1
|
Papanikolaou C, Economopoulou P, Spathis A, Kotsantis I, Gavrielatou N, Anastasiou M, Moutafi M, Kyriazoglou A, Foukas GRP, Lelegiannis IM, Rimm D, Panayiotides I, Foukas P, Souliotis VL, Psyrri A. Association of DNA damage response signals and oxidative stress status with nivolumab efficacy in patients with Head and Neck Squamous Cell Carcinoma. Br J Cancer 2025:10.1038/s41416-025-03032-2. [PMID: 40410274 DOI: 10.1038/s41416-025-03032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 03/28/2025] [Accepted: 04/14/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Accumulating evidence suggests that deregulation of DNA damage response (DDR) network affects multiple aspects of the immune system. Herein, we tested the hypothesis that DDR-related signals, measured in peripheral blood mononuclear cells (PBMCs) from Head and Neck Squamous Cell Carcinoma (HNSCC) patients, correlate with the response to immune checkpoint inhibitors. METHODS Oxidative stress and DDR-related signals were evaluated in PBMCs from 26 healthy controls and 50 recurrent/metastatic HNSCC patients at baseline, who participated in a phase II nivolumab trial (NCT03652142). Spatial transcriptomics in three molecularly defined tissue compartments (tumour, leucocyte, macrophage) from biopsies of overlapping cases were also investigated. RESULTS PBMCs from responders to nivolumab therapy showed significantly lower oxidative stress, endogenous DNA damage, DNA repair capacities and apoptosis rates compared with non-responders (all P < 0.04). The analysis of tissue RNA in situ data illustrated that DNA repair pathways showed enrichment in the macrophage compartment of baseline tissue biopsies of responders compared with non-responders (P = 0.049). CONCLUSIONS Our findings demonstrate that oxidative stress and deregulated DDR-related signals measured in PBMCs from HNSCC patients at baseline correlate with response to nivolumab and, if further validated, may be exploited as novel non-invasive biomarkers and the design of clinical trials.
Collapse
Affiliation(s)
- Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Panagiota Economopoulou
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Aris Spathis
- Second Department of Pathology, Attikon University Hospital, Athens, Greece
| | - Ioannis Kotsantis
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Niki Gavrielatou
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Anastasiou
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Myrto Moutafi
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Anastasios Kyriazoglou
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - George-Romanos P Foukas
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Ioannis M Lelegiannis
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Periklis Foukas
- Second Department of Pathology, Attikon University Hospital, Athens, Greece
- Department of Oncology, CHUV - Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Amanda Psyrri
- Oncology Unit, 2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece.
| |
Collapse
|
2
|
Luo X, Deng H, Li Q, Zhao M, Zhang Y, Guo J, Wen Y, Chen G, Li J. Bulk transcriptome and single-nucleus RNA sequencing analyses highlight the role of recombination activating 1 in non-alcoholic fatty liver disease. Int J Biol Macromol 2025; 307:141919. [PMID: 40074128 DOI: 10.1016/j.ijbiomac.2025.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic condition with an incompletely understood pathogenesis. In this study, five candidate genes-RAG1, CKAP2, CENPK, TYMS, and BUB1-were identified as being associated with NAFLD progression through integrative bioinformatics analyses. A predictive model incorporating these genes demonstrated strong robustness and diagnostic accuracy. Single-nucleus RNA sequencing analysis further revealed that RAG1 plays a potential role in hepatocytes of NAFLD patients. Functional experiments using RNA interference to suppress RAG1 expression in HepG2 cells treated with oleic and palmitic acids showed reduced total glyceride and cholesterol levels, mitigated lipid accumulation, and alterations in pathways related to lipid metabolism, inflammation, and fibrosis. Furthermore, adeno-associated virus-specific knockdown of RAG1 in hepatocytes attenuated hepatic steatosis in high-fat diet-fed mice. These findings suggest that investigating the molecular mechanisms of hub genes like RAG1 may advance our understanding of NAFLD pathogenesis and inform therapeutic development.
Collapse
Affiliation(s)
- Xiaohua Luo
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Hongbo Deng
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Qiang Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, 410078 Changsha, China
| | - Yu Zhang
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junjie Guo
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yifan Wen
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Guangshun Chen
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| | - Jiequn Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
3
|
Seo ES, Lee SK, Son YM. Multifaceted functions of tissue-resident memory T cells in tumorigenesis and cancer immunotherapy. Cancer Immunol Immunother 2025; 74:184. [PMID: 40285796 PMCID: PMC12033165 DOI: 10.1007/s00262-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue-resident memory T (TRM) cells are well reported as a strong protective first line of defense against foreign antigens in non-lymphoid tissues. Moreover, TRM cells have demonstrated critical protective roles in antitumor immunity, contributing to enhanced survival and tumor growth inhibition across various cancer types. However, surprisingly, recent studies suggest that TRM cells can exhibit paradoxical effects, potentially promoting tumor progression under certain conditions and leading to adverse outcomes during antitumor immune responses. Understanding the complexities of TRM cell functions will enable us to harness their potential in advancing cancer immunotherapy more effectively. Therefore, this review comprehensively investigates the dual roles of TRM cells in different tumor contexts, highlighting their protective functions in combating cancers and their unfavorable potential to exacerbate tumor development. Additionally, we explore the implications of TRM cell behaviors for future cancer treatment strategies, emphasizing the need for further research to optimize the therapeutic exploitation of TRM cells while mitigating their deleterious effects.
Collapse
Affiliation(s)
- Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sung-Kyu Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
4
|
Ronca V, Gerussi A, Collins P, Parente A, Oo YH, Invernizzi P. The liver as a central "hub" of the immune system: pathophysiological implications. Physiol Rev 2025; 105:493-539. [PMID: 39297676 DOI: 10.1152/physrev.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 01/16/2025] Open
Abstract
The purpose of this review is to describe the immune function of the liver, guiding the reader from the homeostatic tolerogenic status to the aberrant activation demonstrated in chronic liver disease. An extensive description of the pathways behind the inflammatory modulation of the healthy liver will be provided focusing on the complex immune cell network residing within the liver. The limit of tolerance will be presented in the context of organ transplantation, seizing the limits of homeostatic mechanisms that fail in accepting the graft, progressing eventually toward rejection. The triggers and mechanisms behind chronic activation in metabolic liver conditions and viral hepatitis will be discussed. The last part of the review will be dedicated to one of the greatest paradoxes for a tolerogenic organ, developing autoimmunity. Through the description of the three most common autoimmune liver diseases, the autoimmune reaction against hepatocytes and biliary epithelial cells will be dissected.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paul Collins
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Alessandro Parente
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ye Htun Oo
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
5
|
Chu H, Li Y, Yang H, Liu Y, Zheng R, Zhang X, Wang X, Zhao J, Zhang Y, Wang Q, Ran Y, Guo L, Zhou S, Liu M, Song W, Wang B, Li L, Zhou L. Characterisation and Clinical Relevance of Tertiary Lymphoid Structures in Primary Biliary Cholangitis. Liver Int 2025; 45:e16157. [PMID: 39552515 DOI: 10.1111/liv.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/30/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND AND AIMS The pathological characteristics of lymphocyte infiltration in the hepatic portal tracts of patients with primary biliary cholangitis (PBC) remain unclear. Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues associated with the exacerbation of autoimmune reactions. Here, we evaluate the role of TLSs in PBC and investigate their potential therapeutic value. METHODS We recruited 75 patients with PBC and 53 control patients with liver biopsies who were followed more than 2 years. TLSs and their maturity were identified by the amount and spatial distribution of immune cells. Bulk RNA sequencing of liver was performed in PBC patients with different TLS maturity. The sphingosine-1-phosphate receptor (S1PRs) modulator FTY720 was administered to dnTGFβRII mice to assess the role of TLSs on cholangitis. RESULTS TLSs presented in 61.3% (46/75) of liver tissues from patients with PBC, including 26 patients with mature TLS (mTLS) and 20 patients with immature TLS (imTLS). The proportion of mTLS was higher in PBC compared with chronic hepatitis B and autoimmune hepatitis. PBC patients with mTLS exhibited the highest serum levels of biochemical indicators, immune globulin and proportions of liver cirrhosis. Gene sets for lymphocyte migration and chemokine signalling pathways were enriched in patients with PBC presenting with TLS. FTY720 inhibited TLS formation and relieved cholangitis and fibrosis in dnTGFβRII mice. CONCLUSION TLSs are characteristics of lymphocyte accumulation in the portal tracts of PBC, of which the maturity of TLSs correlates with the inflammation and fibrosis of PBC. Targeting TLSs formation is a potential treatment of PBC.
