1
|
Hassanin O, Abdallah F, Mohamed MH, Ahmed MS, Al-Rasheed M, Rashad EM. The kinetics of gene expression related to innate and adaptive immunity in the lung and spleen following Newcastle disease virus (NDV) infection in vaccinated broiler chickens employing different vaccination regimes. Vet Microbiol 2025; 305:110525. [PMID: 40262238 DOI: 10.1016/j.vetmic.2025.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Newcastle disease virus (NDV) classified as an avian paramyxovirus-1 poses a significant risk to the global poultry sector. This study explored the kinetics of the innate and adaptive immune responses in chickens exposed to virulent Newcastle Disease Virus (vNDV) genotype VII. A challenge experiment was carried out with both non-vaccinated and NDV-vaccinated chickens utilizing different vaccination strategies commonly used in the industry. The four groups of vaccinated birds were administered either two doses of live NDV vaccines, live vaccines boosted with an inactivated vaccine, the rHVT-NDV-IBDV vaccine alone, or the rHVT-NDV-IBDV vaccine in conjunction with a live vaccine booster. To assess seven cytokines linked to antiviral and proinflammatory innate responses quantitative real-time polymerase chain reaction (qRT-PCR) analyses were implemented. The analyses revealed robust innate immune responses in all cytokines measured in lung and spleen tissues of the group that received both live and inactivated vaccines. Notably these increases were found to correlate with the humoral immune response within that same group. Significant transcriptional activity in the lung and spleen tissues of non-vaccinated chickens at 24 hour post-infection (pi). The most significant upregulations were identified in toll-like receptor 7 (TLR7), TLR5, interleukin 6 (IL6), chicken interferon-alpha (chIFN-α), and myxovirus resistance protein 1 (Mx1), which later exhibited a regression. The administration of both live and inactivated vaccines has proven effective in restoring the suppression or inhibition of vNDV infection across a wide range of cytokines, including TLR7, TLR5, chIFN-α, Mx1, IL6, and MHC-1. Various vaccination strategies have been shown to either mitigate or prevent cytokine storms within 24 hour pi in the lungs, spleen, or both, in certain cytokines such as chIFN-α, Mx1, and IL6. Collectively these results suggest that different vaccination strategies modify the kinetics and pathophysiological responses associated with vNDV infection in chickens.
Collapse
Affiliation(s)
- Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Ha Mohamed
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Department of Clinical Studies, Collage of Veterinary Medicine, King Faisal University, 31982, Saudi Arabia
| | - Mohamed S Ahmed
- Department of Clinical Studies, Collage of Veterinary Medicine, King Faisal University, 31982, Saudi Arabia; Department of Poultry Diseases, Faculty of Veterinary Medicine, South Valley University, Egypt
| | - Mohammed Al-Rasheed
- Department of Clinical Studies, Collage of Veterinary Medicine, King Faisal University, 31982, Saudi Arabia
| | - Eman M Rashad
- Animal Health Research Institute (Domietta Branch), Agriculture Research Centre, Egypt
| |
Collapse
|
2
|
Jo S, Ohara RA, Theisen DJ, Kim S, Liu T, Bullock CB, He M, Ou F, Chen J, Piersma SJ, Postoak JL, Yokoyama WM, Diamond MS, Murphy TL, Murphy KM. Shared pathway of WDFY4-dependent cross-presentation of immune complexes by cDC1 and cDC2. J Exp Med 2025; 222:e20240955. [PMID: 39918736 PMCID: PMC11804880 DOI: 10.1084/jem.20240955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/18/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Priming CD8+ T cells against tumors or viral pathogens results largely from cross-presentation of exogenous antigens by type 1 conventional dendritic cells (cDC1s). Although monocyte-derived DCs and cDC2s can cross-present in vitro, their physiological relevance remains unclear. Here, we used genetic models to evaluate the role of cDC subsets in presentation of cell-associated and immune complex antigens to CD4+ and CD8+ T cells in vivo. For cell-associated antigens, cDC1s were necessary and sufficient to prime both CD4+ and CD8+ T cells. In contrast, for immune complex antigens, either cDC1 or cDC2, but not monocyte-derived DCs, could carry out cross-presentation to CD8+ T cells. Mice lacking cDC1 and vaccinated with immune complexes could cross-prime CD8+ T cells that were sufficient to mediate tumor rejection. Notably, this cross-presentation mediated by cDC2 was also WDFY4 dependent, similar to cross-presentation of cell-associated antigens by cDC1. These results demonstrate a previously unrecognized activity of WDFY4 in cDC2s and suggest a cross-presentation pathway shared by cDC subsets.
Collapse
Affiliation(s)
- Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ray A. Ohara
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Derek J. Theisen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tiantian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Christopher B. Bullock
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Michelle He
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - J. Luke Postoak
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Huerta-Yepez S, Chen PC, Kaur K, Jain Y, Singh T, Esedebe F, Liao YJ, DiBernardo G, Moatamed NA, Mei A, Malarkannan S, Graeber TG, Memarzadeh S, Jewett A. Supercharged NK cells, unlike primary activated NK cells, effectively target ovarian cancer cells irrespective of MHC-class I expression. BMJ ONCOLOGY 2025; 4:e000618. [PMID: 40196236 PMCID: PMC11973776 DOI: 10.1136/bmjonc-2024-000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/07/2025] [Indexed: 04/09/2025]
Abstract
Objective To demonstrate the significance of supercharged natural killer (sNK) cells to target aggressive gynecological tumours. Methods and analysis We used cell cultures of peripheral blood-derived mononuclear cells (PBMCs) and purified NK cells alone and in the presence of tumours. MHC-class gene expression assessments of ovarian tumours were performed using gene set enrichment analysis (GSEA). Secretion and expression levels of cytokines in PBMCs and NK cells were determined using ELISA and scRNA seq analysis, respectively. A flow cytometer was used for surface marker analysis. 51Cr and eSight were used to determine the killing activity of NK cells. Results We have observed a significant decrease in the numbers and functions of NK cells in patients with ovarian cancer. GSEA revealed differently expressed genes, decreased differentiation- and immune-related genes, and increased genes for cell cycle analysis in recurrent tumours compared with chemo-naive ovarian tumours. Increased gene expression as well as secretion of interferon-γ and tumour necrosis factor-α and increased avidity in binding to tumour cells by sNK cells was observed. Unlike primary interleukin (IL)-2-activated NK cells, sNK cells effectively lysed OVCAR8 ovarian poorly differentiated cancer stem-like cells (PDCSCs) and well-differentiated OVCAR4 tumours. Primary ovarian tumours with lower MHC-class I expression were highly susceptible to both primary IL-2-activated NK and sNK cells, whereas the well-differentiated tumours with high expression of MHC-class I were only susceptible to sNK cells. Conclusion The use of sNK cells in immunotherapy emerges as a potentially effective strategy to target and eliminate the majority of ovarian tumour clones, thereby providing a potential therapeutic opportunity in preventing the recurrence of the disease.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
- Oncology Research Unit, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Yash Jain
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Tanya Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
| | - Favour Esedebe
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - Yi Jou Liao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - Gabriella DiBernardo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
| | - Neda A Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States, Milwaukee, Wisconsin, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, Medical laboratory in Los Angeles, Los Angeles, California, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
Yu K, Liu X, Wu G, An Z, Wang X, Liu Y, Wang H, Huang M, Zhao L, Shi C, Sun X, Xu L, Qi S, Zhang X, Teng Y, Zheng SG, Zhang Z, Wang Z. Targeting SHP-1-Mediated Inhibition of STAT3 and ERK Signalling Pathways Rescues the Hyporesponsiveness of MHC-I-Deficient NK-92MI. Cell Prolif 2025:e70035. [PMID: 40167020 DOI: 10.1111/cpr.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/18/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Natural Killer (NK) cells have shown promising prospects in 'off-the-shelf' cell therapy, particularly the NK-92 cell line, which can serve as a foundation for the next generation of universal chimeric antigen receptor (CAR)-engineered NK products. A key strategy for generating universal cellular products is the elimination of the beta-2-microglobulin (B2M) gene, which encodes a component of MHC class I molecules (MHC-I) that plays a role in the presentation of foreign antigens and in the 'licensing' or 'education' of NK cells. To functionally study the impacts of MHC-I deficiency on NK-92, we generated a B2M knockout (KO) NK-92MI (B-92) cell line and compared the multidimensional properties of B2M KO and wild-type NK-92MI cells in terms of biological phenotypes, effector functions, and transcriptomic signatures. We observed a decrease in activating receptors, cytokine production, and cytotoxicity in B-92 cells. Further analysis of signalling events revealed that the upregulated expression and phosphorylation of SHP-1 in B-92 cells inhibited the phosphorylation levels of STAT3 and ERK, thereby affecting their killing function. By knocking out SHP-1 (PTPN6), we partially restored the cytotoxic function of B-92 cells. Notably, we also found that CAR modification can overcome the hyporesponsiveness of B-92 cells. These findings will facilitate further exploration in the development of NK cell-based products.
