1
|
Hassan S, Ashraf N, Hanif K, Khan NU. Subcortical Maternal Complex in Female Infertility: A Transition from Animal Models to Human Studies. Mol Biol Rep 2025; 52:108. [PMID: 39775990 DOI: 10.1007/s11033-025-10220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation. SCMC proteins are associated with crucial pathways during embryogenesis, causing changes that are necessary for the transition of an oocyte to an embryo. These vital processes include the formation of cytoplasmic spindles and lattices, accurate positioning of meiotic spindles, regulatory roles in various gene translations, organelle redistribution, and zygotic genome reprogramming. While these genes are well studied in animal models, often mice, translation to clinical studies is comparatively less. The present study elucidates the transition in genetic studies from animal to human models of SCMC proteins. The present literature review shows that the expression of various SCMC proteins impairs embryo development at different stages. The clinical translation of SCMC occurs via various pathways. Therefore, females experiencing multiple unsuccessful pregnancies after natural or assisted conception techniques are candidates for underlying SCMC mutations. Although the phenotype of affected individuals has been identified, the molecular mechanisms that lead to impaired pathways still require investigation. Therefore, the present study paves the way for future research leading to the early diagnosis of lethal variants and possible subsequent management.
Collapse
Affiliation(s)
- Sibte Hassan
- Reproductive Medicine Physician SEHA Corniche Hospital, Abu Dhabi, UAE.
| | - Nomia Ashraf
- Department of obstetrics and gynaecology, Fatima Jinnah Medical University Lahore, Lahore, Pakistan
| | - Khola Hanif
- Genova Invitro Fertilization Clinic Lahore, Lahore, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| |
Collapse
|
2
|
Chai M, Wen X, Yang D, Zhang Q, Yang N, Cao Y, Zhang Z, Li L, Chen B. A novel homozygous mutation in the NLRP2 gene causes early embryonic arrest. J Assist Reprod Genet 2024; 41:3347-3355. [PMID: 39585517 PMCID: PMC11707221 DOI: 10.1007/s10815-024-03279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/24/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE Successful reproduction in humans requires maturation and fertilization of gametes as well as early embryonic development. Any deviation from these processes leads to infertility. Early embryonic arrest (EEA) is common in female infertility and is primarily attributed to genetic factors. Mutations in the NLRP2 gene have been identified as the causative factors for EEA. In the present study, a novel mutation identified in NLRP2 underscored the novel homozygous variant and phenotypes that might contribute to its inclusion in the genetic counseling of infertile patients. METHODS We recruited a proband from a consanguineous family with a diagnosis of EEA. Peripheral blood samples were collected from the proband and family members for whole-exome sequencing to identify the genes and inheritance patterns associated with infertility; the results were substantiated by Sanger sequencing. All genetic variants and protein structures were analyzed based on computational predictions. Wild-type and mutant plasmids were constructed and transfected into HeLa cells. Subsequent in vitro analyses elucidated the functional impact of the variant. RESULTS A novel homozygous mutation in NLRP2 was identified in the proband. The patient harbored a frameshift deletion mutation (c.195delC: p.Tyr66Thrfs*32) in the pyrin structural domain. This genetic alteration resulted in the down-regulation of NLRP2 mRNA expression, truncation of the protein structure, and altered protein localization in cells. CONCLUSIONS The current findings broaden the spectra of NLRP2 variants, especially concerning EEA. Also, potential diagnostic markers for patients experiencing recurrent IVF/ICSI failure were identified, and a solid foundation was laid for genetic counseling for female infertility.
Collapse
Affiliation(s)
- Menghan Chai
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Xingxing Wen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Qiannan Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Ni Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
- Department of Biomedical Engineering, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Dongcheng, Beijing, 100006, China.
| | - Beili Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
3
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
4
|
Wang J, He W, Li C, Ma Y, Liu M, Ye J, Sun L, Su J, Zhou L. Focus on negatively regulated NLRs in inflammation and cancer. Int Immunopharmacol 2024; 136:112347. [PMID: 38820966 DOI: 10.1016/j.intimp.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Nucleotide-binding and oligomerization structural domain (NOD)-like receptors (NLRs) play an important role in innate immunity as cytoplasmic pattern recognition receptors (PRRs). Over the past decade, considerable progress has been made in understanding the mechanisms by which NLR family members regulate immune system function, particularly the formation of inflammasome and downstream inflammatory signals. However, recent studies have shown that some members of the NLRs, including Nlrp12, NLRX1, and NLRC3, are important in the negative regulation of inflammatory signaling and are involved in the development of various diseases, including inflammatory diseases and cancer. Based on this, in this review, we first summarize the interactions between canonical and non-canonical nuclear factor-κB (NF-κB) signaling pathways that are mainly involved in NLRs, then highlight the mechanisms by which the above NLRs negatively regulate inflammatory signaling responses as well as their roles in tumor progression, and finally summarize the synthetic and natural derivatives with therapeutic effects on these NLRs, which are considered as potential therapeutic agents for overcoming inflammatory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China; Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenjing He
- Medical Intensive Care Unit, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Chunhua Li
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Yue Ma
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Mingjun Liu
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Jinxiang Ye
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Lei Sun
- Changchun Tongyuan Hospital, Changchun 130012, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China.
| |
Collapse
|
5
|
Pham AH, Emori C, Ishikawa-Yamauchi Y, Tokuhiro K, Kamoshita M, Fujihara Y, Ikawa M. Thirteen Ovary-Enriched Genes Are Individually Not Essential for Female Fertility in Mice. Cells 2024; 13:802. [PMID: 38786026 PMCID: PMC11119756 DOI: 10.3390/cells13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Infertility is considered a global health issue as it currently affects one in every six couples, with female factors reckoned to contribute to partly or solely 50% of all infertility cases. Over a thousand genes are predicted to be highly expressed in the female reproductive system and around 150 genes in the ovary. However, some of their functions in fertility remain to be elucidated. In this study, 13 ovary and/or oocyte-enriched genes (Ccdc58, D930020B18Rik, Elobl, Fbxw15, Oas1h, Nlrp2, Pramel34, Pramel47, Pkd1l2, Sting1, Tspan4, Tubal3, Zar1l) were individually knocked out by the CRISPR/Cas9 system. Mating tests showed that these 13 mutant mouse lines were capable of producing offspring. In addition, we observed the histology section of ovaries and performed in vitro fertilization in five mutant mouse lines. We found no significant anomalies in terms of ovarian development and fertilization ability. In this study, 13 different mutant mouse lines generated by CRISPR/Cas9 genome editing technology revealed that these 13 genes are individually not essential for female fertility in mice.
