1
|
Yuan H, Qiu Y, Mei Z, Liu J, Wang L, Zhang K, Liu H, Zhu F. Cancer stem cells and tumor-associated macrophages: Interactions and therapeutic opportunities. Cancer Lett 2025; 624:217737. [PMID: 40274063 DOI: 10.1016/j.canlet.2025.217737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Cancer stem cells (CSCs) depend on the tumor microenvironment (TME) to sustain their stem-like properties by recruiting monocytes and reprogramming them into tumor-associated macrophages (TAMs), which in turn promote tumor progression. This review explores CSC-TAM interactions, emphasizing how CSCs drive monocyte recruitment and TAM polarization. We discuss how TAMs enhance CSC stemness and niche maintenance through chemokines, cytokines, exosome-mediated miRNA transfer, direct interactions, and extracellular matrix (ECM) remodeling. Furthermore, we examine therapeutic strategies targeting TAMs, including inhibiting TAM differentiation, reprogramming TAM polarization, and leveraging immune checkpoint blockade and CAR-macrophage immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yun Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zijie Mei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Kaiqing Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
2
|
Vadibeler S, Clarke S, Phyu SM, Parkes EE. Interactions between cancer-associated fibroblasts and the extracellular matrix in oesophageal cancer. Matrix Biol 2025:S0945-053X(25)00049-6. [PMID: 40379112 DOI: 10.1016/j.matbio.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Stromal components of the tumour microenvironment, such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM), are actively involved in tumorigenesis. CAFs and the ECM co-evolve with resultant molecular and mechanical pressure on tumour cells mediated by CAFs via the ECM. Meanwhile, ECM fibers determine CAF differentiation and activity, establishing a protumorigenic feed-forward loop. Oesophageal cancer carries a high morbidity and mortality, and curative surgical resection is only an option for a limited number of patients while early lymphatic spread and poor therapeutic responses are common. Although studies report marked heterogeneity in investigation of the stromal density of gastrointestinal cancers, it is generally accepted that oesophageal cancer is highly fibrotic, and stromal components like CAFs may outnumber cancer cells. Therefore, a comprehensive understanding of the reciprocal interaction between CAFs and the ECM in oesophageal cancer is essential to improving diagnostics and prognostication, as well as designing innovative anti-cancer strategies. Here, we summarise current understanding of oesophageal cancer from a stromal perspective. Then, we discuss that CAFs and the ECM in oesophageal cancer can independently and synergistically contribute to tumour progression and therapeutic resistance. We also summarise potential stromal targets that have been described in transcriptomic analyses, highlighting those validated in downstream experimental studies. Importantly, clinical translation of stromal-targeting strategies in oesophageal cancer is still in its infancy but holds significant promise for future therapeutic combinations.
Collapse
Affiliation(s)
- Subashan Vadibeler
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford; Department of Oncology, University of Oxford
| | - Shannique Clarke
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford; Department of Oncology, University of Oxford
| | - Su M Phyu
- Department of Oncology, University of Oxford
| | - Eileen E Parkes
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford; Department of Oncology, University of Oxford
| |
Collapse
|
3
|
Peng X, Yu S, Xu L, Wang Q, Yang L, Su Y, Xiong Z, Shao M, Geng M, Zhang A, Zhang L, Ai J, Ding C. Discovery of Hydrazineyl Amide Derivative of Pseudolaric Acid B for Reprogramming Tumor-Associated Macrophages Against Tumor Growth. Molecules 2025; 30:2088. [PMID: 40430260 PMCID: PMC12114375 DOI: 10.3390/molecules30102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal for tumor development and progression. Reprogramming the M2-like pro-tumoral behavior of TAMs towards the M1-like anti-tumor phenotype to unleash their potential against tumors has become one of the most promising anti-tumor immunotherapy strategies. In this work, the natural product pseudolaric acid B (PAB, 1) was found to markedly decrease ARG1 mRNA expression and significantly increase NOS2 expression in the IL-4/IL-13-pre-stimulated RAW 264.7 cells through cellular phenotype screening of a series of pseudolaric acid-related natural products, suggesting its potential to reprogram the pro-tumoral TAMs towards the M1-like phenotype against tumors. Further chemical modification of the carboxylic acid moiety of 1 led to a series of amide or pyranoside derivatives with ARG1- and NOS2-modulating activity. Among them, hydrazineyl amide 12 stands out as the most potent, without significant diminution in cell viability. It inhibited the M2-like polarized tumor-promoting phenotype of macrophages, as evidenced by a decrease in CD206 expression and an increase in CD86 expression in flow cytometry, as well as a decrease in ARG1 protein level in Western blot assays. In addition, 12 could reverse the suppression of Ki67+, IFN γ+, and granzyme B+ CD8+ T cell proliferation and activation induced by pro-tumoral macrophages. More importantly, it could reshape the tumor immune microenvironment and inhibit tumor growth in immunocompetent murine tumor models. Hsp90 was predicted to be a potential target of 12 by a target fishing software, which was further demonstrated by molecular docking. Collectively, the amide derivative 12 of PAB demonstrated promising anti-tumor TAM-reprogramming activity, which is worthy of further investigation.
Collapse
Affiliation(s)
- Xia Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (Y.S.); (M.G.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (L.X.); (Q.W.); (L.Y.); (A.Z.)
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (L.X.); (Q.W.); (L.Y.); (A.Z.)
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi 563000, China
| | - Qinghua Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (L.X.); (Q.W.); (L.Y.); (A.Z.)
| | - Lin Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (L.X.); (Q.W.); (L.Y.); (A.Z.)
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi 563000, China
| | - Yi Su
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (Y.S.); (M.G.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirou Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Shao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (L.X.); (Q.W.); (L.Y.); (A.Z.)
| | - Meiyu Geng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (Y.S.); (M.G.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (L.X.); (Q.W.); (L.Y.); (A.Z.)
| | - Lei Zhang
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (L.X.); (Q.W.); (L.Y.); (A.Z.)
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Chen R, Zhang R, Ke F, Guo X, Zeng F, Liu Q. Mechanisms of breast cancer metastasis: the role of extracellular matrix. Mol Cell Biochem 2025; 480:2771-2796. [PMID: 39652293 DOI: 10.1007/s11010-024-05175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/23/2024] [Indexed: 05/03/2025]
Abstract
The components of the extracellular matrix (ECM) are dynamic, and they mediate mechanical signals that modulate cellular behaviors. Disruption of the ECM can induce the migration and invasion of cancer cells via specific signaling pathways and cytokines. Metastasis is a leading cause of high mortality in malignancies, and early intervention can improve survival rates. However, breast cancer is frequently diagnosed subsequent to metastasis, resulting in poor prognosis and distant metastasis poses substantial hurdles in therapy. In breast cancer, there is notable tissue remodeling of ECM proteins, with several identified as essential components for metastasis. Moreover, specific ECM molecules, receptors, enzymes, and various signaling pathways play crucial roles in breast cancer metastasis, drug treatment, and resistance. The in-depth consideration of these elements could provide potential therapeutic targets to enhance the survival rates and quality of life for breast cancer patients. This review explores the mechanisms by which alterations in the ECM contribute to breast cancer metastasis and discusses current clinical applications targeting ECM in breast cancer treatment, offering valuable perspectives for future ECM-based therapies.