Collapse
Affiliation(s)
- Kuo Yu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaolong Liu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guangyuan Wu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhongyao An
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- ZKcell Biotechnology (Heilongjiang) Co., Ltd, Harbin, China
| | - Xin Wang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Liu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hailong Wang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mingli Huang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Obstetrical Department, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Zhao
- Department of Blood Transfusion, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ce Shi
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Sun
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Obstetrical Department, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Xu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sen Qi
- Department of Pathology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Zhang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yueqiu Teng
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Cardiology and Pharmacy and Breast Cancer Surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Zhenkun Wang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, the Institute of the Hematology and Oncology of Heilongjiang Province, Harbin, China
- The Somatic Cells Bioengineering Technology Research Center of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
5
|
Ge Y, Zhou Q, Pan F, Wang R. Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy. Int J Nanomedicine 2025; 20:2371-2394. [PMID: 40027868 PMCID: PMC11871910 DOI: 10.2147/ijn.s505539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Immune checkpoint inhibitors (ICIs) represented by anti-programmed cell death protein 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) have emerged as a promising frontier in cancer treatment, effectively extending the survival of patients with NSCLC. However, the efficacy of ICIs exhibits significant variability across diverse patient populations, with a substantial proportion showing poor responsiveness and acquired resistance in those initially responsive to ICIs treatments. With the advancement of nanotechnology, nanoparticles offer unique advantages in tumor immunotherapy, including high permeability and prolonged retention(EPR) effects, enhanced drug delivery and stability, and modulation of the inflammatory tumor microenvironment(TME). This review summarizes the mechanisms of resistance to ICIs in NSCLC, focusing on tumor antigens loss and defective antigen processing and presentation, failure T cell priming, impaired T cell migration and infiltration, immunosuppressive TME, and genetic mutations. Furthermore, we discuss how nanoparticles, through their intrinsic properties such as the EPR effect, active targeting effect, shielding effect, self-regulatory effect, and synergistic effect, can potentiate the efficacy of ICIs and reverse resistance. In conclusion, nanoparticles serve as a robust platform for ICIs-based NSCLC therapy, aiding in overcoming resistance challenges.
Collapse
Affiliation(s)
- Yuli Ge
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
6
|
Silva RCMC. The function of CD8 + T cells in the absence of MHC-I in target cells: what to learn from the deficiency of MHC-I expression in humans. Immunol Res 2024; 73:4. [PMID: 39661298 DOI: 10.1007/s12026-024-09556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
|
7
|
Wang F, Li R, Xu JY, Bai X, Wang Y, Chen XR, Pan C, Chen S, Zhou K, Heng BC, Wu X, Guo W, Song Z, Jin SC, Zhou J, Zou XH, Ouyang HW, Liu H. Downregulating human leucocyte antigens on mesenchymal stromal cells by epigenetically repressing a β 2-microglobulin super-enhancer. Nat Biomed Eng 2024; 8:1682-1699. [PMID: 39433971 DOI: 10.1038/s41551-024-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Immune rejection caused by mismatches in human leucocyte antigens (HLAs) remains a major obstacle to the success of allogeneic cell therapies. Current strategies for the generation of 'universal' immune-compatible cells, particularly the editing of HLA class I (HLA-I) genes or the modulation of proteins that inhibit natural killer cells, often result in genomic instability or cellular cytotoxicity. Here we show that a β2-microglobulin super-enhancer (B2M-SE) that is responsive to interferon-γ is a critical regulator of the expression of HLA-I on mesenchymal stromal cells (MSCs). Targeted epigenetic repression of B2M-SE in MSCs reduced the surface expression of HLA-I below the threshold required to activate allogenic T cells while maintaining levels sufficient to evade cytotoxicity mediated by natural killer cells. In a humanized mouse model, the epigenetically edited MSCs demonstrated improved survival by evading the immune system, allowing them to exert enhanced therapeutic effects on LPS-induced acute lung injury. Targeted epigenetic repression of B2M-SE may facilitate the development of off-the-shelf cell sources for allogeneic cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jing Yi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine and Key Laboratory of Women's Reproduction Health of Zhejiang Province, Hangzhou, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Ri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratories, Peking University School of Stomatology, Beijing, China
| | - Xuewei Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhe Song
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Cheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Hui Zou
- Central laboratory, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Wei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Zhang Q, Xia C, Weng Q, Zhang L, Wang Y, Liu Y, Zheng X, Lin Y, Chen Y, Shen Y, Qi H, Liu L, Zhu Y, Zhang M, Huang D, Hu F, Zhang M, Zeng H, Wang J, Wang T. Hypoimmunogenic CD19 CAR-NK cells derived from embryonic stem cells suppress the progression of human B-cell malignancies in xenograft animals. Front Immunol 2024; 15:1504459. [PMID: 39664387 PMCID: PMC11631852 DOI: 10.3389/fimmu.2024.1504459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background Chimeric antigen receptor (CAR) engineered natural killer (NK) cells exhibit advantages such as MHC-independent recognition and strong anti-tumor functions. However, allogeneic CAR-NK cells derived from human tissues are heterogeneous and susceptible to clearance by hosts. Methods We generated a B2M knockout, HLA-E and CD19 CAR ectopic expressing embryonic stem cell (ESC) line, which differentiated normally and gave rise to homogeneous CD19 CAR-NK (CD19 CAR-UiNK) cells using an organoid aggregate induction method. The CD19 CAR-UiNK were co-cultured with T cells or NK cells derived from peripheral blood mononuclear cells (PBMC) with the mismatched HLA to evaluate the immunogenicity of CD19 CAR-UiNK cells. We further assessed the therapeutic effects of CD19 CAR-UiNK cells on CD19+ tumor cells through in vitro cytotoxicity assays and in vivo animal models. Results The CD19 CAR-UiNK cells exhibited typical expression patterns of activating and inhibitory receptors, and crucial effector molecules of NK cells, similar to those of unmodified NK cells. In co-culture assays, the CD19 CAR-UiNK cells evaded allogeneic T cell response and suppressed allogeneic NK cell response. Functionally, the CD19 CAR-UiNK cells robustly secreted IFN-γ and TNF-α, and upregulated CD107a upon stimulation with Nalm-6 tumor cells. The CD19 CAR-UiNK cells effectively eliminated CD19+ tumor cells in vitro, including B-cell cancer cell lines and primary tumor cells from human B-cell leukemia and lymphoma. Further, the CD19 CAR-UiNK cells exhibited strong anti-tumor activity in xenograft animals. Conclusion We offer a strategy for deriving homogeneous and hypoimmunogenic CD19 CAR-iNK cells with robust anti-tumor effects from ESCs. Our study has significant implications for developing hypoimmunogenic CD19 CAR-NK cell therapy using human ESC as an unlimited cell source.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Humans
- Antigens, CD19/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Embryonic Stem Cells/immunology
- Immunotherapy, Adoptive/methods
- Cytotoxicity, Immunologic
- Cell Line, Tumor
- Leukemia, B-Cell/therapy
- Leukemia, B-Cell/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chengxiang Xia
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qitong Weng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leqiang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiujuan Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yunqing Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yiyuan Shen
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hanmeng Qi
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Lijuan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dehao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangxiao Hu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Mengyun Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jinyong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tongjie Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
9
|
He J, Gao L, Wang P, Chan WK, Zheng Y, Zhang Y, Sun J, Li X, Wang J, Li XH, Chen H, Yang Z, Wang Y. Prdm1 positively regulates liver Group 1 ILCs cancer immune surveillance and preserves functional heterogeneity. eLife 2024; 13:RP92948. [PMID: 39133873 PMCID: PMC11318973 DOI: 10.7554/elife.92948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Group 1 innate lymphoid cells (ILCs) comprise conventional natural killer (cNK) cells and type 1 innate lymphoid cells (ILC1s). The main functions of liver cNK cells and ILC1s not only include directly killing target cells but also regulating local immune microenvironment of the liver through the secretion of cytokines. Uncovering the intricate mechanisms by which transcriptional factors regulate and influence the functions of liver cNK cells and ILC1s, particularly within the context of liver tumors, presents a significant opportunity to amplify the effectiveness of immunotherapies against liver malignancies. Using Ncr1-drived conditional knockout mouse model, our study reveals the regulatory role of Prdm1 in shaping the composition and maturation of cNK cells. Although Prdm1 did not affect the killing function of cNK cells in an in vivo cytotoxicity model, a significant increase in cancer metastasis was observed in Prdm1 knockout mice. Interferon-gamma (IFN-γ), granzyme B, and perforin secretion decreased significantly in Prdm1-deficient cNK cells and liver ILC1s. Single-cell RNA sequencing (scRNA-seq) data also provided evidences that Prdm1 maintains functional subsets of cNK cells and liver ILC1s and facilitates communications between cNK cells, liver ILC1s, and macrophages. The present study unveiled a novel regulatory mechanism of Prdm1 in cNK cells and liver ILC1s, showing promising potential for developing innovative immune therapy strategies against liver cancer.