Collapse
Affiliation(s)
- Anh Hoang Pham
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
| | - Yu Ishikawa-Yamauchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0027, Japan;
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1191, Japan;
| | - Maki Kamoshita
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (A.H.P.); (C.E.); (M.K.); (Y.F.)
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
7
|
Rossi MN, Matteo V, Diomedi-Camassei F, De Leo E, Devuyst O, Lamkanfi M, Caiello I, Loricchio E, Bellomo F, Taranta A, Emma F, De Benedetti F, Prencipe G. Nlrp2 deletion ameliorates kidney damage in a mouse model of cystinosis. Front Immunol 2024; 15:1373224. [PMID: 38633264 PMCID: PMC11021658 DOI: 10.3389/fimmu.2024.1373224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.
Collapse
Affiliation(s)
- Marianna Nicoletta Rossi
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Valentina Matteo
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesca Diomedi-Camassei
- Department of Laboratories, Pathology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Ester De Leo
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Ivan Caiello
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Elena Loricchio
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesco Bellomo
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Anna Taranta
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Fabrizio De Benedetti
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| |
Collapse
|
8
|
Zhang T, Xing F, Qu M, Yang Z, Liu Y, Yao Y, Xing N. NLRP2 in health and disease. Immunology 2024; 171:170-180. [PMID: 37735978 DOI: 10.1111/imm.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
NLR family pyrin domain containing 2 (NLRP2) is a novel member of the Nod-like receptor (NLR) family. However, our understanding of NLRP2 has long been ambiguous. NLRP2 may have a role in the innate immune response, but its 'specific' functions remain controversial. Although NLRP2 can initiate inflammasome and promote inflammation, it can also downregulate inflammatory signals. Additionally, NLRP2 has been reported to function in the reproductive system and shows high expression in the placenta. However, the exact role of NLRP2 in the reproductive system is unclear. Here, we highlight the most current progress on NLRP2 in inflammasome activation, effector function and regulation of nuclear factor-κB. And we discuss functions of NLRP2 in inflammatory diseases, reproductive disorders and the potential implication of NLRP2 in human diseases.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
| | - Mingcui Qu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihu Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yafei Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongchao Yao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Jin L, Li T, Hong Y, Mao R, Li X, Zhu C, Mu J, Zhou J, Pan L, Que Y, Xia Y, Zhang Y, Li S. Activation of NLRP2 in Triple-Negative Breast Cancer sensitizes chemotherapeutic therapy through facilitating hnRNPK function. Biochem Pharmacol 2023; 215:115703. [PMID: 37499769 DOI: 10.1016/j.bcp.2023.115703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor type 2 protein (NLRP2) was reported to inhibit NF-κB in response to inflammatory stimuli, but its role in tumors remains elusive. We screened out NLRP2 from mouse models of breast cancer metastasis. Bioinformatics analysis showed NLRP2 expression was positively correlated with survival rate and negatively correlated with the potential of cancer metastasis. Its significance in Triple-Negative Breast Cancer (TNBC) was investigated by gain- and loss-of-function studies in vivo and vitro. Re-expression of NLRP2 dramatically inhibited the growth and metastasis of the xenograft model of MDA-MB-231 cells. Mechanically, NLRP2 confined hnRNPK within cytoplasm, which in turn blocked vimentin mRNA production. Not only that, NLRP2 further enhanced the H2O2-induced high level of p53&Bax and hence dramatically increased the apoptosis rate (fivefold). Likewise, carboplatin-treated cells showed decreased cell viability, suggesting that patients of TNBC with high level of NLRP2 respond well to chemotherapeutics. Under the stimulus of H2O2, NLRP2-hnRNPK no longer stayed in the cytoplasm, but entered the nucleus to increase the expression of p53 and hence enhanced corresponding apoptosis effect, increasing Bax expression. It suggested that NLRP2 helps p53 enter the nucleus to induce apoptosis. This study revealed a novel function of NLRP2 that modulated oncogenic and anti-oncogenic characteristics of hnRNPK, and provided a new biomarker for TNBC chemotherapy.
Collapse
Affiliation(s)
- Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China.
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yali Hong
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Rongchen Mao
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Junyu Mu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yidong Xia
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yuheng Zhang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China.
| |
Collapse
|
10
|
Anvar Z, Chakchouk I, Sharif M, Mahadevan S, Nasiotis ET, Su L, Liu Z, Wan YW, Van den Veyver IB. Loss of the Maternal Effect Gene Nlrp2 Alters the Transcriptome of Ovulated Mouse Oocytes and Impacts Expression of Histone Demethylase KDM1B. Reprod Sci 2023; 30:2780-2793. [PMID: 36976514 PMCID: PMC10524210 DOI: 10.1007/s43032-023-01218-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex in oocytes and preimplantation embryos that is encoded by maternal effect genes. The SCMC is essential for zygote-to-embryo transition, early embryogenesis, and critical zygotic cellular processes, including spindle positioning and symmetric division. Maternal deletion of Nlrp2, which encodes an SCMC protein, results in increased early embryonic loss and abnormal DNA methylation in embryos. We performed RNA sequencing on pools of meiosis II (MII) oocytes from wild-type and Nlrp2-null female mice that were isolated from cumulus-oocyte complexes (COCs) after ovarian stimulation. Using a mouse reference genome-based analysis, we found 231 differentially expressed genes (DEGs) in Nlrp2-null compared to WT oocytes (123 up- and 108 downregulated; adjusted p < 0.05). The upregulated genes include Kdm1b, a H3K4 histone demethylase required during oocyte development for the establishment of DNA methylation marks at CpG islands, including those at imprinted genes. The identified DEGs are enriched for processes involved in neurogenesis, gland morphogenesis, and protein metabolism and for post-translationally methylated proteins. When we compared our RNA sequencing data to an oocyte-specific reference transcriptome that contains many previously unannotated transcripts, we found 228 DEGs, including genes not identified with the first analysis. Interestingly, 68% and 56% of DEGs from the first and second analyses, respectively, overlap with oocyte-specific hyper- and hypomethylated domains. This study shows that there are substantial changes in the transcriptome of mouse MII oocytes from female mice with loss of function of Nlrp2, a maternal effect gene that encodes a member of the SCMC.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sangeetha Mahadevan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Eleni Theodora Nasiotis
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Li Su
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Zhandong Liu
- Department of Pediatrics - Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ying-Wooi Wan
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Okin D, Kagan JC. Inflammasomes as regulators of non-infectious disease. Semin Immunol 2023; 69:101815. [PMID: 37506489 PMCID: PMC10527946 DOI: 10.1016/j.smim.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Inflammasomes are cytoplasmic organelles that stimulate inflammation upon cellular detection of infectious or non-infectious stress. While much foundational work has focused on the infection-associated aspects of inflammasome activities, recent studies have highlighted the role of inflammasomes in non-infectious cellular and organismal functions. Herein, we discuss the evolution of inflammasome components and highlight characteristics that permit inflammasome regulation of physiologic processes. We focus on emerging data that highlight the importance of inflammasome proteins in the regulation of reproduction, development, and malignancy. A framework is proposed to contextualize these findings.