Collapse
Affiliation(s)
- Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Finger AM, Hendley AM, Figueroa D, Gonzalez H, Weaver VM. Tissue mechanics in tumor heterogeneity and aggression. Trends Cancer 2025:S2405-8033(25)00096-2. [PMID: 40307158 DOI: 10.1016/j.trecan.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/10/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Tumorigenesis ensues within a heterogeneous tissue microenvironment that promotes malignant transformation, metastasis and treatment resistance. A major feature of the tumor microenvironment is the heterogeneous population of cancer-associated fibroblasts and myeloid cells that stiffen the extracellular matrix. The heterogeneously stiffened extracellular matrix in turn activates cellular mechanotransduction and creates a hypoxic and metabolically hostile microenvironment. The stiffened extracellular matrix and elevated mechanosignaling also drive tumor aggression by fostering tumor cell growth, survival, and invasion, compromising antitumor immunity, expanding cancer stem cell frequency, and increasing mutational burden, which promote intratumor heterogeneity. Delineating the molecular mechanisms whereby tissue mechanics regulate these phenotypes should help to clarify the basis for tumor heterogeneity and cancer aggression and identify novel therapeutic targets that could improve patient outcome. Here, we discuss the role of the extracellular matrix in driving cancer aggression through its impact on tumor heterogeneity.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA 94143; Current address: Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Malov, Denmark
| | - Audrey Marie Hendley
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA 94143
| | - Diego Figueroa
- Department of Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Hugo Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA 94143; Current address: Laboratory of Tumor Microenvironment and Metastasis, Centro Ciencia & Vida, Santiago, Chile
| | - Valerie Marie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA 94143; Department of Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Fu R, Zhang C, Song MM, Gao X, Li F, Cai M, Jiang BY, Yang XN, Wu YL, Zhong WZ. A single-cell map of patients with non-small cell lung cancer harboring rare-driver mutations after anti-PD-1 treatment. Cancer Lett 2025; 616:217595. [PMID: 40021042 DOI: 10.1016/j.canlet.2025.217595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The effects of the tumor microenvironment the therapeutic efficacy of combining chemotherapy with checkpoint inhibitors in patients with lung cancer harboring rare -driver mutations remain unclear. We utilized single-cell RNA- and T-cell receptor (TCR) -sequencing to explore the immune and stromal cell profiles of 12 tumors and five tumor-adjacent tissues in seven patients with non-small cell lung cancer (NSCLCs) with rare -driver mutations treated with anti-PD-1 agents combined with chemotherapy. A class of highly expanded T -cells, known as GZMK + CD8+ effector memory T cells (GZMK + CD8+Tem), was enriched in both responsive tumors with and without rare driver mutations, suggesting similar anti-tumor immune mechanisms in both cohorts and that high levels of GZMK + CD8+Tem might be associated with effective responses to combination therapy. Non-responsive tumors exhibited a highly immunosuppressive M2-phenotype with enriched macrophages and monocytes. In non-major pathological response tumors, tumor cells interacted with alveolar and M0 macrophages via LAMC2-(ITGA6+ITGB1), possibly leading to M2 polarization. OAS1 was specifically expressed in CHIT1+ and FABP4+ macrophages and promoted macrophage polarization. These findings suggest that combination therapy reprogramed alveolar and M0-like macrophages to a pro-tumor phenotype, creating an immunosuppressive tumor microenvironment that resisted anti-PD1 therapy. In conclusion, GZMK + CD8+Tem is crucial for effective responses, whereas myeloid cells contribute to the immunosuppressive effects in anti-PD-1 therapies for NSCLCs with rare-driver mutations.
Collapse
Affiliation(s)
- Rui Fu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Fang Li
- Geneplus-Beijing Institute, Beijing, China
| | - Miao Cai
- Geneplus-Beijing Institute, Beijing, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Ojha T, Schaefer GJ, Mihyar R, Pathak V, Ehling J, Rama E, De Lorenzi F, Elshafei AS, Moeckel D, Elsafy S, Theek B, Wagner M, Ceccarini P, Consolino L, Weiler M, Peisker F, Caspers T, Peña Q, Barmin R, Gremse F, Pola R, Pechar M, Etrych T, Meurer S, Weiskirchen R, Kramann R, Kiessling F, Storm G, Metselaar J, Lammers T. Desmoplastic tumor priming using clinical-stage corticosteroid liposomes. CELL BIOMATERIALS 2025; 1:None. [PMID: 40276304 PMCID: PMC12014906 DOI: 10.1016/j.celbio.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025]
Abstract
Inflammation is a hallmark of cancer. It contributes to a heterogeneous, hyperpermeable, and poorly perfused tumor vasculature, as well as to a dense and disorganized extracellular matrix, which together negatively affect drug delivery. Reasoning that glucocorticoids have pleiotropic effects, we use clinical-stage dexamethasone liposomes (LipoDex) to prime the tumor microenvironment for improved drug delivery and enhanced treatment efficacy. We show that LipoDex priming improves tumor vascular function and reduces extracellular matrix deposition. Single-cell sequencing corroborates LipoDex-mediated inhibition of pro-inflammatory, pro-angiogenic, and pro-fibrogenic gene expression in mononuclear cells, tumor-associated macrophages, and cancer-associated fibroblasts. Multimodal optical imaging illustrates that LipoDex pre-treatment increases the tumor accumulation and intratumoral distribution of subsequently administered polymeric and liposomal drug delivery systems. Using Doxil as a prototypic nanodrug, we finally show that LipoDex priming promotes antitumor treatment efficacy. Altogether, our findings demonstrate that desmoplastic tumors can be primed for improved drug targeting and therapy using clinical-stage glucocorticoid liposomes.
Collapse
Affiliation(s)
- Tarun Ojha
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Gideon J.L. Schaefer
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Rahaf Mihyar
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Vertika Pathak
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Josef Ehling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Federica De Lorenzi
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Asmaa Said Elshafei
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Diana Moeckel
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Sara Elsafy
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Maike Wagner
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Paolo Ceccarini
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Lorena Consolino
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Fabian Peisker
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Tim Caspers
- Institute for Pathology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Quim Peña
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | | | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16200 Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16200 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16200 Prague, Czech Republic
| | - Steffen Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, the Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, the Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Josbert Metselaar
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Clinic, 52074 Aachen, Germany
| |
Collapse
|
8
|
Sunil HS, Clemenceau J, Barnfather I, Nakkireddy SR, Grichuk A, Izzo L, Evers BM, Thomas L, Subramaniyan I, Li L, Putnam WT, Zhu J, Updegraff B, Minna JD, DeBerardinis RJ, Gao J, Hwang TH, Oliver TG, O'Donnell KA. Transmembrane Serine Protease TMPRSS11B promotes an acidified tumor microenvironment and immune suppression in lung squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646727. [PMID: 40235980 PMCID: PMC11996519 DOI: 10.1101/2025.04.01.646727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Existing therapeutic options have limited efficacy, particularly for lung squamous cell carcinoma (LUSC), underscoring the critical need for the identification of new therapeutic targets. We previously demonstrated that the Transmembrane Serine Protease TMPRSS11B promotes transformation of human bronchial epithelial cells and enhances lactate export from LUSC cells. To determine the impact of TMPRSS11B activity on the host immune system and the tumor microenvironment (TME), we evaluated the effect of Tmprss11b depletion in a syngeneic mouse model. Tmprss11b depletion significantly reduced tumor burden in immunocompetent mice and triggered an infiltration of immune cells. RNA FISH analysis and spatial transcriptomics in the autochthonous Rosa26-Sox2-Ires-Gfp LSL/LSL ; Nkx2-1 fl/fl ; Lkb 1 fl/fl (SNL) model revealed an enrichment of Tmprss11b expression in LUSC tumors, specifically in Krt13 + hillock-like cells. Ultra-pH sensitive nanoparticle imaging and metabolite analysis identified regions of acidification, elevated lactate, and enrichment of M2-like macrophages in LUSC tumors. These results demonstrate that TMPRSS11B promotes an acidified and immunosuppressive TME and nominate this enzyme as a therapeutic target in LUSC.
Collapse
|
9
|
Tong Y, Chen R, Lu X, Chen C, Sun G, Yu X, Lyu S, Feng M, Long Y, Gong L, Chen L. A nanobody-enzyme fusion protein targeting PD-L1 and sialic acid exerts anti-tumor effects by C-type lectin pathway-mediated tumor associated macrophages repolarizing. Int J Biol Macromol 2025; 298:139953. [PMID: 39824395 DOI: 10.1016/j.ijbiomac.2025.139953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Aberrant sialylated glycosylation in the tumor microenvironment is a novel immune suppression pathway, which has garnered significant attention as a targetable glycoimmune checkpoint for cancer immunotherapy to address the dilemma of existing therapies. However, rational drug design and in-depth mechanistic studies are urgently required for tumor sialic acid to become valuable glycoimmune targets. In this study, we explored the positive correlation of PD-L1 and sialyltransferase expression in clinical colorectal cancer tissues and identified their mutual regulation effects in macrophages. Subsequently, we characterized a new sialidase with excellent properties from human oral symbiotic bacteria and then developed a novel nanobody-enzyme fusion protein, designated as Nb16-Sia, to concurrently target the PD-L1 and sialic acid. Results from syngeneic colon tumor models reveal superior efficacy of Nb16-Sia over monotherapy and combinations, which could remodel the tumor immune microenvironment. Mechanistically, Nb16-Sia, which could repolarize macrophages from the tumor-promoting M2 to anti-tumor M1 phenotype via the C-type lectin pathway, exerted its antitumor efficacy mainly by regulating tumor-associated macrophages. Our strategy of nanobody-enzyme fusion protein effectively enables the delivery of sialidase, allows the collaboration between anti-PD-L1 nanobody and sialidase in combating tumors, and holds considerable promise for further development.