Collapse
Affiliation(s)
- Jitian He
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Le Gao
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Peiying Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Wing Keung Chan
- Department of Internal Medicine, Division of Hematology, The Ohio State UniversityColumbusUnited States
| | - Yiran Zheng
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Yumo Zhang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Jiaman Sun
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin UniversityTianjinChina
| | - Jiming Wang
- Tianjin Economic-Technological Development Area (TEDA) HospitalTianjinChina
| | - Xiao-Hong Li
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin UniversityTianjinChina
- College of Pulmonary and Critical Care Medicine, 8th Medical Center, Chinese PLA General HospitalBeijingChina
- Tianjin Key Laboratory of Lung Regenerative MedicineTianjinChina
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang HospitalHangzhouChina
| | - Youwei Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| |
Collapse
|
10
|
Oh J, Kirsh C, Hsin JP, Radecki KC, Zampieri A, Manry D, Ando Y, Miller S, Chan J, McLeod E, Cunningham KM, Wong LM, Xu H, Kamb A. NOT gated T cells that selectively target EGFR and other widely expressed tumor antigens. iScience 2024; 27:109913. [PMID: 38799557 PMCID: PMC11126980 DOI: 10.1016/j.isci.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/04/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Here, we show that a NOT gated cell therapy (Tmod) can exploit antigens such as epidermal growth factor receptor (EGFR) and human leukocyte antigen-E (HLA-E) which are widely expressed on cancer cells. Noncancerous cells-despite high expression of these antigens-are protected from cytotoxicity by the action of an inhibitory receptor ("blocker") via a mechanism that involves blocker modulation of CAR surface expression. The blocker is triggered by the product of a polymorphic HLA allele (e.g., HLA-A∗02) deleted in a significant subset of solid tumors via loss of heterozygosity. Moreover, Tmod constructs that target mouse homologs of EGFR or HLA-E for activation, and a mouse-equivalent of HLA-A∗02 for inhibition, protect mice from toxicity caused by the CAR alone. The blocker also controls graft vs. host response in allogeneic T cells in vitro, consistent with the use of Tmod cells for off-the-shelf therapy without additional gene-editing.
Collapse
Affiliation(s)
- Julyun Oh
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Charles Kirsh
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Jing-Ping Hsin
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Kelly C. Radecki
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | | | - Diane Manry
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Yuta Ando
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Sara Miller
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Jamie Chan
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Ethan McLeod
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | | | - Lu Min Wong
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Han Xu
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| | - Alexander Kamb
- A2 Biotherapeutics; 30301 Agoura Rd., Agoura Hills 91301, CA, USA
| |
Collapse
|
11
|
Zhang D, Zhan D, Zhang R, Sun Y, Duan C, Yang J, Wei J, Li X, Lu Y, Lai X. Treg-derived TGF-β1 dampens cGAS-STING signaling to downregulate the expression of class I MHC complex in multiple myeloma. Sci Rep 2024; 14:11593. [PMID: 38773213 PMCID: PMC11109281 DOI: 10.1038/s41598-024-62298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Multiple myeloma (MM) progression involves diminished tumor antigen presentation and an immunosuppressive microenvironment, characterized by diminished expression of major histocompatibility complexes (MHC) class I molecule and elevated programmed death ligand 1 (PDL1) in MM cells, along with an enriched population of regulatory T cells (Tregs). To investigate Treg's influence on MM cells, we established a co-culture system using Tregs from MM patients and the MM cell lines (MM.1S and SK-MM-1) in vitro and assessed the effects of intervening in the relevant pathways connecting Tregs and MM cells in vivo. In vitro, Tregs induced transforming growth factor beta-1 (TGF-β1) production, downregulated MHC I members, and increased PDL1 expression in MM cells. Treg-derived TGF-β1 suppressed the cGAS-STING pathway, contributing to the loss of MHC I molecule expression and PDL1 upregulation. Correspondingly, neutralizing TGF-β1 or activating the cGAS-STING pathway restored MHC I and PDL1 expression, effectively countering the pro-tumorigenic effect of Tregs on MM cells in vivo. These data elucidated how Tregs influence tumor antigen presentation and immunosuppressive signal in MM cells, potentially providing therapeutic strategies, such as neutralizing TGF-β1 or activating the cGAS-STING pathway, to address the immune escape and immunosuppressive dynamics in MM.
Collapse
Affiliation(s)
- Disi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Dong Zhan
- Department of Human Anatomy and Histology and Embrology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Yunyan Sun
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Ci Duan
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Jiapeng Yang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Jia Wei
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Xianshi Li
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Yanqi Lu
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan Province, China.
| |
Collapse
|
12
|
Neo SY, Tong L, Chong J, Liu Y, Jing X, Oliveira MMS, Chen Y, Chen Z, Lee K, Burduli N, Chen X, Gao J, Ma R, Lim JP, Huo J, Xu S, Alici E, Wickström SL, Haglund F, Hartman J, Wagner AK, Cao Y, Kiessling R, Lam KP, Westerberg LS, Lundqvist A. Tumor-associated NK cells drive MDSC-mediated tumor immune tolerance through the IL-6/STAT3 axis. Sci Transl Med 2024; 16:eadi2952. [PMID: 38748775 DOI: 10.1126/scitranslmed.adi2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/19/2024] [Indexed: 08/03/2024]
Abstract
Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Joni Chong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Yaxuan Liu
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Centre, New York, NY 10032, USA
| | - Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08540, USA
| | - Keene Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Nutsa Burduli
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Juan Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510631, China
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Technical Operations, Cepheid AB, 17154 Stockholm, Sweden
| | - Jia Pei Lim
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Kong Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| |
Collapse
|
13
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
15
|
Taylor BC, Sun X, Gonzalez-Ericsson PI, Sanchez V, Sanders ME, Wescott EC, Opalenik SR, Hanna A, Chou ST, Van Kaer L, Gomez H, Isaacs C, Ballinger TJ, Santa-Maria CA, Shah PD, Dees EC, Lehmann BD, Abramson VG, Pietenpol JA, Balko JM. NKG2A Is a Therapeutic Vulnerability in Immunotherapy Resistant MHC-I Heterogeneous Triple-Negative Breast Cancer. Cancer Discov 2024; 14:290-307. [PMID: 37791898 PMCID: PMC10850946 DOI: 10.1158/2159-8290.cd-23-0519] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Despite the success of immune checkpoint inhibition (ICI) in treating cancer, patients with triple-negative breast cancer (TNBC) often develop resistance to therapy, and the underlying mechanisms are unclear. MHC-I expression is essential for antigen presentation and T-cell-directed immunotherapy responses. This study demonstrates that TNBC patients display intratumor heterogeneity in regional MHC-I expression. In murine models, loss of MHC-I negates antitumor immunity and ICI response, whereas intratumor MHC-I heterogeneity leads to increased infiltration of natural killer (NK) cells in an IFNγ-dependent manner. Using spatial technologies, MHC-I heterogeneity is associated with clinical resistance to anti-programmed death (PD) L1 therapy and increased NK:T-cell ratios in human breast tumors. MHC-I heterogeneous tumors require NKG2A to suppress NK-cell function. Combining anti-NKG2A and anti-PD-L1 therapies restores complete response in heterogeneous MHC-I murine models, dependent on the presence of activated, tumor-infiltrating NK and CD8+ T cells. These results suggest that similar strategies may enhance patient benefit in clinical trials. SIGNIFICANCE Clinical resistance to immunotherapy is common in breast cancer, and many patients will likely require combination therapy to maximize immunotherapeutic benefit. This study demonstrates that heterogeneous MHC-I expression drives resistance to anti-PD-L1 therapy and exposes NKG2A on NK cells as a target to overcome resistance. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
| | - Xiaopeng Sun
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Paula I. Gonzalez-Ericsson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda E. Sanders
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth C. Wescott
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Susan R. Opalenik
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Hanna
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shu-Ting Chou
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Luc Van Kaer
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Claudine Isaacs
- Division of Hematology-Oncology, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Tarah J. Ballinger
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Payal D. Shah
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth C. Dees
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Brian D. Lehmann
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vandana G. Abramson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer A. Pietenpol
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M. Balko
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
Adams VR, Collins LB, Williams TI, Holmes J, Hess P, Atkins HM, Scheidemantle G, Liu X, Lodge M, Johnson AJ, Kennedy A. Myeloid cell MHC I expression drives CD8 + T cell activation in nonalcoholic steatohepatitis. Front Immunol 2024; 14:1302006. [PMID: 38274832 PMCID: PMC10808415 DOI: 10.3389/fimmu.2023.1302006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Background & aims Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.
Collapse
Affiliation(s)
- Victoria R. Adams
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Leonard B. Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
| | - Taufika Islam Williams
- Molecular Education, Technology and Research Innovation Center (METRIC), NC State University, Raleigh, NC, United States
- Department of Chemistry, NC State University, Raleigh, NC, United States
| | - Jennifer Holmes
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Paul Hess
- College of Veterinary Medicine, NC State University, Raleigh, NC, United States
| | - Hannah M. Atkins
- Center for Human Health and Environment, NC State University, Raleigh, NC, United States
- Division of Comparative Medicine, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Mareca Lodge
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, United States
| |
Collapse
|
17
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
18
|
Qin Y, Mace EM, Barton JP. An inference model gives insights into innate immune adaptation and repertoire diversity. Proc Natl Acad Sci U S A 2023; 120:e2305859120. [PMID: 37695895 PMCID: PMC10515141 DOI: 10.1073/pnas.2305859120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
The innate immune system is the body's first line of defense against infection. Natural killer (NK) cells, a vital part of the innate immune system, help to control infection and eliminate cancer. Studies have identified a vast array of receptors that NK cells use to discriminate between healthy and unhealthy cells. However, at present, it is difficult to explain how NK cells will respond to novel stimuli in different environments. In addition, the expression of different receptors on individual NK cells is highly stochastic, but the reason for these variegated expression patterns is unclear. Here, we studied the recognition of unhealthy target cells as an inference problem, where NK cells must distinguish between healthy targets with normal variability in ligand expression and ones that are clear "outliers." Our mathematical model fits well with experimental data, including NK cells' adaptation to changing environments and responses to different target cells. Furthermore, we find that stochastic, "sparse" receptor expression profiles are best able to detect a variety of possible threats, in agreement with experimental studies of the NK cell repertoire. While our study was specifically motivated by NK cells, our model is general and could also apply more broadly to explain principles of target recognition for other immune cell types.