Collapse
Affiliation(s)
- Hongyu Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yanni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuhang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Rongrong Zheng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xue Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Quan Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Liping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wenjing Song
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Long Li
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Digestive Diseases, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
6
|
Han JW, Shin EC. Investigating Human Liver Tissue-Resident Memory T Cells from the Perspectives of Gastroenterologists and Hepatologists. Gut Liver 2025; 19:161-170. [PMID: 40058791 PMCID: PMC11907256 DOI: 10.5009/gnl240366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 03/15/2025] Open
Abstract
Liver tissue-resident memory T (TRM) cells play a pivotal role in hepatic immune responses. Their unique residence within liver sinusoids allow continuous antigen surveillance. In this review, we highlight the role of liver TRM cells in protective immunity and disease pathology. Comparisons between human and murine liver TRM cells reveal species-specific characteristics, suggesting the need for human-focused studies. One key finding is the involvement of liver TRM cells in viral hepatitis, where they can both control infection and contribute to liver damage. Liver TRM cells also exhibit dual roles in metabolic-associated steatotic liver disease, promoting inflammation and fibrosis while also contributing to fibrosis resolution. In autoimmune liver diseases, such as autoimmune hepatitis and primary sclerosing cholangitis, the presence of liver TRM cells correlates with disease severity. In this review, we underscore the importance of liver TRM cells in vaccine development, particularly vaccines against malaria. Future research should focus on the mechanisms governing TRM-cell formation, maintenance, and function, with the aim of supporting their protective roles while mitigating detrimental effects. Advancing our understanding of liver TRM cells will enhance our knowledge of liver immunology and inform novel therapeutic strategies for liver disease management.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
7
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Dumolard L, Hilleret MN, Costentin C, Mercey-Ressejac M, Sturm N, Gerster T, Decaens T, Jouvin-Marche E, Marche PN, Macek Jilkova Z. Differences in the intrahepatic expression of immune checkpoint molecules on T cells and natural killer cells in chronic HBV patients. Front Immunol 2025; 15:1489770. [PMID: 39882238 PMCID: PMC11774737 DOI: 10.3389/fimmu.2024.1489770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Background Patients with chronic hepatitis B virus (HBV) infection are characterized by impaired immune response that fails to eliminate HBV. Immune checkpoint molecules (ICMs) control the amplitude of the activation and function of immune cells, which makes them the key regulators of immune response. Methods We performed a multiparametric flow cytometry analysis of ICMs and determined their expression on intrahepatic lymphocyte subsets in untreated and treated patients with HBV in comparison with non-pathological liver tissue. Results The liver of untreated HBV patients exhibited a high accumulation of PD-1+CD8+ T cells, while the frequencies of 4-1BB+ T cells, 4-1BB+ natural killer (NK) cells, and TIM-3+CD8+ T cells were the highest in the chronic hepatitis phase. Our findings showed that the HBeAg status is linked to a distinct immune phenotype of intrahepatic CD8+ T cells and NK cells characterized by high expression of ICMs, particularly 4-1BB. Importantly, antiviral treatment partially restored the normal expression of ICMs. Finally, we described important differences in ICM expression between intrahepatic and circulating NK cells in HBV patients. Conclusions Our study shows clear differences in the intrahepatic expression of ICMs on NK cells and T cells in chronic HBV patients depending on their clinical stage.
Collapse
Affiliation(s)
- Lucile Dumolard
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Marie-Noelle Hilleret
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Charlotte Costentin
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Marion Mercey-Ressejac
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Nathalie Sturm
- Service d’anatomie et de cytologie pathologiques, CHU Grenoble Alpes, Grenoble, France
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, La Tronche, France
| | - Theophile Gerster
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Evelyne Jouvin-Marche
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Patrice N. Marche
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d’hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| |
Collapse
|
9
|
Prosser AC, Klenerman P, Lucas M. Understanding Liver Transplantation Outcomes Through the Lens of Its Tissue-resident Immunobiome. Transplantation 2025:00007890-990000000-00973. [PMID: 39780303 DOI: 10.1097/tp.0000000000005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells. The importance of donor- and recipient-derived TRLs after transplantation is becoming increasingly recognized, although it has not been examined in detail after liver transplantation. This review summarizes the evidence for the roles of TRLs in liver transplant immunology, focusing on their features, functions, and potential for their harnessing to improve transplant outcomes.
Collapse
Affiliation(s)
- Amy C Prosser
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
10
|
Vera-Peralta H, Ruffié C, Najburg V, Brione M, Combredet C, Frantz P, Tournier JN, Tangy F, Mura M. Induction of tissue resident memory T cells by measles vaccine vector. Hum Vaccin Immunother 2024; 20:2436241. [PMID: 39693193 DOI: 10.1080/21645515.2024.2436241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Measles live attenuated vaccine (MV) induces strong humoral and cellular systemic memory responses allowing the successful control of measles since decades. MV has also been adapted into a promising vaccine platform with several vaccine candidates in clinical development. To understand and document the tissue-scaled memory response induced by MV, we explored the specific induction and persistence of resident memory T cells (Trm) in the lungs and the liver, two critical targeted tissues for vaccine development against several diseases. Trm are a subset of non-circulating highly specialized T cells. They are found at multiple barrier and mucosal sites, conveniently positioned to rapidly react against pathogens. The induction of Trm in different tissues is therefore critical for vaccine development. We demonstrated in mice the rapid generation of MV-specific and vectorized antigen-specific Trm in the liver and the lungs after a single dose, whatever the route of immunization. The intranasal route induced more Trm in the lungs than other routes, confirming the potential of intranasal vaccine administration of replicative viral vectors to generate a strong pulmonary immune response. MV-specific Trm cells were functionally active, with CD8+ Trm secreting granzyme B upon in vitro restimulation and CD4+ Trm cells secreting IFN-γ and TNF-α. We confirmed in human lymphocytes this tissue tropism by showing an overexpression of homing receptors directing them to epithelial and inflamed tissues. Vaccination strategies able to induce Trm cells at key sites represent a promising field to improve current vaccines, prioritize vaccine platforms and design future vaccines with enhanced protective efficacy.
Collapse
Affiliation(s)
- Heidy Vera-Peralta
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Claude Ruffié
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Valérie Najburg
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Matthias Brione
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Chantal Combredet
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Phanramphoei Frantz
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Jean-Nicolas Tournier
- Division recherche et innovation, Académie du Service de santé des armées, Paris, France
| | - Frédéric Tangy
- Institut Pasteur-Oncovita Joint Laboratory, Université Paris Cité, Institut Pasteur, Paris, France
| | - Marie Mura
- Interactions hôte-pathogène, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
11
|
Beretta M, Vesin B, Wei Y, Planchais C, Rosenbaum P, Ait-Goughoulte M, Pelletier N, Hardy D, Mouquet H, Bourgine M. Enhanced hepatitis B virus-specific immunity by combining neutralizing antibody therapy and DNA vaccination in a murine model of chronic hepatitis B virus infection. Hepatology 2024:01515467-990000000-01102. [PMID: 39652775 DOI: 10.1097/hep.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIMS Successful treatment of chronic HBV infection remains a great challenge due to the difficulty in inducing efficient immune responses. Here, we investigated the therapeutic potential of DNA vaccination combined with a potent HBV broadly neutralizing antibody targeting the small surface viral antigen. APPROACH AND RESULTS C57BL/6 mice were transduced with adeno-associated virus-HBV and were treated twice a week with HBV broadly neutralizing antibodies for 5 weeks. A DNA-based vaccine encoding the HBV core, envelope, and polymerase proteins was administered once to mice 3 weeks after initiating antibody therapy. The antiviral effects and antigen-specific immune responses were evaluated before and for 8 weeks after therapeutic vaccination. Vaccine administration with or without antibody treatment induced the development of functional HBV-specific CD8+ T cells and envelope-specific resident memory T cells in the liver. The combination of antibody treatment and DNA vaccination enhanced the recruitment of B and CD8+ T lymphocytes into the liver of HBV-carrier mice 2 weeks after vaccination. However, although still detectable 2 months after vaccination, HBV-specific CD8+ T cells showed an exhausted phenotype, suggesting that they are dysfunctional. In contrast, more effective control of antigenemia was observed following combination therapy, which was associated with the presence of HBs-specific memory B cells. CONCLUSIONS Although the combination therapy did not result in a functional cure, our findings indicate it produced additive effects on the development of HBV-specific T cells in the liver immediately following treatment, offering a better insight into the mechanisms underlying hepatic tolerance.
