvement of endothelial function and plaque stabilization have also been proposed as parts of the pleiotropic effects of statins. Specialized pro-resolving mediators (SPMs) are endogenous lipid-derived molecules originating from ω-6 and ω-3 polyunsaturated fatty acids, such as arachidonic, docosahexaenoic and eicosapentaenoic acid that trigger and modulate the resolution of inflammation. Impaired SPM biosynthesis can lead to excessive or chronic inflammation and is implicated in the pathogenesis of several diseases. Exogenous administration of SPMs, including lipoxin, maresin, protectin, have been shown to improve both bacterial and viral infections, mainly in preclinical models, thus minimizing inflammation. Statin-triggered-SPM production in several in vitro and in vivo models may represent another anti-inflammatory pathway involving these drugs. This commentary discusses scientific publications on the effects of statins on SPMs and the resolution of inflammation process.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Center, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital campus, University College London, London, UK
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran.
| |
Collapse
|
24
|
Du K, Zou J, Wang B, Liu C, Khan M, Xie T, Huang X, Shen P, Tian Y, Yuan Y. A Metabolism-Related Gene Prognostic Index Bridging Metabolic Signatures and Antitumor Immune Cycling in Head and Neck Squamous Cell Carcinoma. Front Immunol 2022; 13:857934. [PMID: 35844514 PMCID: PMC9282908 DOI: 10.3389/fimmu.2022.857934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Background In the era of immunotherapy, predictive or prognostic biomarkers for head and neck squamous cell carcinoma (HNSCC) are urgently needed. Metabolic reprogramming in the tumor microenvironment (TME) is a non-negligible reason for the low therapeutic response to immune checkpoint inhibitor (ICI) therapy. We aimed to construct a metabolism-related gene prognostic index (MRGPI) for HNSCC bridging metabolic characteristics and antitumor immune cycling and identified the immunophenotype, genetic alternations, potential targeted inhibitors, and the benefit of immunotherapy in MRGPI-defined subgroups of HNSCC. Methods Based on The Cancer Genome Atlas (TCGA) HNSCC dataset (n = 502), metabolism-related hub genes were identified by the weighted gene co-expression network analysis (WGCNA). Seven genes were identified to construct the MRGPI by using the Cox regression method and validated with an HNSCC dataset (n = 270) from the Gene Expression Omnibus (GEO) database. Afterward, the prognostic value, metabolic activities, genetic alternations, gene set enrichment analysis (GSEA), immunophenotype, Connectivity map (cMAP), and benefit of immunotherapy in MRGPI-defined subgroups were analyzed. Results The MRGPI was constructed based on HPRT1, AGPAT4, AMY2B, ACADL, CKM, PLA2G2D, and ADA. Patients in the low-MRGPI group had better overall survival than those in the high-MRGPI group, consistent with the results in the GEO cohort (cutoff value = 1.01). Patients with a low MRGPI score display lower metabolic activities and an active antitumor immunity status and more benefit from immunotherapy. In contrast, a higher MRGPI score was correlated with higher metabolic activities, more TP53 mutation rate, lower antitumor immunity ability, an immunosuppressive TME, and less benefit from immunotherapy. Conclusion The MRGPI is a promising indicator to distinguish the prognosis, the metabolic, molecular, and immune phenotype, and the benefit from immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingwen Zou
- Department of Liver Surgery of the Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Piao Shen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yunhong Tian, ; Yawei Yuan,
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yunhong Tian, ; Yawei Yuan,
| |
Collapse
|
25
|
Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 2022; 605:146-151. [PMID: 35314834 PMCID: PMC9783543 DOI: 10.1038/s41586-022-04630-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.
Collapse
|
26
|
Liang L, Takamiya R, Miki Y, Heike K, Taketomi Y, Sugimoto N, Yamaguchi M, Shitara H, Nishito Y, Kobayashi T, Hirabayashi T, Murakami M. Group IVE cytosolic phospholipase A 2 limits psoriatic inflammation by mobilizing the anti-inflammatory lipid N-acylethanolamine. FASEB J 2022; 36:e22301. [PMID: 35478358 DOI: 10.1096/fj.202101958r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Psoriasis is an inflammatory disorder characterized by keratinocyte hyper-proliferation and Th17-type immune responses. However, the roles of bioactive lipids and the regulation of their biosynthesis in this chronic skin disease are not fully understood. Herein, we show that group IVE cytosolic phospholipase A2 (cPLA2 ε/PLA2G4E) plays a counterregulatory role against psoriatic inflammation by producing the anti-inflammatory lipid N-acylethanolamine (NAE). Lipidomics analysis of mouse skin revealed that NAE species and their precursors (N-acyl-phosphatidylethanolamine and glycerophospho-N-acylethanolamine) were robustly increased in parallel with the ongoing process of imiquimod (IMQ)-induced psoriasis, accompanied by a marked upregulation of cPLA2 ε in epidermal keratinocytes. Genetic deletion of cPLA2 ε exacerbated IMQ-induced ear swelling and psoriatic marker expression, with a dramatic reduction of NAE-related lipids in IMQ-treated, and even normal, skin. Stimulation of cultured human keratinocytes with psoriatic cytokines concomitantly increased PLA2G4E expression and NAE production, and supplementation with NAEs significantly attenuated the cytokine-induced upregulation of the psoriatic marker S100A9. Increased expression of cPLA2 ε was also evident in the epidermis of psoriatic patients. These findings reveal for the first time the in vivo role of cPLA2 ε, which is highly induced in the keratinocytes of the psoriatic skin, promotes the biosynthesis of NAE-related lipids, and contributes to limiting psoriatic inflammation.