Collapse
Affiliation(s)
- Yawei Qin
- Department of Physics and Astronomy, University of California, Riverside, CA92521
| | - Emily M. Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY10032
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, CA92521
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15260
| |
Collapse
|
19
|
Zhao J, He Y, Yang X, Tian P, Zeng L, Huang K, Zhao J, Zhou J, Zhu Y, Wang Q, Chen M, Li W, Gao Y, Zhang Y, Xia Y. Assessing treatment outcomes of chemoimmunotherapy in extensive-stage small cell lung cancer: an integrated clinical and radiomics approach. J Immunother Cancer 2023; 11:e007492. [PMID: 37730276 PMCID: PMC10514620 DOI: 10.1136/jitc-2023-007492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a highly malignant cancer characterized by metastasis and an extremely poor prognosis. Although combined chemoimmunotherapy improves the prognosis of extensive-stage (ES)-SCLC, the survival benefits remain limited. Furthermore, no reliable biomarker is available so far to predict the treatment outcomes for chemoimmunotherapy. METHODS This retrospective study included patients with ES-SCLC treated with first-line combined atezolizumab or durvalumab with standard chemotherapy between Janauray 1, 2019 and October 1, 2022 at five medical centers in China as the chemoimmunotherapy group. The patients were divided into one training cohort and two independent external validation cohorts. Additionally, we created a control group of ES-SCLC who was treated with first-line standard chemotherapy alone. The Radiomics Score was derived using machine learning algorithms based on the radiomics features extracted in the regions of interest delineated on the chest CT obtained before treatment. Cox proportional hazards regression analysis was performed to identify clinical features associated with therapeutic efficacy. The log-rank test, time-dependent receiver operating characteristic curve, and Concordance Index (C-index) were used to assess the effectiveness of the models. RESULTS A total of 341 patients (mean age, 62±8.7 years) were included in our study. After a median follow-up time of 12.1 months, the median progression-free survival (mPFS) was 7.1 (95% CI 6.6 to 7.7) months, whereas the median overall survival (mOS) was not reached. The TNM stage, Eastern Cooperative Oncology Group performance status, and Lung Immune Prognostic Index showed significant correlations with PFS. We proposed a predictive model based on eight radiomics features to determine the risk of chemoimmunotherapy resistance among patients with SCLC (validation set 1: mPFS, 12.0 m vs 5.0 m, C-index=0.634; validation set 2: mPFS, 10.8 m vs 6.1 m, C-index=0.617). By incorporating the clinical features associated with PFS into the radiomics model, the predictive efficacy was substantially improved. Consequently, the low-progression-risk group exhibited a significantly longer mPFS than the high-progression-risk group in both validation set 1 (mPFS, 12.8 m vs 4.5 m, HR=0.40, p=0.028) and validation set 2 (mPFS, 9.2 m vs 4.6 m, HR=0.30, p=0.012). External validation set 1 and set 2 yielded the highest 6-month area under the curve and C-index of 0.852 and 0.820, respectively. Importantly, the integrated prediction model also exhibited considerable differentiation power for survival outcomes. The HR for OS derived from the low-progression-risk and high-progression-risk groups was 0.28 (95% CI 0.17 to 0.48) in all patients and 0.20 (95% CI 0.08 to 0.54) in validation set. By contrast, no significant differences were observed in PFS and OS, between high-progression-risk patients receiving chemoimmunotherapy and the chemotherapy cohort (mPFS, 5.5 m vs 5.9 m, HR=0.90, p=0.547; mOS, 14.5 m vs 13.7 m, HR=0.97, p=0.910). CONCLUSIONS The integrated clinical and radiomics model can predict the treatment outcomes in patients with ES-SCLC receiving chemoimmunotherapy, rendering a convenient and low-cost prognostic model for decision-making regarding patient management.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing, Beijing, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, University of South China Hengyang Medical School, Hengyang, Hunan, China
| | - Kun Huang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Zhao
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Zhou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yin Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiyuan Wang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mailin Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, Beijing, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Gao
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, University of South China Hengyang Medical School, Hengyang, Hunan, China
| | - Yang Xia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
21
|
Cruz SM, Sholevar CJ, Judge SJ, Darrow MA, Iranpur KR, Farley LE, Lammers M, Razmara AM, Dunai C, Gingrich AA, Persky J, Mori H, Thorpe SW, Monjazeb AM, Murphy WJ, Canter RJ. Intratumoral NKp46 + natural killer cells are spatially distanced from T and MHC-I + cells with prognostic implications in soft tissue sarcoma. Front Immunol 2023; 14:1230534. [PMID: 37545516 PMCID: PMC10401426 DOI: 10.3389/fimmu.2023.1230534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Soft tissue sarcomas (STS) are rare, heterogenous malignancies with an unmet need for novel immunotherapies. Tumor infiltrating lymphocytes (TILs) have been linked with favorable outcomes in STS patients, though the contribution of natural killer (NK) cells and spatial relationships of TILs with MHC-I expressing cells lacks detailed characterization. Experimental design Using archived and prospectively collected specimens, we evaluated intratumoral NK cells by immunohistochemistry (IHC), flow cytometry, and immunofluorescence (IF). We assessed spatial localization of NK and T cells by multiplex IF, analyzing the effects of MHC-I expression status on NK and T cell clustering. Results Both intratumoral NKp46 and CD56dim expression were associated with significantly improved overall survival (P=0.05), while higher infiltrates of CD56bright NK cells predicted a worse prognosis (P=0.05). The presence of intratumoral NK cells was inversely proportional to CD3+ T cells. Spatial analyses showed NK cells preferentially clustering close to other NK cells with sparse CD3+ T and CD8+ T cells in range (P<0.0001). Additionally, CD3+ T and CD8+ T cells showed significantly greater co-localization with MHC-I+ cells, compared to NK cells (P<0.0001). After neoadjuvant radiotherapy, there was greater CD8 clustering, while after neoadjuvant chemotherapy, there was overall lower TIL clustering. Conclusion Intratumoral NK cells are prognostic in STS and localize closer to MHC-I- cells than T cells. Although both NK and T cells are associated with improved survival in STS, their differential distribution in the TME based on MHC-I expression status may serve as a biomarker for improved immunotherapy treatment selection.
Collapse
Affiliation(s)
- Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Cyrus J. Sholevar
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Sean J. Judge
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Morgan A. Darrow
- Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, United States
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Lauren E. Farley
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Marshall Lammers
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Aryana M. Razmara
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Alicia A. Gingrich
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Julia Persky
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California, Davis, Sacramento, CA, United States
| | - Steven W. Thorpe
- Orthopedic Surgery, University of California, Davis, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
22
|
Tieu R, Zeng Q, Zhao D, Zhang G, Feizi N, Manandhar P, Williams AL, Popp B, Wood-Trageser MA, Demetris AJ, Tso JY, Johnson AJ, Kane LP, Abou-Daya KI, Shlomchik WD, Oberbarnscheidt MH, Lakkis FG. Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Sci Immunol 2023; 8:eadd8454. [PMID: 37083450 PMCID: PMC10334460 DOI: 10.1126/sciimmunol.add8454] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Our understanding of tissue-resident memory T (TRM) cell biology has been largely developed from acute infection models in which antigen is cleared and sterilizing immunity is achieved. Less is known about TRM cells in the context of chronic antigen persistence and inflammation. We investigated factors that underlie TRM maintenance in a kidney transplantation model in which TRM cells drive rejection. In contrast to acute infection, we found that TRM cells declined markedly in the absence of cognate antigen, antigen presentation, or antigen sensing by the T cells. Depletion of graft-infiltrating dendritic cells or interruption of antigen presentation after TRM cells were established was sufficient to disrupt TRM maintenance and reduce allograft pathology. Likewise, removal of IL-15 transpresentation or of the IL-15 receptor on T cells during TRM maintenance led to a decline in TRM cells, and IL-15 receptor blockade prevented chronic rejection. Therefore, antigen and IL-15 presented by dendritic cells play nonredundant key roles in CD8 TRM cell maintenance in settings of antigen persistence and inflammation. These findings provide insights that could lead to improved treatment of chronic transplant rejection and autoimmunity.