Collapse
Affiliation(s)
- Daniel Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
13
|
Xu M, Wu W, Zhao M, Chung JPW, Li TC, Chan DYL. Common dysmorphic oocytes and embryos in assisted reproductive technology laboratory in association with gene alternations. Int J Biochem Cell Biol 2022; 152:106298. [PMID: 36122887 DOI: 10.1016/j.biocel.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Amorphic or defected oocytes and embryos are commonly observed in assisted reproductive technology (ART) laboratories. It is believed that a proper gene expression at each stage of embryo development contributes to the possibility of a decent-quality embryo leading to successful implantation. Many studies reported that several defects in embryo morphology are associated with gene expressions during in vitro fertilization (IVF) treatment. There is lacking literature review on summarizing common morphological defects about gene alternations. In this review, we summarized the current literature. We selected 64 genes that have been reported to be involved in embryo morphological abnormalities in animals and humans, 30 of which were identified in humans and might be the causes of embryonic changes. Five papers focusing on associations of multiple gene expressions and embryo abnormalities using RNA transcriptomes were also included during the search. We have also reviewed our time-lapse image database with over 3000 oocytes/embryos to show morphological defects possibly related to gene alternations reported previously in the literature. This holistic review can better understand the associations between gene alternations and morphological changes. It is also beneficial to select important biomarkers with strong evidence in IVF practice and reveal their potential application in embryo selection. Also, identifying genes may help patients with genetic disorders avoid unnecessary treatments by providing preimplantation genetic testing for monogenic/single gene defects (PGT-M), reduce embryo replacements by less potential, and help scientists develop new methods for oocyte/embryo research in the near future.
Collapse
Affiliation(s)
- Murong Xu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Reproductive Medicine, Department of Obstetrics and Gynaecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Fei CF, Zhou LQ. Gene mutations impede oocyte maturation, fertilization, and early embryonic development. Bioessays 2022; 44:e2200007. [PMID: 35900055 DOI: 10.1002/bies.202200007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.
Collapse
Affiliation(s)
- Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
de Araújo FM, Cuenca-Bermejo L, Fernández-Villalba E, Costa SL, Silva VDA, Herrero MT. Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy. Cell Mol Neurobiol 2022; 42:1283-1300. [PMID: 33387119 PMCID: PMC11421755 DOI: 10.1007/s10571-020-01027-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
Collapse
Affiliation(s)
- Fillipe M de Araújo
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Silvia L Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Victor Diogenes A Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Maria Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
16
|
Salova M, Sipos W, Tschachler E, Eckhart L. NOD2 and reproduction-associated NOD-like receptors have been lost during the evolution of pangolins. Immunogenetics 2022; 74:261-268. [PMID: 34725731 PMCID: PMC8560141 DOI: 10.1007/s00251-021-01230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
NOD-like receptors (NLRs) are sensors of pathogen-associated molecular patterns with critical roles in the control of immune responses and programmed cell death. Recent studies have revealed inter-species differences in mammalian innate immune genes and a particular degeneration of nucleic acid sensing pathways in pangolins, which are currently investigated as potential hosts for zoonotic pathogens. Here, we used comparative genomics to determine which NLR genes are conserved or lost in pangolins and related mammals. We show that NOD2, which is implicated in sensing bacterial muramyl dipeptide and viral RNA, is a pseudogene in pangolins, but not in any other mammalian species investigated. NLRC4 and NAIP are absent in pangolins and canine carnivorans, suggesting convergent loss of cytoplasmic sensing of bacterial flagellin in these taxa. Among NLR family pyrin domain containing proteins (NLRPs), skin barrier-related NLRP10 has been lost in pangolins after the evolutionary divergence from Carnivora. Strikingly, pangolins lack all NLRPs associated with reproduction (germ cells and embryonic development) in other mammals, i.e., NLRP2, 4, 5, 7, 8, 9, 11, 13, and 14. Taken together, our study shows a massive degeneration of NLR genes in pangolins and suggests that these endangered mammals may have unique adaptations of innate immunity and reproductive cell biology.
Collapse
Affiliation(s)
- Margarita Salova
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Russo G, Notarstefano V, Montik N, Gioacchini G, Giorgini E, Polidori AR, Candela FA, Ciavattini A, Cignitti M, Carnevali O. Evaluation of Controlled Ovarian Stimulation Protocols in Patients with Normal and Low Ovarian Reserve: Analyses of miRNAs and Selected Target Genes Involved in the Proliferation of Human Cumulus Cells and Oocyte Quality. Int J Mol Sci 2022; 23:1713. [PMID: 35163635 PMCID: PMC8836191 DOI: 10.3390/ijms23031713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
The oocyte and the surrounding cumulus cells (CCs) are deeply linked by a complex bidirectional cross-talk. In this light, the molecular analysis of the CCs is nowadays considered to be precious in providing information on oocyte quality. It is now clear that miRNAs play a key role in several ovarian functions, such as folliculogenesis, steroidogenesis, and ovulation. Thus, in this study, specific miRNAs, together with their target genes, were selected and investigated in CCs to assess the response of patients with normal (NR) and low (LR) ovarian reserve to two different controlled ovarian stimulation (COS) protocols, based on rFSH and hMG. Moreover, a Fourier transform infrared microspectroscopy (FTIRM) analysis was performed to evaluate DNA conformational changes in CCs and to relate them with the two COS protocols. The results evidenced a modulation of the expression of miRNAs and related target genes involved in CCs' proliferation, in vasculogenesis, angiogenesis, genomic integrity, and oocyte quality, with different effects according to the ovarian reserve of patients. Moreover, the COS protocols determined differences in DNA conformation and the methylation state. In particular, the results clearly showed that treatment with rFSH is the most appropriate in NR patients with normal ovarian reserve, while treatment with hMG appears to be the most suitable in LR patients with low ovarian reserve.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Nina Montik
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| | - Anna Rita Polidori
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Fulvia Antonia Candela
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Andrea Ciavattini
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Maurizio Cignitti
- Clinica Ostetrica Ginecologica, Università Politecnica delle Marche, Ospedale G. Salesi, Via F. Corridoni 11, 60131 Ancona, Italy; (N.M.); (A.R.P.); (F.A.C.); (A.C.); (M.C.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (V.N.); (G.G.); (E.G.)
