1
|
Macias SL, Palmer O, Simonovich JA, Clark RA, Hudalla GA, Keselowsky BG. Immunometabolic Approaches Mitigating Foreign Body Response and Transcriptome Characterization of the Foreign Body Capsule. Adv Healthc Mater 2025; 14:e2400602. [PMID: 39148172 PMCID: PMC11828940 DOI: 10.1002/adhm.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Directing immunometabolism presents new opportunities to modulate key cell types associated with the formation of foreign body response (FBR) capsule. Contrasting approaches directing immunometabolism are investigated to mitigate FBR: a broadly suppressive metabolic inhibitor (MI) cocktail comprised of 2-deoxyglucose (2-DG), metformin, and 6-diazo-5-oxo-l-norleucine (DON) with daily systemic dosing regimen, and local weekly injection of the more narrowly focused tryptophan catabolizing IDO-Gal3 fusion protein. Treatments significantly decrease FBR capsule formed around subcutaneously implanted cellulose disks. MI cocktail results in a substantially thinner FBR capsule (40% of control), while weekly local injection of IDO-Gal3 also results in a thinner FBR capsule (69% of control). RNA-sequencing capsule transcripts reveal MI cocktail promotes quiescence, with decreased antigen processing and presentation, T helper subset differentiation, and cytokine-cytokine receptor pathway. IDO-Gal3 promotes pro-regenerative, alternatively activated M2-like macrophages and T helper 2 cells, with increased expression of type 2 response-associated genes (Il4, Il13, Arg1, Mrc1, Chil3, Gata3). IDO-Gal3 decreases pro-inflammatory innate sensing pathways, and C-type lectin receptor, NOD-like receptor, RIG-I-like receptor, and Toll-like receptor signaling. This work helps define key gene targets and pathways concomitantly regulated in the FBR capsule during immunometabolic modulation compared to control FBR capsule.
Collapse
Affiliation(s)
- Sabrina L. Macias
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Olivia Palmer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jennifer A. Simonovich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ryan A. Clark
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Lorant V, Klein M, Garçon D, Sotin T, Frey S, Cheminant MA, Ayer A, Croyal M, Flet L, Rimbert A, Colas L, Cariou B, Bouchaud G, Le May C. PCSK9 inhibition protects mice from food allergy. Transl Res 2024; 272:151-161. [PMID: 38471633 DOI: 10.1016/j.trsl.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The Proprotein Convertase Subtilisin Kexin of type 9 (PCSK9) has been identified in 2003 as the third gene involved in familial hypercholesterolemia. PCSK9 binds to the membrane low-density lipoprotein receptor (LDLR) and promotes its cellular internalization and lysosomal degradation. Beyond this canonical role, PCSK9 was recently described to be involved in several immune responses. However, to date, the contribution of PCSK9 in food allergy remains unknown. Here, we showed that Pcsk9 deficiency or pharmacological inhibition of circulating PCSK9 with a specific monoclonal antibody (m-Ab) protected mice against symptoms of gliadin-induced-food allergy, such as increased intestinal transit time and ear oedema. Furthermore, specific PCSK9 inhibition during the elicitation steps of allergic process was sufficient to ensure anti-allergic effects in mice. Interestingly, the protective effect of PCSK9 inhibition against food allergy symptoms was independent of the LDLR as PCSK9 inhibitors remained effective in Ldlr deficient mice. In vitro, we showed that recombinant gain of function PCSK9 (PCSK9 D374Y) increased the percentage of mature bone marrow derived dendritic cells (BMDCs), promoted naïve T cell proliferation and potentiated the gliadin induced basophils degranulation. Altogether, our data demonstrate that PCSK9 inhibition is protective against gliadin induced food allergy in a LDLR-independent manner.
Collapse
Affiliation(s)
- Victoria Lorant
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Martin Klein
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec, Canada
| | - Damien Garçon
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Thibaud Sotin
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Samuel Frey
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Marie-Aude Cheminant
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Audrey Ayer
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France; CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Laurent Flet
- Department of Pharmacy, CHU Nantes, Nantes Université, Nantes, France
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | - Luc Colas
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes F-44000, France; CHU Nantes, Nantes Université, Plateforme transversale d'allergologie et d'immunologie clinique, clinique dermatologique, Nantes, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France
| | | | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, BP70721, Nantes 44000, France.
| |
Collapse
|
3
|
Jeong J, Lee W, Kim YA, Lee YJ, Kim S, Shin J, Choi Y, Kim J, Lee Y, Kim MS, Kwon SH. Multi-System-Level Analysis Reveals Differential Expression of Stress Response-Associated Genes in Inflammatory Solar Lentigo. Int J Mol Sci 2024; 25:3973. [PMID: 38612783 PMCID: PMC11012242 DOI: 10.3390/ijms25073973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Although the pathogenesis of solar lentigo (SL) involves chronic ultraviolet (UV) exposure, cellular senescence, and upregulated melanogenesis, underlying molecular-level mechanisms associated with SL remain unclear. The aim of this study was to investigate the gene regulatory mechanisms intimately linked to inflammation in SL. Skin samples from patients with SL with or without histological inflammatory features were obtained. RNA-seq data from the samples were analyzed via multiple analysis approaches, including exploration of core inflammatory gene alterations, identifying functional pathways at both transcription and protein levels, comparison of inflammatory module (gene clusters) activation levels, and analyzing correlations between modules. These analyses disclosed specific core genes implicated in oxidative stress, especially the upregulation of nuclear factor kappa B in the inflammatory SLs, while genes associated with protective mechanisms, such as SLC6A9, were highly expressed in the non-inflammatory SLs. For inflammatory modules, Extracellular Immunity and Mitochondrial Innate Immunity were exclusively upregulated in the inflammatory SL. Analysis of protein-protein interactions revealed the significance of CXCR3 upregulation in the pathogenesis of inflammatory SL. In conclusion, the upregulation of stress response-associated genes and inflammatory pathways in response to UV-induced oxidative stress implies their involvement in the pathogenesis of inflammatory SL.
Collapse
Affiliation(s)
- Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Wonmin Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yun-Ji Lee
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Sohyun Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Jaeyeon Shin
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Mathematics, Kyung Hee University College of Science, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jihan Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
| | - Soon-Hyo Kwon
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| |
Collapse
|
4
|
Zhang Y, Wang Q, Sun S, Jiang L. The therapeutic effect of glycyrrhizic acid compound ointment on imiquimod-induced psoriasis-like disease in mice. PLoS One 2023; 18:e0290637. [PMID: 37643205 PMCID: PMC10464954 DOI: 10.1371/journal.pone.0290637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
Glycyrrhetinic acid, a drug with anti-inflammatory effects, enhanced the activity of antipsoriatic efficacy. In this research, an ointment with glycyrrhetinic acid was prepaired as the major component and several other herbal monomers (astilbin, osthole, and momordin Ic) have antipsoriatic activity as minor components. Then an Imiquimod-induced psoriasis-like mouse model was established and the damaged skin condition of the administered group, the changes in the spleen index and the secretion of inflammatory factors in mouse skin were observed. Calcipotriol ointment was used as a positive control to compare the efficacy. Glycyrrhizic acid compound ointment significantly improved imiquimod-induced psoriasis in mice and reduced the secretion of TNF-α, IL-12, IL-17, and IL-23 in mouse skin, and showed a stronger therapeutic effect than calcipotriol ointment. Calcipotriol ointment did not significantly alleviate imiquimod-induced splenomegaly and did not significantly reduce the expression of IL-17 and IL-23 in mouse skin. Glycyrrhetinic acid compound ointment was more effective than calcipotriol and was dose-dependent in the treatment of imiquimod-induced psoriatic dermatitis in mice. Meanwhile,calcipotriol was not suitable for the treatment of Imiquimod -induced psoriasis-like mice.