Collapse
Affiliation(s)
- Luyiyun Liang
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rina Takamiya
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanako Heike
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Sugimoto
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Midori Yamaguchi
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
27
|
Kudo K, Miki Y, Carreras J, Nakayama S, Nakamoto Y, Ito M, Nagashima E, Yamamoto K, Higuchi H, Morita SY, Inoue A, Aoki J, Ando K, Nakamura N, Murakami M, Kotani A. Secreted phospholipase A 2 modifies extracellular vesicles and accelerates B cell lymphoma. Cell Metab 2022; 34:615-633.e8. [PMID: 35294862 DOI: 10.1016/j.cmet.2022.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) including exosomes act as intercellular communicators by transferring protein and microRNA cargoes, yet the role of EV lipids remains unclear. Here, we show that the pro-tumorigenic action of lymphoma-derived EVs is augmented via secreted phospholipase A2 (sPLA2)-driven lipid metabolism. Hydrolysis of EV phospholipids by group X sPLA2, which was induced in macrophages of Epstein-Barr virus (EBV) lymphoma, increased the production of fatty acids, lysophospholipids, and their metabolites. sPLA2-treated EVs were smaller and self-aggregated, showed better uptake, and increased cytokine expression and lipid mediator signaling in tumor-associated macrophages. Pharmacological inhibition of endogenous sPLA2 suppressed lymphoma growth in EBV-infected humanized mice, while treatment with sPLA2-modified EVs reversed this phenotype. Furthermore, sPLA2 expression in human large B cell lymphomas inversely correlated with patient survival. Overall, the sPLA2-mediated EV modification promotes tumor development, highlighting a non-canonical mechanistic action of EVs as an extracellular hydrolytic platform of sPLA2.
Collapse
Affiliation(s)
- Kai Kudo
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental Metabolic Health Sciences Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Shunya Nakayama
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan; Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Yasushi Nakamoto
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Etsuko Nagashima
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Kei Yamamoto
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Higuchi
- Center for Cancer Immunology, Cutaneous Biology Research Center, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Ai Kotani
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
28
|
Lipid Droplets, Phospholipase A 2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121891. [PMID: 34944707 PMCID: PMC8699036 DOI: 10.3390/biomedicines9121891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets, classically regarded as static storage organelles, are currently considered as dynamic structures involved in key processes of lipid metabolism, cellular homeostasis and signaling. Studies on the inflammatory state of atherosclerotic plaques suggest that circulating monocytes interact with products released by endothelial cells and may acquire a foamy phenotype before crossing the endothelial barrier and differentiating into macrophages. One such compound released in significant amounts into the bloodstream is arachidonic acid, the common precursor of eicosanoids, and a potent inducer of neutral lipid synthesis and lipid droplet formation in circulating monocytes. Members of the family of phospholipase A2, which hydrolyze the fatty acid present at the sn-2 position of phospholipids, have recently emerged as key controllers of lipid droplet homeostasis, regulating their formation and the availability of fatty acids for lipid mediator production. In this paper we discuss recent findings related to lipid droplet dynamics in immune cells and the ways these organelles are involved in regulating arachidonic acid availability and metabolism in the context of atherosclerosis.
Collapse
|
29
|
Scott KF, Mann TJ, Fatima S, Sajinovic M, Razdan A, Kim RR, Cooper A, Roohullah A, Bryant KJ, Gamage KK, Harman DG, Vafaee F, Graham GG, Church WB, Russell PJ, Dong Q, de Souza P. Human Group IIA Phospholipase A 2-Three Decades on from Its Discovery. Molecules 2021; 26:molecules26237267. [PMID: 34885848 PMCID: PMC8658914 DOI: 10.3390/molecules26237267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.