Collapse
Affiliation(s)
- Yongliang Tong
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Runqiu Chen
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China; Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinrong Lu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cuiying Chen
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co., Ltd, Nanjing, Jiangsu Province, China
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shaoxian Lyu
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiqing Feng
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China; Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China; Translational Glycomics Research Center, Fudan Zhangjiang Institute, Shanghai, China.
| |
Collapse
|
10
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
11
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
13
|
Zhang S, Dong H, Jin X, Sun J, Li Y. The multifaceted roles of macrophages in the transition from hepatitis to hepatocellular carcinoma: From mechanisms to therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167676. [PMID: 39828046 DOI: 10.1016/j.bbadis.2025.167676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Macrophages are central to the progression from hepatitis to hepatocellular carcinoma (HCC), with their remarkable plasticity and ability to adapt to the changing liver microenvironment. Chronic inflammation, fibrosis, and ultimately tumorigenesis are driven by macrophage activation, making them key regulators of liver disease progression. This review explores the diverse roles of macrophages in the transition from hepatitis to HCC. In the early stages of hepatitis, macrophages are essential for pathogen clearance and tissue repair. However, chronic activation leads to prolonged inflammation, which exacerbates liver damage and promotes fibrosis. As the disease progresses to liver fibrosis, macrophages interact with hepatic stellate cells, fostering a pro-tumorigenic microenvironment that supports HCC development. In hepatocarcinogenesis, macrophages contribute to tumor initiation, growth, metastasis, immune evasion, cancer stem cell maintenance, and angiogenesis. Their functional plasticity enables them to adapt to the tumor microenvironment, thereby promoting tumor progression and resistance to therapy. Targeting macrophages represents a promising strategy for preventing and treating HCC. Therapeutic approaches, including reprogramming macrophage phenotypes to enhance anti-tumor immunity, blocking macrophage recruitment and activation, and utilizing nanoparticle-based drug delivery systems, may provide new avenues for combating HCC by modulating macrophage functions and tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Shuairan Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Hang Dong
- Phase I Clinical Trials Center, The People's Hospital of China Medical University, Shenyang, PR China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
14
|
Neumeyer V, Chavan P, Steiger K, Ebert O, Altomonte J. Cross-Talk Between Tumor Cells and Stellate Cells Promotes Oncolytic VSV Activity in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2025; 17:514. [PMID: 39941881 PMCID: PMC11816849 DOI: 10.3390/cancers17030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
As the mechanisms underlying tumorigenesis become better understood, the dynamic roles of cellular components of the tumor microenvironment, and their cross-talk with tumor cells, have come to light as key drivers of disease progression and have emerged as important targets of new cancer therapies. In the field of oncolytic virus (OV) therapy, stromal cells have been considered as potential barriers to viral spread, thus limiting virus replication and therapeutic outcome. However, new evidence indicates that intratumoral fibroblasts could support virus replication. We have demonstrated in a rat model of stromal-rich intrahepatic cholangiocarcinoma (CCA) that vesicular stomatitis virus (VSV) can be localized within intratumoral hepatic stellate cells (HSCs), in addition to tumor cells, when the virus was applied via hepatic arterial infusion. Furthermore, VSV was shown to efficiently kill CCA cells and activated HSCs, and co-culture of CCA and HSCs increased viral titers. Interestingly, this effect is also observed when each cell type is cultured alone in a conditioned medium of the other cell type, indicating that secreted cell factors are at least partially responsible for this phenomenon. Partial reduction in sensitivity to type I interferons was observed in co-culture systems, providing a possible mechanism for the increased viral titers. Together, the results indicate that targeting activated HSCs with VSV could provide an additional mechanism of OV therapy, which, until now has not been considered. Furthermore, these findings suggest that VSV is a potentially powerful therapeutic agent for stromal-rich tumors, such as CCA and pancreatic cancer, both of which are very difficult to treat with conventional therapy and have a very poor prognosis.
Collapse
Affiliation(s)
- Victoria Neumeyer
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Purva Chavan
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Oliver Ebert
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
15
|
Narain R, Muncie-Vasic JM, Weaver VM. Forcing the code: tension modulates signaling to drive morphogenesis and malignancy. Genes Dev 2025; 39:163-181. [PMID: 39638568 PMCID: PMC11789492 DOI: 10.1101/gad.352110.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate. Not surprisingly, experiments have demonstrated that perturbations in cell tension drive malignancy and metastasis by altering biochemical signaling and gene expression through modifications in cytoskeletal tension, transmembrane receptor structure and function, and organelle phenotype that enhance cell growth and survival, alter metabolism, and foster cell migration and invasion. At the tissue level, tumor-associated forces disrupt cell-cell adhesions to perturb tissue organization, compromise vascular integrity to induce hypoxia, and interfere with antitumor immunity to foster metastasis and treatment resistance. Exciting new approaches now exist with which to clarify the relationship between mechanotransduction, biochemical signaling, and gene expression in development and disease. Indeed, gaining insight into these interactions is essential to unravel molecular mechanisms that regulate development and clarify the molecular basis of cancer.
Collapse
Affiliation(s)
- Radhika Narain
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California 94720, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, California 94143
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
16
|
Singer M, Zhang Z, Dayyani F, Zhang Z, Yaghmai V, Choi A, Valerin J, Imagawa D, Abi-Jaoudeh N. Modulation of Tumor-Associated Macrophages to Overcome Immune Suppression in the Hepatocellular Carcinoma Microenvironment. Cancers (Basel) 2024; 17:66. [PMID: 39796695 PMCID: PMC11718901 DOI: 10.3390/cancers17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health issue characterized by poor prognosis and complex tumor biology. One of the critical components of the HCC tumor microenvironment (TME) is tumor-associated macrophages (TAMs), which play a pivotal role in modulating tumor growth, immune evasion, and metastasis. Macrophages are divided into two major subtypes: pro-inflammatory M1 and anti-inflammatory M2, both of which may exist in TME with altered function and proportion. The anti-inflammatory M2 macrophages are further subdivided into four distinct immune suppressive subsets. TAMs are generally counted as M2-like macrophages with altered immune suppressive functions that exert a significant influence on both cancer progression and the ability of tumors to escape immune surveillance. Their involvement in modulating immune responses via different mechanisms at the local and systemic levels has made them a key target for therapeutic interventions seeking to enhance treatment outcomes. How TAMs' depletion influences immune responses in cancer is the primary interest in cancer immunotherapies. The purpose of this review is to delve into the recent progress made in TAM-targeting therapies. We will explore the current theories, benefits, and challenges associated with TAMs' depletion or inhibition. The manuscript concludes with future directions and potential implications for clinical practice.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Zhuoli Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Farshid Dayyani
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - Zigeng Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - Vahid Yaghmai
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| | - April Choi
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - Jennifer Valerin
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; (F.D.); (A.C.); (J.V.)
| | - David Imagawa
- Department of Surgery, University of California Irvine, Orange, CA 92697, USA;
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA; (Z.Z.); (Z.Z.); (V.Y.)
| |
Collapse
|
17
|
Redoute-Timonnier C, Auguste P. Implication of the Extracellular Matrix in Metastatic Tumor Cell Dormancy. Cancers (Basel) 2024; 16:4076. [PMID: 39682261 DOI: 10.3390/cancers16234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Metastasis is the main cause of cancer-related deaths. The formation and growth of metastasis is a multistep process. Tumor cells extravasating in the secondary organ are in contact with a new microenvironment and a new extracellular matrix (ECM), called the metastatic niche. Some components of the ECM, such as periostin, can induce tumor cell growth in macrometastasis. In contrast, other components, such as Thrombospondin 1 (TSP-1), can maintain isolated cells in a dormant state. During dormancy, intracellular signaling activation, such as p38, maintains tumor cells arrested in the cell-cycle G0 phase for years. At any moment, stress can induce ECM modifications and binding to their specific receptors (mainly integrins) and reactivate dormant tumor cell growth in macrometastasis. In this review, we describe the tumor microenvironment of the different niches implicated in tumor cell dormancy. The role of ECM components and their associated receptors and intracellular signaling in the reactivation of dormant tumor cells in macrometastasis will be emphasized. We also present the different methodologies and experimental approaches used to study tumor cell dormancy. Finally, we discuss the current and future treatment strategies to avoid late metastasis relapse in patients.
