1
|
Sun Y, Wang Q, Jiang Y, He J, Jia D, Luo M, Shen W, Wang Q, Qi Y, Lin Y, Zhang Y, Wang L, Wang L, Chen S, Fan L. Lactobacillus intestinalis facilitates tumor-derived CCL5 to recruit dendritic cell and suppress colorectal tumorigenesis. Gut Microbes 2025; 17:2449111. [PMID: 39773173 PMCID: PMC11730368 DOI: 10.1080/19490976.2024.2449111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Gut microbes play a crucial role in regulating the tumor microenvironment (TME) of colorectal cancer (CRC). Nevertheless, the deep mechanism between the microbiota-TME interaction has not been well explored. In this study, we for the first time discovered that Lactobacillus intestinalis (L. intestinalis) effectively suppressed tumor growth both in the AOM/DSS-induced CRC model and the ApcMin/+ spontaneous adenoma model. Our investigation revealed that L. intestinalis increased the infiltration of immune cells, particularly dendritic cells (DC), in the TME. Mechanically, the tumor-derived CCL5 induced by L. intestinalis recruited DC chemotaxis through the NOD1/NF-κB signaling pathway. In clinical samples and datasets, we found positive correlation between L. intestinalis, CCL5 level, and the DC-related genes. Our study provided a new strategy for microbial intervention for CRC and deepened the understanding of the interaction between tumor cells and the immune microenvironment modulated by gut microbes.
Collapse
Affiliation(s)
- Yong Sun
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qiwen Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yao Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Man Luo
- Department of Nutrition, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wentao Shen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qingyi Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yadong Qi
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ying Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lan Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Ng II, Zhang Z, Xiao K, Ye M, Tian T, Zhu Y, He Y, Chu L, Tang H. Targeting WEE1 in tumor-associated dendritic cells potentiates antitumor immunity via the cGAS/STING pathway. Cell Rep 2025; 44:115733. [PMID: 40397571 DOI: 10.1016/j.celrep.2025.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/10/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025] Open
Abstract
DNA damage profoundly affects cancer progression and immune cell function. While research primarily focuses on tumor cells, the effects of DNA damage on immune cells remain understudied. Here, we observe significant DNA damage in tumor-associated dendritic cells (TADCs), accompanied by the upregulation of the serine/threonine kinase WEE1, a crucial regulator of DNA damage repair. Interestingly, DNA damage also stimulates DC activation. WEE1 inhibition activates TADCs through the cGAS/STING pathway, increasing IL-12 and type I interferon expression, thus enhancing the antitumor immune response and improving tumor control. Additionally, WEE1 inhibition augments the efficacy of DC vaccines and synergizes with immune checkpoint blockade therapy. These findings highlight a pivotal role of WEE1 signaling in DNA damage repair in DCs within the tumor microenvironment, which in turn suppresses the antitumor immune response. Therefore, targeting WEE1 in DCs represents a promising approach to enhance T cell activation and improve the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Ian-Ian Ng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihua Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Kaimin Xiao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Minjie Ye
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Yaoji Zhu
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim, Shanghai 200120, China
| | - Ling Chu
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haidong Tang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Oh J, Hoelzl J, Carlson JCT, Bill R, Peterson HM, Faquin WC, Pittet MJ, Pai SI, Weissleder R. Spatial analysis identifies DC niches as predictors of pembrolizumab therapy in head and neck squamous cell cancer. Cell Rep Med 2025; 6:102100. [PMID: 40311615 DOI: 10.1016/j.xcrm.2025.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/05/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) shows variable response to anti-programmed cell death protein 1 (PD-1) therapy, which can be partially explained by a combined positive score (CPS) of tumor and immune cell expression of programmed death-ligand 1 (PD-L1) within the local tumor microenvironment (TME). To better define TME immune determinants associated with treatment efficacy, we conduct a study of n = 48 HNSCC tumors from patients prior to pembrolizumab therapy. Our investigation combines a rapid bioorthogonal multiplex staining method with computational analysis of whole-slide imaging to capture the single-cell spatial heterogeneity and complexity of the TME. Analyzing 6,316 fields of view (FOVs), we provide comprehensive PD-L1 phenotyping and cell proximity assays across the entirety of tissue sections. While none of the PD-L1 metrics adequately predict response, we find that the spatial organization of CCR7+ dendritic cells (DCs) in niches better predicts overall patient survival than CPS alone. This study highlights the importance of understanding the spatial context of immune networks for immunotherapy.
Collapse
Affiliation(s)
- Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan Hoelzl
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Division of Oncology, Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Ruben Bill
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Hannah M Peterson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William C Faquin
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; AGORA Cancer Research Center, and Swiss Cancer Center Leman, 1011 Lausanne, Switzerland; Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Sara I Pai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Badillo-Godinez O, Niemi J, Helfridsson L, Karimi S, Ramachandran M, Mangukiya HB, Nelander S, Hellström M. Brain tumors induce immunoregulatory dendritic cells in draining lymph nodes that can be targeted by OX40 agonist treatment. J Immunother Cancer 2025; 13:e011548. [PMID: 40389372 PMCID: PMC12090865 DOI: 10.1136/jitc-2025-011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Primary and metastatic brain tumors have a poor prognosis, partly owing to the unique characteristics of the central nervous system (CNS) and tumor immune microenvironment (TIME). One distinct feature of the CNS TIME is the limited infiltration and activation of dendritic cells (DCs). The impact of CNS versus non-CNS TIME can be assessed by injecting tumor cells from the same model, either subcutaneously (peripherally) or into the brain. Subcutaneous tumors drain into the tumor-draining lymph nodes in the skin (TdLN-p), whereas brain tumors drain into the deep cervical TdLN (TdLN-c). We previously showed that CNS tumors that are not responsive to immune checkpoint inhibition become responsive when grown peripherally, and that non-responsiveness correlates with a tolerogenic immune response in the local TIME and TdLN-c. METHODS In this study, we investigated the immunoregulatory potential of cervical DCs (DC-c) compared with that of peripheral DCs (DC-p) using high-resolution flow cytometry, single-cell RNA sequencing, and ex vivo and in vivo functional characterization of TdLNs from mouse models of glioma and lymphoma. RESULTS Our analysis revealed that DC-c promoted regulatory T-cell expansion and poorly cytotoxic CD8+ T cells compared with DC-p. Furthermore, we identified OX40 (Tnfrsf4) as a modulator of immunoregulatory DC-c function and found that its antitumor effect depended on lymphocyte trafficking and the DC transcription factor Batf3. CCR7+OX40+ DCs were efficient in antigen processing and presentation, and OX40 agonists further enhanced DC activation. In TIME, the CCR7+OX40+ DCs expressed OX40L, and blocking it promoted Treg formation ex vivo. CONCLUSIONS Our findings highlight the unique immunoregulatory functions of DC-c in TdLNs and suggest the importance of OX40 signaling through direct effects on CCR7+OX40+ DCs and indirect effects on T cells.