Collapse
Affiliation(s)
- Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Correspondence: ; Tel.: +61-2-8738-9026
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Anshuli Razdan
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Adam Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Aflah Roohullah
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Katherine J. Bryant
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Kasuni K. Gamage
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - David G. Harman
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
- UNSW Data Science Hub, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—QUT, Brisbane, QLD 4102, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Du H, Tang J, Li X, Wang X, Wu L, Zhang R, Hu P, Yang Y. Siglec-15 Is an Immune Suppressor and Potential Target for Immunotherapy in the Pre-Metastatic Lymph Node of Colorectal Cancer. Front Cell Dev Biol 2021; 9:691937. [PMID: 34722496 PMCID: PMC8548766 DOI: 10.3389/fcell.2021.691937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/06/2021] [Indexed: 01/25/2023] Open
Abstract
Lymph node metastasis indicates a poor prognosis in colorectal cancer. To better understand the underlying mechanisms of lymph node metastasis, we analyzed transcriptome characteristics of the pre-metastatic lymph node, a putative microenvironment favorable for the seeding and proliferation of cancer cells. Thus, we tried to compare and elucidate the transcriptional and immune characteristics of sentinel lymph nodes (SNs) with matched non-sentinel lymph nodes (NSNs) in colorectal cancer patients. In this study, a total of 38 pairs of SNs and NSNs were collected, in which 26 pairs of non-metastatic lymph nodes were subjected to RNA-seq and bioinformatics analysis for the gene expression profiles. There were 16 differentially expressed genes between SNs and NSNs being identified, including 9 upregulated and 7 downregulated genes in SN. Gene Ontology (GO) classification analysis revealed that the differentially expressed genes were mainly involved in leukocyte differentiation, chemokine secretion, and immune system regulation. In the meantime, gene set enrichment analysis (GSEA) showed that immune-related signaling pathways, such as transforming growth factor beta (TGF-β) signaling and tumor necrosis factor alpha (TNF-α)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, were enriched in NSN, while cell proliferation–related signaling pathways were enriched in SN, including MYC signaling and G2M checkpoint signaling. We further identified SIGLEC15 as a top upregulated gene in SN. However, RNAscope assay showed that SIGLEC15 was not largely co-expressed with M2 macrophage marker CD163. We then selected eight pairs of lymph nodes for further cytological studies. Flow cytometry analysis revealed that Siglec-15 was expressed on all myeloid cell subsets. The relative expression of SEGLEC15 (SN/NSN) was correlated with the microsatellite instability (MSI) status in colorectal cancer patients. Further studies found that small interfering ribonucleic acid (siRNA)-mediated silencing of SLGLEC15 can enhance the anti-tumor function of T cells, as indicated by cytokine release analysis. In conclusion, we presented here a first report on the gene expression profiling of the pre-metastatic lymph node in colorectal cancer. The findings in this study suggest that SIGLEC15 plays an important role in SN immunosuppression. SEGLEC15 silencing could be a therapeutic strategy for restoring T cell function in tumor SNs.
Collapse
Affiliation(s)
- Hang Du
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jingling Tang
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiaoyun Li
- Department of Anorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xinjun Wang
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Liyun Wu
- Department of Research and Development, Sinorda Biotechnology Co., Ltd, Guizhou, China
| | - Ruyi Zhang
- Department of Anorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Pingsheng Hu
- Department of Research and Development, Sinorda Biotechnology Co., Ltd, Guizhou, China
| | - Yuan Yang
- Clinical Medical Research Center, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
31
|
Liu H, Xu R, Gao C, Zhu T, Liu L, Yang Y, Zeng H, Huang Y, Wang H. Metabolic Molecule PLA2G2D Is a Potential Prognostic Biomarker Correlating With Immune Cell Infiltration and the Expression of Immune Checkpoint Genes in Cervical Squamous Cell Carcinoma. Front Oncol 2021; 11:755668. [PMID: 34733790 PMCID: PMC8558485 DOI: 10.3389/fonc.2021.755668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
Cervical squamous cell carcinoma (CSCC) is the major pathological type of cervical cancer (CC), the second most prevalent reproductive system malignant tumor threatening the health of women worldwide. The prognosis of CSCC patients is largely affected by the tumor immune microenvironment (TIME); however, the biomarker landscape related to the immune microenvironment of CSCC and patient prognosis is less characterized. Here, we analyzed RNA-seq data of CSCC patients from The Cancer Genome Atlas (TCGA) database by dividing it into high- and low-immune infiltration groups with the MCP-counter and ESTIMATE R packages. After combining weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis, we found that PLA2G2D, a metabolism-associated gene, is the top gene positively associated with immune infiltration and patient survival. This finding was validated using data from The Cancer Genome Characterization Initiative (CGCI) database and further confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, multiplex immunohistochemistry (mIHC) was performed to confirm the differential infiltration of immune cells between PLA2G2D-high and PLA2G2D-low tumors at the protein level. Our results demonstrated that PLA2G2D expression was significantly correlated with the infiltration of immune cells, especially T cells and macrophages. More importantly, PLA2G2D-high tumors also exhibited higher infiltration of CD8+ T cells inside the tumor region than PLA2G2D-low tumors. In addition, PLA2G2D expression was found to be positively correlated with the expression of multiple immune checkpoint genes (ICPs). Moreover, based on other immunotherapy cohort data, PLA2G2D high expression is correlated with increased cytotoxicity and favorable response to immune checkpoint blockade (ICB) therapy. Hence, PLA2G2D could be a novel potential biomarker for immune cell infiltration, patient survival, and the response to ICB therapy in CSCC and may represent a promising target for the treatment of CSCC patients.