Collapse
Affiliation(s)
- Yanwen Zhang
- School of Pharmacy,Tianjin Medical University, Tianjin, China
| | - Qian Wang
- School of Pharmacy,Tianjin Medical University, Tianjin, China
| | - Shuangyong Sun
- School of Pharmacy,Tianjin Medical University, Tianjin, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Biased IL-2 signals induce Foxp3-rich pulmonary lymphoid structures and facilitate long-term lung allograft acceptance in mice. Nat Commun 2023; 14:1383. [PMID: 36914624 PMCID: PMC10011523 DOI: 10.1038/s41467-023-36924-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Transplantation of solid organs can be life-saving in patients with end-stage organ failure, however, graft rejection remains a major challenge. In this study, by pre-conditioning with interleukin-2 (IL-2)/anti-IL-2 antibody complex treatment biased toward IL-2 receptor α, we achieved acceptance of fully mismatched orthotopic lung allografts that remained morphologically and functionally intact for more than 90 days in immunocompetent mice. These allografts are tolerated by the actions of forkhead box p3 (Foxp3)+ regulatory T (Treg) cells that home to the lung allografts. Although counts of circulating Treg cells rapidly return to baseline following cessation of IL-2 treatment, Foxp3+ Treg cells persist in peribronchial and peribronchiolar areas of the grafted lungs, forming organized clusters reminiscent of inducible tertiary lymphoid structures (iTLS). These iTLS in lung allografts are made of Foxp3+ Treg cells, conventional T cells, and B cells, as evidenced by using microscopy-based distribution and neighborhood analyses. Foxp3-transgenic mice with inducible and selective deletion of Foxp3+ cells are unable to form iTLS in lung allografts, and these mice acutely reject lung allografts. Collectively, we report that short-term, high-intensity and biased IL-2 pre-conditioning facilitates acceptance of vascularized and ventilated lung allografts without the need of immunosuppression, by inducing Foxp3-controlled iTLS formation within allografts.
Collapse
|
6
|
Mortier E, Maillasson M, Quéméner A. Counteracting Interleukin-15 to Elucidate Its Modes of Action in Physiology and Pathology. J Interferon Cytokine Res 2023; 43:2-22. [PMID: 36651845 DOI: 10.1089/jir.2022.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-15 belongs to the common gamma-dependent cytokine family, along with IL-2, IL-4, IL-7, IL-9, and IL-21. IL-15 is crucial for the homeostasis of Natural Killer (NK) and memory CD8 T cells, and to fight against cancer progression. However, dysregulations of IL-15 expression could occur and participate in the emergence of autoimmune inflammatory diseases as well as hematological malignancies. It is therefore important to understand the different modes of action of IL-15 to decrease its harmful action in pathology without affecting its beneficial effects in the immune system. In this review, we present the different approaches used by researchers to inhibit the action of IL-15, from most broad to the most selective. Indeed, it appears that it is important to selectively target the mode of action of the cytokine rather than the cytokine itself as they are involved in numerous biological processes.
Collapse
Affiliation(s)
- Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| |
Collapse
|
7
|
Kautzman AM, Mobulakani JMF, Marrero Cofino G, Quenum AJI, Cayarga AA, Asselin C, Fortier LC, Ilangumaran S, Menendez A, Ramanathan S. Interleukin 15 in murine models of colitis. Anat Rec (Hoboken) 2022; 306:1111-1130. [PMID: 35899872 DOI: 10.1002/ar.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by abnormal, non-antigen specific chronic inflammation of unknown etiology. Genome-wide association studies show that many IBD genetic susceptibility loci map to immune function genes and compelling evidence indicate that environmental factors play a critical role in IBD pathogenesis. Clinical and experimental evidence implicate the pro-inflammatory cytokine IL-15 in the pathogenesis of IBD. IL-15 and IL-15α expression is increased in the inflamed mucosa of IBD patients. IL-15 contributes to the maintenance of different cell subsets in the intestinal mucosa. However, very few studies have addressed the role of IL-15 in pre-clinical models of colitis. In this study, we use three well-characterized models of experimental colitis to determine the contribution of IL-15 to pathological intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Molina Kautzman
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Gisela Marrero Cofino
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
8
|
Meghnem D, Maillasson M, Barbieux I, Morisseau S, Keita D, Jacques Y, Quéméner A, Mortier E. Selective Targeting of IL-15Rα Is Sufficient to Reduce Inflammation. Front Immunol 2022; 13:886213. [PMID: 35592318 PMCID: PMC9110858 DOI: 10.3389/fimmu.2022.886213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Cytokines are crucial molecules for maintaining the proper functioning of the immune system. Nevertheless, a dysregulation of cytokine expression could be involved in the pathogenesis of autoimmune diseases. Interleukin (IL)-15 is a key factor for natural killer cells (NK) and CD8 T cells homeostasis, necessary to fight cancer and infections but could also be considered as a pro-inflammatory cytokine involved in autoimmune inflammatory disease, including rheumatoid arthritis, psoriasis, along with tumor necrosis factor alpha (TNF-α), IL-6, and IL-1β. The molecular mechanisms by which IL-15 exerts its inflammatory function in these diseases are still unclear. In this study, we generated an IL-15-derived molecule called NANTIL-15 (New ANTagonist of IL-15), designed to selectively inhibit the action of IL-15 through the high-affinity trimeric IL-15Rα/IL-2Rβ/γc receptor while leaving IL-15 signaling through the dimeric IL-2Rβ/γc receptor unaffected. Administrating of NANTIL-15 in healthy mice did not affect the IL-15-dependent cell populations such as NK and CD8 T cells. In contrast, we found that NANTIL-15 efficiently reduced signs of inflammation in a collagen-induced arthritis model. These observations demonstrate that the inflammatory properties of IL-15 are linked to its action through the trimeric IL-15Rα/IL-2Rβ/γc receptor, highlighting the interest of selectively targeting this receptor.
Collapse
Affiliation(s)
- Dihia Meghnem
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Nantes University, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, IMPACT Platform, Nantes, France
| | - Isabelle Barbieux
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Sébastien Morisseau
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Centre Hospitalo-Universitaire (CHU), Nantes Hospital, Nantes, France
| | - Dalloba Keita
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Yannick Jacques
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Erwan Mortier
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Nantes University, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, IMPACT Platform, Nantes, France
| |
Collapse
|
9
|
Impellizzieri D, Egholm C, Valaperti A, Distler O, Boyman O. Patients with systemic sclerosis show phenotypic and functional defects in neutrophils. Allergy 2022; 77:1274-1284. [PMID: 34467524 PMCID: PMC9293168 DOI: 10.1111/all.15073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a multiorgan autoimmune disease characterized by inflammation, vascular modification, and progressive fibrosis of the skin and several visceral organs. Innate and adaptive immune cells, including myeloid, B and T cells, are believed to be central to the pathogenesis of SSc. However, the role and functional state of neutrophil granulocytes (neutrophils) are ill-defined in SSc. METHODS We performed a prospective study of neutrophils freshly isolated from SSc patients and healthy donors (HD) by measuring in these neutrophils (i) functional cell surface markers, including CD16, CD62L, CD66b, CD66c, CXCR1, CXCR2, and CXCR4; (ii) cytokine-activated intracellular signal transducer and activator of transcription (STAT) pathways, such as phosphorylated STAT3 (pSTAT3), pSTAT5, and pSTAT6; (iii) production of neutrophil extracellular traps (NET) and intracellular myeloperoxidase (MPO); and (iv) phagocytosis of bacteria by the neutrophils. RESULTS Neutrophils of SSc patients expressed lower CD16 and CD62L and higher pSTAT3 and pSTAT6 compared to HD. Moreover, neutrophils of SSc patients lacked CXCR1 and CXCR2, the receptors responding to the potent neutrophil chemoattractant CXCL8. Neutrophils of SSc patients were also deficient in MPO levels, NET formation, and phagocytosis of bacteria. CONCLUSIONS Neutrophils of patients with SSc display several functional defects affecting cell migration, NET formation, and phagocytosis of bacteria.
Collapse
Affiliation(s)
| | - Cecilie Egholm
- Department of Immunology University Hospital Zurich Zurich Switzerland
| | - Alan Valaperti
- Department of Immunology University Hospital Zurich Zurich Switzerland
| | - Oliver Distler
- Department of Rheumatology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
| | - Onur Boyman
- Department of Immunology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
| |
Collapse
|
10
|
Kefaloyianni E. Soluble forms of cytokine and growth factor receptors: mechanisms of generation and modes of action in the regulation of local and systemic inflammation. FEBS Lett 2022; 596:589-606. [PMID: 35113454 PMCID: PMC11924200 DOI: 10.1002/1873-3468.14305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Cytokine and growth factor receptors are usually transmembrane proteins, but they can also exist in soluble forms, either through cleavage and release of their ligand-binding extracellular domain or through the secretion of a soluble isoform. As an extension of this concept, transmembrane receptors on exosomes released into the circulation may act similarly to circulating soluble receptors. These soluble receptors add to the complexity of cytokine and growth factor signalling: they can function as decoy receptor that compete for ligand binding with their respective membrane-bound forms thereby attenuating signalling, or stabilize their ligands, or activate additional signalling events through interactions with other cell-surface proteins. Their soluble nature allows for a functional role away from the production sites, in remote cell types and organs. Accumulating evidence demonstrates that soluble receptors participate in the regulation and orchestration of various key cellular processes, particularly inflammatory responses. In this review, we will discuss release mechanisms of soluble cytokine and growth factor receptors, their mechanisms of action and strategies for targeting their pathways in disease.