Collapse
Affiliation(s)
- Oscar Badillo-Godinez
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jenni Niemi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liam Helfridsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Shokoufeh Karimi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Zhou J, Tison K, Zhou H, Bai L, Acharyya RK, McEachern D, Metwally H, Wang Y, Pitter M, Choi JE, Vatan L, Liao P, Yu J, Lin H, Jiang L, Wei S, Gao X, Grove S, Parolia A, Cieslik M, Kryczek I, Green MD, Lin JX, Chinnaiyan AM, Leonard WJ, Wang S, Zou W. STAT5 and STAT3 balance shapes dendritic cell function and tumour immunity. Nature 2025:10.1038/s41586-025-09000-3. [PMID: 40369063 DOI: 10.1038/s41586-025-09000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Immune checkpoint blockade (ICB) has transformed cancer therapy1,2. The efficacy of immunotherapy depends on dendritic cell-mediated tumour antigen presentation, T cell priming and activation3,4. However, the relationship between the key transcription factors in dendritic cells and ICB efficacy remains unknown. Here we found that ICB reprograms the interplay between the STAT3 and STAT5 transcriptional pathways in dendritic cells, thereby activating T cell immunity and enabling ICB efficacy. Mechanistically, STAT3 restrained the JAK2 and STAT5 transcriptional pathway, determining the fate of dendritic cell function. As STAT3 is often activated in the tumour microenvironment5, we developed two distinct PROTAC (proteolysis-targeting chimera) degraders of STAT3, SD-36 and SD-2301. STAT3 degraders effectively degraded STAT3 in dendritic cells and reprogrammed the dendritic cell-transcriptional network towards immunogenicity. Furthermore, STAT3 degrader monotherapy was efficacious in treatment of advanced tumours and ICB-resistant tumours without toxicity in mice. Thus, the crosstalk between STAT3 and STAT5 transcriptional pathways determines the dendritic cell phenotype in the tumour microenvironment and STAT3 degraders hold promise for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiajia Zhou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kole Tison
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Haibin Zhou
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Longchuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ranjan Kumar Acharyya
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna McEachern
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hoda Metwally
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu Wang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Pitter
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jae Eun Choi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Long Jiang
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xue Gao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shaomeng Wang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Gobbini E, Hubert M, Doffin AC, Eberhardt A, Hermet L, Li D, Duplouye P, Ghamry-Barrin S, Berthet J, Benboubker V, Grimont M, Sakref C, Perrot J, Tondeur G, Harou O, Lopez J, Dubois B, Dalle S, Caux C, Caramel J, Valladeau-Guilemond J. The Spatial Organization of cDC1 with CD8+ T Cells is Critical for the Response to Immune Checkpoint Inhibitors in Patients with Melanoma. Cancer Immunol Res 2025; 13:517-526. [PMID: 39774795 DOI: 10.1158/2326-6066.cir-24-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Dendritic cells (DC) are promising targets for cancer immunotherapies because of their central role in the initiation and control of immune responses. The type 1 conventional DC (cDC1) population is of particular interest because of its ability to cross-present antigens to CD8+ T cells. cDC1s also secrete cytokines that allow Th1 cell polarization and NK cell activation and recruitment. However, the spatial organization and specific functions of cDC1s in response to immunotherapy remain to be clearly characterized in human tumors. In this study, we used a multiplexed immunofluorescence analysis pipeline coupled with computational image analysis to determine the spatial organization of cDC1s in skin lesions from a cohort of patients with advanced melanoma treated with immune checkpoint inhibitors (ICI). For this, we performed a whole-slide image analysis of cDC1 infiltration, distribution, and spatial interaction with key immune partners such as CD8+ T cells and plasmacytoid DCs. We also analyzed LAMP3+ DCs, which correspond to a mature subset of tumor-infiltrating DCs. Distance and cell network analyses demonstrated that cDC1s exhibited a scattered distribution compared with tumor-infiltrating plasmacytoid DCs and LAMP3+ DCs, which were preferentially organized in dense areas with high homotypic connections. The proximity and interactions between CD8+ T cells and cDC1s were positively associated with the response to ICIs. In conclusion, our study unravels the complex spatial organization of cDC1s and their interactions with CD8+ T cells in lesions of patients with melanoma, shedding light on the pivotal role of these cells in shaping the response to ICIs.
Collapse
Affiliation(s)
- Elisa Gobbini
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Institut Curie, Oncology Department, Paris, France
| | - Margaux Hubert
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Claire Doffin
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Anais Eberhardt
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Léo Hermet
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Danlin Li
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre Duplouye
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Ghamry-Barrin
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Justine Berthet
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Valentin Benboubker
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Maxime Grimont
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Candice Sakref
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- LabEx DEVweCAN, Lyon, France
| | - Jimmy Perrot
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Garance Tondeur
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Olivier Harou
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Jonathan Lopez
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Bertrand Dubois
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Stephane Dalle
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Christophe Caux
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Centre Léon Bérard, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
- LabEx DEVweCAN, Lyon, France
| | - Julie Caramel
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jenny Valladeau-Guilemond
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Centre Léon Bérard, Lyon, France
- LabEx DEVweCAN, Lyon, France
| |
Collapse
|
7
|
Catena X, Contreras-Alcalde M, Juan-Larrea N, Cerezo-Wallis D, Calvo TG, Mucientes C, Olmeda D, Suárez J, Oterino-Sogo S, Martínez L, Megías D, Sancho D, Tejedo C, Frago S, Dudziak D, Seretis A, Stoitzner P, Soengas MS. Systemic rewiring of dendritic cells by melanoma-secreted midkine impairs immune surveillance and response to immune checkpoint blockade. NATURE CANCER 2025; 6:682-701. [PMID: 40155713 DOI: 10.1038/s43018-025-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/11/2025] [Indexed: 04/01/2025]
Abstract
Cutaneous melanomas express a high number of potential neoepitopes, yet a substantial fraction of melanomas shift into immunologically cold phenotypes. Using cellular systems, mouse models and large datasets, we identify the tumor-secreted growth factor midkine (MDK) as a multilayered inhibitor of antigen-presenting cells. Mechanistically, MDK acts systemically in primary tumors, lymph nodes and the bone marrow, promoting a STAT3-mediated impairment of differentiation, activation and function of dendritic cells (DCs), particularly, conventional type 1 DCs (cDC1s). Furthermore, MDK rewires DCs toward a tolerogenic state, impairing CD8+ T cell activation. Downregulating MDK improves DC-targeted vaccination, CD40 agonist treatment and immune checkpoint blockade in mouse models. Moreover, we present an MDK-associated signature in DCs that defines poor prognosis and immune checkpoint blockade resistance in individuals with cancer. An inverse correlation between MDK- and cDC1-associated signatures was observed in a variety of tumor types, broadening the therapeutic implications of MDK in immune-refractory malignancies.