Collapse
Affiliation(s)
- Hong Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiyi Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Zhu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihong Zeng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Pungerčar J, Bihl F, Lambeau G, Križaj I. What do secreted phospholipases A 2 have to offer in combat against different viruses up to SARS-CoV-2? Biochimie 2021; 189:40-50. [PMID: 34097986 PMCID: PMC8449419 DOI: 10.1016/j.biochi.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/09/2022]
Abstract
Secreted phospholipases A2 (sPLA2s) form a widespread group of structurally-related enzymes that catalyse the hydrolysis of the sn-2 ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. In humans, nine catalytically active and two inactive sPLA2 proteins have been identified. These enzymes play diverse biological roles, including host defence against bacteria, parasites and viruses. Several of these endogenous sPLA2s may play a defensive role in viral infections, as they display in vitro antiviral activity by both direct and indirect mechanisms. However, endogenous sPLA2s may also exert an offensive and negative role, dampening the antiviral response or promoting inflammation in animal models of viral infection. Similarly, several exogenous sPLA2s, most of them from snake venoms and other animal venoms, possess in vitro antiviral activities. Thus, both endogenous and exogenous sPLA2s may be exploited for the development of new antiviral substances or as therapeutic targets for antagonistic drugs that may promote a more robust antiviral response. In this review, the antiviral versus proviral role of both endogenous and exogenous sPLA2s against various viruses including coronaviruses is presented. Based on the highlighted developments in this area of research, possible directions of future investigation are envisaged. One of them is also a possibility of exploiting sPLA2s as biological markers of the severity of the Covid-19 pandemic caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Cindy Yang SY, Lien SC, Wang BX, Clouthier DL, Hanna Y, Cirlan I, Zhu K, Bruce JP, El Ghamrasni S, Iafolla MAJ, Oliva M, Hansen AR, Spreafico A, Bedard PL, Lheureux S, Razak A, Speers V, Berman HK, Aleshin A, Haibe-Kains B, Brooks DG, McGaha TL, Butler MO, Bratman SV, Ohashi PS, Siu LL, Pugh TJ. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat Commun 2021; 12:5137. [PMID: 34446728 PMCID: PMC8390680 DOI: 10.1038/s41467-021-25432-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Serial circulating tumor DNA (ctDNA) monitoring is emerging as a non-invasive strategy to predict and monitor immune checkpoint blockade (ICB) therapeutic efficacy across cancer types. Yet, limited data exist to show the relationship between ctDNA dynamics and tumor genome and immune microenvironment in patients receiving ICB. Here, we present an in-depth analysis of clinical, whole-exome, transcriptome, and ctDNA profiles of 73 patients with advanced solid tumors, across 30 cancer types, from a phase II basket clinical trial of pembrolizumab (NCT02644369) and report changes in genomic and immune landscapes (primary outcomes). Patients stratified by ctDNA and tumor burden dynamics correspond with survival and clinical benefit. High mutation burden, high expression of immune signatures, and mutations in BRCA2 are associated with pembrolizumab molecular sensitivity, while abundant copy-number alterations and B2M loss-of-heterozygosity corresponded with resistance. Upon treatment, induction of genes expressed by T cell, B cell, and myeloid cell populations are consistent with sensitivity and resistance. We identified the upregulated expression of PLA2G2D, an immune-regulating phospholipase, as a potential biomarker of adaptive resistance to ICB. Together, these findings provide insights into the diversity of immunogenomic mechanisms that underpin pembrolizumab outcomes.
Collapse
Affiliation(s)
- S Y Cindy Yang
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Scott C Lien
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ben X Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Derek L Clouthier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Iulia Cirlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marco A J Iafolla
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marc Oliva
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aaron R Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Albiruni Razak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Speers
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcus O Butler
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
34
|
Fan L, Lei H, Lin Y, Zhou Z, Shu G, Yan Z, Chen H, Zhang T, Yin G. Identification of a Gene Set Correlated With Immune Status in Ovarian Cancer by Transcriptome-Wide Data Mining. Front Mol Biosci 2021; 8:670666. [PMID: 34395521 PMCID: PMC8363306 DOI: 10.3389/fmolb.2021.670666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint blocking (ICB) immunotherapy has achieved great success in the treatment of various malignancies. Although not have been approved for the treatment of ovarian cancer (OC), it has been actively tested for the treatment of OC. However, biomarkers that could indicate the immune status of OC and predict the response to ICB are rare. We downloaded RNAseq and clinical data of OC from The Cancer Genome Atlas (TCGA). Data analysis revealed both TMBhigh and immunityhigh were significantly related to better survival of OC. Up-regulated differentially expressed genes (Up-DEGs) were identified by analyzing the gene expression levels. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in the "GSVA" and "limma" package in R software. The correlation of genes with overall survival was also analyzed by conducted Kaplan-Meier survival analysis. Four genes, CXCL13, FCRLA, MS4A1, and PLA2G2D were found positively correlated with better prognosis of OC and mainly involved in immune response-related pathways. Finally, TIMER and TIDE were used to predict gene immune function and its association with immunotherapy. We found that these four genes were positively correlated with better response to immune checkpoint blockade-based immunotherapy. Altogether, CXCL13, FCRLA, MS4A1, and PLA2G2D may be used as potential therapeutic genes for reflecting OC immune status and predicting response to immunotherapy.