Collapse
Affiliation(s)
- Eirini Kefaloyianni
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
11
|
Structural and functional insights into a novel pre-clinical-stage antibody targeting IL-17A for treatment of autoimmune diseases. Int J Biol Macromol 2022; 202:529-538. [DOI: 10.1016/j.ijbiomac.2022.01.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
|
12
|
Özcan A, Collado-Diaz V, Egholm C, Tomura M, Gunzer M, Halin C, Kolios AGA, Boyman O. CCR7-guided neutrophil redirection to skin-draining lymph nodes regulates cutaneous inflammation and infection. Sci Immunol 2022; 7:eabi9126. [PMID: 35119939 DOI: 10.1126/sciimmunol.abi9126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils are the first nonresident effector immune cells that migrate to a site of infection or inflammation; however, improper control of neutrophil responses can cause considerable tissue damage. Here, we found that neutrophil responses in inflamed or infected skin were regulated by CCR7-dependent migration and phagocytosis of neutrophils in draining lymph nodes (dLNs). In mouse models of Toll-like receptor-induced skin inflammation and cutaneous Staphylococcus aureus infection, neutrophils migrated from the skin to the dLNs via lymphatic vessels in a CCR7-mediated manner. In the dLNs, these neutrophils were phagocytosed by lymph node-resident type 1 and type 2 conventional dendritic cells. CCR7 up-regulation on neutrophils was a conserved mechanism across different tissues and was induced by a broad range of microbial stimuli. In the context of cutaneous immune responses, disruption of CCR7 interactions by selective CCR7 deficiency of neutrophils resulted in increased antistaphylococcal immunity and aggravated skin inflammation. Thus, neutrophil homing to and clearance in skin-dLNs affects cutaneous immunity versus pathology.
Collapse
Affiliation(s)
- A Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - V Collado-Diaz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - C Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - M Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - M Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - C Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - A G A Kolios
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - O Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Inhibition of CtBP-Regulated Proinflammatory Gene Transcription Attenuates Psoriatic Skin Inflammation. J Invest Dermatol 2022; 142:390-401. [PMID: 34293351 PMCID: PMC8770725 DOI: 10.1016/j.jid.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.
Collapse
|
14
|
Nandi M, Moyo MM, Orkhis S, Mobulakani JMF, Limoges MA, Rexhepi F, Mayhue M, Cayarga AA, Marrero GC, Ilangumaran S, Menendez A, Ramanathan S. IL-15Rα-Independent IL-15 Signaling in Non-NK Cell-Derived IFNγ Driven Control of Listeria monocytogenes. Front Immunol 2021; 12:793918. [PMID: 34956227 PMCID: PMC8703170 DOI: 10.3389/fimmu.2021.793918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-15, produced by hematopoietic and parenchymal cells, maintains immune cell homeostasis and facilitates activation of lymphoid and myeloid cell subsets. IL-15 interacts with the ligand-binding receptor chain IL-15Rα during biosynthesis, and the IL-15:IL-15Rα complex is trans-presented to responder cells that express the IL-2/15Rβγc complex to initiate signaling. IL-15-deficient and IL-15Rα-deficient mice display similar alterations in immune cell subsets. Thus, the trimeric IL-15Rαβγc complex is considered the functional IL-15 receptor. However, studies on the pathogenic role of IL-15 in inflammatory and autoimmune diseases indicate that IL-15 can signal independently of IL-15Rα via the IL-15Rβγc dimer. Here, we compared the ability of mice lacking IL-15 (no signaling) or IL-15Rα (partial/distinct signaling) to control Listeria monocytogenes infection. We show that IL-15-deficient mice succumb to infection whereas IL-15Rα-deficient mice clear the pathogen as efficiently as wildtype mice. IL-15-deficient macrophages did not show any defect in bacterial uptake or iNOS expression in vitro. In vivo, IL-15 deficiency impaired the accumulation of inflammatory monocytes in infected spleens without affecting chemokine and pro-inflammatory cytokine production. The inability of IL-15-deficient mice to clear L. monocytogenes results from impaired early IFNγ production, which was not affected in IL-15Rα-deficient mice. Administration of IFNγ partially enabled IL-15-deficient mice to control the infection. Bone marrow chimeras revealed that IL-15 needed for early bacterial control can originate from both hematopoietic and non-hematopoietic cells. Overall, our findings indicate that IL-15-dependent IL-15Rα-independent signaling via the IL-15Rβγc dimeric complex is necessary and sufficient for the induction of IFNγ from sources other than NK/NKT cells to control bacterial pathogens.
Collapse
Affiliation(s)
- Madhuparna Nandi
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mitterrand Muamba Moyo
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sakina Orkhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marc-André Limoges
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anny Armas Cayarga
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gisela Cofino Marrero
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| |
Collapse
|
15
|
Rational modification, synthesis and biological evaluation of N-substituted phthalazinone derivatives designed to target interleukine-15 protein. Bioorg Med Chem 2021; 39:116161. [PMID: 33932805 DOI: 10.1016/j.bmc.2021.116161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-15 is a pleiotropic cytokine structurally close to IL-2 and sharing with the IL-2Rβ and γc receptor (R) subunits. IL-15 plays important roles in innate and adaptative immunity, supporting the activation and proliferation of NK, NK-T, and CD8+ T cells. Over-expression of IL-15 has been shown to participate to the development of inflammatory and autoimmune diseases and diverse T cell malignancies. This study is in continuity of our previous work through which a family of small-molecule inhibitors impeding IL-15/IL-2Rβ interaction with sub-micromolar activity has been identified using pharmacophore-based virtual screening and hit optimization methods. With the aim to improve the efficacy and selectivity of our lead inhibitor, specific modifications have been introduced on the basis of optimized SAR and modelisation. The new series of compounds generated have been evaluated for their capacity to inhibit the proliferation as well as the down-stream signaling of IL-15-dependent cells and to bind to IL-15.
Collapse
|
16
|
Laurent C, Deblois G, Clénet ML, Carmena Moratalla A, Farzam-Kia N, Girard M, Duquette P, Prat A, Larochelle C, Arbour N. Interleukin-15 enhances proinflammatory T-cell responses in patients with MS and EAE. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e931. [PMID: 33323466 PMCID: PMC7745728 DOI: 10.1212/nxi.0000000000000931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023]
Abstract
Objective We posit that interleukin-15 (IL-15) is a relevant contributor to MS pathobiology as this cytokine is elevated in the CNS and periphery of patients with MS. We aim to investigate (1) the impact of IL-15 on T lymphocytes from patients with MS and (2) the in vivo role of IL-15 using the experimental autoimmune encephalomyelitis (EAE) mouse model. Methods We compared the impact of IL-15 on T lymphocytes obtained from untreated patients with MS (relapsing-remitting, secondary progressive, and primary progressive) to cells from age/sex-matched healthy controls (HCs) using multiparametric flow cytometry and in vitro assays. We tested the effects of peripheral IL-15 administration after EAE disease onset in C57BL/6 mice. Results IL-15 triggered STAT5 signaling in an elevated proportion of T cells from patients with MS compared with HCs. This cytokine also enhanced the production of key proinflammatory cytokines (interferon γ, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17, and tumor necrosis factor) by T cells from both MS and controls, but these effects were more robust for the production of IL-17 and GM-CSF in T-cell subsets from patients with MS. At the peak of EAE disease, the proportion of CD4+ and CD8+ T cells expressing CD122+, the key signaling IL-15 receptor chain, was enriched in the CNS compared with the spleen. Finally, peripheral administration of IL-15 into EAE mice after disease onset significantly aggravated clinical scores and increased the number of inflammatory CNS-infiltrating T cells long term after stopping IL-15 administration. Conclusions Our results underscore that IL-15 contributes to the amplification of T-cell inflammatory properties after disease onset in both MS and EAE.