Collapse
Affiliation(s)
- Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Contreras-Alcalde
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Naiara Juan-Larrea
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Yale University School of Medicine, New Haven, CT, USA
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cynthia Mucientes
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale, Madrid, Spain
| | - Javier Suárez
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Oterino-Sogo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - David Sancho
- Immunobiology Lab, Centro Nacional de Investigación Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Susana Frago
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diana Dudziak
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Comprehensive Cancer Center Central Germany Jena/Leipzig, Jena, Germany
| | - Athanasios Seretis
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
8
|
Tong QS, Huang H, Yu HH, Liu R, Shen S, Du JZ. A size-switchable nanocluster remodels the immunosuppressive microenvironment of tumor and tumor-draining lymph nodes for improved cancer immunotherapy. Biomaterials 2025; 315:122910. [PMID: 39467399 DOI: 10.1016/j.biomaterials.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Remodeling the immunosuppressive tumor microenvironment (TME) by immunomodulators has been well studied in the past years. However, strategies that enable concurrent modulation of both the immunosuppressive TME and tumor-draining lymph nodes (TDLNs) are still in the infancy. Here, we report a pH-sensitive size-switchable nanocluster, SPN-R848, to achieve simultaneous accumulation in tumor and TDLNs for immune activation. SPN-R848 with original size around 150 nm was formed by self-assembly of resiquimod (R848)-conjugated polyamidoamine (PAMAM) derivative, which could disintegrate into its small constituents (~ 8 nm) upon exposure to tumor acidity. The size reduction not only enhanced their accumulation and perfusion in the primary tumor, but promoted their transport and distribution in TDLNs. Accordingly, SPN-R848 remarkably remodeled the immunosuppressive TME by polarizing M2 to M1 macrophages and activated dendritic cells (DCs) in TDLNs, which synergistically facilitated the production and stimulation of cytotoxic T cells, and inhibited tumor growth in breast cancer and melanoma mouse models. Our study suggests that co-activation of immune microenvironments in both tumor and TDLNs may represent a promising direction to elicit strong antitumor immunity.
Collapse
Affiliation(s)
- Qi-Song Tong
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Hua Huang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Hui-Han Yu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Rodriguez LIL, Amadio R, Piperno GM, Benvenuti F. Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy. J Immunother Cancer 2025; 13:e010547. [PMID: 40132908 PMCID: PMC11938230 DOI: 10.1136/jitc-2024-010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Checkpoint inhibitors have led to remarkable benefits in non-small cell lung cancer (NSCLC), yet response rates remain below expectations. High-dimensional analysis and mechanistic experiments in clinical samples and relevant NSCLC models uncovered the immune composition of lung cancer tissues, providing invaluable insights into the functional properties of tumor-infiltrating T cells and myeloid cells. Among myeloid cells, type 1 conventional dendritic cells (cDC1s) stand out for their unique ability to induce effector CD8 T cells against neoantigens and coordinate antitumoral immunity. Notably, lung resident cDC1 are particularly abundant and long-lived and express a unique tissue-specific gene program, underscoring their central role in lung immunity. Here, we discuss recent insights on the induction and regulation of antitumoral T cell responses in lung cancer, separating it from the tissue-agnostic knowledge generated from heterogeneous tumor models. We focus on the most recent studies dissecting functional states and spatial distribution of lung cDC1 across tumor stages and their impact on T cell responses to neoantigens. Finally, we highlight relevant gaps and emerging strategies to harness lung cDC1 immunostimulatory potential.
Collapse
Affiliation(s)
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
11
|
Chen P, Wang H, Tang Z, Shi J, Cheng L, Zhao C, Li X, Zhou C. Selective Depletion of CCR8+Treg Cells Enhances the Antitumor Immunity of Cytotoxic T Cells in Lung Cancer by Dendritic Cells. J Thorac Oncol 2025:S1556-0864(25)00109-1. [PMID: 40056978 DOI: 10.1016/j.jtho.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 02/22/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Accumulation of regulatory T (Treg) cells, an immunosuppressive population, limits the efficacy of immunotherapy in NSCLC. C-C motif chemokine receptor 8 (CCR8) is selectively expressed in tumor-infiltrating Treg cells and is, therefore, considered an ideal target. METHODS The efficacy and safety of anti-CCR8 monotherapy and its combination with programmed cell death protein-1 (PD1) inhibitor were evaluated in four NSCLC-bearing mice models. To track the dynamic changes in tumor microenvironment, we performed the single-cell RNA sequencing, the single-cell T-cell receptor sequencing analysis, the flow cytometry, the multi-color immunofluorescence, and the Luminex assay on tumors after three, seven, 14, and 21 days of different treatment regimens. Then, in vitro and in vivo experiments were applied to validate our findings and explore molecular mechanisms of the synergistic effects. RESULTS Across four NSCLC-bearing mice models, the combination of CCR8 antibody and PD1 inhibitor significantly reduced tumor growth (p < 0.05) without obvious mouse body weight drops and systemic cytokine storm. The anti-CCR8 therapy synergizes with PD1 blockade by remodeling the tumor microenvironment and disrupting CCR8+Treg-C-C motif chemokine ligand 5 (CCL5)+ dendritic cells (DC) interaction. Mechanistically, therapeutic depletion of CCR8+Treg cells combined with PD1 inhibitor extremely increased interleukin-12 secretion by the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway activation on CCL5+ DCs, thereby promoting cytotoxic activity of CD8+ T cells. The therapeutic potential of the CCR8 antibody LM-108 in combination with immunotherapy was observed in clinical patients with advanced NSCLC. CONCLUSION Overall, CCR8 expression on tumor-infiltrating Treg cells is correlated with immunosuppressive function on DCs and CD8+ T cells, thus impeding antitumor immunity.