Collapse
Affiliation(s)
| | - Patrick Auguste
- University of Bordeaux, INSERM, BRIC, U1312, MIRCADE Team, F-33000 Bordeaux, France
| |
Collapse
|
18
|
Ge Y, Zadeh M, Sharma C, Lin YD, Soshnev AA, Mohamadzadeh M. Controlling functional homeostasis of ileal resident macrophages by vitamin B12 during steady state and Salmonella infection in mice. Mucosal Immunol 2024; 17:1314-1325. [PMID: 39255854 DOI: 10.1016/j.mucimm.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Dietary micronutrients, particularly vitamin B12 (VB12), profoundly influence the physiological maintenance and function of intestinal cells. However, it is still unclear whether VB12 modulates the transcriptional and metabolic programming of ileal macrophages (iMacs), thereby contributing to intestinal homeostasis. Using multiomic approaches, we demonstrated that VB12 primarily supports the cell cycle activity and mitochondrial metabolism of iMacs, resulting in increased cell frequency compared to VB12 deficiency. VB12 also retained the ability to promote maintenance and metabolic regulation of iMacs during intestinal infection with Salmonella Typhimurium (STm). On the contrary, depletion of iMacs by inhibiting CSF1R signaling significantly increased host susceptibility to STm and prevented VB12-mediated pathogen reduction. These results thus suggest that regulation of VB12-dependent iMacs critically controls STm expansion, which may be of new relevance to advance our understanding of this vitamin and to strategically formulate sustainable therapeutic nutritional regimens that improve human gut health.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA.
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Cheshta Sharma
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Alexey A Soshnev
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, TX, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; South Texas Veterans Health Care System (STVHCS), San Antonio, TX, USA.
| |
Collapse
|
19
|
Tang Y, Shi T, Lin S, Fang T. Current status of research on the mechanisms of tumor-associated macrophages in esophageal cancer progression. Front Oncol 2024; 14:1450603. [PMID: 39678502 PMCID: PMC11638059 DOI: 10.3389/fonc.2024.1450603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 12/17/2024] Open
Abstract
Esophageal carcinoma (EC) is one of the most common tumors in China and seriously affects patient survival and quality of life. In recent years, increasing studies have shown that the tumor microenvironment is crucial in promoting tumor progression and metastasis. Tumor-associated macrophages (TAM) are key components of the tumor immune microenvironment and promote both tumor growth and antitumor immunity. Much evidence suggests that TAMs are closely associated with esophageal tumors. However, understanding of the clinical value and mechanism of action of TAM in esophageal cancer remains limited. Therefore, we reviewed the status of research on the role and mechanism of action of TAM in EC progression and summarized its potential clinical application value to provide a theoretical basis for the clinical treatment of EC.
Collapse
Affiliation(s)
- Yuchao Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tingting Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
20
|
Li S, Hao L, Hu X. Biological Roles and Clinical Therapeutic Applications of Tumor-Associated Macrophages in Colorectal Liver Metastasis. J Inflamm Res 2024; 17:8429-8443. [PMID: 39529996 PMCID: PMC11552512 DOI: 10.2147/jir.s493656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) commonly metastasizes to the liver, and this poses a significant clinical challenge. Tumor-associated macrophages (TAMs), key players within the TME, play a significant role in promoting CRC metastasis by secreting various chemokines, growth factors, and cytokines. This review not only aims to enhance our knowledge of TAMs' functions in CRC progression and metastasis but also examines innovative therapeutic strategies to address the clinical problem of colorectal liver metastasis (CLM). By targeting TAMs, we may be able to develop more effective treatments and offer hope to patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
21
|
Zhang Y, Rao Y, Lu J, Wang J, Ker DFE, Zhou J, Wang DM. The influence of biophysical niche on tumor-associated macrophages in liver cancer. Hepatol Commun 2024; 8:e0569. [PMID: 39470328 PMCID: PMC11524744 DOI: 10.1097/hc9.0000000000000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 10/30/2024] Open
Abstract
HCC, the most common type of primary liver cancer, is a leading cause of cancer-related mortality worldwide. Although the advancement of immunotherapies by immune checkpoint inhibitors (ICIs) that target programmed cell death 1 or programmed cell death 1-ligand 1 has revolutionized the treatment for HCC, the majority is still not beneficial. Accumulating evidence has pointed out that the potent immunosuppressive tumor microenvironment in HCC poses a great challenge to ICI therapeutic efficacy. As a key component in tumor microenvironment, tumor-associated macrophages (TAMs) play vital roles in HCC development, progression, and ICI low responsiveness. Mechanistically, TAM can promote cancer invasion and metastasis, angiogenesis, epithelial-mesenchymal transition, maintenance of stemness, and most importantly, immunosuppression. Targeting TAMs, therefore, represents an opportunity to enhance the ICI therapeutic efficacy in patients with HCC. While previous research has primarily focused on biochemical cues influencing macrophages, emerging evidence highlights the critical role of biophysical signals, such as substrate stiffness, topography, and external forces. In this review, we summarize the influence of biophysical characteristics within the tumor microenvironment that regulate the phenotype and function of TAMs in HCC pathogenesis and progression. We also explore the possible mechanisms and discuss the potential of manipulating biophysical cues in regulating TAM for HCC therapy. By gaining a deeper understanding of how macrophages sense and respond to mechanical forces, we may potentially usher in a path toward a curative approach for combinatory cancer immunotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiahuan Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jiyu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Jingying Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Institute of Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| |
Collapse
|
22
|
Li J, Zhang W, Chen L, Wang X, Liu J, Huang Y, Qi H, Chen L, Wang T, Li Q. Targeting extracellular matrix interaction in gastrointestinal cancer: Immune modulation, metabolic reprogramming, and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189225. [PMID: 39603565 DOI: 10.1016/j.bbcan.2024.189225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The extracellular matrix (ECM) is a major constituent of the tumor microenvironment, acting as a mediator that supports the progression of gastrointestinal (GI) cancers, particularly in mesenchymal subtypes. Beyond providing structural support, the ECM actively shapes the tumor microenvironment (TME) through complex biochemical and biomechanical remodeling. Dysregulation of ECM composition and signaling is closely linked to increased cancer aggressiveness, poor prognosis, and resistance to therapy. ECM components, such as collagen, fibronectin, laminin, and periostin, influence tumor growth, metastasis, immune modulation, and metabolic reprogramming by interacting with tumor cells, immune cells, and cancer-associated fibroblasts. In this review, we highlight the heterogeneous nature of the ECM and the dualistic roles of its components across GI cancers, with a focus on their contributions to immune evasion and metabolic remodeling via intercellular interactions. Additionally, we explore therapeutic strategies targeting ECM remodeling and ECM-centered interactions, emphasizing their potential in enhancing existing anti-tumor therapies.