Collapse
Affiliation(s)
- Lili Fan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Han Lei
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ying Lin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhengwei Zhou
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhipeng Yan
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Haotian Chen
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
35
|
Li Y, Lyu S, Gao Z, Zha W, Wang P, Shan Y, He J, Huang S. Identification of Potential Prognostic Biomarkers Associated With Cancerometastasis in Skin Cutaneous Melanoma. Front Genet 2021; 12:687979. [PMID: 34367245 PMCID: PMC8337057 DOI: 10.3389/fgene.2021.687979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly aggressive tumor. The mortality and drug resistance among it are high. Thus, exploring predictive biomarkers for prognosis has become a priority. We aimed to find immune cell-based biomarkers for survival prediction. Here 321 genes were differentially expressed in immune-related groups after ESTIMATE analysis and differential analysis. Two hundred nineteen of them were associated with the metastasis of SKCM via weighted gene co-expression network analysis. Twenty-six genes in this module were hub genes. Twelve of the 26 genes were related to overall survival in SKCM patients. After a multivariable Cox regression analysis, we obtained six of these genes (PLA2G2D, IKZF3, MS4A1, ZC3H12D, FCRL3, and P2RY10) that were independent prognostic signatures, and a survival model of them performed excellent predictive efficacy. The results revealed several essential genes that may act as significant prognostic factors of SKCM, which could deepen our understanding of the metastatic mechanisms and improve cancer treatment.
Collapse
Affiliation(s)
- Yang Li
- Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Shanshan Lyu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhe Gao
- Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Weifeng Zha
- Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Ping Wang
- Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Yunyun Shan
- Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Suyang Huang
- Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, China
| |
Collapse
|
36
|
Luckett-Chastain LR, King CJ, McShan WM, Gipson JR, Gillaspy AF, Gallucci RM. Loss of Interleukin-6 Influences Transcriptional Immune Signatures and Alters Bacterial Colonization in the Skin. Front Microbiol 2021; 12:658980. [PMID: 34295313 PMCID: PMC8290525 DOI: 10.3389/fmicb.2021.658980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The skin functions as a protective barrier to inhibit the entry of foreign pathogens, all the while hosting a diverse milieu of microorganisms. Over time, skin cells, immune cells, cytokines, and microbes interact to integrate the processes of maintaining the skin's physical and immune barrier. In the present study, the basal expression of two immunologically divergent mouse strains C57BL/6 and BALB/c, as well as a strain on the C57 background lacking IL-6, was characterized. Additionally, cutaneous antimicrobial gene expression profiles and skin bacterial microbiome were assessed between strains. Total RNA sequencing was performed on untreated C57BL/6 (control), BALB/c, and IL-6-deficient skin samples and found over 3,400 genes differentially modulated between strains. It was found that each strain modulated its own transcriptional "profile" associated with skin homeostasis and also influenced the overall bacterial colonization as indicated by the differential phyla present on each strain. Together, these data not only provide a comprehensive view of the transcriptional changes in homeostatic skin of different mouse strains but also highlight the possible influence of the strain differences (e.g., Th1/Th2 balance) as well as a role for IL-6 in overall skin immunity and resident microbial populations.
Collapse
Affiliation(s)
- Lerin R. Luckett-Chastain
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Catherine J. King
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - William M. McShan
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Jenny R. Gipson
- College of Medicine Core Facilities, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Allison F. Gillaspy
- College of Medicine Core Facilities, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Randle M. Gallucci
- Department of Pharmaceutical Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| |
Collapse
|
37
|
Taketomi Y, Endo Y, Higashi T, Murase R, Ono T, Taya C, Kobayashi T, Murakami M. Mast Cell-Specific Deletion of Group III Secreted Phospholipase A 2 Impairs Mast Cell Maturation and Functions. Cells 2021; 10:1691. [PMID: 34359862 PMCID: PMC8303318 DOI: 10.3390/cells10071691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Tissue-resident mast cells (MCs) have important roles in IgE-associated and -independent allergic reactions. Although microenvironmental alterations in MC phenotypes affect the susceptibility to allergy, understanding of the regulation of MC maturation is still incomplete. We previously reported that group III secreted phospholipase A2 (sPLA2-III) released from immature MCs is functionally coupled with lipocalin-type prostaglandin D2 (PGD2) synthase in neighboring fibroblasts to supply a microenvironmental pool of PGD2, which in turn acts on the PGD2 receptor DP1 on MCs to promote their proper maturation. In the present study, we reevaluated the role of sPLA2-III in MCs using a newly generated MC-specific Pla2g3-deficient mouse strain. Mice lacking sPLA2-III specifically in MCs, like those lacking the enzyme in all tissues, had immature MCs and displayed reduced local and systemic anaphylactic responses. Furthermore, MC-specific Pla2g3-deficient mice, as well as MC-deficient KitW-sh mice reconstituted with MCs prepared from global Pla2g3-null mice, displayed a significant reduction in irritant contact dermatitis (ICD) and an aggravation of contact hypersensitivity (CHS). The increased CHS response by Pla2g3 deficiency depended at least partly on the reduced expression of hematopoietic PGD2 synthase and thereby reduced production of PGD2 due to immaturity of MCs. Overall, our present study has confirmed that MC-secreted sPLA2-III promotes MC maturation, thereby facilitating acute anaphylactic and ICD reactions and limiting delayed CHS response.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Center for Disease Biology and integrative Medicine, Laboratory of Microenvironmental and Metabolic Health Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (T.H.)