| |
Collapse
|
18
|
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) that are present in the oocyte and required for early embryonic development. Hence, while these genes and gene products are of maternal origin, their phenotypic consequences result from effects on the embryo. The first mammalian MEGs were identified in the mouse in 2000 and were associated with early embryonic loss in the offspring of homozygous null females. In humans, the first MEG was identified in 2006, in women who had experienced a range of adverse reproductive outcomes, including hydatidiform moles, spontaneous abortions, and stillbirths. Over 80 mammalian MEGs have subsequently been identified, including several that have been associated with phenotypes in humans. In general, pathogenic variants in MEGs or the absence of MEG products are associated with a spectrum of adverse outcomes, which in humans range from zygotic cleavage failure to offspring with multi-locus imprinting disorders. Although less established, there is also evidence that MEGs are associated with structural birth defects (e.g., craniofacial malformations, congenital heart defects). This review provides an updated summary of mammalian MEGs reported in the literature through early 2021, as well as an overview of the evidence for a link between MEGs and structural birth defects.
Collapse
|
19
|
Li T, Li X, Mao R, Pan L, Que Y, Zhu C, Jin L, Li S. NLRP2 inhibits cell proliferation and migration by regulating EMT in lung adenocarcinoma cells. Cell Biol Int 2021; 46:588-598. [PMID: 34957627 DOI: 10.1002/cbin.11755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs) are crucial types of innate immune sensors and well known for their critical roles in the immune system. However, how NLRP2 functions in the progression of cancer is largely unknown. Here, we identified NLRP2 as an antioncogene in lung adenocarcinoma (LUAD) cells. Gain- and loss-of-function studies revealed that NLRP2 silencing promoted cell proliferation and migration by stimulating NF-kB signaling in the microenvironment, which induced epithelial-to-mesenchymal transition (EMT) phenotype and cytoskeleton reorganization in LUAD cells. The addition of the NF-kB inhibitor rescued the function of NLRP2 on EMT. Moreover, NLRP2 increased the level of cofilin phosphorylation and repressed subsequent F-actin reorganization. Consistently, the in vivo study showed that NLRP2 played an inhibitory role in forming metastasis foci. Taken together, NLRP2 inhibited cell proliferation and migration by regulating EMT in LUAD cells, demonstrating the essential function of NLRP2 in the development of LUAD.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongchen Mao
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease. Immunology 2021; 163:363-376. [PMID: 34021586 DOI: 10.1111/imm.13372] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat (LRR)-containing receptors or NOD-like receptors (NLRs) are cytosolic pattern recognition receptors, which sense conserved microbial patterns and host-derived danger signals to elicit innate immune responses. The activation of several prototypic NLRs, including NLR and pyrin domain (PYD) containing (NLRP) 1, NLRP3 and NLR and caspase recruitment domain (CARD) containing (NLRC) 4, results in the assembly of inflammasomes, which are large, cytoplasmic multiprotein signalling platforms responsible for the maturation and release of the pro-inflammatory cytokines IL-1β and IL-18, and for the induction of a specialized form of inflammatory cell death called pyroptosis. However, the function of other members of the NLR family, including NLRP7, are less well understood. NLRP7 has been linked to innate immune signalling, but its precise role is still controversial as it has been shown to positively and negatively affect inflammasome responses. Inflammasomes are essential for homeostasis and host defence, but inappropriate inflammasome responses due to hereditary mutations and somatic mosaicism in inflammasome components and defective regulation have been linked to a broad spectrum of human diseases. A compelling connection between NLRP7 mutations and reproductive diseases, and in particular molar pregnancy, has been established. However, the molecular mechanisms by which NLRP7 mutations contribute to reproductive diseases are largely unknown. In this review, we focus on NLRP7 and discuss the current evidence of its role in inflammasome regulation and its implication in human reproductive diseases.
Collapse
Affiliation(s)
- Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
21
|
Duxbury Z, Wu CH, Ding P. A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:155-184. [PMID: 33689400 DOI: 10.1146/annurev-arplant-080620-104948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection.
Collapse
Affiliation(s)
- Zane Duxbury
- Jealott's Hill International Research Centre, Syngenta, Bracknell RG42 6EY, United Kingdom;
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
- Current affiliation: Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands;
| |
Collapse
|
22
|
Sandall CF, Ziehr BK, MacDonald JA. ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules 2020; 25:molecules25194572. [PMID: 33036374 PMCID: PMC7583971 DOI: 10.3390/molecules25194572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. Ultimately, studies continue to reveal how the ATP-binding and hydrolysis properties of NACHT domains in different NLRs integrate with signaling modules and binding partners to control innate immune responses at the molecular level.