Collapse
Affiliation(s)
- Roger Tieu
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Qiang Zeng
- Nationwide Children’s Hospital, Columbus, Ohio 43205, USA
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Gang Zhang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Neda Feizi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amanda L. Williams
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Benjamin Popp
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michelle A. Wood-Trageser
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - J. Yun Tso
- JN Biosciences, Mountain View, California 94043, USA
| | - Aaron J. Johnson
- Departments of Immunology, Neurology, and Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Khodor I. Abou-Daya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Warren D. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Martin H. Oberbarnscheidt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Fadi G. Lakkis
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Hannon G, Lesch ML, Gerber SA. Harnessing the Immunological Effects of Radiation to Improve Immunotherapies in Cancer. Int J Mol Sci 2023; 24:7359. [PMID: 37108522 PMCID: PMC10138513 DOI: 10.3390/ijms24087359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Ionizing radiation (IR) is used to treat 50% of cancers. While the cytotoxic effects related to DNA damage with IR have been known since the early 20th century, the role of the immune system in the treatment response is still yet to be fully determined. IR can induce immunogenic cell death (ICD), which activates innate and adaptive immunity against the cancer. It has also been widely reported that an intact immune system is essential to IR efficacy. However, this response is typically transient, and wound healing processes also become upregulated, dampening early immunological efforts to overcome the disease. This immune suppression involves many complex cellular and molecular mechanisms that ultimately result in the generation of radioresistance in many cases. Understanding the mechanisms behind these responses is challenging as the effects are extensive and often occur simultaneously within the tumor. Here, we describe the effects of IR on the immune landscape of tumors. ICD, along with myeloid and lymphoid responses to IR, are discussed, with the hope of shedding light on the complex immune stimulatory and immunosuppressive responses involved with this cornerstone cancer treatment. Leveraging these immunological effects can provide a platform for improving immunotherapy efficacy in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maggie L. Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
24
|
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 2023; 23:90-105. [PMID: 35637393 DOI: 10.1038/s41577-022-00732-1] [Citation(s) in RCA: 255] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.
Collapse
|
25
|
Ascunce K, Dhodapkar RM, Huang D, Hafler BP. Innate immune biology in age-related macular degeneration. Front Cell Dev Biol 2023; 11:1118524. [PMID: 36926522 PMCID: PMC10011475 DOI: 10.3389/fcell.2023.1118524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease and a leading cause of irreversible vision loss in the developed world. While not classically described as an inflammatory disease, a growing body of evidence has implicated several components of the innate immune system in the pathophysiology of age-related macular degeneration. In particular, complement activation, microglial involvement, and blood-retinal-barrier disruption have been shown to play key roles in disease progression, and subsequent vision loss. This review discusses the role of the innate immune system in age-related macular degeneration as well as recent developments in single-cell transcriptomics that help advance the understanding and treatment of age-related macular degeneration. We also explore the several potential therapeutic targets for age-related macular degeneration in the context of innate immune activation.
Collapse
Affiliation(s)
- Karina Ascunce
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Rahul M Dhodapkar
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Deven Huang
- Choate Rosemary Hall, Wallingford, CT, United States
| | - Brian P Hafler
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States.,Department of Pathology, Yale University, New Haven, CT, United States
| |
Collapse
|
26
|
Poon AYC, Sugimura R. The prospect of genetically engineering natural killer cells for cancer immunotherapy. Biol Open 2022; 11:bio059396. [PMID: 36445164 PMCID: PMC9729658 DOI: 10.1242/bio.059396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The use of natural killer (NK) cells in cancer immunotherapy demonstrates promising potential, yet its efficacy is often limited due to the loss of tumor-killing capacity and lack of specificity in vivo. Here, we review current approaches to confer enhanced tumor-killing capacity and specificity by genetic engineering. Increasing sensitivity to cytokines and protecting NK cells from the immune checkpoint endowed sustainability of NK cells in the tumor microenvironment. Transducing chimeric antigen receptor (CAR) in NK cells successfully targeted both hematologic and solid tumors in preclinical models. The use of human pluripotent stem cells as an expandable and genetically amenable platform offers a stable source of engineered NK cells for cancer immunotherapy. We highlight that CAR-NK cells from human pluripotent stem cells are a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Angie Yu Ching Poon
- School of Biomedical Science, University of Hong Kong, 21 Sassoon Rd, Hong Kong999077
| | - Ryohichi Sugimura
- School of Biomedical Science, University of Hong Kong, 21 Sassoon Rd, Hong Kong999077
| |
Collapse
|
27
|
Cronk JM, Dziewulska KH, Puchalski P, Crittenden RB, Hammarskjöld ML, Brown MG. Altered-Self MHC Class I Sensing via Functionally Disparate Paired NK Cell Receptors Counters Murine Cytomegalovirus gp34-Mediated Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1545-1554. [PMID: 36165178 PMCID: PMC9529956 DOI: 10.4049/jimmunol.2200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
The murine CMV (MCMV) immunoevasin m04/gp34 escorts MHC class I (MHC I) molecules to the surface of infected cells where these complexes bind Ly49 inhibitory receptors (IRs) and prevent NK cell attack. Nonetheless, certain self-MHC I-binding Ly49 activating and inhibitory receptors are able to promote robust NK cell expansion and antiviral immunity during MCMV infection. A basis for MHC I-dependent NK cell sensing of MCMV-infected targets and control of MCMV infection however remains unclear. In this study, we discovered that the Ly49R activation receptor is selectively triggered during MCMV infection on antiviral NK cells licensed by the Ly49G2 IR. Ly49R activating receptor recognition of MCMV-infected targets is dependent on MHC I Dk and MCMV gp34 expression. Remarkably, although Ly49R is critical for Ly49G2-dependent antiviral immunity, blockade of the activation receptor in Ly49G2-deficient mice has no impact on virus control, suggesting that paired Ly49G2 MCMV sensing might enable Ly49R+ NK cells to better engage viral targets. Indeed, MCMV gp34 facilitates Ly49G2 binding to infected cells, and the IR is required to counter gp34-mediated immune evasion. A specific requirement for Ly49G2 in antiviral immunity is further explained by its capacity to license cytokine receptor signaling pathways and enhance Ly49R+ NK cell proliferation during infection. These findings advance our understanding of the molecular basis for functionally disparate self-receptor enhancement of antiviral NK cell immunity.
Collapse
Affiliation(s)
- John M Cronk
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Karolina H Dziewulska
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Patryk Puchalski
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Rowena B Crittenden
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Marie-Louise Hammarskjöld
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
| | - Michael G Brown
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA;
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
28
|
Arbelaez CA, Palle P, Charaix J, Bettelli E. STAT1 signaling protects self-reactive T cells from control by innate cells during neuroinflammation. JCI Insight 2022; 7:148222. [PMID: 35587373 PMCID: PMC9309063 DOI: 10.1172/jci.insight.148222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The transcription factor STAT1 plays a critical role in modulating the differentiation of CD4+ T cells producing IL-17 and GM-CSF, which promote the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The protective role of STAT1 in MS and EAE has been largely attributed to its ability to limit pathogenic Th cells and promote Tregs. Using mice with selective deletion of STAT1 in T cells (STAT1CD4-Cre), we identified a potentially novel mechanism by which STAT1 regulates neuroinflammation independently of Foxp3+ Tregs. STAT1-deficient effector T cells became the target of NK cell–mediated killing, limiting their capacity to induce EAE. STAT1-deficient T cells promoted their own killing by producing more IL-2 that, in return, activated NK cells. Elimination of NK cells restored EAE susceptibility in STAT1CD4-Cre mice. Therefore, our study suggests that the STAT1 pathway can be manipulated to limit autoreactive T cells during autoimmunity directed against the CNS.
Collapse
Affiliation(s)
- Carlos A Arbelaez
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Pushpalatha Palle
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Jonathan Charaix
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| | - Estelle Bettelli
- Center for Fundamental Immunology, Benaroya Research Institute at Virginia Mason, Seattle, United States of America
| |
Collapse
|
29
|
Understanding of Immune Escape Mechanisms and Advances in Cancer Immunotherapy. JOURNAL OF ONCOLOGY 2022; 2022:8901326. [PMID: 35401745 PMCID: PMC8989557 DOI: 10.1155/2022/8901326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
Tumor immune escape has emerged as the most significant barrier to cancer therapy. A thorough understanding of tumor immune escape therapy mechanisms is critical for further improving clinical treatment strategies. Currently, research indicates that combining several immunotherapies can boost antitumor efficacy and encourage T cells to play a more active part in the immune assault. To generate a more substantial therapeutic impact, it can establish an ideal tumor microenvironment (TME), encourage T cells to play a role, prevent T cell immune function reversal, and minimize tumor immune tolerance. In this review, we will examine the mechanisms of tumor immune escape and the limits of tumor immune escape therapy, focusing on the current development of immunotherapy based on tumor immune escape mechanisms. Individualized tumor treatment is becoming increasingly apparent as future treatment strategies. In addition, we forecast the future research direction of cancer and the clinical approach for cancer immunotherapy. It will serve as a better reference for researchers working in cancer therapy research.