Collapse
Affiliation(s)
- Maxime Beretta
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benjamin Vesin
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| | - Yu Wei
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pierre Rosenbaum
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Malika Ait-Goughoulte
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nadège Pelletier
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Hardy
- Histopathology Platform, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maryline Bourgine
- Institut Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Bertoletti A. The immune response in chronic HBV infection. J Viral Hepat 2024; 31 Suppl 2:43-55. [PMID: 38845402 DOI: 10.1111/jvh.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 12/06/2024]
Abstract
Hepatitis B virus (HBV) is an ancient virus that has evolved unique strategies to persist as a chronic infection in humans. Here, I summarize the innate and adaptive features of the HBV-host interaction, and I discuss how different profiles of antiviral immunity cannot be predicted only on the basis of virological and clinical parameters.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
13
|
Roca Suarez AA, Plissonnier ML, Grand X, Michelet M, Giraud G, Saez-Palma M, Dubois A, Heintz S, Diederichs A, Van Renne N, Vanwolleghem T, Daffis S, Li L, Kolhatkar N, Hsu YC, Wallin JJ, Lau AH, Fletcher SP, Rivoire M, Levrero M, Testoni B, Zoulim F. TLR8 agonist selgantolimod regulates Kupffer cell differentiation status and impairs HBV entry into hepatocytes via an IL-6-dependent mechanism. Gut 2024; 73:2012-2022. [PMID: 38697771 DOI: 10.1136/gutjnl-2023-331396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Xavier Grand
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Guillaume Giraud
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maria Saez-Palma
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Anaëlle Dubois
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Sarah Heintz
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Audrey Diederichs
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Nicolaas Van Renne
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Thomas Vanwolleghem
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | | | - Li Li
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | - Yao-Chun Hsu
- Center for Liver Diseases, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | | | - Audrey H Lau
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | | | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine - DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
14
|
Venzin V, Beccaria CG, Andreata F, Fumagalli V, Iannacone M. Intrahepatic immunity to hepatitis B virus. J Hepatol 2024; 81:911-913. [PMID: 39079776 DOI: 10.1016/j.jhep.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Valentina Venzin
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Cristian G Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
15
|
Zhou P, Tao K, Zeng L, Zeng X, Wan Y, Xie G, Liu X, Zhang P. IRG1/Itaconate inhibits proliferation and promotes apoptosis of CD69 +CD103 +CD8 + tissue-resident memory T cells in autoimmune hepatitis by regulating the JAK3/STAT3/P53 signalling pathway. Apoptosis 2024; 29:1738-1756. [PMID: 38641760 DOI: 10.1007/s10495-024-01970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
To investigate the protective role of immune response gene 1 (IRG1) and exogenous itaconate in autoimmune hepatitis (AIH) and elucidate the underlying mechanisms. Wild-type and IRG1-/- AIH mouse models were established, and samples of liver tissue and ocular blood were collected from each group of mice to assess the effects of IRG1/itaconate on the expression of pro- and anti-inflammatory cytokines. The levels of liver enzymes and related inflammatory factors were determined using enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR). Liver histomorphology was detected through hematoxylin and eosin staining and then scored for liver injury, and the infiltration levels of tissue-resident memory T (TRM) cells and related molecules in the liver tissue were detected through immunofluorescence staining in vitro. RNA sequencing and gene enrichment analysis were conducted to identify the corresponding molecules and pathways, and lentiviral transfection was used to generate TRM cell lines with IRG1, Jak3, Stat3, and p53 knockdown. Real-time quantitative PCR and western blot were performed to detect the expression levels of relevant mRNAs and proteins in the liver tissue and cells. The percentage of apoptotic cells was determined using flow cytometry. IRG1/itaconate effectively reduced the release of pro-inflammatory cytokines and the pathological damage to liver tissue, thereby maintaining normal liver function. At the same time, IRG1/itaconate inhibited the JAK3/STAT3 signaling pathway, regulated the expression of related downstream proteins, and inhibited the proliferation and promoted the apoptosis of CD69+CD103+CD8+ TRM cells. For the first time, P53 was found to act as a downstream molecule of the JAK3/STAT3 pathway and was regulated by IRG1/itaconate to promote the apoptosis of CD8+ TRM cells. IRG1/itaconate can alleviate concanavalin A-induced autoimmune hepatitis in mice by inhibiting the proliferation and promoting the apoptosis of CD69+CD103+CD8+ TRM cells via the JAK3/STAT3/P53 pathway.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/pathology
- Hepatitis, Autoimmune/genetics
- Hepatitis, Autoimmune/drug therapy
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Janus Kinase 3/genetics
- Janus Kinase 3/metabolism
- Janus Kinase 3/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Liver/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/immunology
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
16
|
Al-Adra D, Lan R, Jennings H, Weinstein KN, Liu Y, Verhoven B, Zeng W, Heise G, Levitsky M, Chlebeck P, Liu YZ. Single cell RNA-sequencing identifies the effect of Normothermic ex vivo liver perfusion on liver-resident T cells. Transpl Immunol 2024; 86:102104. [PMID: 39128812 PMCID: PMC11387148 DOI: 10.1016/j.trim.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Normothermic ex vivo liver perfusion (NEVLP) is an exciting strategy to preserve livers prior to transplant, however, the effects of NEVLP on the phenotype of tissue-resident immune cells is largely unknown. The presence of tissue-resident memory T cells (TRM) in the liver may protect against acute rejection and decrease allograft dysfunction. Therefore, we investigated the effects of NEVLP on liver TRMs and assessed the ability of anti-inflammatory cytokines to reduce TRM activation during NEVLP. METHODS Rat livers underwent NEVLP with or without the addition of IL-10 and TGF-β. Naïve and cold storage livers served as controls. Following preservation, TRM T cell gene expression profiles were assessed through single cell RNA sequencing (scRNA-seq). Differential gene expression analysis was performed with Wilcoxon rank sum test to identify differentially expressed genes (DEGs) associated with a specific treatment group. Using the online Database for Annotation, Visualization and Integrated Discovery (DAVID), gene set enrichment was then conducted with Fisher's exact test on DEGs to highlight differentially regulated pathways and functional terms associated with treatment groups. RESULTS Through scRNA-seq analysis, an atlas of liver-resident memory T cell subsets was created for all livers. TRM T cells could be identified in all livers, and through scRNA-seq, DEG was identified with Wilcoxon rank sum test at FDR < 0.05. Based on the gene set enrichment analysis of DEGs using Fisher's exact test, NEVLP is associated with downregulation of multiple gene enrichment pathways associated with surface proteins. Furthermore, NEVLP with anti-inflammatory cytokines was associated with down regulation of 52 genes in TRM T cells when compared to NEVLP alone (FDR <0.05), most of which are pro-inflammatory. CONCLUSION This is the first study to create an atlas of liver TRM T cells in the rat liver undergoing NEVLP and demonstrate the effects of NEVLP on liver TRM T cells at the single cell gene expression level.
Collapse
Affiliation(s)
- David Al-Adra
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Ruoxin Lan
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Heather Jennings
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristin N Weinstein
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yongjun Liu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bret Verhoven
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Weifeng Zeng
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Grace Heise
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mia Levitsky
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
17
|
Ortiz V, Loeuillard E. Rethinking Immune Check Point Inhibitors Use in Liver Transplantation: Implications and Resistance. Cell Mol Gastroenterol Hepatol 2024; 19:101407. [PMID: 39326581 PMCID: PMC11609388 DOI: 10.1016/j.jcmgh.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, including the two most common liver tumors, hepatocellular carcinoma and cholangiocarcinoma, but their use in the peri-transplantation period is controversial. ICI therapy aims to heighten cytotoxic T lymphocytes response against tumors. However, tumor recurrence is common owing to tumor immune response escape involving ablation of CTL response by interfering with antigen presentation, triggering CLT apoptosis and inducing epigenetic changes that promote ICI therapy resistance. ICI can also affect tissue resident memory T cell population, impact tolerance in the post-transplant period, and induce acute inflammation risking graft survival post-transplant. Their interaction with immunosuppression may be key in reducing tumor burden and may thus, require multimodal therapy to treat these tumors. This review summarizes ICI use in the liver transplantation period, their impact on tolerance and resistance, and new potential therapies for combination or sequential treatments for liver tumors.
Collapse
Affiliation(s)
- Vivian Ortiz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| | | |
Collapse
|
18
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
19
|
Arnold F, Kupferschmid L, Weissenborn P, Heldmann L, Hummel JF, Zareba P, Sagar, Rogg M, Schell C, Tanriver Y. Tissue-resident memory T cells break tolerance to renal autoantigens and orchestrate immune-mediated nephritis. Cell Mol Immunol 2024; 21:1066-1081. [PMID: 38961265 PMCID: PMC11364874 DOI: 10.1038/s41423-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Immune-mediated nephritis is a leading cause of acute kidney injury and chronic kidney disease. While the role of B cells and antibodies has been extensively investigated in the past, the advent of immune-checkpoint inhibitors has led to a reappraisal of the role of T cells in renal immunology. However, it remains elusive how T cells with specificity for renal autoantigens are activated and participate in immune-mediated nephritis. Here, we followed the fate and function of pathogen-activated autoreactive CD8 T cells that are specific for a renal autoantigen. We demonstrate that recently activated splenic CD8 T cells developed a hybrid phenotype in the context of renal autoantigen cross-presentation, combining hallmarks of activation and T cell dysfunction. While circulating memory T cells rapidly disappeared, tissue-resident memory T cells emerged and persisted within the kidney, orchestrating immune-mediated nephritis. Notably, T cells infiltrating kidneys of patients with interstitial nephritis also expressed key markers of tissue residency. This study unveils how a tissue-specific immune response can dissociate from its systemic counterpart driving a compartmentalized immune response in the kidneys of mice and man. Consequently, targeting tissue-resident memory T cells emerges as a promising strategy to control immune-mediated kidney disease.
Collapse
Affiliation(s)
- Frederic Arnold
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laurence Kupferschmid
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Weissenborn
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Heldmann
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Zareba
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Naully PG, Tan MI, Agustiningsih A, Sukowati C, Giri-Rachman EA. cccDNA epigenetic regulator as target for therapeutical vaccine development against hepatitis B. Ann Hepatol 2024; 30:101533. [PMID: 39147134 DOI: 10.1016/j.aohep.2024.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Chronic hepatitis B virus infection (CHB) remains a global health concern, with currently available antiviral therapies demonstrating limited effectiveness in preventing hepatocellular carcinoma (HCC) development. Two primary challenges in CHB treatment include the persistence of the minichromosome, covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV), and the failure of the host immune response to eliminate cccDNA. Recent findings indicate several host and HBV proteins involved in the epigenetic regulation of cccDNA, including HBV core protein (HBc) and HBV x protein (HBx). Both proteins might contribute to the stability of the cccDNA minichromosome and interact with viral and host proteins to support transcription. One potential avenue for CHB treatment involves the utilization of therapeutic vaccines. This paper explores HBV antigens suitable for epigenetic manipulation of cccDNA, elucidates their mechanisms of action, and evaluates their potential as key components of epigenetically-driven vaccines for CHB therapy. Molecular targeted agents with therapeutic vaccines offer a promising strategy for addressing CHB by targeting the virus and enhancing the host's immunological response. Despite challenges, the development of these vaccines provides new hope for CHB patients by emphasizing the need for HBV antigens that induce effective immune responses without causing T cell exhaustion.