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
| | - Yuki Endo
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
- Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan;
| | - Takayoshi Higashi
- Center for Disease Biology and integrative Medicine, Laboratory of Microenvironmental and Metabolic Health Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (T.H.)
| | - Remi Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
| | - Tomio Ono
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (T.O.); (C.T.)
| | - Choji Taya
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (T.O.); (C.T.)
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan;
| | - Makoto Murakami
- Center for Disease Biology and integrative Medicine, Laboratory of Microenvironmental and Metabolic Health Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (T.H.)
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
| |
Collapse
|
38
|
Koga T, Sasaki F, Saeki K, Tsuchiya S, Okuno T, Ohba M, Ichiki T, Iwamoto S, Uzawa H, Kitajima K, Meno C, Nakamura E, Tada N, Fukui Y, Kikuta J, Ishii M, Sugimoto Y, Nakao M, Yokomizo T. Expression of leukotriene B 4 receptor 1 defines functionally distinct DCs that control allergic skin inflammation. Cell Mol Immunol 2021; 18:1437-1449. [PMID: 33037399 PMCID: PMC8167169 DOI: 10.1038/s41423-020-00559-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022] Open
Abstract
Leukotriene B4 (LTB4) receptor 1 (BLT1) is a chemotactic G protein-coupled receptor expressed by leukocytes, such as granulocytes, macrophages, and activated T cells. Although there is growing evidence that BLT1 plays crucial roles in immune responses, its role in dendritic cells remains largely unknown. Here, we identified novel DC subsets defined by the expression of BLT1, namely, BLT1hi and BLT1lo DCs. We also found that BLT1hi and BLT1lo DCs differentially migrated toward LTB4 and CCL21, a lymph node-homing chemoattractant, respectively. By generating LTB4-producing enzyme LTA4H knockout mice and CD11c promoter-driven Cre recombinase-expressing BLT1 conditional knockout (BLT1 cKO) mice, we showed that the migration of BLT1hi DCs exacerbated allergic contact dermatitis. Comprehensive transcriptome analysis revealed that BLT1hi DCs preferentially induced Th1 differentiation by upregulating IL-12p35 expression, whereas BLT1lo DCs accelerated T cell proliferation by producing IL-2. Collectively, the data reveal an unexpected role for BLT1 as a novel DC subset marker and provide novel insights into the role of the LTB4-BLT1 axis in the spatiotemporal regulation of distinct DC subsets.
Collapse
Affiliation(s)
- Tomoaki Koga
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Fumiyuki Sasaki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Mai Ohba
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takako Ichiki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Satoshi Iwamoto
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hirotsugu Uzawa
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Keiko Kitajima
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
39
|
Zheng J, Meyerholz D, Wong LYR, Gelb M, Murakami M, Perlman S. Coronavirus-specific antibody production in middle-aged mice requires phospholipase A2G2D. J Clin Invest 2021; 131:147201. [PMID: 34060490 PMCID: PMC8266207 DOI: 10.1172/jci147201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Worse outcomes occur in aged compared with young populations after infections with respiratory viruses, including pathogenic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2), and are associated with a suboptimal lung milieu ("inflammaging"). We previously showed that a single inducible phospholipase, PLA2G2D, is associated with a proresolving/antiinflammatory response in the lungs, and increases with age. Survival was increased in naive Pla2g2d-/- mice infected with SARS-CoV resulting from augmented respiratory dendritic cell (rDC) activation and enhanced priming of virus-specific T cells. Here, in contrast, we show that intranasal immunization provided no additional protection in middle-aged Pla2g2d-/- mice infected with any of the 3 pathogenic human coronaviruses because virtually no virus-specific antibodies or follicular helper CD4+ T (Tfh) cells were produced. Using MERS-CoV-infected mice, we found that these effects did not result from T or B cell intrinsic factors. Rather, they resulted from enhanced, and ultimately, pathogenic rDC activation, as manifested most prominently by enhanced IL-1β expression. Wild-type rDC transfer to Pla2g2d-/- mice in conjunction with partial IL-1β blockade reversed this defect and resulted in increased virus-specific antibody and Tfh responses. Together, these results indicate that PLA2G2D has an unexpected role in the lungs, serving as an important modulator of rDC activation, with protective and pathogenic effects in respiratory coronavirus infections and immunization, respectively.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology and
| | | | | | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Makoto Murakami
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
40
|
Kuefner MS. Secretory Phospholipase A2s in Insulin Resistance and Metabolism. Front Endocrinol (Lausanne) 2021; 12:732726. [PMID: 34512555 PMCID: PMC8429832 DOI: 10.3389/fendo.2021.732726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
The phospholipases A2 (PLA2) superfamily encompasses enzymes commonly found in mammalian tissues and snake venom. Many of these enzymes have unique tissue distribution, function, and substrate specificity suggesting distinct biological roles. In the past, much of the research on secretory PLA2s has analyzed their roles in inflammation, anti-bacterial actions, and atherosclerosis. In recent studies utilizing a variety of mouse models, pancreatic islets, and clinical trials, a role for many of these enzymes in the control of metabolism and insulin action has been revealed. In this review, this research, and the unique contributions of the PLA2 enzymes in insulin resistance and metabolism.