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Ruan P, Li J, Abdelhalim KA, Tang Z, Tan W, Yao J, Tan Y, Wang L. GIMAP1 interacts with TMX1 to improve lung adenocarcinoma prognosis by influencing tumor immune microenvironment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167661. [PMID: 39805394 DOI: 10.1016/j.bbadis.2025.167661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Recent studies have indicated that the GIMAP family is downregulated in lung cancer and correlates with poor prognosis, although the underlying mechanisms remain unclear. This study aimed to elucidate the mechanism behind GIMAP1 downregulation in lung cancer. Bioinformatics tools were employed to assess the correlation between the GIMAP family and various cancers. Specifically, GIMAP1 was selected for further investigation, and its role in lung adenocarcinoma was confirmed through RNA sequencing analysis, Gene Set Enrichment Analysis (GSEA) of differentially expressed genes, correlation analysis with immune cell infiltration, and assay of the GIMAP1-TMX1 interaction. Based on bioinformatics analysis and real-world cohort studies, it was found that GIMAP1 was underexpressed in lung cancer tissues but exhibited elevated expression following immunotherapy. Overexpression of GIMAP1 was shown to influence several immune signaling pathways. In patients with high GIMAP1 expression, there was a significant increase in the infiltration of CD8+ T cells, activated memory CD4+ T cells, monocytes, and M1 macrophages; conversely, infiltration by M0 macrophages, resting dendritic cells (DCs), and plasma cells was significantly reduced. In vitro experiments showed that high levels of GIMAP1 increased the percentage of Treg, NK, and NKT cells. Additionally, GIMAP1 directly interacted with TMX1 and modulated the expression of downstream immune-related genes including CMTM5, IL17F, TRAV34, and XCR1. Therefore, GIMAP1 may serve as a promising therapeutic target in lung cancer, influencing both disease initiation and progression.
Collapse
Affiliation(s)
- Pinglang Ruan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiani Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Khalid A Abdelhalim
- Izmir Biomedicine and Genome Center, 35340 Izmir, Turkiye; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Weitong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiaoyang Yao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Shi T, Zhang H, Chen Y. The m6A revolution: transforming tumor immunity and enhancing immunotherapy outcomes. Cell Biosci 2025; 15:27. [PMID: 39987091 PMCID: PMC11846233 DOI: 10.1186/s13578-025-01368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, plays a critical role in the development and progression of various diseases, including cancer, through its regulation of RNA degradation, stabilization, splicing, and cap-independent translation. Emerging evidence underscores the significant role of m6A modifications in both pro-tumorigenic and anti-tumorigenic immune responses. In this review, we provide a comprehensive overview of m6A modifications and examine the relationship between m6A regulators and cancer immune responses. Additionally, we summarize recent advances in understanding how m6A modifications influence tumor immune responses by directly modulating immune cells (e.g., dendritic cells, tumor-associated macrophages, and T cells) and indirectly affecting cancer cells via mechanisms such as cytokine and chemokine regulation, modulation of cell surface molecules, and metabolic reprogramming. Furthermore, we explore the potential synergistic effects of targeting m6A regulators in combination with immune checkpoint inhibitor (ICI) therapies. Together, this review consolidates current knowledge on the role of m6A-mediated regulation in tumor immunity, offering insights into how a deeper understanding of these modifications may identify patients who are most likely to benefit from immunotherapies.
Collapse
Affiliation(s)
- Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| |
Collapse
|
14
|
Gupta R, Kumar R, Penn CA, Wajapeyee N. Immune evasion in ovarian cancer: implications for immunotherapy and emerging treatments. Trends Immunol 2025; 46:166-181. [PMID: 39855990 PMCID: PMC11835538 DOI: 10.1016/j.it.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy, characterized by multiple histological subtypes, each with distinct pathological and clinical features. Current treatment approaches include cytotoxic chemotherapies, poly(ADP-ribose) polymerase (PARP) inhibitors, bevacizumab, hormonal therapy, immunotherapy, and antibody-drug conjugates (ADCs). In this review we discuss immune evasion mechanisms in OC and the role of genetics, the tumor microenvironment, and tumor heterogeneity in influencing these processes. We also discuss the use of immunotherapies for OC treatment, either alone or in combination with other anticancer agents, with a focus on their clinical outcomes. Finally, we highlight emerging immunotherapies that have either succeeded or are on the verge of significantly impacting cancer treatment, and we discuss their potential utility in the effective treatment of OC.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| | - Raj Kumar
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Courtney A Penn
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| |
Collapse
|
15
|
Sebastião AI, Simões G, Oliveira F, Mateus D, Falcão A, Carrascal MA, Gomes C, Neves B, Cruz MT. Dendritic cells in triple-negative breast cancer: From pathophysiology to therapeutic applications. Cancer Treat Rev 2025; 133:102884. [PMID: 39837068 DOI: 10.1016/j.ctrv.2025.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Breast cancer is the second most commonly diagnosed cancer in women and the fifth leading cause of cancer-related deaths worldwide. It is a highly heterogeneous disease, consisting of multiple subtypes that vary significantly in clinical characteristics and survival outcomes. Triple-negative breast cancer (TNBC) is a particularly aggressive and challenging subtype of breast cancer. Several immunotherapeutic approaches have been tested in patients with TNBC to improve disease outcomes, including the administration of dendritic cell (DC)-based vaccines. DCs are a heterogeneous cell population that play a crucial role in bridging the innate and adaptive immune systems. Therefore, DCs have been increasingly used in cancer vaccines due to their ability to prime and boost antigen specific T-cell immune responses. This review aims to provide a comprehensive overview of TNBC, including potential targets and pharmacological strategies, as well as an overview of DCs and their relevance in TNBC. In addition, we review ongoing clinical trials and shed light on the evolving landscape of DC-based immunotherapy for TNBC.