Collapse
Affiliation(s)
- Patricia Gita Naully
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; Faculty of Health Sciences and Technology, Jenderal Achmad Yani University, Cimahi 40525, Indonesia
| | - Marselina Irasonia Tan
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Agustiningsih Agustiningsih
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, Research Organization for Health, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia; Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park, Basovizza 34049, Trieste, Italy
| | | |
Collapse
|
21
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
De León-Rodríguez SG, Aguilar-Flores C, Gajón JA, Juárez-Flores Á, Mantilla A, Gerson-Cwilich R, Martínez-Herrera JF, Villegas-Osorno DA, Gutiérrez-Quiroz CT, Buenaventura-Cisneros S, Sánchez-Prieto MA, Castelán-Maldonado E, Rivera Rivera S, Fuentes-Pananá EM, Bonifaz LC. TCF1-positive and TCF1-negative TRM CD8 T cell subsets and cDC1s orchestrate melanoma protection and immunotherapy response. J Immunother Cancer 2024; 12:e008739. [PMID: 38969523 PMCID: PMC11227852 DOI: 10.1136/jitc-2023-008739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Melanoma, the most lethal form of skin cancer, has undergone a transformative treatment shift with the advent of checkpoint blockade immunotherapy (CBI). Understanding the intricate network of immune cells infiltrating the tumor and orchestrating the control of melanoma cells and the response to CBI is currently of utmost importance. There is evidence underscoring the significance of tissue-resident memory (TRM) CD8 T cells and classic dendritic cell type 1 (cDC1) in cancer protection. Transcriptomic studies also support the existence of a TCF7+ (encoding TCF1) T cell as the most important for immunotherapy response, although uncertainty exists about whether there is a TCF1+TRM T cell due to evidence indicating TCF1 downregulation for tissue residency activation. METHODS We used multiplexed immunofluorescence and spectral flow cytometry to evaluate TRM CD8 T cells and cDC1 in two melanoma patient cohorts: one immunotherapy-naive and the other receiving immunotherapy. The first cohort was divided between patients free of disease or with metastasis 2 years postdiagnosis while the second between CBI responders and non-responders. RESULTS Our study identifies two CD8+TRM subsets, TCF1+ and TCF1-, correlating with melanoma protection. TCF1+TRM cells show heightened expression of IFN-γ and Ki67 while TCF1- TRM cells exhibit increased expression of cytotoxic molecules. In metastatic patients, TRM subsets undergo a shift in marker expression, with the TCF1- subset displaying increased expression of exhaustion markers. We observed a close spatial correlation between cDC1s and TRMs, with TCF1+TRM/cDC1 pairs enriched in the stroma and TCF1- TRM/cDC1 pairs in tumor areas. Notably, these TCF1- TRMs express cytotoxic molecules and are associated with apoptotic melanoma cells. Both TCF1+ and TCF1- TRM subsets, alongside cDC1, prove relevant to CBI response. CONCLUSIONS Our study supports the importance of TRM CD8 T cells and cDC1 in melanoma protection while also highlighting the existence of functionally distinctive TCF1+ and TCF1- TRM subsets, both crucial for melanoma control and CBI response.
Collapse
Affiliation(s)
- Saraí G De León-Rodríguez
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Cristina Aguilar-Flores
- Unidad de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Julián A Gajón
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Posgrado en Ciencias Bioquímicas, Facultad de Química, Universad Nacional Autónoma de México, Mexico City, Mexico
| | - Ángel Juárez-Flores
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - José Fabián Martínez-Herrera
- Medical Center American British Cowdray, Mexico City, Mexico
- Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | | | - Claudia T Gutiérrez-Quiroz
- UMAE Hospital de Especialidades, Centro Médico Nacional General Manuel Avila Camacho, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | - Mario Alberto Sánchez-Prieto
- Unidad Médica de Alta Especialidad No.25, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
- División de Atención Oncológica en Adultos. Coordinación de Atención Oncológica, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Edmundo Castelán-Maldonado
- Unidad Médica de Alta Especialidad No.25, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Samuel Rivera Rivera
- Medical Center American British Cowdray, Mexico City, Mexico
- División de Atención Oncológica en Adultos. Coordinación de Atención Oncológica, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Coordinación de investigación en salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| |
Collapse
|
23
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
24
|
Hullegie-Peelen DM, Hesselink DA, Dieterich M, Minnee RC, Peeters A, Hoogduijn MJ, Baan CC. Tissue-resident Lymphocytes Are Released During Hypothermic and Normothermic Machine Perfusion of Human Donor Kidneys. Transplantation 2024; 108:1551-1557. [PMID: 38557650 PMCID: PMC11188625 DOI: 10.1097/tp.0000000000004936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Machine perfusion is the preferred preservation method for deceased donor kidneys. Perfusate fluid, which contains a complex mixture of components, offers potential insight into the organ's viability and function. This study explored immune cell release, particularly tissue-resident lymphocytes (TRLs), during donor kidney machine perfusion and its correlation with injury markers. METHODS Perfusate samples from hypothermic machine perfusion (HMP; n = 26) and normothermic machine perfusion (NMP; n = 16) of human donor kidneys were analyzed for TRLs using flow cytometry. Residency was defined by expressions of CD69, CD103, and CD49as. TRL release was quantified exclusively in NMP. Additionally, levels of cell-free DNA, neutrophil gelatinase-associated lipocalin, and soluble E-cadherin (sE-cadherin) were measured in NMP supernatants with quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Both HMP and NMP samples contained a heterogeneous population of TRLs, including CD4 + tissue-resident memory T cells, CD8 + tissue-resident memory T cells, tissue-resident natural killer cells, tissue-resident natural killer T cells, and helper-like innate lymphoid cells. Median TRL proportions among total CD45 + lymphocytes were 0.89% (NMP) and 0.84% (HMP). TRL quantities in NMP did not correlate with donor characteristics, perfusion parameters, posttransplant outcomes, or cell-free DNA and neutrophil gelatinase-associated lipocalin concentrations. However, CD103 + TRL release positively correlated with the release of sE-cadherin, the ligand for the CD103 integrin. CONCLUSIONS Human donor kidneys release TRLs during both HMP and NMP. The release of CD103 + TRLs was associated with the loss of their ligand sE-cadherin but not with general transplant injury biomarkers.
Collapse
Affiliation(s)
- Daphne M. Hullegie-Peelen
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A. Hesselink
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robert C. Minnee
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Division of Hepato-pancreatobiliary and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annemiek Peeters
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin J. Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Narmada BC, Khakpoor A, Shirgaonkar N, Narayanan S, Aw PPK, Singh M, Ong KH, Owino CO, Ng JWT, Yew HC, Binte Mohamed Nasir NS, Au VB, Sng R, Kaliaperumal N, Khine HHTW, di Tocco FC, Masayuki O, Naikar S, Ng HX, Chia SL, Seah CXY, Alnawaz MH, Wai CLY, Tay AYL, Mangat KS, Chew V, Yu W, Connolly JE, Periyasamy G, Plissonnier ML, Levrero M, Lim SG, DasGupta R. Single-cell landscape of functionally cured chronic hepatitis B patients reveals activation of innate and altered CD4-CTL-driven adaptive immunity. J Hepatol 2024; 81:42-61. [PMID: 38423478 DOI: 10.1016/j.jhep.2024.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS Hepatitis B surface antigen (HBsAg) loss or functional cure (FC) is considered the optimal therapeutic outcome for patients with chronic hepatitis B (CHB). However, the immune-pathological biomarkers and underlying mechanisms of FC remain unclear. In this study we comprehensively interrogate disease-associated cell states identified within intrahepatic tissue and matched PBMCs (peripheral blood mononuclear cells) from patients with CHB or after FC, at the resolution of single cells, to provide novel insights into putative mechanisms underlying FC. METHODS We combined single-cell transcriptomics (single-cell RNA sequencing) with multiparametric flow cytometry-based immune phenotyping, and multiplexed immunofluorescence to elucidate the immunopathological cell states associated with CHB vs. FC. RESULTS We found that the intrahepatic environment in CHB and FC displays specific cell identities and molecular signatures that are distinct from those found in matched PBMCs. FC is associated with the emergence of an altered adaptive immune response marked by CD4 cytotoxic T lymphocytes, and an activated innate response represented by liver-resident natural killer cells, specific Kupffer cell subtypes and marginated neutrophils. Surprisingly, we found MHC class II-expressing hepatocytes in patients achieving FC, as well as low but persistent levels of covalently closed circular DNA and pregenomic RNA, which may play an important role in FC. CONCLUSIONS Our study provides conceptually novel insights into the immuno-pathological control of HBV cure, and opens exciting new avenues for clinical management, biomarker discovery and therapeutic development. We believe that the discoveries from this study, as it relates to the activation of an innate and altered immune response that may facilitate sustained, low-grade inflammation, may have broader implications in the resolution of chronic viral hepatitis. IMPACT AND IMPLICATIONS This study dissects the immuno-pathological cell states associated with functionally cured chronic hepatitis B (defined by the loss of HBV surface antigen or HBsAg). We identified the sustained presence of very low viral load, accessory antigen-presenting hepatocytes, adaptive-memory-like natural killer cells, and the emergence of helper CD4 T cells with cytotoxic or effector-like signatures associated with functional cure, suggesting previously unsuspected alterations in the adaptive immune response, as well as a key role for the innate immune response in achieving or maintaining functional cure. Overall, the insights generated from this study may provide new avenues for the development of alternative therapies as well as patient surveillance for better clinical management of chronic hepatitis B.