Collapse
|
23
|
Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development†. Biol Reprod 2020; 101:284-296. [PMID: 31201414 DOI: 10.1093/biolre/ioz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Collapse
Affiliation(s)
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
A noncanonical role of NOD-like receptor NLRP14 in PGCLC differentiation and spermatogenesis. Proc Natl Acad Sci U S A 2020; 117:22237-22248. [PMID: 32839316 PMCID: PMC7486727 DOI: 10.1073/pnas.2005533117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NOD-like receptors (NLRs) are traditionally recognized as key surveillance pattern recognition receptors (PRRs) during innate immune regulation. Several NLRs exhibit highly restricted expression in mammalian germline, where their physiological functions are largely unknown. Here we report that Nlrp14, an NLR specifically expressed in testis and ovary, plays a critical role in regulating germ cell differentiation and reproduction. Nlrp14 deficiency led to decreased primordial germ cell-like cell (PGCLC) differentiation in vitro and reproduction failure in both male and female mice in vivo. In the male mice, Nlrp14 knockout strongly compromised differentiation of spermatogonial stem cells and meiosis. Mechanistically, NLRP14 protected HSPA2 from proteasome-mediated degradation by recruiting BAG2, loss of which was further confirmed in a human mutation associated with male sterility. NOD-like receptors (NLRs) are traditionally recognized as major inflammasome components. The role of NLRs in germ cell differentiation and reproduction is not known. Here, we identified the gonad-specific Nlrp14 as a pivotal regulator in primordial germ cell-like cell (PGCLC) differentiation in vitro. Physiologically, knock out of Nlrp14 resulted in reproductive failure in both female and male mice. In adult male mice, Nlrp14 knockout (KO) inhibited differentiation of spermatogonial stem cells (SSCs) and meiosis, resulting in trapped SSCs in early stages, severe oligozoospermia, and sperm abnormality. Mechanistically, NLRP14 promoted spermatogenesis by recruiting a chaperone cofactor, BAG2, to bind with HSPA2 and form the NLRP14−HSPA2−BAG2 complex, which strongly inhibited ChIP-mediated HSPA2 polyubiquitination and promoted its nuclear translocation. Finally, loss of HSPA2 protection and BAG2 recruitment by NLRP14 was confirmed in a human nonsense germline variant associated with male sterility. Together, our data highlight a unique proteasome-mediated, noncanonical function of NLRP14 in PGCLC differentiation and spermatogenesis, providing mechanistic insights of gonad-specific NLRs in mammalian germline development.
Collapse
|
25
|
The Effects of Age, Cigarette Smoking, Sex, and Race on the Qualitative Characteristics of Lung Transcriptome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6418460. [PMID: 32802863 PMCID: PMC7424369 DOI: 10.1155/2020/6418460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022]
Abstract
The within-sample relative expression orderings (REOs) of genes, which are stable qualitative transcriptional characteristics, can provide abundant information for a disease. Methods based on REO comparisons have been proposed for identifying differentially expressed genes (DEGs) at the individual level and for detecting disease-associated genes based on one-phenotype disease data by reusing data of normal samples from other sources. Here, we evaluated the effects of common potential confounding factors, including age, cigarette smoking, sex, and race, on the REOs of gene pairs within normal lung tissues transcriptome. Our results showed that age has little effect on REOs within lung tissues. We found that about 0.23% of the significantly stable REOs of gene pairs in nonsmokers' lung tissues are reversed in smokers' lung tissues, introduced by 344 DEGs between the two groups of samples (RankCompV2, FDR <0.05), which are enriched in metabolism of xenobiotics by cytochrome P450, glutathione metabolism, and other pathways (hypergeometric test, FDR <0.05). Comparison between the normal lung tissue samples of males and females revealed fewer reversal REOs introduced by 24 DEGs between the sex groups, among which 19 DEGs are located on sex chromosomes and 5 DEGs involving in spermatogenesis and regulation of oocyte are located on autosomes. Between the normal lung tissue samples of white and black people, we identified 22 DEGs (RankCompV2, FDR <0.05) which introduced a few reversal REOs between the two races. In summary, the REO-based study should take into account the confounding factors of cigarette smoking, sex, and race.
Collapse
|
26
|
Li G, Tian X, Lv D, Zhang L, Zhang Z, Wang J, Yang M, Tao J, Ma T, Wu H, Ji P, Wu Y, Lian Z, Cui W, Liu G. NLRP7 is expressed in the ovine ovary and associated with in vitro pre-implantation embryo development. Reproduction 2020; 158:415-427. [PMID: 31505467 PMCID: PMC6826174 DOI: 10.1530/rep-19-0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
NLRP (NACHT, LRR and PYD domain-containing proteins) family plays pivotal roles in mammalian reproduction. Mutation of NLRP7 is often associated with human recurrent hydatidiform moles. Few studies regarding the functions of NLRP7 have been performed in other mammalian species rather than humans. In the current study, for the first time, the function of NLRP7 has been explored in ovine ovary. NLRP7 protein was mainly located in ovarian follicles and in in vitro pre-implantation embryos. To identify its origin, 763 bp partial CDS of NLRP7 deriving from sheep cumulus oocyte complexes (COCs) was cloned, it showed a great homology with Homo sapiens. The high levels of mRNA and protein of NLRP7 were steadily expressed in oocytes, parthenogenetic embryos or IVF embryos. NLRP7 knockdown by the combination of siRNA and shRNA jeopardized both the parthenogenetic and IVF embryo development. These results strongly suggest that NLRP7 plays an important role in ovine reproduction. The potential mechanisms of NLRP7 will be fully investigated in the future.
Collapse
Affiliation(s)
- Guangdong Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiuzhi Tian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongying Lv
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Minghui Yang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingli Tao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Teng Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Cui
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Subcortical maternal complex (SCMC) expression during folliculogenesis is affected by oocyte donor age in sheep. J Assist Reprod Genet 2020; 37:2259-2271. [PMID: 32613414 DOI: 10.1007/s10815-020-01871-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The age-associated decline in female fertility is largely ascribable to the decrease in oocyte quality. The subcortical maternal complex (SCMC) is a multiprotein complex essential for early embryogenesis and female fertility and functionally conserved across mammals. The present work evaluated expression dynamics of its components during folliculogenesis in relation to maternal age in sheep. METHODS The expression of the SCMC components (KHDC3/FILIA, NLRP2, NLRP5/MATER, OOEP/FLOPED, PADI6, TLE6 and ZBED3) was analyzed by real-time PCR in pools of growing oocytes (GO) of different diameters (70-90 μm (S), 90-110 μm (M), or 110-130 μm (L)) derived from non-hormonally treated adult (Ad; age < 4 years), prepubertal (Pr; age 40 days), or aged ewes (age > 6 years). RESULTS Specific expression patterns associated with donor age were observed during folliculogenesis for all genes, except ZBED3. In oocytes of adult donors, the synthesis of NLRP2, NLRP5, PADI6, and ZBED3 mRNAs was complete in S GO, while FILIA, TLE6, and OOEP were actively transcribed at this stage. Conversely, Pr GO showed active transcription of all mRNAs, except for ZBED3, during the entire window of oocyte growth. Notably, aged GO showed a completely inverse pattern, with a decrease of NLRP2, TLE6, FILIA, and PADI6 mRNA abundance during the latest stage of oocyte growth (L GO). Interestingly, MATER showed high expression variability, suggesting large inter-oocyte differences. CONCLUSION Our study describes the SCMC expression dynamics during sheep oogenesis and reports age-specific patterns that are likely involved in the age-related decline of oocyte quality.