Collapse
Affiliation(s)
- Jiyifan Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
24
|
Bagchi S, Yuan R, Huang HL, Zhang W, Chiu DKC, Kim H, Cha SL, Tolentino L, Lowitz J, Liu Y, Moshnikova A, Andreev O, Plevritis S, Engleman EG. The acid-sensing receptor GPR65 on tumor macrophages drives tumor growth in obesity. Sci Immunol 2024; 9:eadg6453. [PMID: 39423285 PMCID: PMC12104511 DOI: 10.1126/sciimmunol.adg6453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Multiple cancers, including colorectal cancer (CRC), are more frequent and often more aggressive in individuals with obesity. Here, we showed that macrophages accumulated within tumors of patients with obesity and CRC and in obese CRC mice and that they promoted accelerated tumor growth. These changes were initiated by oleic acid accumulation and subsequent tumor cell-derived acid production and were driven by macrophage signaling through the acid-sensing receptor GPR65. We found a similar role for GPR65 in hepatocellular carcinoma (HCC) in obese mice. Tumors in patients with obesity and CRC or HCC also exhibited increased GPR65 expression, suggesting that the mechanism revealed here may contribute to tumor growth in a range of obesity-associated cancers and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Sreya Bagchi
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
| | - Robert Yuan
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
| | - Han-Li Huang
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
- TMU Research Center for Drug Discovery, Taipei Medical University; Taipei 11031, Taiwan
| | - Weiruo Zhang
- Department of Biological Data Science, Stanford University; Stanford, CA 94305, USA
| | | | - Hyungjoo Kim
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
| | - Sophia L. Cha
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
| | - Lorna Tolentino
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
| | | | - Yilin Liu
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Oleg Andreev
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Sylvia Plevritis
- Department of Biological Data Science, Stanford University; Stanford, CA 94305, USA
| | - Edgar G. Engleman
- Department of Pathology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
25
|
Wang J, Zheng C, Lu J, Xu X, Xiang G, Li J, Zhang J, Mu X, Lu Q. The mechanism of MMP14-positive tumor-associated fibroblast subsets in inhibiting PD-1 immunotherapy for esophageal cancer through exosomal tsRNA-10522. Funct Integr Genomics 2024; 24:186. [PMID: 39377944 PMCID: PMC11461773 DOI: 10.1007/s10142-024-01447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Esophageal cancer (EC) continues to pose a significant health risk. Cancer-associated fibroblasts (CAFs), an essential part of the tumor microenvironment (TME), are viewed as potential therapeutic targets. However, their role in tumor mechanisms specific to esophageal cancer remains to be elucidated. This study identified MMP14+ CAFs and MMP14- CAFs using immunofluorescence staining. The cytotoxic activity of CD8 T cells was assessed via western blot and ELISA. Using a transwell test, the migratory potential of MMP14+ CAFs was evaluated. Using flow cytometry, apoptosis was found in the esophageal squamous cell carcinoma cell line KYSE30. To determine the important tsRNAs released by MMP14+ CAFs, tsRNA-seq was used. Two subgroups of EC receiving PD-1 immunotherapy were identified by our research: MMP14+ CAFs and MMP14- CAFs. MMP14+ CAFs showed improved migratory capacity and released more inflammatory factors linked to cancer. Through exosomes, these CAFs may prevent anti-PD-1-treated CD8 T cells from being cytotoxic. Furthermore, exosomal tsRNA from MMP14+ CAFs primarily targeted signaling pathways connected with cancer. Notably, it was discovered that tsRNA-10522 plays a critical role within inhibiting CD8 T cell tumor cell death. The tumor cell killing of CD8 T cells by exosomal tsRNA-10522 is inhibited by a subgroup of cells called MMP14+ CAFs inside the EC microenvironment during PD-1 immunotherapy. This reduces the effectiveness of PD-1 immunotherapy for EC. Our findings demonstrate the inhibitory function of MMP14+ CAFs within EC receiving PD-1 immunotherapy, raising the prospect that MMP14+ CAFs might serve as predictive indicators in EC receiving PD-1 immunotherapy.
Collapse
Affiliation(s)
- Juzheng Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Thoracic Surgery, The First People's Hospital of Xianyang, Xianyang, 712000, Shaanxi, China
| | - Chunlong Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Jiayu Lu
- Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinyao Xu
- College of Life Sciences, Northwest University, 229 Taibai North Road, Beilin District, Xi'an, 710069, Shaanxi, China
| | - Guangyu Xiang
- Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiahe Li
- Basic Medical College, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jipeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Xiaorong Mu
- Department of Pathology, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710039, Shaanxi, China.
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, NO. 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
26
|
Ghebremedhin A, Athavale D, Zhang Y, Yao X, Balch C, Song S. Tumor-Associated Macrophages as Major Immunosuppressive Cells in the Tumor Microenvironment. Cancers (Basel) 2024; 16:3410. [PMID: 39410029 PMCID: PMC11475569 DOI: 10.3390/cancers16193410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Within the tumor microenvironment, myeloid cells constitute a dynamic immune population characterized by a heterogeneous phenotype and diverse functional activities. In this review, we consider recent literature shedding light on the increasingly complex biology of M2-like immunosuppressive tumor-associated macrophages (TAMs), including their contribution to tumor cell invasion and metastasis, stromal remodeling (fibrosis and matrix degradation), and immune suppressive functions, in the tumor microenvironment (TME). This review also delves into the intricate signaling mechanisms underlying the polarization of diverse macrophage phenotypes, and their plasticity. We also review the development of promising therapeutic approaches to target these populations in cancers. The expanding knowledge of distinct subsets of immunosuppressive TAMs, and their contributions to tumorigenesis and metastasis, has sparked significant interest among researchers regarding the therapeutic potential of TAM depletion or phenotypic modulation.
Collapse
Affiliation(s)
| | - Dipti Athavale
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Yanting Zhang
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Xiaodan Yao
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
| | - Curt Balch
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Shumei Song
- Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA
- Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
- MD Anderson Cancer Center at Cooper, Cooper University Hospital, 2 Cooper Plaza, Camden, NJ 08103, USA
- Departments of Surgery, Cooper University Hospital, 1 Cooper Plaza, Camden, NJ 08103, USA
| |
Collapse
|
27
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
28
|
Conner SJ, Borges HB, Guarin JR, Gerton TJ, Yui A, Salhany KJ, Mensah DN, Hamilton GA, Le GH, Lew KC, Zhang C, Oudin MJ. Obesity Induces Temporally Regulated Alterations in the Extracellular Matrix That Drive Breast Tumor Invasion and Metastasis. Cancer Res 2024; 84:2761-2775. [PMID: 38900938 PMCID: PMC11908800 DOI: 10.1158/0008-5472.can-23-2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Obesity is associated with increased incidence and metastasis of triple-negative breast cancer, an aggressive breast cancer subtype. The extracellular matrix (ECM) is a major component of the tumor microenvironment that drives metastasis. To characterize the temporal effects of age and high-fat diet (HFD)-driven weight gain on the ECM, we injected allograft tumor cells at 4-week intervals into mammary fat pads of mice fed a control or HFD, assessing tumor growth and metastasis and evaluating the ECM composition of the mammary fat pads, lungs, and livers. Tumor growth was increased in obese mice after 12 weeks on HFD. Liver metastasis increased in obese mice only at 4 weeks, and elevated body weight correlated with increased metastasis to the lungs but not the liver. Whole decellularized ECM coupled with proteomics indicated that early stages of obesity were sufficient to induce changes in the ECM composition. Obesity led to an increased abundance of the proinvasive ECM proteins collagen IV and collagen VI in the mammary glands and enhanced the invasive capacity of cancer cells. Cells of stromal vascular fraction and adipose stem and progenitor cells were primarily responsible for secreting collagen IV and collagen VI, not adipocytes. Longer exposure to HFD increased the invasive potential of ECM isolated from the lungs and liver, with significant changes in ECM composition found in the liver with short-term HFD exposure. Together, these data suggest that changes in the breast, lungs, and liver ECM underlie some of the effects of obesity on triple-negative breast cancer incidence and metastasis. Significance: Organ-specific extracellular matrix changes in the primary tumor and metastatic microenvironment are mechanisms by which obesity contributes to breast cancer progression.