Collapse
Affiliation(s)
- Balakrishnan Chakrapani Narmada
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | - Atefeh Khakpoor
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Niranjan Shirgaonkar
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Sriram Narayanan
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Pauline Poh Kim Aw
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Malay Singh
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Kok Haur Ong
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Collins Oduor Owino
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jane Wei Ting Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Chuing Yew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Veonice Bijin Au
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Reina Sng
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Nivashini Kaliaperumal
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Htet Htet Toe Wai Khine
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Otsuka Masayuki
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Shamita Naikar
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hui Xin Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Su Li Chia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Myra Hj Alnawaz
- Department of Medicine, National University Hospital, Singapore
| | - Chris Lee Yoon Wai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amy Yuh Ling Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kamarjit Singh Mangat
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - John Edward Connolly
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Giridharan Periyasamy
- Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | | | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France; Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France; University of Lyon Claude Bernard 1 (UCLB1), Lyon, France; Department of Medicine SCIAC and the Italian Institute of Technology (IIT) Center for Life Nanosciences (CLNS), University of Rome La Sapienza, Rome, Italy
| | - Seng Gee Lim
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Medicine, National University Hospital, Singapore; Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore.
| | - Ramanuj DasGupta
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672.
| |
Collapse
|
26
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
27
|
Luo X, Guo J, Deng H, He Z, Wen Y, Si Z, Li J. Unveiling the role of disulfidptosis-related genes in the pathogenesis of non-alcoholic fatty liver disease. Front Immunol 2024; 15:1386905. [PMID: 38812509 PMCID: PMC11133613 DOI: 10.3389/fimmu.2024.1386905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Backgrounds Non-alcoholic fatty liver disease (NAFLD) presents as a common liver disease characterized by an indistinct pathogenesis. Disulfidptosis is a recently identified mode of cell death. This study aimed to investigate the potential role of disulfidptosis-related genes (DRGs) in the pathogenesis of NAFLD. Methods Gene expression profiles were obtained from the bulk RNA dataset GSE126848 and the single-cell RNA dataset GSE136103, both associated with NAFLD. Our study assessed the expression of DRGs in NAFLD and normal tissues. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were employed to identify the key NAFLD-specific differentially expressed DRGs (DE-DRGs). To explore the biological functions and immune regulatory roles of these key DE-DRGs, we conducted immune infiltration analysis, functional enrichment analysis, consensus clustering analysis, and single-cell differential state analysis. Finally, we validated the expression and biological functions of DRGs in NAFLD patients using histology and RNA-sequencing transcriptomic assays with human liver tissue samples. Results Through the intersection of WGCNA, differentially expressed genes, and DRGs, two key DE-DRGs (DSTN and MYL6) were identified. Immune infiltration analysis indicated a higher proportion of macrophages, T cells, and resting dendritic cells in NAFLD compared to control liver samples. Based on the key DE-DRGs, Two disulfidptosis clusters were defined in GSE126848. Cluster 1, with higher expression of the key DE-DRGs, exhibited increased immune infiltration abundance and was closely associated with oxidative stress and immune regulation compared to cluster 2. High-resolution analysis of mononuclear phagocytes highlighted the potential role of MYL6 in intrahepatic M1 phenotype Kupffer cells in NAFLD patients. Our transcriptome data revealed that the expression levels of the majority of DRGs were significantly increased in NAFLD patients. NAFLD patients exhibit elevated MYL6 correlating with inflammation, oxidative stress, and disease severity, offering promising diagnostic specificity. Conclusion This comprehensive study provides evidence for the association between NAFLD and disulfidptosis, identifying potential target genes and pathways in NAFLD. The identification of MYL6 as a possible treatment target for NAFLD provided a novel understanding of the disease's development.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongzhou Si
- Department of Liver Transplant, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiequn Li
- Department of Liver Transplant, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Wu L, Deng H, Feng X, Xie D, Li Z, Chen J, Mo Z, Zhao Q, Hu Z, Yi S, Meng S, Wang J, Li X, Lin B, Gao Z. Interferon-γ + Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization. J Med Virol 2024; 96:e29627. [PMID: 38659381 DOI: 10.1002/jmv.29627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The immune mechanism underlying hepatitis B surface antigen (HBsAg) loss, particularly type I inflammatory response, during pegylated interferon-α (PEG-IFN) therapy remains unclear. In this study, we aimed to elucidate such immune mechanisms. Overall, 82 patients with chronic hepatitis B (CHB), including 41 with HBsAg loss (cured group) and 41 uncured patients, received nucleos(t)ide analogue and PEG-IFN treatments. Blood samples from all patients, liver tissues from 14 patients with CHB, and hepatic perfusate from 8 liver donors were collected for immune analysis. Jurkat, THP-1 and HepG2.2.15 cell lines were used in cell experiments. The proportion of IFN-γ+ Th1 cells was higher in the cured group than in the uncured group, which was linearly correlated with HBsAg decline and alanine aminotransferase (ALT) levels during treatment. However, CD8+ T cells were weakly associated with HBsAg loss. Serum and intrahepatic levels of Th1 cell-associated chemokines (C-X-C motif chemokine ligand [CXCL] 9, CXCL10, CXCL11, IFN-γ) were significantly lower in the cured patients than in patients with a higher HBsAg quantification during therapy. Serum from cured patients induced more M1 (CD68+CD86+ macrophage) cells than that from uncured patients. Patients with chronic HBV infection had significantly lower proportions of CD86+ M1 and CD206+ M2 macrophages in their livers than healthy controls. M1 polarization of intrahepatic Kupffer cells promoted HBsAg loss by upregulating the effector function of tissue-resident memory T cells with increased ALT levels. IFN-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.
Collapse
Affiliation(s)
- Lili Wu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hong Deng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongying Xie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhishuo Mo
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoxia Hu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shibo Meng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialei Wang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingliang Lin
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
29
|
Hamid MHBA, Cespedes PF, Jin C, Chen JL, Gileadi U, Antoun E, Liang Z, Gao F, Teague R, Manoharan N, Maldonado-Perez D, Khalid-Alham N, Cerundolo L, Ciaoca R, Hester SS, Pinto-Fernández A, Draganov SD, Vendrell I, Liu G, Yao X, Kvalvaag A, Dominey-Foy DCC, Nanayakkara C, Kanellakis N, Chen YL, Waugh C, Clark SA, Clark K, Sopp P, Rahman NM, Verrill C, Kessler BM, Ogg G, Fernandes RA, Fisher R, Peng Y, Dustin ML, Dong T. Unconventional human CD61 pairing with CD103 promotes TCR signaling and antigen-specific T cell cytotoxicity. Nat Immunol 2024; 25:834-846. [PMID: 38561495 PMCID: PMC11065694 DOI: 10.1038/s41590-024-01802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Apyrase
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Integrin alpha Chains/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Megat H B A Hamid
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pablo F Cespedes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Chen Jin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Li Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elie Antoun
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Zhu Liang
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Fei Gao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Renuka Teague
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nikita Manoharan
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Maldonado-Perez
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nasullah Khalid-Alham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Lucia Cerundolo
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Raul Ciaoca
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Svenja S Hester
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Adán Pinto-Fernández
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Simeon D Draganov
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Guihai Liu
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Molecular Cell Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Charunya Nanayakkara
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos Kanellakis
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Yi-Ling Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Najib M Rahman
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Clare Verrill
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Benedikt M Kessler
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Graham Ogg
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ricardo A Fernandes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fisher
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Yanchun Peng
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael L Dustin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tao Dong
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Mooney AH, Draper SL, Burn OK, Anderson RJ, Compton BJ, Tang C, Farrand KJ, Di Lucia P, Ravà M, Fumagalli V, Giustini L, Bono E, Godfrey DI, Heath WR, Yuan W, Chisari FV, Guidotti LG, Iannacone M, Sidney J, Sette A, Gulab SA, Painter GF, Hermans IF. Preclinical evaluation of therapeutic vaccines for chronic hepatitis B that stimulate antiviral activities of T cells and NKT cells. JHEP Rep 2024; 6:101038. [PMID: 38694959 PMCID: PMC11061331 DOI: 10.1016/j.jhepr.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 05/04/2024] Open
Abstract
Background & Aims Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.