Collapse
|
28
|
Chang S, Bartolomei MS. Modeling human epigenetic disorders in mice: Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Dis Model Mech 2020; 13:dmm044123. [PMID: 32424032 PMCID: PMC7272347 DOI: 10.1242/dmm.044123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting, a phenomenon in which the two parental alleles are regulated differently, is observed in mammals, marsupials and a few other species, including seed-bearing plants. Dysregulation of genomic imprinting can cause developmental disorders such as Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). In this Review, we discuss (1) how various (epi)genetic lesions lead to the dysregulation of clinically relevant imprinted loci, and (2) how such perturbations may contribute to the developmental defects in BWS and SRS. Given that the regulatory mechanisms of most imprinted clusters are well conserved between mice and humans, numerous mouse models of BWS and SRS have been generated. These mouse models are key to understanding how mutations at imprinted loci result in pathological phenotypes in humans, although there are some limitations. This Review focuses on how the biological findings obtained from innovative mouse models explain the clinical features of BWS and SRS.
Collapse
Affiliation(s)
- Suhee Chang
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Abbasi F, Kodani M, Emori C, Kiyozumi D, Mori M, Fujihara Y, Ikawa M. CRISPR/Cas9-Mediated Genome Editing Reveals Oosp Family Genes are Dispensable for Female Fertility in Mice. Cells 2020; 9:cells9040821. [PMID: 32231122 PMCID: PMC7226750 DOI: 10.3390/cells9040821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/11/2023] Open
Abstract
There are over 200 genes that are predicted to be solely expressed in the oocyte and ovary, and thousands more that have expression patterns in the female reproductive tract. Unfortunately, many of their physiological functions, such as their roles in oogenesis or fertilization, have yet to be elucidated. Previous knockout (KO) mice studies have proven that many of the genes that were once thought to be essential for fertility are dispensable in vivo. Therefore, it is extremely important to confirm the roles of all genes before spending immense time studying them in vitro. To do this, our laboratory analyzes the functions of ovary and oocyte-enriched genes in vivo through generating CRISPR/Cas9 KO mice and examining their fertility. In this study, we have knocked out three Oosp family genes (Oosp1, Oosp2, and Oosp3) that have expression patterns linked to the female reproductive system and found that the triple KO (TKO) mutant mice generated exhibited decreased prolificacy but were not infertile; thus, these genes may potentially be dispensable for fertility. We also generated Cd160 and Egfl6 KO mice and found these genes are individually dispensable for female fertility. KO mice with no phenotypic data are seldom published, but we believe that this information must be shared to prevent unnecessary experimentation by other laboratories.
Collapse
Affiliation(s)
- Ferheen Abbasi
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; (F.A.); (M.K.); (C.E.); (D.K.); (M.M.); (Y.F.)
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871, Japan
| | - Mayo Kodani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; (F.A.); (M.K.); (C.E.); (D.K.); (M.M.); (Y.F.)
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; (F.A.); (M.K.); (C.E.); (D.K.); (M.M.); (Y.F.)
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 5650871, Japan
| | - Daiji Kiyozumi
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; (F.A.); (M.K.); (C.E.); (D.K.); (M.M.); (Y.F.)
| | - Masashi Mori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; (F.A.); (M.K.); (C.E.); (D.K.); (M.M.); (Y.F.)
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 6500047, Japan
| | - Yoshitaka Fujihara
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; (F.A.); (M.K.); (C.E.); (D.K.); (M.M.); (Y.F.)
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; (F.A.); (M.K.); (C.E.); (D.K.); (M.M.); (Y.F.)
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 5650871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan
- Correspondence: ; Tel.: +81-6-6879-8375; Fax: +81-6-6879-8376
| |
Collapse
|
30
|
de Rivero Vaccari JP. The Inflammasome in Reproductive Biology: A Promising Target for Novel Therapies. Front Endocrinol (Lausanne) 2020; 11:8. [PMID: 32047476 PMCID: PMC6997205 DOI: 10.3389/fendo.2020.00008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/03/2022] Open
Abstract
The inflammasome is a key regulator of innate immunity involved in the inflammatory response to infections as well as disease through the activation of caspase-1 and the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18. Even though the inflammasome was first described in the context of infections, most research in recent years has focused on targeting the inflammasome as a therapeutic option in sterile inflammatory events. Recent evidence indicates a clear involvement of the inflammasome in Reproductive Biology such as infertility and preeclampsia. In this mini-review, I summarize the current findings on the inflammasome that have been described in the field of Reproductive Biology and highlight the potential that the inflammasome has as a novel therapeutic option in this field. The topics covered in this review as it pertains to the inflammasome field cover the literature published on male and female infertility, endometriosis, preeclampsia, placental inflammation, and reproductive senescence.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, United States
- InflamaCORE, LLC, Miami, FL, United States
- *Correspondence: Juan Pablo de Rivero Vaccari
| |
Collapse
|
31
|
Rossi MN, Pascarella A, Licursi V, Caiello I, Taranta A, Rega LR, Levtchenko E, Emma F, De Benedetti F, Prencipe G. NLRP2 Regulates Proinflammatory and Antiapoptotic Responses in Proximal Tubular Epithelial Cells. Front Cell Dev Biol 2019; 7:252. [PMID: 31709256 PMCID: PMC6822264 DOI: 10.3389/fcell.2019.00252] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 11/13/2022] Open
Abstract
Nod-like Receptor Pyrin domain containing proteins (NLRPs) expressed by resident renal cells may contribute to the pathogenesis of multiple renal diseases. Cystinosis is a genetic disorder that affects kidney and particularly proximal tubular epithelial cells (PTEC). Here, we investigated the expression of NLRP family members in human control and cystinotic conditionally immortalized PTEC. Among all the NLRPs tested, we found that NLRP2 is highly expressed in cystinostic PTEC, but not in PTEC from healthy subjects. The NLRP2 overexpression was confirmed in primary PTEC and in kidney biopsies from cystinotic patients. In order to elucidate the role of NLRP2 in PTEC, we stably transfected control PTEC with an NLRP2-containing plasmid. We showed that NLRP2 markedly increases the production of several NF-κB regulated cytokines and chemokines. Accordingly, we demonstrated that NLRP2 interacts with IKKa and positively regulates the DNA-binding activity of p50 and p65 NF-κB, by modulating the p65 NF-κB phosphorylation status in Serine 536. Transcriptome analysis revealed that NLRP2 also upregulates the expression of profibrotic mediators and reduces that of several interferon-inducible genes. Finally, NLRP2 overexpression decreased the apoptotic cell rate. Consistently, silencing of NLRP2 by small-interfering RNA in cystinotic PTEC resulted in a significant decrease in cytokine and chemokine production as well as in an increase in the apoptosis rate. Altogether, our data reveals a previously unrecognized role for NLRP2 in regulating proinflammatory, profibrotic and antiapoptotic responses in PTEC, through NF-κB activation. Moreover, our findings unveil a novel potential mechanism involving NLRP2 overexpression in the pathogenesis of cystinosis.