Collapse
|
30
|
Bunting MD, Vyas M, Requesens M, Langenbucher A, Schiferle EB, Manguso RT, Lawrence MS, Demehri S. Extracellular matrix proteins regulate NK cell function in peripheral tissues. SCIENCE ADVANCES 2022; 8:eabk3327. [PMID: 35294229 PMCID: PMC8926340 DOI: 10.1126/sciadv.abk3327] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Natural killer (NK) cells reject major histocompatibility complex class I (MHC-I)-deficient bone marrow through direct cytotoxicity but not solid organ transplants devoid of MHC-I. Here, we demonstrate an immediate switch in NK cell function upon exit from the circulation, characterized by a shift from direct cytotoxicity to chemokine/cytokine production. In the skin transplant paradigm, combining an NK cell-specific activating ligand, m157, with missing self MHC-I resulted in complete graft rejection, which was dependent on NK cells as potential helpers and T cells as effectors. Extracellular matrix proteins, collagen I, collagen III, and elastin, blocked NK cell cytotoxicity and promoted their chemokine/cytokine production. NK cell cytotoxicity against MHC-I-deficient melanoma in the skin was markedly increased by blocking tumor collagen deposition. MHC-I down-regulation occurred in solid human cancers but not leukemias, which could be directly targeted by circulating cytotoxic NK cells. Our findings uncover a fundamental mechanism that restricts direct NK cell cytotoxicity in peripheral tissues.
Collapse
Affiliation(s)
- Mark D. Bunting
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maulik Vyas
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Marta Requesens
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Adam Langenbucher
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Erik B. Schiferle
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Robert T. Manguso
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael S. Lawrence
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Corresponding author.
| |
Collapse
|
31
|
Immunity-Enhancing Effect of Extracts Extracted from Leaves of Rubia hexaphylla, Cymbopogon citratus, and Dioscorea japonica for Sustainable Healthy Life. SUSTAINABILITY 2022. [DOI: 10.3390/su14052804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The COVID-19 era requires research and development into eco-friendly immune technologies in human life. However, such research is limited because of a lack of interest. Therefore, in this study, sub-critical extracts extracted from Rubia hexaphylla leaves, Cymbopogon citratus, and Dioscorea japonica with physiological effects were tested for their ability to enhance immunitye and antioxidant activity in the body. Cell viability experiments, cytokine secretion induction experiments, nitrogen oxide induction experiments, and cytokine content measurements in mouse serum and NK activation experiments were conducted to verify the effects of improving immunitye and antioxidant activity in the body. First, the cell survival rate of all samples was found to be over 95%. Second, it was confirmed that the contents of IL-6 and TNF-α in the macrophages of all samples were increased, especially for RCD 3, at concentrations of 1000 μg/mL. Third, the nitrogen oxide content of all samples was increased in the nitrogen oxide induction evaluation, especially for RCD 3, at the highest concentration of 1000 μg/mL. Fourth, for RCD 3, IL-2 and TNF-γ were the highest measured in the measurement of the cytokine content in the mouse serum. Fifth, in the NK activation experiments, the positive control group of the samples was all found to have higher activity than the negative control group, with more than 60% cell activity in RCD 3.
Collapse
|
32
|
Sato N, Szajek LP, Choyke PL. Tracking of NK Cells by Positron Emission Tomography Using 89Zr-Oxine Ex Vivo Cell Labeling. Methods Mol Biol 2022; 2463:153-161. [PMID: 35344173 DOI: 10.1007/978-1-0716-2160-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A 89Zr-oxine ex vivo cell labeling method for tracking various cells by positron emission tomography (PET) imaging has recently been developed. 89Zr-oxine is synthesized from oxine and 89Zr-chloride, which was converted from 89Zr-oxalate, with neutralization. To track migration of natural killer (NK) cells in vivo in real time by PET imaging, NK cells are labeled with 89Zr-oxine ex vivo and infused to a recipient. The labeling is performed by mixing 89Zr-oxine solution to NK cell suspension at room temperature, followed by washing. Care should be taken to label the cells at optimal radioactivity doses that maintain their viability and functionality. 89Zr-oxine labeled NK cells can be tracked for their migration and distribution by PET/computed tomography imaging for at least 7 days. Of note, this protocol is applicable to other types of cells.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lawrence P Szajek
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Sliz A, Yokoyama WM. NK Cells and ILC1s in Cancer Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:41-55. [DOI: 10.1007/978-981-16-8387-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
35
|
Herzog BH, Devarakonda S, Govindan R. Overcoming Chemotherapy Resistance in SCLC. J Thorac Oncol 2021; 16:2002-2015. [PMID: 34358725 DOI: 10.1016/j.jtho.2021.07.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
SCLC is an aggressive form of lung cancer with a very poor prognosis. Although SCLC initially responds very well to platinum-based chemotherapy, it eventually recurs and at recurrence is nearly universally resistant to therapy. In light of the recent advances in understanding regarding the biology of SCLC, we review findings related to SCLC chemotherapy resistance. We discuss the potential clinical implications of recent preclinical discoveries in altered signaling pathways, transcriptional landscapes, metabolic vulnerabilities, and the tumor microenvironment.
Collapse
Affiliation(s)
- Brett H Herzog
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Siddhartha Devarakonda
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Alvin J Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
36
|
Beta2-microglobulin(B2M) in cancer immunotherapies: Biological function, resistance and remedy. Cancer Lett 2021; 517:96-104. [PMID: 34129878 DOI: 10.1016/j.canlet.2021.06.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapies have made much headway during the past decades. Techniques including the immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT) have harvested impressive efficacy and provided far-reaching tools for treating cancer patients. However, due to inadequate priming of the immune system, a certain subgroup of patients remains resistant to cancer immunotherapies during or after the treatment. β2-microglobulin (B2M) is an important subunit of major histocompatibility complex (MHC) class I which exerts substantive biological functions in tumorigenesis and immune control. Accumulating evidence has shown that alterations of B2M gene and B2M proteins contribute to poor reaction to cancer immunotherapies by dampening antigen presentation. Here, we discuss the basic biological functions of B2M, its distribution in a spectrum of cancers, and current understanding of its role in ICI, cancer vaccines and chimeric antigen receptor T cell (CAR-T) therapies. Furthermore, we summarize some promising therapeutic strategies to improve the efficacy inhibited by B2M defects.
Collapse
|
37
|
Zhao Y, Cao Y, Chen Y, Wu L, Hang H, Jiang C, Zhou X. B2M gene expression shapes the immune landscape of lung adenocarcinoma and determines the response to immunotherapy. Immunology 2021; 164:507-523. [PMID: 34115389 DOI: 10.1111/imm.13384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 01/19/2023] Open
Abstract
Loss of the B2M gene is associated with tumour immune escape and resistance to immunotherapy. However, genetic alterations of the B2M gene are rare. We performed an integrative analysis of the mutational and transcriptional profiles of large cohorts of non-small-cell lung cancer (NSCLC) patients and found that epigenetic downregulation of B2M is common. B2M-low tumours exhibit a suppressive immune microenvironment characterized by reduced infiltration of immune cells of various lineages; in B2M-high tumours, more T and natural killer cells are present, but their activities are constrained by immune checkpoint molecules, indicating the diverse mechanisms of immune evasion. High levels of B2M mRNA, but not PD-L1, are correlated with an enhanced response to PD-1-based immunotherapy, suggesting its value for immunotherapy response prediction in solid tumours. Notably, a high tumour mutation burden (TMB) is associated with low B2M expression, which may explain the poor predictive value of the TMB in some situations. In syngeneic mouse models, genetic ablation of B2M in tumour cells causes resistance to PD-1-based immunotherapy, and B2M knockdown also diminishes the therapeutic efficacy. Moreover, forced expression of B2M in tumour models improves the response to immunotherapy, suggesting that B2M levels have significant impacts on treatment outcomes. Finally, we provide insight into the roles of transcription factors and KRAS mutations in B2M expression and the anticancer immune response. In conclusion, genetic and epigenetic regulation of B2M fundamentally shapes the NSCLC immune microenvironment and may determine the response to checkpoint blockade-based immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yuejiao Cao
- School of Medicine, Nantong University, Nantong, China
| | - Yiqi Chen
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Lei Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Hua Hang
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Chenxia Jiang
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Jiangsu, China
| |
Collapse
|
38
|
Parikh BA, Bern MD, Piersma SJ, Yang L, Beckman DL, Poursine-Laurent J, Plougastel-Douglas B, Yokoyama WM. Control of Viral Infection by Natural Killer Cell Inhibitory Receptors. Cell Rep 2021; 32:107969. [PMID: 32726632 PMCID: PMC7458139 DOI: 10.1016/j.celrep.2020.107969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I)-restricted immune responses are largely attributed to cytotoxic T lymphocytes (CTLs). However, natural killer (NK) cells, as predicted by the missing-self hypothesis, have opposing requirements for MHC-I, suggesting that they may also demonstrate MHC-I-restricted effects. In mice, the Ly49 inhibitory receptors prevent NK cell killing of missing-self targets in effector responses, and they have a proposed second function in licensing or educating NK cells via self-MHC-I in vivo. Here we show MHC-I-restricted control of murine cytomegalovirus (MCMV) infection in vivo that is NK cell dependent. Using mice lacking specific Ly49 receptors, we show that control of MCMV requires inhibitory Ly49 receptors and an inhibitory signaling motif and the capacity for MCMV to downregulate MHC-I. Taken together, these data provide definitive evidence that the inhibitory receptors are required for missing-self rejection and are relevant to MHC-I-restricted NK cell control of a viral infection in vivo. Parikh et al. show that major histocompatibility complex class I (MHC-I)-restricted control of viral infection is due to natural killer (NK) cells rather than cytotoxic T cells. Inhibitory NK cell receptors are essential for protection, requiring NK cell licensing (education) by self-MHC-I and missing-self recognition due to virus-induced MHC-I downregulation.