Collapse
Affiliation(s)
- Cyril Laurent
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Gabrielle Deblois
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marie-Laure Clénet
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Ana Carmena Moratalla
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marc Girard
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada.
| |
Collapse
|
17
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|
18
|
Allard-Chamard H, Mishra HK, Nandi M, Mayhue M, Menendez A, Ilangumaran S, Ramanathan S. Interleukin-15 in autoimmunity. Cytokine 2020; 136:155258. [PMID: 32919253 DOI: 10.1016/j.cyto.2020.155258] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Interleukin-15 (IL-15) is a member of the IL-2 family of cytokines, which use receptor complexes containing the common gamma (γc) chain for signaling. IL-15 plays important roles in innate and adaptative immune responses and is implicated in the pathogenesis of several immune diseases. The IL-15 receptor consists of 3 subunits namely, the ligand-binding IL-15Rα chain, the β chain (also used by IL-2) and the γc chain. IL-15 uses a unique signaling pathway whereby IL-15 associates with IL-15Rα during biosynthesis, and this complex is 'trans-presented' to responder cells that expresses the IL-2/15Rβγc receptor complex. IL-15 is subject to post-transcriptional and post-translational regulation, and evidence also suggests that IL-15 cis-signaling can occur under certain conditions. IL-15 has been implicated in the pathology of various autoimmune diseases such as rheumatoid arthritis, autoimmune diabetes, inflammatory bowel disease, coeliac disease and psoriasis. Studies with pre-clinical models have shown the beneficial effects of targeting IL-15 signaling in autoimmunity. Unlike therapies targeting other cytokines, anti-IL-15 therapies have not yet been successful in humans. We discuss the complexities of IL-15 signaling in autoimmunity and explore potential immunotherapeutic approaches to target the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hemant K Mishra
- Vet & Biomedical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
19
|
Chen Y, Yan Y, Liu H, Qiu F, Liang CL, Zhang Q, Huang RY, Han L, Lu C, Dai Z. Dihydroartemisinin ameliorates psoriatic skin inflammation and its relapse by diminishing CD8 + T-cell memory in wild-type and humanized mice. Theranostics 2020; 10:10466-10482. [PMID: 32929360 PMCID: PMC7482806 DOI: 10.7150/thno.45211] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Conventional immunosuppressants cause side effects and do not prevent the recurrence of autoimmune diseases. Moreover, they may not inhibit autoimmunity mediated by pathogenic memory T-cells. Dihydroartemisinin (DHA) has been shown to regulate autoimmunity. However, it remains unknown whether DHA impacts psoriasis and its recurrence. The objective of this study was to determine therapeutic effects of DHA on psoriasis and its relapse as well as its underlying mechanisms. Methods: We established animal models of imiquimod (IMQ)-induced psoriasis-like wild-type mice and humanized NSG mice receiving lesional human skin from patients with psoriasis. Many immunoassays, including immunohistochemistry, flow cytometry, quantitative RT-PCR and Western blotting, were performed. Results: We found that DHA not only ameliorated acute skin lesion of psoriatic mice, but also alleviated its recurrence by diminishing CD8+ central memory T (TCM) and CD8+ resident memory T (TRM) cells. It attenuated epidermal pathology and T-cell infiltration in the skin of IMQ-induced psoriatic mice while suppressing expression of IL-15, IL-17 and other proinflammatory cytokines in the skin. Surprisingly, DHA reduced the frequency and number of CD8+, but not CD4+, subset of CD44highCD62Lhigh TCM in psoriatic mice, whereas methotrexate (MTX) lowered CD4+, but not CD8+, TCM frequency and number. Indeed, DHA, but not MTX, downregulated eomesodermin (EOMES) and BCL-6 expression in CD8+ T-cells. Furthermore, DHA, but not MTX, reduced the presence of CD8+CLA+, CD8+CD69+ or CD8+CD103+ TRM cells in mouse skin. Interestingly, treatment with DHA, but not MTX, during the first onset of psoriasis largely prevented psoriasis relapse induced by low doses of IMQ two weeks later. Administration of recombinant IL-15 or CD8+, but not CD4+, TCM cells resulted in complete recurrence of psoriasis in mice previously treated with DHA. Finally, we demonstrated that DHA alleviated psoriatic human skin lesions in humanized NSG mice grafted with lesional skin from psoriatic patients while reducing human CD8+ TCM and CD103+ TRM cells in humanized mice. Conclusion: We have provided the first evidence that DHA is advantageous over MTX in preventing psoriasis relapse by reducing memory CD8+ T-cells.
Collapse
Affiliation(s)
- Yuchao Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Yuhong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Feifei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Chun-Ling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qunfang Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| |
Collapse
|
20
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
de Jesús-Gil C, Ruiz-Romeu E, Ferran M, Sagristà M, Chiriac A, García P, Celada A, Pujol RM, Santamaria-Babí LF. IL-15 and IL-23 synergize to trigger Th17 response by CLA + T cells in psoriasis. Exp Dermatol 2020; 29:630-638. [PMID: 32476200 DOI: 10.1111/exd.14113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022]
Abstract
IL-15 has emerged as a potentially relevant target in the IL-17 response in psoriasis. However, its mechanism is poorly characterized in humans. IL-15 and IL-23 are constitutively expressed in the psoriatic lesion. Also, IL-15 is considered a susceptibility-associated gene in psoriasis, as are IL-23R, and HLACW6. Here, we studied the effect of IL-15 and IL-23 stimulation on the cytokine response of CLA+/CLA- T cells from 9 psoriasis patients and 3 healthy control subjects. To this end, CLA + and CLA- T cells from blood samples were cultured with epidermal cells from skin biopsies and treated with IL-15 and IL-23. After five days of culture, cytokines in supernatant were measured by ELISA or fluorescent bead-based immunoassay. There was a statistically significant increase in IL-17F and IL-17A production (P < .001) in cocultures of psoriasis skin-homing CLA + T cells with epidermal cells when stimulated with IL-15 and IL-23, but this effect was not observed in the cells of healthy controls. Interestingly, this response was reduced by around 50 to 80% by blocking HLA class I and II molecules. Our results point to the synergic action of IL-15 and IL-23 selectively for CLA + cells in psoriasis, leading to the induction of Th17 cell-related cytokines.
Collapse
Affiliation(s)
- Carmen de Jesús-Gil
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| | - Ester Ruiz-Romeu
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| | - Marta Ferran
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marc Sagristà
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Anca Chiriac
- Department of DermatoPhysiology, Apollonia University, Iasi, Romania.,Dermatology Department, Nicolina Medical Center, Iasi, Romania
| | - Pablo García
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Antonio Celada
- Macrophage Biology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| | - Ramon M Pujol
- Department of Dermatology, Hospital del Mar Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Spain
| |
Collapse
|
22
|
Lokau J, Garbers C. Biological functions and therapeutic opportunities of soluble cytokine receptors. Cytokine Growth Factor Rev 2020; 55:94-108. [PMID: 32386776 DOI: 10.1016/j.cytogfr.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
23
|
Abstract
Natural killer cells collaborate with type 2 immune cells to modulate atopic dermatitis pathogenesis (Mack et al, this issue).
Collapse
Affiliation(s)
- Graham Ogg
- MRC Human Immunology Unit, NIHR Oxford Biomedical Research Centre, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Moui A, Klein M, Hassoun D, Dijoux E, Cheminant MA, Magnan A, Bouchaud G. The IL-15 / sIL-15Rα complex modulates immunity without effect on asthma features in mouse. Respir Res 2020; 21:33. [PMID: 31996218 PMCID: PMC6988344 DOI: 10.1186/s12931-020-1301-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Interleukin 15 (IL-15) is a growth and modulating factor for B, T lymphocytes and natural killer cells (NK). Its action on innate and adaptive immunity is modulated by its alpha chain receptor (IL-15Rα). The IL-15/sIL-15Rα complex (IL-15Cx) increases the bioavailability and activity of the cytokine in vivo. IL-15Cx has been used in diseases to dampen IL-15 inflammation by the use of soluble IL-15Ralpha specificity. Here, we aim to evaluate the interest of IL-15Cx in a mouse model of asthma. METHODS Using a mouse model of asthma consisting in percutaneous sensitization and intranasal challenge with total house dust mite extract, we evaluated the effect of IL-15Cx injected intraperitoneally four times after a first nasal challenge. Respiratory function was assessed by the technique of forced oscillations (Flexivent®). The effect on bronchial remodeling was evaluated by lung histology. The inflammatory status was analyzed by flow cytometry. RESULTS We observed that the IL-15Cx modulates lung and systemic inflammation by increasing NK cells, CD8+ memory T cells and regulatory cells. However, IL-15Cx displays no effect on bronchial hyperreactivity, bronchial remodeling nor cellular bronchial infiltrate, but limits the secretion of bronchial mucus and modulates only inflammatory response in a HDM-allergic asthma murine model. CONCLUSIONS IL-15Cx has a limited effect on immune response in asthma and has no effect on lung function in mice. Thus, it limits its therapeutic potential but might suggest a combinatory potential with other therapeutics.