Collapse
Affiliation(s)
- Sydney J Conner
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Hannah B Borges
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Justinne R Guarin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Thomas J Gerton
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Anna Yui
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Kenneth J Salhany
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Diamond N Mensah
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Grace A Hamilton
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Giang H Le
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Katherine C Lew
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Crystal Zhang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
29
|
Prakash J, Shaked Y. The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discov 2024; 14:1375-1388. [PMID: 39091205 PMCID: PMC11294818 DOI: 10.1158/2159-8290.cd-24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 08/04/2024]
Abstract
The extracellular matrix (ECM) is an abundant noncellular component of most solid tumors known to support tumor progression and metastasis. The interplay between the ECM and cancer therapeutics opens up new avenues in understanding cancer biology. While the ECM is known to protect the tumor from anticancer agents by serving as a biomechanical barrier, emerging studies show that various cancer therapies induce ECM remodeling, resulting in therapy resistance and tumor progression. This review discusses critical issues in this field including how the ECM influences treatment outcome, how cancer therapies affect ECM remodeling, and the challenges associated with targeting the ECM. Significance: The intricate relationship between the extracellular matrix (ECM) and cancer therapeutics reveals novel insights into tumor biology and its effective treatment. While the ECM may protect tumors from anti-cancer agents, recent research highlights the paradoxical role of therapy-induced ECM remodeling in promoting treatment resistance and tumor progression. This review explores the key aspects of the interplay between ECM and cancer therapeutics.
Collapse
Affiliation(s)
- Jai Prakash
- Engineered Therapeutics Group, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, the Netherlands.
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Rappaport-Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
30
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Nishimura J, Morita Y, Tobe-Nishimoto A, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Takeshita A, Matsunaga K, Imai T, Uzawa N. CDDP-induced desmoplasia-like changes in oral cancer tissues are related to SASP-related factors induced by the senescence of cancer cells. Int Immunopharmacol 2024; 136:112377. [PMID: 38838554 DOI: 10.1016/j.intimp.2024.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The tumor microenvironment (TME) concept has been proposed and is currently being actively studied. The development of extracellular matrix (ECM) in the TME is known as desmoplasia and is observed in many solid tumors. It has also been strongly associated with poor prognosis and resistance to drug therapy. Recently, cellular senescence has gained attention as an effect of drug therapy on cancer cells. Cellular senescence is a phenomenon wherein proliferating cells become resistant to growth-promoting stimuli, secrete the SASP (senescence-associated phenotypic) factors, and stably arrest the cell cycle. These proteins are rich in pro-inflammatory factors, such as interleukin (IL)-6, IL-8, C-X-C motif chemokine ligand 1, C-C motif chemokine ligand (CCL)2, CCL5, and matrix metalloproteinase 3. This study aimed to investigate the desmoplasia-like changes in the TME before and after cancer drug therapy in oral squamous cell carcinomas, evaluate the effect of anticancer drugs on the TME, and the potential involvement of cancer cell senescence. Using a syngeneic oral cancer transplant mouse model, we confirmed that cis-diamminedichloroplatinum (II) (CDDP) administration caused desmoplasia-like changes in cancer tissues. Furthermore, CDDP treatment-induced senescence in tumor-bearing mouse tumor tissues and cultured cancer cells. These results suggest CDDP administration-induced desmoplasia-like structural changes in the TME are related to cellular senescence. Our findings suggest that the administration of anticancer drugs alters the TME of oral cancer cells. Additionally, oral cancer cells undergo senescence, which may influence the TME through the production of SASP factors.
Collapse
Affiliation(s)
- Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan.
| | - Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Akinori Takeshita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer 2024; 23:150. [PMID: 39068459 PMCID: PMC11282869 DOI: 10.1186/s12943-024-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.
Collapse
Affiliation(s)
- Xiangyuan Chu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| |
Collapse
|
33
|
van Baarle L, De Simone V, Schneider L, Santhosh S, Abdurahiman S, Biscu F, Schneider R, Zanoletti L, Siqueira de Mello R, Verbandt S, Hu Z, Stakenborg M, Ke BJ, Stakenborg N, Salvador Laureano R, García-Reyes B, Henn J, Toma M, Vanmechelen M, Boeckxstaens G, De Smet F, Garg AD, Ibiza S, Tejpar S, Wehner S, Matteoli G. IL-1R signaling drives enteric glia-macrophage interactions in colorectal cancer. Nat Commun 2024; 15:6079. [PMID: 39030280 PMCID: PMC11271635 DOI: 10.1038/s41467-024-50438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Enteric glia have been recently recognized as key components of the colonic tumor microenvironment indicating their potential role in colorectal cancer pathogenesis. Although enteric glia modulate immune responses in other intestinal diseases, their interaction with the colorectal cancer immune cell compartment remains unclear. Through a combination of single-cell and bulk RNA-sequencing, both in murine models and patients, here we find that enteric glia acquire an immunomodulatory phenotype by bi-directional communication with tumor-infiltrating monocytes. The latter direct a reactive enteric glial cell phenotypic and functional switch via glial IL-1R signaling. In turn, tumor glia promote monocyte differentiation towards pro-tumorigenic SPP1+ tumor-associated macrophages by IL-6 release. Enteric glia cell abundancy correlates with worse disease outcomes in preclinical models and colorectal cancer patients. Thereby, our study reveals a neuroimmune interaction between enteric glia and tumor-associated macrophages in the colorectal tumor microenvironment, providing insights into colorectal cancer pathogenesis.
Collapse
Affiliation(s)
- Lies van Baarle
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Veronica De Simone
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Sneha Santhosh
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Francesca Biscu
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Reiner Schneider
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Lisa Zanoletti
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Renata Siqueira de Mello
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Zedong Hu
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Michelle Stakenborg
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bo-Jun Ke
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Raquel Salvador Laureano
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Balbina García-Reyes
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf (MSSO ABCD), University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Jonas Henn
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Marieta Toma
- Department of Pathology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Maxime Vanmechelen
- Translational Cell and Tissue Research Unit, Department of Imaging & Pathology, Laboratory for Precision Cancer Medicine, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Translational Cell and Tissue Research Unit, Department of Imaging & Pathology, Laboratory for Precision Cancer Medicine, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sales Ibiza
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Medical Faculty, Bonn, Germany.
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, Menjivar RE, Hayward MK, Berestjuk I, Ten Hoeve J, Samad B, Ironside AJ, di Magliano MP, Muir A, Geiger R, Combes AJ, Weaver VM. Tumor-associated macrophages restrict CD8 + T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. NATURE CANCER 2024; 5:1045-1062. [PMID: 38831058 DOI: 10.1038/s43018-024-00775-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Tumor progression is accompanied by fibrosis, a condition of excessive extracellular matrix accumulation, which is associated with diminished antitumor immune infiltration. Here we demonstrate that tumor-associated macrophages (TAMs) respond to the stiffened fibrotic tumor microenvironment (TME) by initiating a collagen biosynthesis program directed by transforming growth factor-β. A collateral effect of this programming is an untenable metabolic milieu for productive CD8+ T cell antitumor responses, as collagen-synthesizing macrophages consume environmental arginine, synthesize proline and secrete ornithine that compromises CD8+ T cell function in female breast cancer. Thus, a stiff and fibrotic TME may impede antitumor immunity not only by direct physical exclusion of CD8+ T cells but also through secondary effects of a mechano-metabolic programming of TAMs, which creates an inhospitable metabolic milieu for CD8+ T cells to respond to anticancer immunotherapies.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Ori Maller
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Greg A Timblin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Fernando P Canale
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rosa E Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Mary-Kate Hayward
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ilona Berestjuk
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | | | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
36
|
Li Z, Duan D, Li L, Peng D, Ming Y, Ni R, Liu Y. Tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for hepatocellular carcinoma: recent research progress. Front Pharmacol 2024; 15:1382256. [PMID: 38957393 PMCID: PMC11217528 DOI: 10.3389/fphar.2024.1382256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that seriously threaten human health. Immunotherapy serves as the mainstay of treatment for HCC patients by targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. However, the effectiveness of anti-PD-1/PD-L1 treatment is limited when HCC becomes drug-resistant. Tumor-associated macrophages (TAMs) are an important factor in the negative regulation of PD-1 antibody targeted therapy in the tumor microenvironment (TME). Therefore, as an emerging direction in cancer immunotherapy research for the treatment of HCC, it is crucial to elucidate the correlations and mechanisms between TAMs and PD-1/PD-L1-mediated immune tolerance. This paper summarizes the effects of TAMs on the pathogenesis and progression of HCC and their impact on HCC anti-PD-1/PD-L1 immunotherapy, and further explores current potential therapeutic strategies that target TAMs in HCC, including eliminating TAMs in the TME, inhibiting TAMs recruitment to tumors and functionally repolarizing M2-TAMs (tumor-supportive) to M1-TAMs (antitumor type).