Collapse
Affiliation(s)
- Marianna N. Rossi
- Department of Laboratories, Immuno-Rheumatology Research Area, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Antonia Pascarella
- Department of Laboratories, Immuno-Rheumatology Research Area, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Valerio Licursi
- Institute for Systems Analysis and Computer Science “Antonio Ruberti,” National Research Council, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin,” Sapienza University of Rome, Rome, Italy
| | - Ivan Caiello
- Department of Laboratories, Immuno-Rheumatology Research Area, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Anna Taranta
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Laura R. Rega
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Elena Levtchenko
- Department of Paediatric Nephrology & Development and Regeneration, University Hospitals Leuven, Leuven, Belgium
| | - Francesco Emma
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Fabrizio De Benedetti
- Department of Laboratories, Immuno-Rheumatology Research Area, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giusi Prencipe
- Department of Laboratories, Immuno-Rheumatology Research Area, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
32
|
Kim DY, Park JA, Kim Y, Noh M, Park S, Lie E, Kim E, Kim YM, Kwon YG. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175. FASEB J 2019; 33:9842-9857. [PMID: 31170000 PMCID: PMC6704462 DOI: 10.1096/fj.201802516rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis depends on VEGF-mediated signaling. However, the regulatory mechanisms and functions of individual VEGF receptor 2 (VEGFR2) phosphorylation sites remain unclear. Here, we report that synaptic adhesion-like molecule 4 (SALM4) regulates a specific VEGFR2 phosphorylation site. SALM4 silencing in HUVECs and Salm4 knockout (KO) in lung endothelial cells (ECs) of Salm4−/− mice suppressed phosphorylation of VEGFR2 tyrosine (Y) 1175 (Y1173 in mice) and downstream signaling upon VEGF-A stimulation. However, VEGFR2 phosphorylation at Y951 (Y949 in mice) and Y1214 (Y1212 in mice) remained unchanged. Knockdown and KO of SALM4 inhibited VEGF-A–induced angiogenic functions of ECs. SALM4 depletion reduced endothelial leakage, sprouting, and migratory activities. Furthermore, in an ischemia and reperfusion (I/R) model, brain injury was attenuated in Salm4−/− mice compared with wild-type (WT) mice. In brain lysates after I/R, VEGFR2 phosphorylation at Y949, Y1173, and Y1212 were induced in WT brains, but only Y1173 phosphorylation of VEGFR2 was reduced in Salm4−/− brains. Taken together, our results demonstrate that SALM4 specifically regulates VEGFR2 phosphorylation at Y1175 (Y1173 in mice), thereby fine-tuning VEGF signaling in ECs.—Kim, D. Y., Park, J. A., Kim, Y., Noh, M., Park, S., Lie, E., Kim, E., Kim, Y.-M., Kwon, Y.-G. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeomyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Songyi Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunkyung Lie
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon-si, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
33
|
Mu J, Wang W, Chen B, Wu L, Li B, Mao X, Zhang Z, Fu J, Kuang Y, Sun X, Li Q, Jin L, He L, Sang Q, Wang L. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet 2019; 56:471-480. [PMID: 30877238 DOI: 10.1136/jmedgenet-2018-105936] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND Successful human reproduction requires normal spermatogenesis, oogenesis, fertilisation and early embryonic development, and abnormalities in any of these processes will result in infertility. Early embryonic arrest is commonly observed in infertile patients with recurrent failure of assisted reproductive technology (ART). However, the genetic basis for early embryonic arrest is largely unknown. OBJECTIVE We aim to identify genetic causes of infertile patients characterised by early embryonic arrest. METHODS We pursued exome sequencing in a proband with embryonic arrest from the consanguineous family. We further screened candidate genes in a cohort of 496 individuals diagnosed with early embryonic arrest by Sanger sequencing. Effects of mutations were investigated in HeLa cells, oocytes and embryos. RESULTS We identified five independent individuals carrying biallelic mutations in NLRP2. We also found three individuals from two families carrying biallelic mutations in NLRP5. These mutations in NLRP2 and NLRP5 caused decreased protein expression in vitro and in oocytes and embryos. CONCLUSIONS NLRP2 and NLRP5 are novel mutant genes responsible for human early embryonic arrest. This finding provides additional potential diagnostic markers for patients with recurrent failure of ART and helps us to better understand the genetic basis of female infertility characterised by early embryonic arrest.
Collapse
Affiliation(s)
- Jian Mu
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenjing Wang
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Biaobang Chen
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Zhang
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qiaoli Li
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Sang
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Center for Women and Children's Health, Shanghai, China
| |
Collapse
|
34
|
Qin D, Gao Z, Xiao Y, Zhang X, Ma H, Yu X, Nie X, Fan N, Wang X, Ouyang Y, Sun QY, Yi Z, Li L. The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Development 2019; 146:dev.183616. [DOI: 10.1242/dev.183616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023]
Abstract
In mammalian oocytes and embryos, the subcortical maternal complex (SCMC) and cytoplasmic lattices (CPLs) are two closely related structures. Their detailed compositions and functions remain largely unclear. Here, we characterized Nlrp4f as a novel component associated with the SCMC and CPLs. Disruption of maternal Nlrp4f leads to decreased fecundity and delayed preimplantation development in the mouse. Lack of Nlrp4f affects organelle distribution in mouse oocytes and early embryos. Depletion of Nlrp4f disrupts CPL formation but does not affect the interactions of other SCMC proteins. Interestingly, the loss of Filia or Tle6, two other SCMC proteins, also disrupts CPL formation in mouse oocytes. Thus, the absence of CPLs and aberrant distribution of organelles in the oocytes disrupted the examined SCMC genes, including previously reported Zbed3, Mater, Floped and Padi6, indicate that the SCMC is required for CPL formation and organelle distribution. Consistent with the SCMC's role in CPL formation, the SCMC forms before CPLs during oogenesis. Together, our results suggest that SCMC protein Nlrp4f is involved in CPL formation and organelle distribution in mouse oocytes.