Collapse
Affiliation(s)
- Antoine Moui
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Martin Klein
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France
| | - Dorian Hassoun
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Eléonore Dijoux
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France
| | | | - Antoine Magnan
- L'institut du thorax, Inserm, CNRS, Université́ de Nantes, Nantes, France.,L'institut du thorax, CHU de Nantes, service de pneumologie, Nantes, France
| | - Grégory Bouchaud
- INRA, UR1268 BIA, rue de la Géraudière, F-44316, Nantes, France.
| |
Collapse
|
25
|
Lorscheid S, Müller A, Löffler J, Resch C, Bucher P, Kurschus FC, Waisman A, Schäkel K, Hailfinger S, Schulze-Osthoff K, Kramer D. Keratinocyte-derived IκBζ drives psoriasis and associated systemic inflammation. JCI Insight 2019; 4:130835. [PMID: 31622280 PMCID: PMC6948851 DOI: 10.1172/jci.insight.130835] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
The transcriptional activator IκBζ is a key regulator of psoriasis, but which cells mediate its pathogenic effect remains unknown. Here we found that IκBζ expression in keratinocytes triggers not only skin lesions but also systemic inflammation in mouse psoriasis models. Specific depletion of IκBζ in keratinocytes was sufficient to suppress the induction of imiquimod- or IL-36–mediated psoriasis. Moreover, IκBζ ablation in keratinocytes prevented the onset of psoriatic lesions and systemic inflammation in keratinocyte-specific IL-17A–transgenic mice. Mechanistically, this psoriasis protection was mediated by IκBζ deficiency in keratinocytes abrogating the induction of specific proinflammatory target genes, including Cxcl5, Cxcl2, Csf2, and Csf3, in response to IL-17A or IL-36. These IκBζ-dependent genes trigger the generation and recruitment of neutrophils and monocytes that are needed for skin inflammation. Consequently, our data uncover a surprisingly pivotal role of keratinocytes and keratinocyte-derived IκBζ as key mediators of psoriasis and psoriasis-related systemic inflammation. Deletion of IκBζ in keratinocytes is sufficient to abrogate psoriasis induction in mouse models due to changes in transcription of keratinocyte-derived chemo- and cytokines.
Collapse
Affiliation(s)
- Sebastian Lorscheid
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Anne Müller
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jessica Löffler
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Claudia Resch
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philip Bucher
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Klaus Schulze-Osthoff
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Daniela Kramer
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Nanoparticle-Coupled Topical Methotrexate Can Normalize Immune Responses and Induce Tissue Remodeling in Psoriasis. J Invest Dermatol 2019; 140:1003-1014.e8. [PMID: 31678057 DOI: 10.1016/j.jid.2019.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Methotrexate (MTX) is an antiproliferative drug used for treating inflammatory diseases, including psoriasis. Nevertheless, its use in localized therapy is hindered because of poor transdermal penetration. We show that MTX coupled with gold nanoparticles (GNPs) demonstrates superior antiinflammatory efficacy than MTX alone in an imiquimod-induced mouse model, significantly reducing γδ T cells, CD4+ T cells, and neutrophils. Furthermore, it was well tolerated upon systemic and topical administration. In an AGR129 human xenograft mouse model, two-week topical treatment with MTX-GNPs inhibited skin hyperplasia significantly better than topical calcipotriol-betamethasone and led to profound tissue remodeling, involving the upregulation of extracellular matrix reorganization and the downregulation of cornification and keratinization processes. The number of resident T cells in the grafts, as well as interleukin-17 production, drastically decreased upon MTX-GNP treatment. While both MTX and MTX-GNPs directly prevented the proliferation and induced apoptosis of T cells, the suppression of cytokine production was a shared mechanism of GNP and MTX-GNPs. In conclusion, MTX-GNPs influence immune and stromal components of the skin, leading to the potent inhibition of pathogenesis in preclinical psoriasis. MTX-GNPs surpass the efficacy of conventional MTX and standard of care, emerging as a non-steroidal, topical alternative for psoriasis treatment.
Collapse
|
27
|
Ye CJ, Li SA, Zhang Y, Lee WH. Geraniol targets K V1.3 ion channel and exhibits anti-inflammatory activity in vitro and in vivo. Fitoterapia 2019; 139:104394. [PMID: 31669719 DOI: 10.1016/j.fitote.2019.104394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 01/18/2023]
Abstract
Naturally occurring monoterpenes are known for their various pharmacological activities including anti-inflammation. KV1.3 ion channel is a voltage-gated potassium channel and has been validated as a drug target for autoimmune and chronic inflammatory diseases like psoriasis. Here we experimentally test the direct interaction between monoterpenes and KV1.3 ion channel. Our electrophysiological analysis determined that monoterpenes (geraniol, nerol, β-citronellol, citral and linalool) have inhibitory effects on KV1.3 ion channel. Representatively, geraniol reversibly blocked KV1.3 currents in a voltage-dependent manner with an IC50 of 490.50 ± 1.04 μM at +40 mV in HEK293T cells. At the effective concentrations, geraniol also inhibited cytokine secretion of activated human T cells, including IL-2, TNF-α and IFN-γ. In an imiquimod-induced psoriasis-like animal model, geraniol administration significantly reduced psoriasis area and severity index scores, ameliorated the deteriorating histopathology and decreased the degree of splenomegaly. Together, our findings not only suggest that monoterpenes may serve as lead molecules for the development of KV1.3 inhibitors, but also indicate that geraniol could be considered as a promising therapeutic candidate to treat autoimmune diseases.
Collapse
Affiliation(s)
- Chen-Jun Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
28
|
Salvia mellifera-How Does It Alleviate Chronic Pain? MEDICINES (BASEL, SWITZERLAND) 2019; 6:medicines6010018. [PMID: 30678334 PMCID: PMC6473501 DOI: 10.3390/medicines6010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023]
Abstract
Black sage, Salvia mellifera, can be made into a sun tea that is used as a foot soak to treat pain patients. The monoterpenoids and diterpenoids in the preparation penetrate the skin of the feet and stop the pain chemokine cycle, which may be the basis of chronic pain. Several chronic pain patients have reported long-term improvements in their pain after treatment with the preparation.
Collapse
|
29
|
Takada T, Ohashi K, Hayashi M, Asakawa K, Sakagami T, Kikuchi T, Sato S. Role of IL-15 in interstitial lung diseases in amyopathic dermatomyositis with anti-MDA-5 antibody. Respir Med 2018; 141:7-13. [DOI: 10.1016/j.rmed.2018.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 01/19/2023]
|
30
|
Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev 2018; 283:176-193. [DOI: 10.1111/imr.12644] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miro E. Raeber
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | - Yves Zurbuchen
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
| | | | - Onur Boyman
- Department of Immunology; University Hospital Zurich; Zurich Switzerland
- Faculty of Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
31
|
Baumann NS, Torti N, Welten SPM, Barnstorf I, Borsa M, Pallmer K, Oduro JD, Cicin-Sain L, Ikuta K, Ludewig B, Oxenius A. Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathog 2018; 14:e1006993. [PMID: 29652930 PMCID: PMC5919076 DOI: 10.1371/journal.ppat.1006993] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Cytomegalovirus (CMV) infection induces an atypical CD8 T cell response, termed inflationary, that is characterised by accumulation and maintenance of high numbers of effector memory like cells in circulation and peripheral tissues—a feature being successfully harnessed for vaccine purposes. Although stability of this population depends on recurrent antigen encounter, the requirements for prolonged survival in peripheral tissues remain unknown. Here, we reveal that murine CMV-specific inflationary CD8 T cells are maintained in an antigen-independent manner and have a half-life of 12 weeks in the lung tissue. This half-life is drastically longer than the one of phenotypically comparable inflationary effector cells. IL-15 alone, and none of other common γ-cytokines, was crucial for survival of inflationary cells in peripheral organs. IL-15, mainly produced by non-hematopoietic cells in lung tissue and being trans-presented, promoted inflationary T cell survival by increasing expression of Bcl-2. These results indicate that inflationary CD8 T cells are not just simply effector-like cells, rather they share properties of both effector and memory CD8 T cells and they appear to be long-lived cells compared to the effector cells from acute virus infections. A majority of the human population is infected with cytomegalovirus (CMV), which results in lifelong persistence due to viral latency. CMV induces remarkably strong and sustained effector memory-like CD8 T cell responses in circulation and peripheral tissues, also referred to as memory CD8 T cell "inflation". In tissues, these effector memory-like cells contribute to immunosurveillance and early control of CMV reactivation events. Due to the high numbers and effector-like functional properties of inflationary CD8 T cells in peripheral tissues, CMV-based vectors are gaining substantial interest in the context of T cell based vaccines that protect peripheral tissues against infections or tumors. Here, we investigated how the stable peripheral pool of inflationary CD8 T cells is maintained and show that inflationary CD8 T cells are long-lived T cells and have a markedly prolonged half-life compared to effector CD8 T cells. In peripheral organs such as lung, IL-15 cytokine is pivotal in promoting maintenance of inflationary cells by inducing expression of the anti-apoptotic molecule Bcl-2. We show that IL-15 is mainly expressed by non-hematopoietic cells in lung tissue and that IL-15 is trans-presented to the inflationary CD8 T cells in vivo. Thus, CMV-driven inflationary CD8 T cell responses represent a unique T cell subset in peripheral tissues that is regulated differently compared to TRM CD8 T cells emerging after vaccination or acute infections.