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
37
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
38
|
Elfstrum AK, Rumahorbo AH, Reese LE, Nelson EV, McCluskey BM, Schwertfeger KL. LYVE-1-expressing Macrophages Modulate the Hyaluronan-containing Extracellular Matrix in the Mammary Stroma and Contribute to Mammary Tumor Growth. CANCER RESEARCH COMMUNICATIONS 2024; 4:1380-1397. [PMID: 38717149 PMCID: PMC11141485 DOI: 10.1158/2767-9764.crc-24-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.
Collapse
Affiliation(s)
- Alexis K. Elfstrum
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota
| | - Annisa H. Rumahorbo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Lyndsay E. Reese
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Emma V. Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Braedan M. McCluskey
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
39
|
Whately KM, Sengottuvel N, Edatt L, Srivastava S, Woods AT, Tsai YS, Porrello A, Zimmerman MP, Chack AC, Jefferys SR, Yacovone G, Kim DJ, Dudley AC, Amelio AL, Pecot CV. Spon1+ inflammatory monocytes promote collagen remodeling and lung cancer metastasis through lipoprotein receptor 8 signaling. JCI Insight 2024; 9:e168792. [PMID: 38716730 PMCID: PMC11141919 DOI: 10.1172/jci.insight.168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-β1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-β1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-β1 signaling axis.
Collapse
Affiliation(s)
| | - Nisitha Sengottuvel
- UNC Lineberger Comprehensive Cancer Center and
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lincy Edatt
- UNC Lineberger Comprehensive Cancer Center and
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison T. Woods
- UNC Lineberger Comprehensive Cancer Center and
- Department of Cell Biology and Physiology and
| | - Yihsuan S. Tsai
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Matthew P. Zimmerman
- UNC Lineberger Comprehensive Cancer Center and
- Department of Cell Biology and Physiology and
| | - Aaron C. Chack
- UNC Lineberger Comprehensive Cancer Center and
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Dae Joong Kim
- Department of Microbiology, Immunology, and Cancer Biology and
| | - Andrew C. Dudley
- Department of Microbiology, Immunology, and Cancer Biology and
- UVA Comprehensive Cancer Center, The University of Virginia, Charlottesville, Virginia, USA
| | - Antonio L. Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Chad V. Pecot
- UNC Lineberger Comprehensive Cancer Center and
- Division of Oncology and
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
40
|
Huang R, Kang T, Chen S. The role of tumor-associated macrophages in tumor immune evasion. J Cancer Res Clin Oncol 2024; 150:238. [PMID: 38713256 PMCID: PMC11076352 DOI: 10.1007/s00432-024-05777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.
Collapse
Affiliation(s)
- Ruizhe Huang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
41
|
Wu H, Ma T, He M, Xie W, Wang X, Lu L, Wang H, Cui Y. Cucurbitacin B modulates M2 macrophage differentiation and attenuates osteosarcoma progression via PI3K/AKT pathway. Phytother Res 2024; 38:2215-2233. [PMID: 38411031 DOI: 10.1002/ptr.8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Osteosarcoma is a common malignant bone tumour characterised by an aggressive metastatic potential. The tumour microenvironment, particularly the M2-polarised macrophages, is crucial for tumour progression. Cucurbitacin B (CuB), a triterpenoid derivative, is recognised for its anti-inflammatory and antitumour properties. This study investigates CuB and its effect on M2 macrophage differentiation and osteosarcoma progression, aiming to contribute to new treatment strategies. In vitro, THP-1 monocytes were stimulated with PMA, IL-13 and IL-4 to induce differentiation into M2 macrophages. Additionally, the influence of CuB on the proliferation, migration and invasion of osteosarcoma cells in the context of M2 macrophages was scrutinised. Crucial signalling pathways, especially the PI3K/AKT pathway, affected by CuB were identified and validated. In vivo, the osteosarcoma model was employed to gauge the effects of CuB on tumour weight, lung metastasis, angiogenesis, cell proliferation and M2 macrophage markers. The results showed that CuB inhibited M2 macrophage differentiation, leading to reduced proliferation, migration and invasion of osteosarcoma cells. CuB manifested an inhibitory effect on the PI3K/AKT pathway during the differentiation of M2 macrophages. In mouse models, CuB markedly reduced the tumour weight and the number of lung metastases. It also reduced the expression of angiogenesis and cell proliferation markers in tumour tissues, decreased the quantity of M2 macrophages and their associated markers and pathway proteins. In conclusion, CuB impedes osteosarcoma progression by inhibiting M2 macrophage differentiation via the PI3K/AKT pathway, presenting the potential for therapeutic advancements in osteosarcoma treatment.
Collapse
Affiliation(s)
- Hong Wu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianjun Ma
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mei He
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wenkai Xie
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xueyan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liuping Lu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hui Wang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Cui
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
42
|
Chew C, Brand OJ, Yamamura T, Lawless C, Morais MRPT, Zeef L, Lin IH, Howell G, Lui S, Lausecker F, Jagger C, Shaw TN, Krishnan S, McClure FA, Bridgeman H, Wemyss K, Konkel JE, Hussell T, Lennon R. Kidney resident macrophages have distinct subsets and multifunctional roles. Matrix Biol 2024; 127:23-37. [PMID: 38331051 DOI: 10.1016/j.matbio.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.
Collapse
Affiliation(s)
- Christine Chew
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Oliver J Brand
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tomohiko Yamamura
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Mychel Raony Paiva Teixeira Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Leo Zeef
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - I-Hsuan Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Gareth Howell
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sylvia Lui
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Christopher Jagger
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, United Kingdom
| | - Siddharth Krishnan
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Flora A McClure
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hayley Bridgeman
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Kelly Wemyss
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joanne E Konkel
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute for Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom.
| |
Collapse
|
43
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Zhang X, Li W, Liu T, Guo H, Sun Q, Li B. Heterogeneity of Lipid Metabolism and its Clinical and Immune Correlation in Lung Adenocarcinoma. Curr Med Chem 2024; 31:1561-1577. [PMID: 37594166 DOI: 10.2174/0929867331666230818144416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION The role of lipid metabolism in lung adenocarcinoma (LUAD) is not completely researched. Lipid metabolism reprogramming is a characteristic of malignancies and contributes to carcinogenesis and progression. The transcriptome and scRNA- seq data and clinical information were downloaded from the public databases. METHODS Lipid metabolism pathways were collected from the MSigDB database, and molecular subtypes were classified based on lipid metabolism features via consensus clustering. The bidirectional crosstalk between immune cells and malignant cells was analyzed. Differences in lipid metabolism at the single-cell level and their correlation with the tumor microenvironment (TME) were also studied. LUAD patients were classified into two subtypes, showing distinct mutation and lipid metabolism features based on lipid metabolism characteristics. Meanwhile, significant differences in the overall survival, clinical characteristics, and immune landscape were observed between the two subtypes. We also found that clust1 had higher oxidative stress status. There were 116 differentially expressed genes between the two subtypes, which were significantly associated with cell cycle progression. We identified 4001 immune cells, including 483 malignant cells and 3518 normal cells, and found active intercellular communication and significant differences in lipid metabolism characteristics between the malignant cells and normal cells. Furthermore, several lipid metabolism pathways were found to be associated with TME factors, including hypoxia and angiogenesis. RESULT The current findings indicated that lipid metabolism was involved in the development and cellular heterogeneity of LUAD and revealed widespread reprogramming across multiple cellular elements in the TME of LUAD. CONCLUSION This characterization improved the current understanding of tumor biology and enabled the identification of novel targets for immunotherapy.