Collapse
|
41
|
Murakami M, Sato H, Taketomi Y. Updating Phospholipase A 2 Biology. Biomolecules 2020; 10:E1457. [PMID: 33086624 PMCID: PMC7603386 DOI: 10.3390/biom10101457] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.S.); (Y.T.)
| | | | | |
Collapse
|
42
|
Auray G, Talker SC, Keller I, Python S, Gerber M, Liniger M, Ganges L, Bruggmann R, Ruggli N, Summerfield A. High-Resolution Profiling of Innate Immune Responses by Porcine Dendritic Cell Subsets in vitro and in vivo. Front Immunol 2020; 11:1429. [PMID: 32733474 PMCID: PMC7358342 DOI: 10.3389/fimmu.2020.01429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
The present study investigated the transcriptomic response of porcine dendritic cells (DC) to innate stimulation in vitro and in vivo. The aim was to identify DC subset-specialization, suitable Toll-like receptor (TLR) ligands targeting plasmacytoid DC (pDC), and the DC activation profile during highly and low virulent classical swine fever virus (CSFV, strain Eystrup and Pinar del Rio, respectively) infection, chosen as model for a virus causing a severe immunopathology. After identification of porcine conventional DC (cDC) 1, cDC2, pDC and a monocyte-derived subset in lymphoid tissues, we characterized DC activation using transcriptomics, and focused on chemokines, interferons, cytokines, as well as on co-stimulatory and inhibitory molecules. We demonstrate that porcine pDC provide important signals for Th1 and interferon responses, with CpG triggering the strongest responses in pDC. DC isolated early after infection of pigs with either of the two CSFV strains showed prominent upregulation of CCL5, CXCL9, CXCL10, CXCL11, and XCL1, as well as of the cytokines TNFSF13B, IL6, IL7, IL12B, IL15, IL27. Transcription of IL12B and many interferon genes were mostly restricted to pDC. Interestingly, the infection was associated with a prominent induction of inhibitory and cell death receptors. When comparing low and highly virulent CSFV strains, the latter induced a stronger inflammatory and antiviral response but a weaker cell cycle response, and reduced antigen presentation functions of DC. Taken together, we provide high-resolution information on DC activation in pigs, as well as information on how DC modulation could be linked to CSFV immunopathology.
Collapse
Affiliation(s)
- Gaël Auray
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Stephanie C Talker
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Irene Keller
- Department for Biomedical Research and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Harayama T, Shimizu T. Roles of polyunsaturated fatty acids, from mediators to membranes. J Lipid Res 2020; 61:1150-1160. [PMID: 32487545 PMCID: PMC7397749 DOI: 10.1194/jlr.r120000800] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
PUFAs, such as AA and DHA, are recognized as important biomolecules, but understanding their precise roles and modes of action remains challenging. PUFAs are precursors for a plethora of signaling lipids, for which knowledge about synthetic pathways and receptors has accumulated. However, due to their extreme diversity and the ambiguity concerning the identity of their cognate receptors, the roles of PUFA-derived signaling lipids require more investigation. In addition, PUFA functions cannot be explained just as lipid mediator precursors because they are also critical for the regulation of membrane biophysical properties. The presence of PUFAs in membrane lipids also affects the functions of transmembrane proteins and peripheral membrane proteins. Although the roles of PUFAs as membrane lipid building blocks were difficult to analyze, the discovery of lysophospholipid acyltransferases (LPLATs), which are critical for their incorporation, advanced our understanding. Recent studies unveiled how LPLATs affect PUFA levels in membrane lipids, and their genetic manipulation became an excellent strategy to study the roles of PUFA-containing lipids. In this review, we will provide an overview of metabolic pathways regulating PUFAs as lipid mediator precursors and membrane components and update recent progress about their functions. Some issues to be solved for future research will also be discussed.