Collapse
Affiliation(s)
- Nicolas S. Baumann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nicole Torti
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Suzanne P. M. Welten
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Isabel Barnstorf
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jennifer D. Oduro
- Department of Vaccinology and applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Islam SMS, Choi B, Choi J, Lee ES, Sohn S. Frequencies of IL-15Rα+ cells in patients with Behçet's disease and the effects of overexpressing IL-15Rα+ on disease symptoms in mice. Cytokine 2018; 110:257-266. [PMID: 29396044 DOI: 10.1016/j.cyto.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
It has been suggested higher serum levels of IL-15 and lower expression levels of IL-15 receptor alpha (IL-15Rα) are correlated with pathogenesis of Behçet's disease (BD). However, whether overexpressing IL-15Rα could be used as a therapeutic candidate for BD is currently unclear. Therefore, the purpose of this study was to determine whether overexpressing IL-15Rα could affect BD symptoms in a mouse model. IL-15/IL-15Rα complex expressing vector or protein complex of IL-15/IL-15Rα-Fc was used to treat BD mice. Frequencies of IL-15Rα+ cells in peripheral blood leukocytes (PBL) and lymph node cells were determined using a flow cytometer. BD symptoms in mice improved after treatment with IL-15/15Rα expression vector or IL-15/IL-15Rα-Fc protein complex. In addition, treatment with pIL-15/15Rα significantly (p = .016) decreased disease severity score of BD mice compared to treatment with control vector. Frequencies of IL-15Rα+ cells were also significantly (p = .01) higher in peritoneal macrophages of pIL-15/15Rα treated BD mice than those of mice treated with control vector. Frequencies of IL-15Rα+ PBL were also significantly higher in BD mice treated with IL-15/IL-15Rα-Fc protein complex than those in the control group. These results suggest up-regulating IL-15Rα+ cells could be used as novel therapeutic strategies to control BD in the future.
Collapse
Affiliation(s)
- S M Shamsul Islam
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Bunsoon Choi
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Juyoung Choi
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
33
|
Innately versatile: γδ17 T cells in inflammatory and autoimmune diseases. J Autoimmun 2018; 87:26-37. [DOI: 10.1016/j.jaut.2017.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
|
34
|
Lin ZM, Ma M, Li H, Qi Q, Liu YT, Yan YX, Shen YF, Yang XQ, Zhu FH, He SJ, Tang W, Zuo JP. Topical administration of reversible SAHH inhibitor ameliorates imiquimod-induced psoriasis-like skin lesions in mice via suppression of TNF-α/IFN-γ-induced inflammatory response in keratinocytes and T cell-derived IL-17. Pharmacol Res 2017; 129:443-452. [PMID: 29155016 DOI: 10.1016/j.phrs.2017.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/02/2017] [Accepted: 11/11/2017] [Indexed: 02/04/2023]
Abstract
DZ2002, a reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor with immunosuppressive properties and potent therapeutic activity against various autoimmune diseases in mice. The present study was designed to characterize the potential therapeutic effects of DZ2002 on murine model of psoriasis and reveal the correlated mechanisms. In this report, we demonstrated that in vitro, DZ2002 significantly decreased the expression of pro-inflammatory cytokines and adhesion molecule including IL-1α, IL-1β, IL-6, IL-8, TNF-α and ICAM-1 by inhibiting the phosphorylation of p38 MAPK, ERK and JNK in TNF-α/IFN-γ-stimulated HaCaT human keratinocytes. Topical administration of DZ2002 alleviated the imiquimod (IMQ)-induced psoriasis-like skin lesions and inflammation in mice, the therapeutic effect was comparable with the Calcipotriol. Moreover, the inflammatory skin disorder was restored by DZ2002 treatment characterized by reducing both of the CD3+ T cell accumulation and the psoriasis-specific cytokines expression. Further, we found that DZ2002 improved IMQ-induced splenomegaly and decreased the frequency of splenic IL-17-producing T cells. Our finding offered the convincing evidence that SAHH inhibitor DZ2002 might attenuate psoriasis by simultaneously interfering the abnormal activation and differentiation of keratinocytes and accumulation of IL-17-producing T cells in skin lesions.
Collapse
Affiliation(s)
- Ze-Min Lin
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Ma
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Qing Qi
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Ting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yu-Xi Yan
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yun-Fu Shen
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Qian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shi-Jun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jian-Ping Zuo
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
35
|
Spohn G, Arenas-Ramirez N, Bouchaud G, Boyman O. Endogenous polyclonal anti–IL-1 antibody responses potentiate IL-1 activity during pathogenic inflammation. J Allergy Clin Immunol 2017; 139:1957-1965.e3. [DOI: 10.1016/j.jaci.2016.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 10/20/2022]
|
36
|
Osinalde N, Sanchez-Quiles V, Akimov V, Aloria K, Arizmendi JM, Blagoev B, Kratchmarova I. Characterization of Receptor-Associated Protein Complex Assembly in Interleukin (IL)-2- and IL-15-Activated T-Cell Lines. J Proteome Res 2017; 16:106-121. [PMID: 27463037 DOI: 10.1021/acs.jproteome.6b00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It remains a paradox that IL-2 and IL-15 can differentially modulate the immune response using the same signaling receptors. We have previously dissected the phosphotyrosine-driven signaling cascades triggered by both cytokines in Kit225 T-cells, unveiling subtle differences that may contribute to their functional dichotomy. In this study, we aimed to decipher the receptor complex assembly in IL-2- and IL-15-activated T-lymphocytes that is highly orchestrated by site-specific phosphorylation events. Comparing the cytokine-induced interactome of the interleukin receptor beta and gamma subunits shared by the two cytokines, we defined the components of the early IL-2 and IL-15 receptor-associated complex discovering novel constituents. Additionally, phosphopeptide-directed analysis allowed us to detect several cytokine-dependent and -independent phosphorylation events within the activated receptor complex including novel phosphorylated sites located in the cytoplasmic region of IL-2 receptor β subunit (IL-2Rβ). We proved that the distinct phosphorylations induced by the cytokines serve for recruiting different types of effectors to the initial receptor/ligand complex. Overall, our study sheds new light into the initial molecular events triggered by IL-2 and IL-15 and constitutes a further step toward a better understanding of the early signaling aspects of the two closely related cytokines in T-lymphocytes.