Collapse
Affiliation(s)
- Anna H. Mooney
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olivia K. Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Chingwen Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francis V. Chisari
- Department of Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Luca G. Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shivali A. Gulab
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- Avalia Immunotherapies Limited, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
31
|
Sykes M. Tolerance in intestinal transplantation. Hum Immunol 2024; 85:110793. [PMID: 38580539 PMCID: PMC11144570 DOI: 10.1016/j.humimm.2024.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Intestinal transplantation (ITx) is highly immunogenic, resulting in the need for high levels of immunosuppression, with frequent complications along with high rejection rates. Tolerance induction would provide a solution to these limitations. Detailed studies of alloreactive T cell clones as well as multiparameter flow cytometry in the graft and peripheral tissues have provided evidence for several tolerance mechanisms that occur spontaneously following ITx, which might provide targets for further interventions. These include the frequent occurrence of macrochimerism and engraftment in the recipient bone marrow of donor hematopoietic stem and progenitor cells carried in the allograft. These phenomena are seen most frequently in recipients of multivisceral transplants and are associated with reduced rejection rates. They reflect powerful graft-vs-host responses that enter the peripheral lymphoid system and bone marrow after expanding within and emigrating from the allograft. Several mechanisms of tolerance that may result from this lymphohematopoietic graft-vs-host response are discussed. Transcriptional profiling in quiescent allografts reveals tolerization of pre-existing host-vs-graft-reactive T cells that enter the allograft mucosa and become tissue-resident memory cells. Dissection of the pathways driving and maintaining this tolerant tissue-resident state among donor-reactive T cells will allow controlled tolerance induction through specific therapeutic approaches.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Chi H, Pepper M, Thomas PG. Principles and therapeutic applications of adaptive immunity. Cell 2024; 187:2052-2078. [PMID: 38670065 PMCID: PMC11177542 DOI: 10.1016/j.cell.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Adaptive immunity provides protection against infectious and malignant diseases. These effects are mediated by lymphocytes that sense and respond with targeted precision to perturbations induced by pathogens and tissue damage. Here, we review key principles underlying adaptive immunity orchestrated by distinct T cell and B cell populations and their extensions to disease therapies. We discuss the intracellular and intercellular processes shaping antigen specificity and recognition in immune activation and lymphocyte functions in mediating effector and memory responses. We also describe how lymphocytes balance protective immunity against autoimmunity and immunopathology, including during immune tolerance, response to chronic antigen stimulation, and adaptation to non-lymphoid tissues in coordinating tissue immunity and homeostasis. Finally, we discuss extracellular signals and cell-intrinsic programs underpinning adaptive immunity and conclude by summarizing key advances in vaccination and engineering adaptive immune responses for therapeutic interventions. A deeper understanding of these principles holds promise for uncovering new means to improve human health.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
33
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Hatje K, Kam-Thong T, Giroud N, Saviano A, Simo-Noumbissie P, Kumpesa N, Nilsson T, Habersetzer F, Baumert TF, Pelletier N, Forkel M. Single-cell RNA-sequencing of virus-specific cellular immune responses in chronic hepatitis B patients. Sci Data 2024; 11:355. [PMID: 38589415 PMCID: PMC11001867 DOI: 10.1038/s41597-024-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic hepatitis B (CHB) is a major global health challenge. CHB can be controlled by antivirals but a therapeutic cure is lacking. CHB is characterized by limited HBV-specific T cell reactivity and functionality and expression of inhibitory receptors. The mechanisms driving these T cell phenotypes are only partially understood. Here, we created a single-cell RNA-sequencing dataset of HBV immune responses in patients to contribute to a better understanding of the dysregulated immunity. Blood samples of a well-defined cohort of 21 CHB and 10 healthy controls, including a subset of 5 matched liver biopsies, were collected. scRNA-seq data of total immune cells (55,825) plus sorted HBV-specific (1,963), non-naive (32,773) and PD1+ T cells (96,631) was generated using the 10X Genomics platform (186,123 cells) or the full-length Smart-seq2 protocol (1,069 cells). The shared transcript count matrices of single-cells serve as a valuable resource describing transcriptional changes underlying dysfunctional HBV-related T cell responses in blood and liver tissue and offers the opportunity to identify targets or biomarkers for HBV-related immune exhaustion.
Collapse
Affiliation(s)
- Klas Hatje
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| | - Tony Kam-Thong
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Nicolas Giroud
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Antonio Saviano
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR_S1110, University of Strasbourg, Strasbourg, France.
| | - Pauline Simo-Noumbissie
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadine Kumpesa
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Nilsson
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - François Habersetzer
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Service d'hépato-gastroentérologie, Pôle hépato-digestif, Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Nadege Pelletier
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Marianne Forkel
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Liang Y, Zhong D, Zhang Z, Su Y, Yan S, Lai C, Yao Y, Shi Y, Huang X, Shang J. Impact of preoperative antiviral therapy on the prognosis of hepatitis B virus-related hepatocellular carcinoma. BMC Cancer 2024; 24:291. [PMID: 38438842 PMCID: PMC10913258 DOI: 10.1186/s12885-024-12031-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND For chronic hepatitis B virus (HBV) infection patients, increasing evidence has demonstrated the effectiveness of expanding the indications and applicable population for antiviral therapy. However, the expanded indication of antiviral therapy for hepatocellular carcinoma (HCC) remains to be further explored. METHODS 196 HBV-related HCC patients who received radical hepatectomy and nucleos(t)ide analogues (NAs) therapy at Sichuan Provincial People's Hospital were enrolled in this study. HCC recurrence, overall survival (OS), early virological (VR) and biochemical responses (BR) of patients were compared between different NAs therapy and the use of anti-programmed cell death protein 1 (PD-1) therapy. RESULTS NAs therapy at different timing of surgery was a strong independent risk factor for postoperative recurrence and overall mortality of HBV-related HCC patients. Furthermore, in HCC patients who received postoperative anti-PD-1 therapy, patients with HBV DNA < 1000 copy/mL had significantly better recurrence-free survival (RFS) and OS than those with HBV DNA ≥ 1000 copy/mL (HR: 7.783; P = 0.002; HR: 6.699; P < 0.001). However, the differences of RFS and OS rates between entecavir group and tenofovir disoproxil fumarate group were not statistically significant. Similar results were also observed in the rates of early VR, BR and combined VR and BR. CONCLUSION Timely and reasonable preoperative NAs therapy showed clinical benefit in improving the prognosis of patients with HBV-related HCC, even in the case of normal alanine aminotransferase (ALT) level and negative hepatitis e antigen (HBeAg). Furthermore, a possible synergistic effect between antiviral therapy and anti-PD-1 therapy was founded and need further verification.
Collapse
Affiliation(s)
- Yuxin Liang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplant Research Institute, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Deyuan Zhong
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplant Research Institute, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Zilong Zhang
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Yuhao Su
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Su Yan
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Chunyou Lai
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplant Research Institute, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Yutong Yao
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplant Research Institute, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Ying Shi
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplant Research Institute, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China
| | - Xiaolun Huang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplant Research Institute, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China.
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Hepatobiliary-Pancreatic Surgery, Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplant Research Institute, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Qingyang District, Chengdu, 610072, China.
| |
Collapse
|
36
|
Peters AL, DePasquale EA, Begum G, Roskin KM, Woodle ES, Hildeman DA. Defining the T cell transcriptional landscape in pediatric liver transplant rejection at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582173. [PMID: 38464256 PMCID: PMC10925238 DOI: 10.1101/2024.02.26.582173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Acute cellular rejection (ACR) affects >80% of pediatric liver transplant recipients within 5 years, and late ACR is associated with graft failure. Traditional anti-rejection therapy for late ACR is ineffective and has remained unchanged for six decades. Although CD8+ T cells promote late ACR, little has been done to define their specificity and gene expression. Here, we used single-cell sequencing and immune repertoire profiling (10X Genomics) on 30 cryopreserved 16G liver biopsies from 14 patients (5 pre-transplant or with no ACR, 9 with ACR). We identified expanded intragraft CD8+ T cell clonotypes (CD8EXP) and their gene expression profiles in response to anti-rejection treatment. Notably, we found that expanded CD8+ clonotypes (CD8EXP) bore markers of effector and CD56hiCD161- 'NK-like' T cells, retaining their clonotype identity and phenotype in subsequent biopsies from the same patients despite histologic ACR resolution. CD8EXP clonotypes localized to portal infiltrates during active ACR, and persisted in the lobule after histologic ACR resolution. CellPhoneDB analysis revealed differential crosstalk between KC and CD8EXP during late ACR, with activation of the LTB-LTBR pathway and downregulation of TGFß signaling. Therefore, persistently-detected intragraft CD8EXP clones remain active despite ACR treatment and may contribute to long-term allograft fibrosis and failure of operational tolerance.
Collapse
Affiliation(s)
- Anna L. Peters
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Erica A.K. DePasquale
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Gousia Begum
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Krishna M. Roskin
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David A. Hildeman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
37
|
Zhu C, Jiao S, Xu W. CD8 + Trms against malaria liver-stage: prospects and challenges. Front Immunol 2024; 15:1344941. [PMID: 38318178 PMCID: PMC10839007 DOI: 10.3389/fimmu.2024.1344941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Attenuated sporozoites provide a valuable model for exploring protective immunity against the malarial liver stage, guiding the design of highly efficient vaccines to prevent malaria infection. Liver tissue-resident CD8+ T cells (CD8+ Trm cells) are considered the host front-line defense against malaria and are crucial to developing prime-trap/target strategies for pre-erythrocytic stage vaccine immunization. However, the spatiotemporal regulatory mechanism of the generation of liver CD8+ Trm cells and their responses to sporozoite challenge, as well as the protective antigens they recognize remain largely unknown. Here, we discuss the knowledge gap regarding liver CD8+ Trm cell formation and the potential strategies to identify predominant protective antigens expressed in the exoerythrocytic stage, which is essential for high-efficacy malaria subunit pre-erythrocytic vaccine designation.