Collapse
Affiliation(s)
- Xugang Zhang
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100000, China
| | - Weiqing Li
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100000, China
| | - Taorui Liu
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100000, China
| | - Huiqin Guo
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100000, China
| | - Qianqian Sun
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100000, China
| | - Baozhong Li
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100000, China
| |
Collapse
|
45
|
Wang Y, Wang DY, Bu KN, Gao JD, Zhang BL. Prognosis prediction and risk stratification of breast cancer patients based on a mitochondria-related gene signature. Sci Rep 2024; 14:2859. [PMID: 38310106 PMCID: PMC10838276 DOI: 10.1038/s41598-024-52981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
As the malignancy with the highest global incidence, breast cancer represents a significant threat to women's health. Recent advances have shed light on the importance of mitochondrial function in cancer, particularly in metabolic reprogramming within tumors. Recognizing this, we developed a novel risk signature based on mitochondrial-related genes to improve prognosis prediction and risk stratification in breast cancer patients. In this study, transcriptome data and clinical features of breast cancer samples were extracted from two sources: the TCGA, serving as the training set, and the METABRIC, used as the independent validation set. We developed the signature using LASSO-Cox regression and assessed its prognostic efficacy via ROC curves. Furthermore, the signature was integrated with clinical features to create a Nomogram model, whose accuracy was validated through clinical calibration curves and decision curve analysis. To further elucidate prognostic variations between high and low-risk groups, we conducted functional enrichment and immune infiltration analyses. Additionally, the study encompassed a comparison of mutation landscapes and drug sensitivity, providing a comprehensive understanding of the differing characteristics in these groups. Conclusively, we established a risk signature comprising 8 mitochondrial-related genes-ACSL1, ALDH2, MTHFD2, MRPL13, TP53AIP1, SLC1A1, ME3, and BCL2A1. This signature was identified as an independent risk predictor for breast cancer patient survival, exhibiting a significant high hazard ratio (HR = 3.028, 95%CI 2.038-4.499, P < 0.001). Patients in the low-risk group showed a more favorable prognosis, with enhanced immune infiltration, distinct mutation landscapes, and greater sensitivity to anti-tumor drugs. In contrast, the high-risk group exhibited an adverse trend in these aspects. This risk signature represents a novel and effective prognostic indicator, suggesting valuable insights for patient stratification in breast cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ding-Yuan Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ke-Na Bu
- Xingyuan Hospital of Yulin City, Yulin City, 719051, Shanxi Province, China
| | - Ji-Dong Gao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union College, Shenzhen, 518116, China.
| | - Bai-Lin Zhang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
46
|
Du W, Xia X, Hu F, Yu J. Extracellular matrix remodeling in the tumor immunity. Front Immunol 2024; 14:1340634. [PMID: 38332915 PMCID: PMC10850336 DOI: 10.3389/fimmu.2023.1340634] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
The extracellular matrix (ECM) is a significant constituent of tumors, fulfilling various essential functions such as providing mechanical support, influencing the microenvironment, and serving as a reservoir for signaling molecules. The abundance and degree of cross-linking of ECM components are critical determinants of tissue stiffness. In the process of tumorigenesis, the interaction between ECM and immune cells within the tumor microenvironment (TME) frequently leads to ECM stiffness, thereby disrupting normal mechanotransduction and promoting malignant progression. Therefore, acquiring a thorough comprehension of the dysregulation of ECM within the TME would significantly aid in the identification of potential therapeutic targets for cancer treatment. In this regard, we have compiled a comprehensive summary encompassing the following aspects: (1) the principal components of ECM and their roles in malignant conditions; (2) the intricate interaction between ECM and immune cells within the TME; and (3) the pivotal regulators governing the onco-immune response in ECM.
Collapse
Affiliation(s)
- Wei Du
- Department of Targeting Therapy and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayun Yu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Xiong J, Xiao R, Zhao J, Zhao Q, Luo M, Li F, Zhang W, Wu M. Matrix stiffness affects tumor-associated macrophage functional polarization and its potential in tumor therapy. J Transl Med 2024; 22:85. [PMID: 38246995 PMCID: PMC10800063 DOI: 10.1186/s12967-023-04810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
The extracellular matrix (ECM) plays critical roles in cytoskeletal support, biomechanical transduction and biochemical signal transformation. Tumor-associated macrophage (TAM) function is regulated by matrix stiffness in solid tumors and is often associated with poor prognosis. ECM stiffness-induced mechanical cues can activate cell membrane mechanoreceptors and corresponding mechanotransducers in the cytoplasm, modulating the phenotype of TAMs. Currently, tuning TAM polarization through matrix stiffness-induced mechanical stimulation has received increasing attention, whereas its effect on TAM fate has rarely been summarized. A better understanding of the relationship between matrix stiffness and macrophage function will contribute to the development of new strategies for cancer therapy. In this review, we first introduced the overall relationship between macrophage polarization and matrix stiffness, analyzed the changes in mechanoreceptors and mechanotransducers mediated by matrix stiffness on macrophage function and tumor progression, and finally summarized the effects of targeting ECM stiffness on tumor prognosis to provide insight into this new field.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiuyan Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Manwen Luo
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
48
|
Hou S, Zhao Y, Chen J, Lin Y, Qi X. Tumor-associated macrophages in colorectal cancer metastasis: molecular insights and translational perspectives. J Transl Med 2024; 22:62. [PMID: 38229160 PMCID: PMC10792812 DOI: 10.1186/s12967-024-04856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Metastasis is the leading cause of high mortality in colorectal cancer (CRC), which is not only driven by changes occurring within the tumor cells, but is also influenced by the dynamic interaction between cancer cells and components in the tumor microenvironment (TME). Currently, the exploration of TME remodeling and its impact on CRC metastasis has attracted increasing attention owing to its potential to uncover novel therapeutic avenues. Noteworthy, emerging studies suggested that tumor-associated macrophages (TAMs) within the TME played important roles in CRC metastasis by secreting a variety of cytokines, chemokines, growth factors and proteases. Moreover, TAMs are often associated with poor prognosis and drug resistance, making them promising targets for CRC therapy. Given the prognostic and clinical value of TAMs, this review provides an updated overview on the origin, polarization and function of TAMs, and discusses the mechanisms by which TAMs promote the metastatic cascade of CRC. Potential TAM-targeting techniques for personalized theranostics of metastatic CRC are emphasized. Finally, future perspectives and challenges for translational applications of TAMs in CRC development and metastasis are proposed to help develop novel TAM-based strategies for CRC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
49
|
McWhorter R, Bonavida B. The Role of TAMs in the Regulation of Tumor Cell Resistance to Chemotherapy. Crit Rev Oncog 2024; 29:97-125. [PMID: 38989740 DOI: 10.1615/critrevoncog.2024053667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Tumor-associated macrophages (TAMs) are the predominant cell infiltrate in the immunosuppressive tumor microenvironment (TME). TAMs are central to fostering pro-inflammatory conditions, tumor growth, metastasis, and inhibiting therapy responses. Many cancer patients are innately refractory to chemotherapy and or develop resistance following initial treatments. There is a clinical correlation between the level of TAMs in the TME and chemoresistance. Hence, the pivotal role of TAMs in contributing to chemoresistance has garnered significant attention toward targeting TAMs to reverse this resistance. A prerequisite for such an approach requires a thorough understanding of the various underlying mechanisms by which TAMs inhibit response to chemotherapeutic drugs. Such mechanisms include enhancing drug efflux, regulating drug metabolism and detoxification, supporting cancer stem cell (CSCs) resistance, promoting epithelial-mesenchymal transition (EMT), inhibiting drug penetration and its metabolism, stimulating angiogenesis, impacting inhibitory STAT3/NF-κB survival pathways, and releasing specific inhibitory cytokines including TGF-β and IL-10. Accordingly, several strategies have been developed to overcome TAM-modulated chemoresistance. These include novel therapies that aim to deplete TAMs, repolarize them toward the anti-tumor M1-like phenotype, or block recruitment of monocytes into the TME. Current results from TAM-targeted treatments have been unimpressive; however, the use of TAM-targeted therapies in combination appears promising These include targeting TAMs with radiotherapy, chemotherapy, chemokine receptor inhibitors, immunotherapy, and loaded nanoparticles. The clinical limitations of these strategies are discussed.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
50
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|