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Virginia Sanchez-Quiles
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country, UPV/EHU , 48940 Leioa, Spain
| | - Jesus M Arizmendi
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU , 48940 Leioa, Spain
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| |
Collapse
|
37
|
Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyülveszi G, Russo G, Pantelyushin S, Kishihara K, Alessandrini F, Kündig T, Sallusto F, Hofbauer GFL, Haak S, Becher B. IL-12 protects from psoriasiform skin inflammation. Nat Commun 2016; 7:13466. [PMID: 27892456 PMCID: PMC5133729 DOI: 10.1038/ncomms13466] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023] Open
Abstract
Neutralization of the common p40-subunit of IL-12/23 in psoriasis patients has led to a breakthrough in the management of moderate to severe disease. Aside from neutralizing IL-23, which is thought to be responsible for the curative effect, anti-p40 therapy also interferes with IL-12 signalling and type 1 immunity. Here we dissect the individual contribution of these two cytokines to the formation of psoriatic lesions and understand the effect of therapeutic co-targeting of IL-12 and IL-23 in psoriasis. Using a preclinical model for psoriatic plaque formation we show that IL-12, in contrast to IL-23, has a regulatory function by restraining the invasion of an IL-17-committed γδT (γδT17) cell subset. We discover that IL-12 receptor signalling in keratinocytes initiates a protective transcriptional programme that limits skin inflammation, suggesting that collateral targeting of IL-12 by anti-p40 monoclonal antibodies is counterproductive in the therapy of psoriasis.
Collapse
Affiliation(s)
- Paulina Kulig
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Stephanie Musiol
- Experimental Immunology Unit, Centre of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Centre Munich, 80802 Munich, Germany
| | | | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Gabor Gyülveszi
- Institute for Research in Biomedicine, Cellular Immunology, 6500 Bellinzona, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | | | - Kenji Kishihara
- Department of Immunology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 859-3298 Nagasaki, Japan
| | - Francesca Alessandrini
- Experimental Immunology Unit, Centre of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Centre Munich, 80802 Munich, Germany
| | - Thomas Kündig
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Cellular Immunology, 6500 Bellinzona, Switzerland
| | | | - Stefan Haak
- Experimental Immunology Unit, Centre of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Centre Munich, 80802 Munich, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
38
|
Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation. Immunity 2016; 45:172-84. [DOI: 10.1016/j.immuni.2016.06.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/29/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
|
39
|
Abstract
T helper (Th) cells producing interleukin (IL)-17, IL-22, and tumor necrosis factor (TNF) form the key T cell population driving psoriasis pathogenesis. They orchestrate the inflammation in the skin that results in the proliferation of keratinocytes and endothelial cells. Besides Th17 cells, other immune cells that are capable of producing IL-17-associated cytokines participate in psoriatic inflammation. Recent advances in psoriasis research improved our understanding of the cellular and molecular players that are involved in Th17 pathology and inflammatory pathways in the skin. The inflammation-driving actions of TNF in psoriasis are already well known and antibodies against TNF are successful in the treatment of Th17-mediated psoriatic skin inflammation. A further key cytokine with potent IL-17-/IL-22-promoting properties is IL-23. Therapeutics directly neutralizing IL-23 or IL-17 itself are now extending the therapeutic spectrum of antipsoriatic agents and further developments are on the way. The enormous progress in psoriasis research allows us to control this Th17-mediated inflammatory skin disease in many patients.
Collapse
Affiliation(s)
- Franziska C Eberle
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jürgen Brück
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Holstein
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 2015; 15:771-83. [PMID: 26567920 PMCID: PMC5079184 DOI: 10.1038/nri3919] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.
Collapse
Affiliation(s)
- Bana Jabri
- Departments of Medicine, Pathology and Pediatrics, University of Chicago, Knapp Center for Biomedical Discovery (KCBD), Chicago, Illinois 60637, USA
| | - Valérie Abadie
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
41
|
IL-17 receptor A and adenosine deaminase 2 deficiency in siblings with recurrent infections and chronic inflammation. J Allergy Clin Immunol 2015; 137:1189-1196.e2. [PMID: 26607704 DOI: 10.1016/j.jaci.2015.07.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 06/04/2015] [Accepted: 07/08/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Data on patients affected by chronic mucocutaneous candidiasis underscore the preponderant role of IL-17 receptor A (IL-17RA) in preserving mucocutaneous immunity. Little is known about the role of adenosine deaminase (ADA) 2 in regulation of immune responses, although recent reports linked ADA2 deficiency with inflammation and vasculitis. OBJECTIVE We sought to investigate the mechanisms of chronic inflammation and vasculitis in a child lacking IL-17RA and ADA2 to identify therapeutic targets. METHODS We report a family with 2 siblings who have had recurrent mucocutaneous infections with Candida albicans and Staphylococcus aureus and chronic inflammatory disease and vasculitis since early childhood, which were refractory to classical treatments. Array-based comparative genomic hybridization analysis showed that both siblings are homozygous for a 770-kb deletion on chr22q11.1 encompassing both IL17RA and cat eye critical region 1 (CECR1). Immunologic studies were carried out by means of flow cytometry, ELISA, and RIA. RESULTS As expected, in the affected child we found a lack of IL-17RA expression, which implies a severe malfunction in the IL-17 signaling pathway, conferring susceptibility to recurrent mucocutaneous infections. Surprisingly, we detected an in vitro and in vivo upregulation of proinflammatory cytokines, notably IL-1β and TNF-α, which is consistent with the persistent systemic inflammation. CONCLUSIONS This work emphasizes the utility of whole-genome analyses combined with immunologic investigation in patients with unresolved immunodeficiency. This approach is likely to provide an insight into immunologic pathways and mechanisms of disease. It also provides molecular evidence for more targeted therapies. In addition, our report further corroborates a potential role of ADA2 in modulating immunity and inflammation.
Collapse
|
42
|
Kolios A, Maul J, Meier B, Kerl K, Traidl‐Hoffmann C, Hertl M, Zillikens D, Röcken M, Ring J, Facchiano A, Mondino C, Yawalkar N, Contassot E, Navarini A, French L. Canakinumab in adults with steroid‐refractory pyoderma gangrenosum. Br J Dermatol 2015; 173:1216-23. [DOI: 10.1111/bjd.14037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 12/30/2022]
Affiliation(s)
- A.G.A. Kolios
- Department of Dermatology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
- Department of Immunology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
| | - J.‐T. Maul
- Department of Dermatology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
| | - B. Meier
- Department of Dermatology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
| | - K. Kerl
- Department of Dermatology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
| | - C. Traidl‐Hoffmann
- Department of Dermatology and Allergy Biederstein Technische Universität Mönchen Munich Germany
| | - M. Hertl
- Departments of Dermatology and Allergology Philipps University Marburg Marburg Germany
| | - D. Zillikens
- Department of Dermatology University of Lübeck Lübeck Germany
| | - M. Röcken
- Department of Dermatology Eberhard Karls University of Tübingen Tübingen Germany
| | - J. Ring
- Department of Dermatology and Allergy Biederstein Technische Universität Mönchen Munich Germany
| | - A. Facchiano
- Istituto Dermopatico dell'Immacolata IDI‐IRCCS Rome Italy
| | - C. Mondino
- Ospedale Regionale di Bellinzona e Valli Bellinzona Switzerland
| | - N. Yawalkar
- Department of Dermatology Bern University Hospital Bern Switzerland
| | - E. Contassot
- Department of Dermatology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
| | - A.A. Navarini
- Department of Dermatology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
| | - L.E. French
- Department of Dermatology Zürich University Hospital Gloriastraße 31 8091 Zürich Switzerland
| |
Collapse
|
43
|
Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells. Cell Mol Immunol 2015; 14:293-307. [PMID: 26364916 DOI: 10.1038/cmi.2015.81] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/01/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-15 plays an important role in natural killer (NK) and CD8+ T-cell proliferation and function and is more effective than IL-2 for tumor immunotherapy. The trans-presentation of IL-15 by neighboring cells is more effective for NK cell activation than its soluble IL-15. In this study, the fusion protein dsNKG2D-IL-15, which consisted of two identical extracellular domains of human NKG2D coupled to human IL-15 via a linker, was engineered in Escherichia coli. DsNKG2D-IL-15 could efficiently bind to major histocompatibility complex class I chain-related protein A (MICA) of human tumor cells with the two NKG2D domains and trans-present IL-15 to NK or CD8+ T cells. We transplanted human gastric cancer (SGC-7901) cells into nude mice and mouse melanoma cells with ectopic expression of MICA (B16BL6-MICA) into C57BL/6 mice. Then, we studied the anti-tumor effects mediated by dsNKG2D-IL-15 in the two xenografted tumor models. Human dsNKG2D-IL-15 exhibited higher efficiency than IL-15 in suppressing gastric cancer growth. Exogenous human dsNKG2D-IL-15 was centrally distributed in the mouse tumor tissues based on in vivo live imaging. The frequencies of human CD56+ cells infiltrated into the tumor tissues following the injection of peripheral blood mononuclear cells into nude mice bearing human gastric cancer were significantly increased by human dsNKG2D-IL-15 treatment. Human dsNKG2D-IL-15 also delayed the growth of transplanted melanoma (B16BL6-MICA) by activating and recruiting mouse NK and CD8+ T cells. The anti-melanoma effect of human dsNKG2D-IL-15 in C57BL/6 mice was mostly decreased by the in vivo depletion of mouse NK cells. These data highlight the potential use of human dsNKG2D-IL-15 for tumor therapy.Cellular & Molecular Immunology advance online publication, 14 September 2015; doi:10.1038/cmi.2015.81.