Collapse
Affiliation(s)
- Chengyu Zhu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiming Jiao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
38
|
Li Y, Li B, Xiao X, Qian Q, Wang R, Lyu Z, Chen R, Cui N, Ou Y, Pu X, Miao Q, Wang Q, Lian M, Gershwin ME, Tang R, Ma X, You Z. Itaconate inhibits CD103 + T RM cells and alleviates hepatobiliary injury in mouse models of primary sclerosing cholangitis. Hepatology 2024; 79:25-38. [PMID: 37505225 DOI: 10.1097/hep.0000000000000549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic progressive liver disease characterized by the infiltration of intrahepatic tissue-resident memory CD8 + T cells (T RM ). Itaconate has demonstrated therapeutic potential in modulating inflammation. An unmet need for PSC is the reduction of biliary inflammation, and we hypothesized that itaconate may directly modulate pathogenic T RM . APPROACH AND RESULTS The numbers of intrahepatic CD103 + T RM were evaluated by immunofluorescence in PSC (n = 32), and the serum levels of itaconate in PSC (n = 64), primary biliary cholangitis (PBC) (n = 60), autoimmune hepatitis (AIH) (n = 49), and healthy controls (n = 109) were determined by LC-MS/MS. In addition, the frequencies and immunophenotypes of intrahepatic T RM using explants from PSC (n = 5) and healthy donors (n = 6) were quantitated by flow cytometry. The immunomodulatory properties of 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) on CD103 + T RM were studied in vitro. Finally, the therapeutic potential of itaconate was studied by the administration of 4-OI and deficiency of immune-responsive gene 1 (encodes the aconitate decarboxylase producing itaconate) in murine models of PSC. Intrahepatic CD103 + T RM was significantly expanded in PSC and was positively correlated with disease severity. Serum itaconate levels decreased in PSC. Importantly, 4-OI inhibited the induction and effector functions of CD103 + T RM in vitro. Mechanistically, 4-OI blocked DNA demethylation of RUNX3 in CD8 + T cells. Moreover, 4-OI reduced intrahepatic CD103 + T RM and ameliorated liver injury in murine models of PSC. CONCLUSIONS Itaconate exerted immunomodulatory activity on CD103 + T RM in both in vitro and murine PSC models. Our study suggests that targeting pathogenic CD103 + T RM with itaconate has therapeutic potential in PSC.
Collapse
Affiliation(s)
- Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Yiyan Ou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Xiting Pu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, China
| |
Collapse
|
39
|
Xu H, Zhou R, Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin Exp Immunol 2023; 214:249-259. [PMID: 37586053 PMCID: PMC10719502 DOI: 10.1093/cei/uxad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence has indicated the essential role of tissue-resident memory T (TRM) cells for frontline protection against viral infection and for cancer immune surveillance (Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol 2016, 16, 79-89. doi:10.1038/nri.2015.3.). TRM cells are transcriptionally, phenotypically, and functionally distinct from circulating memory T (Tcirm) cells. It is necessary to understand the unique ontogenetic mechanism, migratory regulation, and biological function of TRM cells. In this review, we discuss recent insights into cellular mechanisms and discrete responsiveness in different tissue microenvironments underlying TRM cell development. We also emphasize the translational potential of TRM cells by focusing on their establishment in association with improved protection in mucosal tissues against various types of diseases and effective strategies for eliciting TRM cells in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
40
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
41
|
Ibidapo-Obe O, Bruns T. Tissue-resident and innate-like T cells in patients with advanced chronic liver disease. JHEP Rep 2023; 5:100812. [PMID: 37691689 PMCID: PMC10485156 DOI: 10.1016/j.jhepr.2023.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/12/2023] Open
Abstract
Chronic liver disease results from the orchestrated interplay of components of innate and adaptive immunity in response to liver tissue damage. Recruitment, positioning, and activation of immune cells can contribute to hepatic cell death, inflammation, and fibrogenesis. With disease progression and increasing portal pressure, repeated translocation of bacterial components from the intestinal lumen through the epithelial and vascular barriers leads to persistent mucosal, hepatic, and systemic inflammation which contributes to tissue damage, immune dysfunction, and microbial infection. It is increasingly recognised that innate-like and adaptive T-cell subsets located in the liver, mucosal surfaces, and body cavities play a critical role in the progression of advanced liver disease and inflammatory complications of cirrhosis. Mucosal-associated invariant T cells, natural killer T cells, γδ T cells, and tissue-resident memory T cells in the gut, liver, and ascitic fluid share certain characteristic features, which include that they recognise microbial products, tissue alarmins, cytokines, and stress ligands in tissues, and perform effector functions in chronic liver disease. This review highlights recent advances in the comprehension of human tissue-resident and unconventional T-cell populations and discusses the mechanisms by which they contribute to inflammation, fibrosis, immunosuppression, and antimicrobial surveillance in patients with cirrhosis. Understanding the complex interactions of immune cells in different compartments and their contribution to disease progression will provide further insights for effective diagnostic interventions and novel immunomodulatory strategies in patients with advanced chronic liver disease.
Collapse
Affiliation(s)
- Oluwatomi Ibidapo-Obe
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
42
|
Le Moine M, Azouz A, Sanchez Sanchez G, Dejolier S, Nguyen M, Thomas S, Shala V, Dreidi H, Denanglaire S, Libert F, Vermijlen D, Andris F, Goriely S. Homeostatic PD-1 signaling restrains EOMES-dependent oligoclonal expansion of liver-resident CD8 T cells. Cell Rep 2023; 42:112876. [PMID: 37543948 DOI: 10.1016/j.celrep.2023.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
The co-inhibitory programmed death (PD)-1 signaling pathway plays a major role in the context of tumor-specific T cell responses. Conversely, it also contributes to the maintenance of peripheral tolerance, as patients receiving anti-PD-1 treatment are prone to developing immune-related adverse events. Yet, the physiological role of the PD-1/PDL-1 axis in T cell homeostasis is still poorly understood. Herein, we show that under steady-state conditions, the absence of PD-1 signaling led to a preferential expansion of CD8+ T cells in the liver. These cells exhibit an oligoclonal T cell receptor (TCR) repertoire and a terminally differentiated exhaustion profile. The transcription factor EOMES is required for the clonal expansion and acquisition of this differentiation program. Finally, single-cell transcriptomics coupled with TCR repertoire analysis support the notion that these cells arise locally from liver-resident memory CD8+ T cells. Overall, we show a role for PD-1 signaling in liver memory T cell homeostasis.
Collapse
Affiliation(s)
- Marie Le Moine
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium
| | - Solange Dejolier
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Valdrin Shala
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Hacene Dreidi
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sébastien Denanglaire
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM) and Brightcore, ULB, Brussels, Belgium
| | - David Vermijlen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Andris
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
43
|
Connors TJ, Matsumoto R, Verma S, Szabo PA, Guyer R, Gray J, Wang Z, Thapa P, Dogra P, Poon MML, Rybkina K, Bradley MC, Idzikowski E, McNichols J, Kubota M, Pethe K, Shen Y, Atkinson MA, Brusko M, Brusko TM, Yates AJ, Sims PA, Farber DL. Site-specific development and progressive maturation of human tissue-resident memory T cells over infancy and childhood. Immunity 2023; 56:1894-1909.e5. [PMID: 37421943 PMCID: PMC10527943 DOI: 10.1016/j.immuni.2023.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.
Collapse
Affiliation(s)
- Thomas J Connors
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shivali Verma
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zicheng Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Puspa Thapa
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ksenia Rybkina
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Marissa C Bradley
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Emma Idzikowski
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kalpana Pethe
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
Colombo SAP, Brown SL, Hepworth MR, Hankinson J, Granato F, Kitchen SJ, Hussell T, Simpson A, Cook PC, MacDonald AS. Comparative phenotype of circulating versus tissue immune cells in human lung and blood compartments during health and disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad009. [PMID: 37545765 PMCID: PMC10403752 DOI: 10.1093/discim/kyad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.
Collapse
Affiliation(s)
- Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Jenny Hankinson
- Institute of Translational Genomics, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Felice Granato
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Semra J Kitchen
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Angela Simpson
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Hassert M, Arumugam S, Harty JT. Memory CD8+ T cell-mediated protection against liver-stage malaria. Immunol Rev 2023; 316:84-103. [PMID: 37014087 PMCID: PMC10524177 DOI: 10.1111/imr.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Nearly half of the world's population is at risk of malaria, a disease caused by the protozoan parasite Plasmodium, which is estimated to cause more than 240,000,000 infections and kill more than 600,000 people annually. The emergence of Plasmodia resistant to chemoprophylactic treatment highlights the urgency to develop more effective vaccines. In this regard, whole sporozoite vaccination approaches in murine models and human challenge studies have provided substantial insight into the immune correlates of protection from malaria. From these studies, CD8+ T cells have come to the forefront, being identified as critical for vaccine-mediated liver-stage immunity that can prevent the establishment of the symptomatic blood stages and subsequent transmission of infection. However, the unique biological characteristics required for CD8+ T cell protection from liver-stage malaria dictate that more work must be done to design effective vaccines. In this review, we will highlight a subset of studies that reveal basic aspects of memory CD8+ T cell-mediated protection from liver-stage malaria infection.