Collapse
Affiliation(s)
- Ana Isabel Sebastião
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gonçalo Simões
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filomena Oliveira
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Mateus
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; BioMark@UC/CEB-LABBELS, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Célia Gomes
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research - iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Neves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
16
|
Belabed M, Park MD, Blouin CM, Balan S, Moon CY, Freed G, Quijada-Álamo M, Peros A, Mattiuz R, Reid AM, Yatim N, Boumelha J, Azimi CS, LaMarche NM, Troncoso L, Amabile A, Le Berichel J, Chen ST, Wilk CM, Brown BD, Radford KJ, Ghosh S, Rothlin CV, Yvan-Charvet L, Marron TU, Puleston DJ, Wagenblast E, Bhardwaj N, Lamaze C, Merad M. Cholesterol mobilization regulates dendritic cell maturation and the immunogenic response to cancer. Nat Immunol 2025; 26:188-199. [PMID: 39838105 DOI: 10.1038/s41590-024-02065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
Maturation of conventional dendritic cells (cDCs) is crucial for maintaining tolerogenic safeguards against auto-immunity and for promoting immunogenic responses to pathogens and cancer. The subcellular mechanism for cDC maturation remains poorly defined. We show that cDCs mature by leveraging an internal reservoir of cholesterol (harnessed from extracellular cell debris and generated by de novo synthesis) to assemble lipid nanodomains on cell surfaces of maturing cDCs, enhance expression of maturation markers and stabilize immune receptor signaling. This process is dependent on cholesterol transport through Niemann-Pick disease type C1 (NPC1) and mediates homeostatic and Toll-like receptor (TLR)-induced maturation. Importantly, we identified the receptor tyrosine kinase AXL as a regulator of the NPC1-dependent construction of lipid nanodomains. Deleting AXL from cDCs enhances their maturation, thus improving anti-tumor immunity. Altogether, our study presents new insights into cholesterol mobilization as a fundamental basis for cDC maturation and highlights AXL as a therapeutic target for modulating cDCs.
Collapse
Affiliation(s)
- Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cédric M Blouin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Centre National de la Recherche Scientifique, Paris, France
| | - Sreekumar Balan
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chang Y Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grace Freed
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Quijada-Álamo
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ante Peros
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda M Reid
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nader Yatim
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesse Boumelha
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camillia S Azimi
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson M LaMarche
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angelo Amabile
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven T Chen
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Matthias Wilk
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Radford
- Mater Research Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Sourav Ghosh
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Laurent Yvan-Charvet
- INSERM U1065, ATIP-Avenir, Fédération Hospitalo-Universitaire OncoAge, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel J Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elvin Wagenblast
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Centre National de la Recherche Scientifique, Paris, France
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Sobral MC, Cabizzosu L, Kang SJ, Feng Z, Ijaz H, Mooney DJ. Modulating Adjuvant Release Kinetics From Scaffold Vaccines to Tune Adaptive Immune Responses. Adv Healthc Mater 2025; 14:e2304574. [PMID: 38739747 PMCID: PMC11557735 DOI: 10.1002/adhm.202304574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Increasing the potency, quality, and durability of vaccines represents a major public health challenge. A critical parameter that shapes vaccine immunity is the spatiotemporal context in which immune cells interact with antigen and adjuvant. While various material-based strategies demonstrate that extended antigen release enhances both cellular and humoral immunity, the effect of adjuvant kinetics on vaccine-mediated immunity remains incompletely understood. Here, a previously characterized mesoporous silica rod (MPS) biomaterial vaccine is used to develop a facile, electrostatics-driven approach to tune in vivo kinetics of the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotide (CpG). It is demonstrated that rapid release of CpG from MPS vaccines, mediated by alterations in MPS chemistry that tune surface charge, generates potent cytotoxic T cell responses and robust, T helper type 1 (Th1)-skewed IgG2a/c antibody titers. Immunophenotyping of lymphoid organs after MPS vaccination with slow or fast CpG release kinetics suggests that differential engagement of migratory dendritic cells and natural killer cells may contribute to the more potent responses observed with rapid adjuvant release. Taken together, these findings suggest that vaccine approaches that pair sustained release of antigen with rapid release of adjuvants with similar characteristics to CpG may drive particularly potent Th1 responses.
Collapse
Affiliation(s)
- Miguel C. Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- These authors contributed equally
| | - Laura Cabizzosu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- These authors contributed equally
| | - Shawn J. Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Zhaoqianqi Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Hamza Ijaz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
18
|
Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol 2025; 25:125-140. [PMID: 39289483 DOI: 10.1038/s41577-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Lian H, Zhang J, Hou S, Ma S, Yu J, Zhao W, Zhao D, Zhang Z. Immunotherapy of osteosarcoma based on immune microenvironment modulation. Front Immunol 2025; 15:1498060. [PMID: 39916962 PMCID: PMC11799554 DOI: 10.3389/fimmu.2024.1498060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Osteosarcoma is a highly malignant tumor with unsatisfactory therapeutic outcomes achieved by chemotherapy, radiotherapy, and surgery. As an emerging oncological treatment, immunotherapy has shown potential in the clinical management of many tumors but has a poor response rate in osteosarcoma. The immunosuppressive microenvironment in osteosarcoma is the main reason for the ineffectiveness of immunotherapy, in which the low immune response rate of immune effector cells and the high activation of immunosuppressive cells contribute to this outcome. Therefore, modulating the function of the immune microenvironment in osteosarcoma is expected to remodel the immunosuppressive microenvironment of osteosarcoma and enhance the efficacy of immunotherapy. This article reviews the role of immune cells in the progression of osteosarcoma, describes the corresponding regulatory tools for the characteristics of different cells to enhance the efficacy of osteosarcoma immunotherapy, and concludes the prospects and future challenges of osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Heping Lian
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Jiakui Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuna Hou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Ma
- Nursing Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiachen Yu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Bhandarkar V, Dinter T, Spranger S. Architects of immunity: How dendritic cells shape CD8 + T cell fate in cancer. Sci Immunol 2025; 10:eadf4726. [PMID: 39823318 PMCID: PMC11970844 DOI: 10.1126/sciimmunol.adf4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8+ T cell fates in cancer, drawing on insights from acute and chronic viral infection models. We highlight the role of DCs in lymph nodes and tumors in maintaining stem-like CD8+ T cells, which are critical for durable antitumor immune responses. Understanding how CD8+ T cell fates are determined will enable the rational design of immunotherapies, particularly therapeutic cancer vaccines, that can modulate DC-T cell interactions to generate beneficial CD8+ T cell fates.