Collapse
|
44
|
Abstract
The development and homeostasis of γδ T cells is highly dependent on distinct cytokine networks. Here we examine the role of IL-15 and its unique receptor, IL-15Rα, in the development of IL-17-producing γδ (γδ-17) T cells. Phenotypic analysis has shown that CD44(high) γδ-17 cells express IL-15Rα and the common gamma chain (CD132), yet lack the IL-2/15Rβ chain (CD122). Surprisingly, we found an enlarged population of γδ-17 cells in the peripheral and mesenteric lymph nodes of adult IL-15Rα KO mice, but not of IL-15 KO mice. The generation of mixed chimeras from neonatal thymocytes indicated that cell-intrinsic IL-15Rα expression was required to limit IL-17 production by γδ T cells. γδ-17 cells also were increased in the peripheral lymph nodes of transgenic knock-in mice, where the IL-15Rα intracellular signaling domain was replaced with the intracellular portion of the IL-2Rα chain (that lacks signaling capacity). Finally, an analysis of neonatal thymi revealed that the CD44(lo/int) precursors of γδ-17 cells, which also expressed IL-15Rα, were increased in newborn mice deficient in IL-15Rα signaling, but not in IL-15 itself. Thus, these findings demonstrate that signaling through IL-15Rα regulates the development of γδ-17 cells early in ontogeny, with long-term effects on their peripheral homeostasis in the adult.
Collapse
|
45
|
Khmaladze I, Nandakumar KS, Holmdahl R. Reactive oxygen species in psoriasis and psoriasis arthritis: relevance to human disease. Int Arch Allergy Immunol 2015; 166:135-49. [PMID: 25824670 DOI: 10.1159/000375401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Psoriasis (Ps) is a chronic, immune-mediated, skin inflammatory disease affecting up to 3% of the population worldwide. Different environmental triggers initiate this complex multifactorial syndrome. Many individuals affected by Ps (6-26%) develop inflammatory disease in other organs, often in the joints as in psoriasis arthritis (PsA). Animal models that reflect the typical Ps syndrome, including both skin and joint pathology as in Ps and PsA, are valuable tools for dissecting disease pathways leading to clinical manifestations. In this context, we developed a new acute Ps and PsA-like disease model that appears after exposure to Saccharomyces cerevisiae mannan in certain mouse strains. The disease was found to be triggered by mannan-activated macrophages, leading to the activation of a pathogenic interleukin-17 pathway involving innate lymphocytes. Interestingly, the production of reactive oxygen species protected the mice from the triggering of this pathway and ameliorated Ps and PsA development.
Collapse
Affiliation(s)
- Ia Khmaladze
- Division of Medical Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
46
|
An alternatively spliced IL-15 isoform modulates abrasion-induced keratinocyte activation. J Invest Dermatol 2015; 135:1329-1337. [PMID: 25615554 DOI: 10.1038/jid.2015.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/08/2014] [Accepted: 12/31/2014] [Indexed: 11/08/2022]
Abstract
In a routine phenotype-driven screen, we identified a point mutation in exon 7 of the IL-15 gene in Pedigree 191 (deficient memory (DM)) of N-ethyl-N-nitrosourea mutagenized mice. The DM epidermis expressed an alternatively spliced IL-15 mRNA isoform, IL-15ΔE7, and a wild-type (WT) IL-15 isoform at comparable levels. Mechanical stimulation of DM skin or DM skin graft transplanted onto the WT host resulted in reduced keratinocyte activation and inhibition of neutrophil infiltration into the dermis, demonstrating that DM keratinocytes produced less inflammatory response to external stimulation. Ectopic expression of IL-15ΔE7 in WT skin prevented abrasion-induced epidermal thickening, blocked the accumulation of nuclear antigen Ki67(+) cells in the basal and the suprabasal cell layers, increased loricrin expression, and also increased keratinocyte CXCL1 and G-CSF production. IL-15ΔE7 also profoundly blocked neutrophil infiltration in SDS- or immiquimod (IMQ)-treated WT skin. Recombinant IL-15ΔE7 failed to activate STAT-5 and its downstream target bcl-2 expression. Our study points to IL-15ΔE7 as a potential therapeutic agent for treating neutrophilia-associated inflammatory skin disorders.
Collapse
|
47
|
Gordon WM, Zeller MD, Klein RH, Swindell WR, Ho H, Espetia F, Gudjonsson JE, Baldi PF, Andersen B. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. J Clin Invest 2014; 124:5205-18. [PMID: 25347468 DOI: 10.1172/jci77138] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/18/2014] [Indexed: 12/27/2022] Open
Abstract
Dermal infiltration of T cells is an important step in the onset and progression of immune-mediated skin diseases such as psoriasis; however, it is not known whether epidermal factors play a primary role in the development of these diseases. Here, we determined that the prodifferentiation transcription factor grainyhead-like 3 (GRHL3), which is essential during epidermal development, is dispensable for adult skin homeostasis, but required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we found that GRHL3 is upregulated in lesional skin and binds known epidermal differentiation gene targets. Using an imiquimod-induced model of immune-mediated epidermal hyperplasia, we found that mice lacking GRHL3 have an exacerbated epidermal damage response, greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti-IL-22 therapy compared with WT animals. ChIP-Seq and gene expression profiling of murine skin revealed that while GRHL3 regulates differentiation pathways both during development and during repair from immune-mediated damage, it targets distinct sets of genes in the 2 processes. In particular, GRHL3 suppressed a number of alarmin and other proinflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia.
Collapse
|
48
|
|
49
|
Abstract
Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.
Collapse
|
50
|
Increasing the biological activity of IL-2 and IL-15 through complexing with anti-IL-2 mAbs and IL-15Rα-Fc chimera. Immunol Lett 2014; 159:1-10. [PMID: 24512738 DOI: 10.1016/j.imlet.2014.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 11/22/2022]
Abstract
IL-2 and IL-15 are structurally relative cytokines that share two receptor subunits, CD132 (γ(c) chain) and CD122 (β chain). However, the expression pattern and physiological role of IL-2 and IL-15 private receptor α chains CD25 and IL-15Rα, respectively, are strikingly different. CD25, together with CD122 and CD132, forms a trimeric high affinity IL-2 receptor that is expressed and functions on cells acquiring an IL-2 signal. Conversely, IL-15Rα is expressed and binds IL-15 with high affinity per se already in the endoplasmic reticulum of the IL-15 producing cells and it presents IL-15 to cells expressing CD122/CD132 dimeric receptor in trans. Thus, while IL-2 is secreted almost exclusively by activated T cells and acts as a free molecule, IL-15 is expressed mostly by myeloid cells and works as a cell surface-associated cytokine. Interestingly, the in vivo biological activity of IL-2 can be dramatically increased through complexing with certain anti-IL-2 mAbs; such IL-2/anti-IL-2 mAbs immunocomplexes selectively stimulate the proliferation of a distinct population of immune cells, depending on the clone of the anti-IL-2 mAb used. IL-2/S4B6 mAb immunocomplexes are highly stimulatory for CD122(high) populations (memory CD8(+) T and NK cells) and intermediately also for CD25(high) populations (Treg and activated T cells), while IL-2/JES6-1 mAb immunocomplexes enormously expand only CD25(high) cells. Although IL-2 immunocomplexes are much more potent than IL-2 in vivo, they show comparable to slightly lower activity in vitro. The in vivo biological activity of IL-15 can be dramatically increased through complexing with recombinant IL-15Rα-Fc chimera; however, IL-15/IL-15Rα-Fc complexes are significantly more potent than IL-15 both in vivo and in vitro. In this review we summarize and discuss the features and biological relevance of IL-2/anti-IL-2 mAbs and IL-15/IL-15Rα-Fc complexes, and try to foreshadow their potential in immunological research and immunotherapy.
Collapse
|