Collapse
Affiliation(s)
- Takeshi Harayama
- Department of Biochemistry and National Centre of Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan and Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Watanabe K, Taketomi Y, Miki Y, Kugiyama K, Murakami M. Group V secreted phospholipase A 2 plays a protective role against aortic dissection. J Biol Chem 2020; 295:10092-10111. [PMID: 32482892 DOI: 10.1074/jbc.ra120.013753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aortic dissection is a life-threatening aortopathy involving separation of the aortic wall, whose underlying mechanisms are still incompletely understood. Epidemiological evidence suggests that unsaturated fatty acids improve cardiovascular health. Here, using quantitative RT-PCR, histological analyses, magnetic cell sorting and flow cytometry assays, and MS-based lipidomics, we show that the activity of a lipid-metabolizing enzyme, secreted phospholipase A2 group V (sPLA2-V), protects against aortic dissection by endogenously mobilizing vasoprotective lipids. Global and endothelial cell-specific sPLA2-V-deficient mice frequently developed aortic dissection shortly after infusion of angiotensin II (AT-II). We observed that in the AT-II-treated aorta, endothelial sPLA2-V mobilized oleic and linoleic acids, which attenuated endoplasmic reticulum stress, increased the expression of lysyl oxidase, and thereby stabilized the extracellular matrix in the aorta. Of note, dietary supplementation with oleic or linoleic acid reversed the increased susceptibility of sPLA2-V-deficient mice to aortic dissection. These findings reveal an unexplored functional link between sPLA2-driven phospholipid metabolism and aortic stability, possibly contributing to the development of improved diagnostic and/or therapeutic strategies for preventing aortic dissection.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan.,Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan .,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,FORCE, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
45
|
Sato H, Taketomi Y, Miki Y, Murase R, Yamamoto K, Murakami M. Secreted Phospholipase PLA2G2D Contributes to Metabolic Health by Mobilizing ω3 Polyunsaturated Fatty Acids in WAT. Cell Rep 2020; 31:107579. [DOI: 10.1016/j.celrep.2020.107579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/18/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
|
46
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
47
|
Holopainen M, Colas RA, Valkonen S, Tigistu-Sahle F, Hyvärinen K, Mazzacuva F, Lehenkari P, Käkelä R, Dalli J, Kerkelä E, Laitinen S. Polyunsaturated fatty acids modify the extracellular vesicle membranes and increase the production of proresolving lipid mediators of human mesenchymal stromal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1350-1362. [DOI: 10.1016/j.bbalip.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
48
|
Norris PC, Libreros S, Serhan CN. Resolution metabolomes activated by hypoxic environment. SCIENCE ADVANCES 2019; 5:eaax4895. [PMID: 31681846 PMCID: PMC6810174 DOI: 10.1126/sciadv.aax4895] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/14/2019] [Indexed: 05/02/2023]
Abstract
Targeting hypoxia-sensitive pathways in immune cells is of interest in treating diseases. Here, we demonstrate that physiologic hypoxia (1% O2), as encountered in bone marrow and spleen, accelerates human M2 macrophage efferocytosis of apoptotic-neutrophils and senescent erythrocytes via lipolysis-dependent biosynthesis of specialized pro-resolving mediators (SPMs), i.e. resolvins, protectins, maresins and lipoxin. SPM-production was enhanced via hypoxia in M2 macrophages interacting with neutrophils and erythrocytes enabling structural elucidation of a novel eicosapentaenoic acid (EPA)-derived resolvin, resolvin E4 (RvE4) that stimulates efferocytosis of senescent erythrocytes and more potently than aspirin in mouse hemorrhagic exudates. In hypoxia, glycolysis inhibition enhanced neutrophil RvE4-SPM biosynthesis. Human macrophage-erythrocyte co-incubations in physiologic hypoxia produced RvE4-SPM from erythrocyte stores of omega-3 fatty acids. These results indicate that hypoxic environments, including bone marrow and spleen as well as sites of inflammation, activate SPM-biosynthetic circuits that in turn stimulate resolution and clearance of senescent erythrocytes and apoptotic neutrophils.
Collapse
|
49
|
Kita Y, Shindou H, Shimizu T. Cytosolic phospholipase A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:838-845. [DOI: 10.1016/j.bbalip.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023]
|
50
|
Argilaguet J, Pedragosa M, Esteve-Codina A, Riera G, Vidal E, Peligero-Cruz C, Casella V, Andreu D, Kaisho T, Bocharov G, Ludewig B, Heath S, Meyerhans A. Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Res 2019; 29:907-919. [PMID: 31138618 PMCID: PMC6581057 DOI: 10.1101/gr.241372.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/14/2019] [Indexed: 02/01/2023]
Abstract
The processes and mechanisms of virus infection fate decisions that are the result of a dynamic virus-immune system interaction with either an efficient effector response and virus elimination or an alleviated immune response and chronic infection are poorly understood. Here, we characterized the host response to acute and chronic lymphocytic choriomeningitis virus (LCMV) infections by gene coexpression network analysis of time-resolved splenic transcriptomes. First, we found an early attenuation of inflammatory monocyte/macrophage prior to the onset of T cell exhaustion, and second, a critical role of the XCL1-XCR1 communication axis during the functional adaptation of the T cell response to the chronic infection state. These findings not only reveal an important feedback mechanism that couples T cell exhaustion with the maintenance of a lower level of effector T cell response but also suggest therapy options to better control virus levels during the chronic infection phase.
Collapse
Affiliation(s)
- Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Graciela Riera
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Cristina Peligero-Cruz
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.,Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Burkhard Ludewig
- Institute for Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Simon Heath
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Barcelona, Catalonia 08003, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08003, Spain
| |
Collapse
|