Collapse
Affiliation(s)
- Vidit Bhandarkar
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Teresa Dinter
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2025; 21:28-44. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Elewaut A, Estivill G, Bayerl F, Castillon L, Novatchkova M, Pottendorfer E, Hoffmann-Haas L, Schönlein M, Nguyen TV, Lauss M, Andreatta F, Vulin M, Krecioch I, Bayerl J, Pedde AM, Fabre N, Holstein F, Cronin SM, Rieser S, Laniti DD, Barras D, Coukos G, Quek C, Bai X, Muñoz I Ordoño M, Wiesner T, Zuber J, Jönsson G, Böttcher JP, Vanharanta S, Obenauf AC. Cancer cells impair monocyte-mediated T cell stimulation to evade immunity. Nature 2025; 637:716-725. [PMID: 39604727 PMCID: PMC7617236 DOI: 10.1038/s41586-024-08257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
The tumour microenvironment is programmed by cancer cells and substantially influences anti-tumour immune responses1,2. Within the tumour microenvironment, CD8+ T cells undergo full effector differentiation and acquire cytotoxic anti-tumour functions in specialized niches3-7. Although interactions with type 1 conventional dendritic cells have been implicated in this process3-5,8-10, the underlying cellular players and molecular mechanisms remain incompletely understood. Here we show that inflammatory monocytes can adopt a pivotal role in intratumoral T cell stimulation. These cells express Cxcl9, Cxcl10 and Il15, but in contrast to type 1 conventional dendritic cells, which cross-present antigens, inflammatory monocytes obtain and present peptide-major histocompatibility complex class I complexes from tumour cells through 'cross-dressing'. Hyperactivation of MAPK signalling in cancer cells hampers this process by coordinately blunting the production of type I interferon (IFN-I) cytokines and inducing the secretion of prostaglandin E2 (PGE2), which impairs the inflammatory monocyte state and intratumoral T cell stimulation. Enhancing IFN-I cytokine production and blocking PGE2 secretion restores this process and re-sensitizes tumours to T cell-mediated immunity. Together, our work uncovers a central role of inflammatory monocytes in intratumoral T cell stimulation, elucidates how oncogenic signalling disrupts T cell responses through counter-regulation of PGE2 and IFN-I, and proposes rational combination therapies to enhance immunotherapies.
Collapse
Affiliation(s)
- Anais Elewaut
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Guillem Estivill
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Felix Bayerl
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Leticia Castillon
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Elisabeth Pottendorfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Lisa Hoffmann-Haas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Schönlein
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Trung Viet Nguyen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Lauss
- Lund University Cancer Center, Division of Oncology, Lund University, Lund, Sweden
| | - Francesco Andreatta
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Milica Vulin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Izabela Krecioch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jonas Bayerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Naomi Fabre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Felix Holstein
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shona M Cronin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Sarah Rieser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xinyu Bai
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Miquel Muñoz I Ordoño
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Göran Jönsson
- Lund University Cancer Center, Division of Oncology, Lund University, Lund, Sweden
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Sakari Vanharanta
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna C Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
23
|
Zhao J, Chen H, Sun J. Dendritic Cell-Related Immune Marker CD1C for Predicting Prognosis and Immunotherapy Opportunities of Lung Adenocarcinoma Patients. Appl Biochem Biotechnol 2024; 196:8724-8740. [PMID: 38907868 DOI: 10.1007/s12010-024-04973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most frequent type of lung cancer with a high mortality rate. Here, we aim to explore novel immune-related biomarkers for LUAD patients. Datasets, mRNA expression profiles, and clinical data concerned with LUAD were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), respectively. Differential expression analysis was performed to obtain differentially expressed genes (DEGs). Based on DEGs, we conducted functional enrichment analyses. Subsequently, Kaplan‑Meier (KM) was performed to analyze survival differences among different groups. Furthermore, immune cell infiltration proportion was calculated by CIBERSORT and TIMER. The relationship between gene and immune response was analyzed using Tumor Immune System Interactions (TISIDB) database. Finally, Pearson correlation analysis was performed between CD1C and six immune checkpoints. We identified dendritic cells (DCs)-related expression profiles from four LUAD samples. DCs' immune marker CD1C in LUAD was selected by univariate Cox regression analysis. Low CD1C expression patients had a poor prognosis. A total of 332 DEGs were identified in high and low CD1C expression groups, which primarily enriched in 348 GO terms and 30 KEGG pathways. There were significant differences in the infiltration proportion of 17 immune cells between high and low CD1C expression groups. Most immunomodulators, chemokines, and chemokine receptors were positively associated with CD1C expression. Six immune checkpoints were also positively correlated with CD1C expression. DCs related immunomarker CD1C probably plays a pivotal part in prognosis and immunotherapy of LUAD via a joint analysis of single-cell and bulk sequencing data.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pulmonary and Critical Care Medicine, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No. 166, Yulong West Road, Yancheng, 224000, Jiangsu, P.R. China
| | - Hao Chen
- Yancheng Maternal and Child Health Care Hospital, Yancheng, 224000, Jiangsu, P.R. China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No. 166, Yulong West Road, Yancheng, 224000, Jiangsu, P.R. China.
| |
Collapse
|
24
|
Eren E, Das J, Tollefsbol TO. Polyphenols as Immunomodulators and Epigenetic Modulators: An Analysis of Their Role in the Treatment and Prevention of Breast Cancer. Nutrients 2024; 16:4143. [PMID: 39683540 PMCID: PMC11644657 DOI: 10.3390/nu16234143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer poses a substantial health challenge for women globally. Recently, there has been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only the adverse effects associated with conventional treatments but also their immune-preventive impacts. Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have received considerable attention in various fields of science due to their probable wellness merits, particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive and innate immune cells within the tumor-associated environment. Polyphenols are implicated in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of epigenetic modifications, and the support of immune functions. Additionally, these compounds have been shown to influence the activity of critical immune cells, including macrophages and T cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity of the defensive system to detect and eliminate tumors. The findings suggest that incorporating polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to classical breast cancer remedial procedures by regulating how the defense mechanism interacts with the disease.