Collapse
Affiliation(s)
- Mariah Hassert
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| | - Sahaana Arumugam
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Medical Scientist Training Program, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| | - John T. Harty
- Department of Pathology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa- Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
46
|
Lund JM, Hladik F, Prlic M. Advances and challenges in studying the tissue-resident T cell compartment in the human female reproductive tract. Immunol Rev 2023; 316:52-62. [PMID: 37140024 PMCID: PMC10524394 DOI: 10.1111/imr.13212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023]
Abstract
Tissue-resident memory T cells (TRM ) are considered to be central to maintaining mucosal barrier immunity and tissue homeostasis. Most of this knowledge stems from murine studies, which provide access to all organs. These studies also allow for a thorough assessment of the TRM compartment for each tissue and across tissues with well-defined experimental and environmental variables. Assessing the functional characteristics of the human TRM compartment is substantially more difficult; thus, notably, there is a paucity of studies profiling the TRM compartment in the human female reproductive tract (FRT). The FRT is a mucosal barrier tissue that is naturally exposed to a wide range of commensal and pathogenic microbes, including several sexually transmitted infections of global health significance. We provide an overview of studies describing T cells within the lower FRT tissues and highlight the challenges of studying TRM cells in the FRT: different sampling methods of the FRT greatly affect immune cell recovery, especially of TRM cells. Furthermore, menstrual cycle, menopause, and pregnancy affect FRT immunity, but little is known about changes in the TRM compartment. Finally, we discuss the potential functional plasticity of the TRM compartment during inflammatory episodes in the human FRT to maintain protection and tissue homeostasis, which are required to ensure reproductive fitness.
Collapse
Affiliation(s)
- Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
- Department of Immunology, University of Washington, Seattle, WA, 98109
| |
Collapse
|
47
|
Liu L, Liu J, Li P, Luo J, Qin R, Peng Q, Li B, Wei X, Wang T, Shi H, Wang MD, Li C, Fang W, Chen W, Xu X, Yang T, Yin W, Zeng X. Single-cell analysis reveals HBV-specific PD-1 +CD8 + TRM cells in tumor borders are associated with HBV-related hepatic damage and fibrosis in HCC patients. J Exp Clin Cancer Res 2023; 42:152. [PMID: 37353792 PMCID: PMC10288678 DOI: 10.1186/s13046-023-02710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023] Open
Abstract
Immune checkpoint blockade (ICB) treatment of hepatocellular carcinoma (HCC) patients with hepatitis B virus (HBV) infection may activate viral-specific T cells to attack HBV infected hepatocytes and thus induce immune-related liver injury. Therefore, it is important to deeply understand the impacts of HBV infection on HCC immune microenvironment in order to better design effective immunotherapies for HBV+ (HBV infected) HCC patients. Here, We performed cytometry by time-of-flight (CyTOF) analyses to characterize the distinct immune compositions of HCC tumors, tumor borders, and their associations with HCC/HBV related clinical characteristics. We identified 31 distinct immune clusters and found significant associations between immune signatures with clinicopathological features of HCC. We further revealed the HBV infection had more effects on shaping immune compositions in tumor borders than in tumors, with the significant enrichment of HBV-specific PD-1+CD8+ tissue-resident memory T (TRM) cells in tumor borders of HBV+ patients. We confirmed this subset with a more exhausted phenotype and respond more actively under anti-PD-L1 treatment, suggesting its involvement in immune-related liver injury induced by ICB treatment to HBV+ HCC patients. Our study shows it may be necessary to consider antiviral prophylaxis for HBV+ HCC patients receiving ICB treatment.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Present Address: Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Pan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jijun Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Thoracic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, China
| | - Rui Qin
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Bin Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Tian Wang
- Department of Biological Testing, Zhejiang Puluoting Health Technology Co., Ltd, Hangzhou, 311121, China
| | - Hongyu Shi
- Department of Biological Testing, Zhejiang Puluoting Health Technology Co., Ltd, Hangzhou, 311121, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), 225 Changhai Rd, Yangpu Qu, Shanghai, 200433, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), 225 Changhai Rd, Yangpu Qu, Shanghai, 200433, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Chen
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), 225 Changhai Rd, Yangpu Qu, Shanghai, 200433, China.
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Thoracic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
48
|
Jung IY, Noguera-Ortega E, Bartoszek R, Collins SM, Williams E, Davis M, Jadlowsky JK, Plesa G, Siegel DL, Chew A, Levine BL, Berger SL, Moon EK, Albelda SM, Fraietta JA. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. Cell Rep Med 2023; 4:101053. [PMID: 37224816 PMCID: PMC10313923 DOI: 10.1016/j.xcrm.2023.101053] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Chimeric antigen receptor (CAR) T cells demonstrate remarkable success in treating hematological malignancies, but their effectiveness in non-hematopoietic cancers remains limited. This study proposes enhancing CAR T cell function and localization in solid tumors by modifying the epigenome governing tissue-residency adaptation and early memory differentiation. We identify that a key factor in human tissue-resident memory CAR T cell (CAR-TRM) formation is activation in the presence of the pleotropic cytokine, transforming growth factor β (TGF-β), which enforces a core program of both "stemness" and sustained tissue residency by mediating chromatin remodeling and concurrent transcriptional changes. This approach leads to a practical and clinically actionable in vitro production method for engineering peripheral blood T cells into a large number of "stem-like" CAR-TRM cells resistant to tumor-associated dysfunction, possessing an enhanced ability to accumulate in situ and rapidly eliminate cancer cells for more effective immunotherapy.
Collapse
Affiliation(s)
- In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra M Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Williams
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan Davis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie K Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Povoleri GAM, Durham LE, Gray EH, Lalnunhlimi S, Kannambath S, Pitcher MJ, Dhami P, Leeuw T, Ryan SE, Steel KJA, Kirkham BW, Taams LS. Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets. Cell Rep 2023; 42:112514. [PMID: 37195862 PMCID: PMC10790246 DOI: 10.1016/j.celrep.2023.112514] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/21/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
CD69+CD103+ tissue-resident memory T (TRM) cells are important drivers of inflammation. To decipher their role in inflammatory arthritis, we apply single-cell, high-dimensional profiling to T cells from the joints of patients with psoriatic arthritis (PsA) or rheumatoid arthritis (RA). We identify three groups of synovial CD8+CD69+CD103+ TRM cells: cytotoxic and regulatory T (Treg)-like TRM cells are present in both PsA and RA, while CD161+CCR6+ type 17-like TRM cells with a pro-inflammatory cytokine profile (IL-17A+TNFα+IFNγ+) are specifically enriched in PsA. In contrast, only one population of CD4+CD69+CD103+ TRM cells is detected and at similarly low frequencies in both diseases. Type 17-like CD8+ TRM cells have a distinct transcriptomic signature and a polyclonal, but distinct, TCR repertoire. Type 17-like cells are also enriched in CD8+CD103- T cells in PsA compared with RA. These findings illustrate differences in the immunopathology of PsA and RA, with a particular enrichment for type 17 CD8+ T cells in the PsA joint.
Collapse
Affiliation(s)
- Giovanni A M Povoleri
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Lucy E Durham
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Elizabeth H Gray
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Shichina Kannambath
- BRC Genomics Core, NIHR Biomedical Research Center, Guy's and St Thomas' NHS Foundation Trust and King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Pawan Dhami
- BRC Genomics Core, NIHR Biomedical Research Center, Guy's and St Thomas' NHS Foundation Trust and King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Thomas Leeuw
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Sarah E Ryan
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Bruce W Kirkham
- Rheumatology Department, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
50
|
Hassanshahi F, Noroozi Karimabad M, Miranzadeh E, Hassanshahi G, Torabizadeh SA, Jebali A. The Serum Level of CXCL9, CXCL10, and CXCL11 and the Expression of CXCR3 of Peripheral Blood Mononuclear Cells in Brucellosis Patients. Curr Microbiol 2023; 80:201. [PMID: 37140634 DOI: 10.1007/s00284-023-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Brucella spp. can replicate in human endothelial cells, inducing an inflammatory response with increased expression of chemokines. Although Brucella infects humans, its ability to induce the production of chemokines by lung cells is unknown. Therefore, the current investigation was designed to examine the association between brucellosis and CXCL9, 10, and 11 chemokines. The patient group included 71 patients suffering from Brucella infection and the control group consisted of 50 healthy ranchers from the same geographical area. Serum levels of CXCL9, CXCL10, and CXCL11 were analyzed by ELISA. The fold changes of CXCR3 expression against β-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of CXCR3 at protein level. The results of this study showed that the serum levels of CXCL9, CXCL10, and CXCL11 are significantly increased in acute brucellosis patients in comparison to control as indicated by ELISA test, mRNA levels of CXCR3 by Real-time PCR as well as protein levels of CXCR3 by Western blot analysis. According to findings, these chemokines have the potential to serve as markers for brucellosis patients. Taken together, cytokine/chemokine network was active in acute brucellosis patients, and it is suggested to evaluate other cytokines in future studies.
Collapse
Affiliation(s)
- Farzaneh Hassanshahi
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran.
| | - Elahe Miranzadeh
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Jebali
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| |
Collapse
|