Collapse
Affiliation(s)
- Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diana L Beckman
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Béatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Ferez M, Knudson CJ, Lev A, Wong EB, Alves-Peixoto P, Tang L, Stotesbury C, Sigal LJ. Viral infection modulates Qa-1b in infected and bystander cells to properly direct NK cell killing. J Exp Med 2021; 218:e20201782. [PMID: 33765134 PMCID: PMC8006856 DOI: 10.1084/jem.20201782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b-deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.
Collapse
Affiliation(s)
- Maria Ferez
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Cory J. Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, PA
| | - Eric B. Wong
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Pedro Alves-Peixoto
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Research Group in Biomaterials, Biodegradables and Biomimetics-Portugal Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
40
|
Germano G, Lu S, Rospo G, Lamba S, Rousseau B, Fanelli S, Stenech D, Le DT, Hays J, Totaro MG, Amodio V, Chilà R, Mondino A, Diaz LA, Di Nicolantonio F, Bardelli A. CD4 T Cell-Dependent Rejection of Beta-2 Microglobulin Null Mismatch Repair-Deficient Tumors. Cancer Discov 2021; 11:1844-1859. [PMID: 33653693 DOI: 10.1158/2159-8290.cd-20-0987] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/09/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Inactivation of beta-2 microglobulin (B2M) is considered a determinant of resistance to immune checkpoint inhibitors (ICPi) in melanoma and lung cancers. In contrast, B2M loss does not appear to affect response to ICPis in mismatch repair-deficient (MMRd) colorectal tumors where biallelic inactivation of B2M is frequently observed. We inactivated B2m in multiple murine MMRd cancer models. Although MMRd cells would not readily grow in immunocompetent mice, MMRd B2m null cells were tumorigenic and regressed when treated with anti-PD-1 and anti-CTLA4. The efficacy of ICPis against MMRd B2m null tumors did not require CD8+ T cells but relied on the presence of CD4+ T cells. Human tumors expressing low levels of B2M display increased intratumoral CD4+ T cells. We conclude that B2M inactivation does not blunt the efficacy of ICPi in MMRd tumors, and we identify a unique role for CD4+ T cells in tumor rejection. SIGNIFICANCE: B2M alterations, which impair antigen presentation, occur frequently in microsatellite-unstable colorectal cancers. Although in melanoma and lung cancers B2M loss is a mechanism of resistance to immune checkpoint blockade, we show that MMRd tumors respond to ICPis through CD4+ T-cell activation.This article is highlighted in the In This Issue feature, p. 1601.
Collapse
Affiliation(s)
- Giovanni Germano
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy. .,Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Steve Lu
- Ludwig Center and Howard Hughes Medical Institute at Johns Hopkins, Baltimore, Maryland
| | - Giuseppe Rospo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Simona Lamba
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Benoit Rousseau
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonia Fanelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Denise Stenech
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Dung T Le
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - John Hays
- Division of Medical Oncology, Wexner Medical Center and James Cancer Hospital, The Ohio State University, Columbus, Ohio
| | | | - Vito Amodio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Rosaria Chilà
- Department of Oncology, University of Torino, Candiolo, Turin, Italy.,IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luis A Diaz
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Candiolo, Turin, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy. .,Department of Oncology, University of Torino, Candiolo, Turin, Italy
| |
Collapse
|
41
|
Arima N. Dual effects of natural killer cells in transplantation for leukemia. Crit Rev Oncol Hematol 2020; 158:103206. [PMID: 33388454 DOI: 10.1016/j.critrevonc.2020.103206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells were originally considered to belong to the innate immune system to play a protective role against tumor cells and viral infections. In human, they can recognize self and non-self HLA class 1 as their ligand. So, analyzing the outcomes of allogeneic hematopoietic stem cell transplantation is a good opportunity to know the antitumor effects and regulatory effects of NK cells through HLA class 1 matching and mismatching of donor and recipient. In this review, I looked back on the main analysis results of the past transplants, summarized our reports consisting of many cases in a single ethnic, and showed that NK cells might work oppositely depending on the type of leukemia. New treatment strategies based on these concepts may offer individualized treatment options and ultimately increase offer the possibility of a cure for patients with leukemia.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-ku, Kobe, 651-0072, Hyogo, Japan.
| |
Collapse
|
42
|
de Jonge AV, Mutis T, Roemer MGM, Scheijen B, Chamuleau MED. Impact of MYC on Anti-Tumor Immune Responses in Aggressive B Cell Non-Hodgkin Lymphomas: Consequences for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12103052. [PMID: 33092116 PMCID: PMC7589056 DOI: 10.3390/cancers12103052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The human immune system has several mechanisms to attack and eliminate lymphomas. However, the MYC oncogene is thought to facilitate escape from this anti-tumor immune response. Since patients with MYC overexpressing lymphomas face a significant dismal prognosis after treatment with standard immunochemotherapy, understanding the role of MYC in regulating the anti-tumor immune response is highly relevant. In this review, we describe the mechanisms by which MYC attenuates the anti-tumor immune responses in B cell non-Hodgkin lymphomas. We aim to implement this knowledge in the deployment of novel immunotherapeutic approaches. Therefore, we also provide a comprehensive overview of current immunotherapeutic options and we discuss potential future treatment strategies for MYC overexpressing lymphomas. Abstract Patients with MYC overexpressing high grade B cell lymphoma (HGBL) face significant dismal prognosis after treatment with standard immunochemotherapy regimens. Recent preclinical studies indicate that MYC not only contributes to tumorigenesis by its effects on cell proliferation and differentiation, but also plays an important role in promoting escape from anti-tumor immune responses. This is of specific interest, since reversing tumor immune inhibition with immunotherapy has shown promising results in the treatment of both solid tumors and hematological malignancies. In this review, we outline the current understanding of impaired immune responses in B cell lymphoid malignancies with MYC overexpression, with a particular emphasis on diffuse large B cell lymphoma. We also discuss clinical consequences of MYC overexpression in the treatment of HGBL with novel immunotherapeutic agents and potential future treatment strategies.
Collapse
Affiliation(s)
- A. Vera de Jonge
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
- Correspondence:
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
| | - Margaretha G. M. Roemer
- Department of Pathology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands;
| | - Blanca Scheijen
- Department of Pathology, Radboud UMC, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands;
| | - Martine E. D. Chamuleau
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands; (T.M.); (M.E.D.C.)
| |
Collapse
|
43
|
Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, Davidson JT, Bagadia P, Liu T, Briseño CG, Li L, Gillanders WE, Wu GF, Yokoyama WM, Murphy TL, Schreiber RD, Murphy KM. cDC1 prime and are licensed by CD4 + T cells to induce anti-tumour immunity. Nature 2020; 584:624-629. [PMID: 32788723 PMCID: PMC7469755 DOI: 10.1038/s41586-020-2611-3] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.
Collapse
Affiliation(s)
- Stephen T Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey P Ward
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Michael D Bern
- Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Jesse T Davidson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Tiantian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
44
|
Panda AK, Gangaplara A, Buszko M, Natarajan K, Boyd LF, Sharma S, Margulies DH, Shevach EM. Cutting Edge: Inhibition of the Interaction of NK Inhibitory Receptors with MHC Class I Augments Antiviral and Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:567-572. [PMID: 32601097 DOI: 10.4049/jimmunol.2000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 01/10/2023]
Abstract
NK cells recognize MHC class I (MHC-I) Ags via stochastically expressed MHC-I-specific inhibitory receptors that prevent NK cell activation via cytoplasmic ITIM. We have identified a pan anti-MHC-I mAb that blocks NK cell inhibitory receptor binding at a site distinct from the TCR binding site. Treatment of unmanipulated mice with this mAb disrupted immune homeostasis, markedly activated NK and memory phenotype T cells, enhanced immune responses against transplanted tumors, and augmented responses to acute and chronic viral infection. mAbs of this type represent novel checkpoint inhibitors in tumor immunity, potent tools for the eradication of chronic infection, and may function as adjuvants for the augmentation of the immune response to weak vaccines.
Collapse
Affiliation(s)
- Abir K Panda
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Arunakumar Gangaplara
- Laboratory of Early Sickle Mortality Prevention, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Maja Buszko
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Suveena Sharma
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Ethan M Shevach
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892;
| |
Collapse
|
45
|
Moseman EA, Blanchard AC, Nayak D, McGavern DB. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci Immunol 2020; 5:eabb1817. [PMID: 32503876 PMCID: PMC7416530 DOI: 10.1126/sciimmunol.abb1817] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The neuroepithelium is a nasal barrier surface populated by olfactory sensory neurons that detect odorants in the airway and convey this information directly to the brain via axon fibers. This barrier surface is especially vulnerable to infection, yet respiratory infections rarely cause fatal encephalitis, suggesting a highly evolved immunological defense. Here, using a mouse model, we sought to understand the mechanism by which innate and adaptive immune cells thwart neuroinvasion by vesicular stomatitis virus (VSV), a potentially lethal virus that uses olfactory sensory neurons to enter the brain after nasal infection. Fate-mapping studies demonstrated that infected central nervous system (CNS) neurons were cleared noncytolytically, yet specific deletion of major histocompatibility complex class I (MHC I) from these neurons unexpectedly had no effect on viral control. Intravital imaging studies of calcium signaling in virus-specific CD8+ T cells revealed instead that brain-resident microglia were the relevant source of viral peptide-MHC I complexes. Microglia were not infected by the virus but were found to cross-present antigen after acquisition from adjacent neurons. Microglia depletion interfered with T cell calcium signaling and antiviral control in the brain after nasal infection. Collectively, these data demonstrate that microglia provide a front-line defense against a neuroinvasive nasal infection by cross-presenting antigen to antiviral T cells that noncytolytically cleanse neurons. Disruptions in this innate defense likely render the brain susceptible to neurotropic viruses like VSV that attempt to enter the CNS via the nose.