Collapse
Affiliation(s)
- Esmanur Eren
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Jyotirmoyee Das
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.E.); (J.D.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
25
|
Xiao K, Zhang S, Peng Q, Du Y, Yao X, Ng II, Tang H. PD-L1 protects tumor-associated dendritic cells from ferroptosis during immunogenic chemotherapy. Cell Rep 2024; 43:114868. [PMID: 39423128 DOI: 10.1016/j.celrep.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Dendritic cells (DCs) express high levels of PD-L1 in the tumor microenvironment. However, the physiological functions of PD-L1 on DCs remain incompletely understood. Here, we explored the roles of PD-L1 signaling during immunogenic chemotherapy. We found that antitumor efficacy was dramatically reduced in the absence of PD-L1 on DCs. Chemotherapy reshaped the tumor immune microenvironment, particularly the DC compartment. In the absence of PD-L1, DCs were more susceptible to the cytotoxicity induced by chemotherapy. Mechanistically, loss of PD-L1 led to the downregulation of SLC7A11, resulting in increased lipid peroxidation that caused DCs to succumb to ferroptosis and dampened antitumor immune responses. Mice with Pdl1-deficient DCs were less efficient at priming T cells during chemotherapy. In cancer patients, a higher level of PD-L1 on DCs correlated with better prognosis after immunogenic chemotherapy. Collectively, these findings reveal an underappreciated role of PD-L1 in orchestrating DC survival, which is critical during chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaimin Xiao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Silin Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Peng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxia Du
- Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province 362000, China
| | - Xiyue Yao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ian-Ian Ng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haidong Tang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Sobral MC, Cabizzosu L, Kang SJ, Ruark K, Najibi AJ, Lane RS, Vitner E, Ijaz H, Dellacherie MO, Dacus MT, Tringides CM, de Lázaro I, Pittet MJ, Müller S, Turley SJ, Mooney DJ. IL-2/anti-IL-2 antibody complexes augment immune responses to therapeutic cancer vaccines. Proc Natl Acad Sci U S A 2024; 121:e2322356121. [PMID: 39556726 PMCID: PMC11621762 DOI: 10.1073/pnas.2322356121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
One driver of the high failure rates of clinical trials for therapeutic cancer vaccines is likely the inability to sufficiently engage conventional dendritic cells (cDCs), the antigen-presenting cell (APC) subset that is specialized in priming antitumor T cells. Here, we demonstrate that, relative to vaccination with an injectable mesoporous silica rod (MPS) vaccine alone (Vax), combining MPS vaccines with CD122-biased IL-2/anti-IL-2 antibody complexes (IL-2cx) drives ~3-fold expansion of cDCs at the vaccination sites, vaccine-draining lymph nodes, and spleens of treated mice. Furthermore, relative to Vax alone, Vax+IL-2cx led to a ~3-fold increase in the numbers of CD8+ T cells and ~15-fold increase in the numbers of NK cells at the vaccination site. Notably, with both the model protein antigen OVA as well as various peptide neoantigens, Vax+IL-2cx induced ~5 to 30-fold greater numbers of circulating antigen-specific CD8+ T cells relative to Vax alone. We further demonstrate that Vax+IL-2cx leads to significantly improved efficacy in the MC38 colon carcinoma model relative to either monotherapy alone, driving complete regressions in 50% of mice in a cDC-dependent manner. Relative to vaccine alone, Vax+IL-2cx led to comparable numbers of CD8+ T cells, but markedly greater numbers of NK cells and activated cDCs in the B16F10 melanoma tumor microenvironment post-therapy. Taken together, these findings suggest that the administration of factors that engage both the cDC-CD8+ T cell and cDC-NK cell axes can boost the potency of therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Miguel C. Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Laura Cabizzosu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Shawn J. Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Kyle Ruark
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Alex J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Ryan S. Lane
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA94080
| | - Einat Vitner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Hamza Ijaz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Maxence O. Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Mason T. Dacus
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Christina M. Tringides
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
- Harvard Program in Biophysics, Harvard University, Cambridge, MA02138
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| | - Mikaël J. Pittet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, GenevaCH-1211, Switzerland
- Ludwig Institute for Cancer Research, LausanneCH-1005, Switzerland
- Agora Cancer Center, LausanneCH-1005, Switzerland
| | - Sören Müller
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA94080
- Department of Neurological Surgery, University of California, San Francisco, CA94143
| | - Shannon J. Turley
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA94080
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA02215
| |
Collapse
|
27
|
Ping W, Zhang X, Zeng H, Zhu T, Zhang N, Yan Q. Ultrasound-Driven Nanomachine for Enhanced Sonodynamic Therapy of Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59803-59813. [PMID: 39437325 DOI: 10.1021/acsami.4c11546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Non-small-cell lung cancer (NSCLC) is the most prevalent type of lung cancer, and there is an urgent need for developing novel therapies. Sonodynamic therapy exhibits exceptional tissue penetration and minimal harm to healthy tissue, making it extremely promising for cancer treatment. The efficacy of SDT is limited by the intricate immunological microenvironment and the resistance to tumor treatment. This study developed targeted nanoparticles that use ultrasound to concentrate on treating NSCLC. The hybrid targeted nanoparticles utilize gold nanoparticles as their fundamental component, with the outside modified with engineered macrophage exosomes and the aptamer S11e to specifically target NSCLC. Ultrasound could effectively eliminate tumors in NSCLC cells by destroying lysosomes via targeted nanoparticles. Simultaneously, fragmented tumor antigens could effectively activate dendritic cell cells to recruit T cells. This method has significant efficacy in suppressing the development of NSCLC and exhibits potential for therapeutic application.