Collapse
Affiliation(s)
- Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yi Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haixia Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Fan
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoqing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingchun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaohong Yi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Li C, Liu Q, Xie L. Suppressing NLRP2 expression accelerates hepatic steatosis: A mechanism involving inflammation and oxidative stress. Biochem Biophys Res Commun 2018; 507:22-29. [PMID: 30454891 DOI: 10.1016/j.bbrc.2018.10.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation and inflammation in the liver, contributing to a broad spectrum of severe pathologies, such as metabolic syndrome and hepatocellular carcinoma. Presently, the pathogenesis that attributes to NAFLD has not been fully understood. NLRP2 has been shown to inhibit the NF-κB signaling, and thus may contribute to regulate the inflammatory response. However, its role in NAFLD is largely unclear. In the study, we found that NLRP2 was markedly decreased in liver tissues of individuals with severe steatosis, or in a genetic deficiency (ob/ob) mice. High fat diet (HFD) feeding also led to a significant reduction of NLRP2 in liver of mice. Then, the wild type (WT) and NLRP2 knockout (KO) mice were used to further explore the role of NLRP2 in the NAFLD progression. NLRP2 knockout mice exhibited severer metabolic syndrome and hepatic steatosis after HFD administration, as evidenced by the increased body weight, liver histological changes and lipid accumulation. Moreover, HFD feeding-induced inflammation was significantly accelerated by the loss of NLRP2, as evidenced by the increased expression of pro-inflammatory cytokines and activation of nuclear factor κB (NF-κB) pathway. In addition, oxidative stress triggered by HFD was further promoted by NLRP2 deletion through repressing NF-E2-related factor 2 (Nrf2) pathway. In vitro, we surprisingly found that promoting Nrf2 activation could attenuate NLRP2 knockout-accelerated inflammation and reactive oxygen species (ROS) generation. Therefore, our study indicated that NLRP2 might be a potential target for developing effective therapeutic strategy to prevent NAFLD progression.
Collapse
Affiliation(s)
- Chen Li
- Department of Gastroenterology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, 221000, China
| | - Qing Liu
- Department of Oncology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, 221000, China
| | - Liqun Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
36
|
Yang Y, Lang X, Sun S, Gao C, Hu J, Ding S, Li J, Li Y, Wang F, Gong T. NLRP2 negatively regulates antiviral immunity by interacting with TBK1. Eur J Immunol 2018; 48:1817-1825. [PMID: 30183071 DOI: 10.1002/eji.201847589] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/03/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular pattern recognition receptors (PRRs) that regulate a variety of inflammatory and host defense responses. Unlike the well-established NLRs, the roles of NLRP2 are controversial and poorly defined. Here, we report that NLRP2 acts as a negative regulator of TANK-binding kinase 1 (TBK1)-mediated type I interferon (IFN) signaling. Mechanistically, NLRP2 interacted directly with TBK1, and this binding disrupted the interaction of TBK1 and interferon regulatory factor 3 (IRF3), which interfered with TBK1-induced IRF3 phosphorylation. IFNs induce a series of proteins that have well-known antiviral or immune-regulatory functions, and tight control of the IFN signaling cascade is critical for limiting tissue damage and preventing autoimmunity. Our studies indicate that the NLRP2-TBK1 axis may serve as an additional signaling cascade to maintain immune homeostasis in response to viral infection.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xueting Lang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, People's Republic of China
| | - Song Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chun Gao
- Department of Anesthesiology, Surgical Building, Linyi People's Hospital, Linyi, People's Republic of China
| | - Jianguo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Shuqin Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jing Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yuyun Li
- Anhui Provincial Key Laboratory of Infection and Immunity, Department of Laboratory medicine, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Fengchao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Tao Gong
- Anhui Provincial Key Laboratory of Infection and Immunity, Department of Laboratory medicine, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
37
|
Begemann M, Rezwan FI, Beygo J, Docherty LE, Kolarova J, Schroeder C, Buiting K, Chokkalingam K, Degenhardt F, Wakeling EL, Kleinle S, González Fassrainer D, Oehl-Jaschkowitz B, Turner CLS, Patalan M, Gizewska M, Binder G, Bich Ngoc CT, Chi Dung V, Mehta SG, Baynam G, Hamilton-Shield JP, Aljareh S, Lokulo-Sodipe O, Horton R, Siebert R, Elbracht M, Temple IK, Eggermann T, Mackay DJG. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet 2018; 55:497-504. [PMID: 29574422 PMCID: PMC6047157 DOI: 10.1136/jmedgenet-2017-105190] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Background Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. Methods Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. Results We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. Conclusion The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.
Collapse
Affiliation(s)
- Matthias Begemann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Faisal I Rezwan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Louise E Docherty
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Julia Kolarova
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Christopher Schroeder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kamal Chokkalingam
- Department of Diabetic Medicine, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | - Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, London, UK
| | | | | | | | - Claire L S Turner
- Peninsula Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Michal Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Maria Gizewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Can Thi Bich Ngoc
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Vu Chi Dung
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals Trust, Cambridge, UK
| | - Gareth Baynam
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia.,Genetic Services of Western Australian and Western Australian Register of Developmental Anomalies, Perth, Western Australia, Australia
| | | | - Sara Aljareh
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oluwakemi Lokulo-Sodipe
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Rachel Horton
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Isabel Karen Temple
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
38
|
Meunier E, Broz P. Evolutionary Convergence and Divergence in NLR Function and Structure. Trends Immunol 2017; 38:744-757. [PMID: 28579324 DOI: 10.1016/j.it.2017.04.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
The recognition of cellular damage caused by either pathogens or abiotic stress is essential for host defense in all forms of life in the plant and animal kingdoms. The NOD-like receptors (NLRs) represent a large family of multidomain proteins that were initially discovered for their role in host defense in plants and vertebrates. Over recent years the wide distribution of NLRs among metazoans has become apparent and their origins have begun to emerge. Moreover, intense study of NLR function has shown that they play essential roles beyond pathogen recognition - in the regulation of antigen presentation, cell death, inflammation, and even in embryonic development. We summarize here the latest insights into NLR biology and discuss examples of converging and diverging evolution of NLR function and structure.
Collapse
Affiliation(s)
- Etienne Meunier
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland; Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, France
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|