Collapse
Affiliation(s)
- E Ashley Moseman
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Alexa C Blanchard
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Debasis Nayak
- Discipline of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Sato N, Stringaris K, Davidson-Moncada JK, Reger R, Adler SS, Dunbar C, Choyke PL, Childs RW. In Vivo Tracking of Adoptively Transferred Natural Killer Cells in Rhesus Macaques Using 89Zirconium-Oxine Cell Labeling and PET Imaging. Clin Cancer Res 2020; 26:2573-2581. [PMID: 32034075 PMCID: PMC7269806 DOI: 10.1158/1078-0432.ccr-19-2897] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/21/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Trials of adoptive natural killer (NK)-cell immunotherapy for hematologic malignancies have thus far shown only marginal effects, despite the potent in vitro antitumor activity of these cells. Homing of infused cells to tumor microenvironments is critical for efficacy, but has not been well characterized. We established a novel method to track and quantify the distribution of adoptively transferred NK cells using rhesus macaques (RM) as a clinically relevant preclinical model. EXPERIMENTAL DESIGN RM NK cells were expanded ex vivo for 14-21 days, labeled with 89Zr-oxine complex, and assessed for phenotype, function, and survival. Trafficking of 89Zr-labeled ex vivo-expanded NK cells infused into RMs was monitored and quantitated by serial positron emission tomography (PET)/CT (n = 3, 2.05 ± 0.72 MBq, 23.5 ± 2.0 × 106 NK cells/kg) and compared with that of 89Zr-labeled nonexpanded NK cells, apoptotic NK cells, and hematopoietic stem and progenitor cells (HSPC). RESULTS NK cells retained sufficient levels of 89Zr for accurate in vivo tracking for 7 days. 89Zr labeling did not alter cellular phenotype, viability, or function. PET/CT showed NK cells initially localized in the lungs, followed by their migration to the liver, spleen, and, at low levels, bone marrow. One day following transfer, only 3.4% of infused NK cells localized to the BM versus 22.1% of HSPCs. No clinical side effects were observed, and dosimetry analysis indicated low organ radioexposures of 6.24 mSv/MBq (spleen) or lower. CONCLUSIONS These data support translation of this technique to humans to track the distribution of adoptively infused cells and to develop novel techniques to improve immune cell homing to tumor microenvironments.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Program, NCI, NIH, Bethesda, Maryland.
| | - Kate Stringaris
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Jan K Davidson-Moncada
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
- Center for Human Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Robert Reger
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Stephen S Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Cynthia Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | | | - Richard W Childs
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| |
Collapse
|
47
|
Thi VAD, Jeon HM, Park SM, Lee H, Kim YS. Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice. Mol Cells 2019; 42:869-883. [PMID: 31760731 PMCID: PMC6939657 DOI: 10.14348/molcells.2019.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancercell vaccine using mitomycin C (MMC)-treated IL-15:IL15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) longterm protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hyung Min Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
48
|
Ly49R activation receptor drives self-MHC-educated NK cell immunity against cytomegalovirus infection. Proc Natl Acad Sci U S A 2019; 116:26768-26778. [PMID: 31843910 DOI: 10.1073/pnas.1913064117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells mediate vital control of cancer and viral infection. They rely on MHC class I (MHC I)-specific self-receptors to identify and lyse diseased cells without harming self-MHC I-bearing host cells. NK cells bearing inhibitory self-receptors for host MHC I also undergo education, referred to as licensing, which causes them to become more responsive to stimulation via activation receptor signaling. Previous work has shown that licensed NK cells selectively expand during virus infections and they are associated with improved clinical response in human patients experiencing certain chronic virus infections, including HIV and hepatitis C virus. However, the importance of inhibitory self-receptors in NK-mediated virus immunity is debated as they also limit signals in NK cells emanating from virus-specific activation receptors. Using a mouse model of MHC I-dependent (H-2Dk) virus immunity, we discovered that NK cells depend on the Ly49G2 inhibitory self-receptor to mediate virus control, which coincided with host survival during murine cytomegalovirus infection. This antiviral effect further requires active signaling in NK cells via the Ly49R activation receptor that also binds H-2Dk In tandem, these functionally discordant Ly49 self-receptors increase NK cell proliferation and effector activity during infection, resulting in selective up-regulation of CD25 and KLRG1 in virus-specific Ly49R+ Ly49G2+ NK cells. Our findings establish that paired self-receptors act as major determinants of NK cell-mediated virus sensing and immunity.
Collapse
|
49
|
Vandenhaute J, Avau A, Filtjens J, Malengier-Devlies B, Imbrechts M, Van den Berghe N, Ahmadzadeh K, Mitera T, Boon L, Leclercq G, Wouters C, Matthys P. Regulatory Role for NK Cells in a Mouse Model of Systemic Juvenile Idiopathic Arthritis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3339-3348. [PMID: 31676671 DOI: 10.4049/jimmunol.1900510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Mice deficient in IFN-γ (IFN-γ knockout [KO] mice) develop a systemic inflammatory syndrome in response to CFA, in contrast to CFA-challenged wild-type (WT) mice who only develop a mild inflammation. Symptoms in CFA-challenged IFN-γ KO resemble systemic juvenile idiopathic arthritis (sJIA), a childhood immune disorder of unknown cause. Dysregulation of innate immune cells is considered to be important in the disease pathogenesis. In this study, we used this murine model to investigate the role of NK cells in the pathogenesis of sJIA. NK cells of CFA-challenged IFN-γ KO mice displayed an aberrant balance of activating and inhibitory NK cell receptors, lower expression of cytotoxic proteins, and a defective NK cell cytotoxicity. Depletion of NK cells (via anti-IL-2Rβ and anti-Asialo-GM1 Abs) or blockade of the NK cell activating receptor NKG2D in CFA-challenged WT mice resulted in increased severity of systemic inflammation and appearance of sJIA-like symptoms. NK cells of CFA-challenged IFN-γ KO mice and from anti-NKG2D-treated mice showed defective degranulation capacities toward autologous activated immune cells, predominantly monocytes. This is in line with the increased numbers of activated inflammatory monocytes in these mice which was particularly reflected in the expression of CCR2, a chemokine receptor, and in the expression of Rae-1, a ligand for NKG2D. In conclusion, NK cells are defective in a mouse model of sJIA and impede disease development in CFA-challenged WT mice. Our findings point toward a regulatory role for NK cells in CFA-induced systemic inflammation via a NKG2D-dependent control of activated immune cells.
Collapse
Affiliation(s)
- Jessica Vandenhaute
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Anneleen Avau
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Maya Imbrechts
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Nathalie Van den Berghe
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium
| | | | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium; and
| | - Carine Wouters
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
50
|
Key PN, Germino J, Yang L, Piersma SJ, Tripathy SK. Chronic Ly49H Receptor Engagement in vivo Decreases NK Cell Response to Stimulation Through ITAM-Dependent and Independent Pathways Both in vitro and in vivo. Front Immunol 2019; 10:1692. [PMID: 31396217 PMCID: PMC6664057 DOI: 10.3389/fimmu.2019.01692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells play an important role in the innate immune response. The summation of activation and inhibitory signals delivered through cell surface membrane receptors determines NK cell function. However, the continuous engagement of an activating receptor on NK cells appears to render the cells hyporesponsive to stimulation through other unrelated activating receptors. The mechanism by which this takes place remains unclear. Herein we demonstrate that continuous in vivo engagement of the Ly49H receptor with its ligand, m157, results in Ly49H+ NK cells that are hyporesponsive to further stimulation by other ITAM-dependent and independent receptors, while Ly49H− NK cells remain unaffected. The hyporesponsiveness of the NK cell correlates with the degree of Ly49H receptor downmodulation on its cell surface. We observe defects in calcium flux in the hyporesponsive NK cells following stimulation through the NK1.1 receptor. In addition, we observe differences in signaling molecules that play a role in calcium flux, including spleen tyrosine kinase (Syk) at baseline and phosphorylated phospholipase C gamma 2 (p-PLCγ2) at both baseline and following stimulation through NK1.1. We also demonstrate that various ITAM associated activation receptors, including Ly49H, remain associated with their respective adaptor molecules. With regard to in vivo NK cell function, we did not find differences in the formation of metastatic lung lesions following IV injection of B16 melanoma cells. However, we did observe defects in rejection of missing-self targets in vivo. The data suggest that continuous engagement of the Ly49H activating receptor on NK cells results in hyporesponsiveness of the NK cells to all of the ITAM-dependent and independent receptors we analyzed due to altered signaling pathways downstream of the receptor and adaptor molecule.
Collapse
Affiliation(s)
- Phillip N Key
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joe Germino
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Liping Yang
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sytse J Piersma
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep K Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|