Collapse
Affiliation(s)
- Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Taomin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
28
|
Zhang X, Chen Y, Sun G, Fei Y, Zhu H, Liu Y, Dan J, Li C, Cao X, Liu J. Farnesyl pyrophosphate potentiates dendritic cell migration in autoimmunity through mitochondrial remodelling. Nat Metab 2024; 6:2118-2137. [PMID: 39425002 DOI: 10.1038/s42255-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Cellular metabolism modulates dendritic cell (DC) maturation and activation. Migratory dendritic cells (mig-DCs) travelling from the tissues to draining lymph nodes (dLNs) are critical for instructing adaptive immune responses. However, how lipid metabolites influence mig-DCs in autoimmunity remains elusive. Here, we demonstrate that farnesyl pyrophosphate (FPP), an intermediate of the mevalonate pathway, accumulates in mig-DCs derived from mice with systemic lupus erythematosus (SLE). FPP promotes mig-DC survival and germinal centre responses in the dLNs by coordinating protein geranylgeranylation and mitochondrial remodelling. Mechanistically, FPP-dependent RhoA geranylgeranylation promotes mitochondrial fusion and oxidative respiration through mitochondrial RhoA-MFN interaction, which subsequently facilitates the resolution of endoplasmic reticulum stress in mig-DCs. Simvastatin, a chemical inhibitor of the mevalonate pathway, restores mitochondrial function in mig-DCs and ameliorates systemic pathogenesis in SLE mice. Our study reveals a critical role for FPP in dictating mig-DC survival by reprogramming mitochondrial structure and metabolism, providing new insights into the pathogenesis of DC-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Xiaomin Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yali Chen
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Geng Sun
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yankang Fei
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Ha Zhu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yanfang Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Junyan Dan
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Chunzhen Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
| |
Collapse
|
29
|
Reste M, Ajazi K, Sayi-Yazgan A, Jankovic R, Bufan B, Brandau S, Bækkevold ES, Petitprez F, Lindstedt M, Adema GJ, Almeida CR. The role of dendritic cells in tertiary lymphoid structures: implications in cancer and autoimmune diseases. Front Immunol 2024; 15:1439413. [PMID: 39483484 PMCID: PMC11526390 DOI: 10.3389/fimmu.2024.1439413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are organized aggregates of immune cells such as T cells, B cells, and Dendritic Cells (DCs), as well as fibroblasts, formed postnatally in response to signals from cytokines and chemokines. Central to the function of TLS are DCs, professional antigen-presenting cells (APCs) that coordinate the adaptive immune response, and which can be classified into different subsets, with specific functions, and markers. In this article, we review current data on the contribution of different DC subsets to TLS function in cancer and autoimmunity, two opposite sides of the immune response. Different DC subsets can be found in different tumor types, correlating with cancer prognosis. Moreover, DCs are also present in TLS found in autoimmune and inflammatory conditions, contributing to disease development. Broadly, the presence of DCs in TLS appears to be associated with favorable clinical outcomes in cancer while in autoimmune pathologies these cells are associated with unfavorable prognosis. Therefore, it is important to analyze the complex functions of DCs within TLS in order to enhance our fundamental understanding of immune regulation but also as a possible route to create innovative clinical interventions designed for the specific needs of patients with diverse pathological diseases.
Collapse
Affiliation(s)
- Mariana Reste
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Kristi Ajazi
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ayca Sayi-Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Radmila Jankovic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catarina R. Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
30
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Chudnovskiy A, Castro TBR, Nakandakari-Higa S, Cui A, Lin CH, Sade-Feldman M, Phillips BK, Pae J, Mesin L, Bortolatto J, Schweitzer LD, Pasqual G, Lu LF, Hacohen N, Victora GD. Proximity-dependent labeling identifies dendritic cells that drive the tumor-specific CD4 + T cell response. Sci Immunol 2024; 9:eadq8843. [PMID: 39365874 DOI: 10.1126/sciimmunol.adq8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.
Collapse
Affiliation(s)
- Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Brooke K Phillips
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| |
Collapse
|
32
|
Bugno J, Wang L, Yu X, Cao X, Wang J, Huang X, Yang K, Piffko A, Chen K, Luo SY, Naccasha E, Hou Y, Fu S, He C, Fu YX, Liang HL, Weichselbaum RR. Targeting the Dendritic Cell-Secreted Immunoregulatory Cytokine CCL22 Alleviates Radioresistance. Clin Cancer Res 2024; 30:4450-4463. [PMID: 38691100 PMCID: PMC11444901 DOI: 10.1158/1078-0432.ccr-23-3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE Radiation-mediated immune suppression limits efficacy and is a barrier in cancer therapy. Radiation induces negative regulators of tumor immunity including regulatory T cells (Treg). Mechanisms underlying Treg infiltration after radiotherapy (RT) are poorly defined. Given that conventional dendritic cells (cDC) maintain Treg, we sought to identify and target cDC signaling to block Treg infiltration after radiation. EXPERIMENTAL DESIGN Transcriptomics and high dimensional flow cytometry revealed changes in murine tumor cDC that not only mediate Treg infiltration after RT but also associate with worse survival in human cancer datasets. Antibodies perturbing a cDC-CCL22-Treg axis were tested in syngeneic murine tumors. A prototype interferon-anti-epidermal growth factor receptor fusion protein (αEGFR-IFNα) was examined to block Treg infiltration and promote a CD8+ T cell response after RT. RESULTS Radiation expands a population of mature cDC1 enriched in immunoregulatory markers that mediates Treg infiltration via the Treg-recruiting chemokine CCL22. Blocking CCL22 or Treg depletion both enhanced RT efficacy. αEGFR-IFNα blocked cDC1 CCL22 production while simultaneously inducing an antitumor CD8+ T cell response to enhance RT efficacy in multiple EGFR-expressing murine tumor models, including following systemic administration. CONCLUSIONS We identify a previously unappreciated cDC mechanism mediating Treg tumor infiltration after RT. Our findings suggest blocking the cDC1-CCL22-Treg axis augments RT efficacy. αEGFR-IFNα added to RT provided robust antitumor responses better than systemic free interferon administration and may overcome clinical limitations to interferon therapy. Our findings highlight the complex behavior of cDC after RT and provide novel therapeutic strategies for overcoming RT-driven immunosuppression to improve RT efficacy. See related commentary by Kalinski et al., p. 4260.
Collapse
Affiliation(s)
- Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago; Chicago, USA
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Xianbin Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago; Chicago, USA
- Howard Hughes Medical Institute, University of Chicago; Chicago, USA
| | - Xuezhi Cao
- Guangzhou National Laboratory, Bio-Island; Guangzhou, China
| | - Jiaai Wang
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Andras Piffko
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
| | - Katherine Chen
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Stephen Y. Luo
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Emile Naccasha
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University; Xi’an, China
| | - Sherry Fu
- UT Southwestern Medical School, University of Texas Southwestern Medical Center; Dallas, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago; Chicago, USA
- Howard Hughes Medical Institute, University of Chicago; Chicago, USA
| | - Yang-xin Fu
- Department of Basic Medical Science, Tsinghua University; Beijing, China
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago; Chicago, USA
- Ludwig Center for Metastasis Research, University of Chicago; Chicago, USA
| |
Collapse
|
33
|
Ozakinci H, Song X, Nazario GS, Lila T, Chen B, Simpson T, Nguyen JV, Moran Segura CM, Thompson ZJ, Thapa R, Rose TA, Haura EB, Pellini B, Yu X, Ruffell BH, Chen DT, Boyle TA, Beg AA. Rapid Autopsy to Define Dendritic Cell Spatial Distribution and T Cell Association in Lung Adenocarcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1033-1041. [PMID: 39120462 PMCID: PMC11404669 DOI: 10.4049/jimmunol.2400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Immunotherapy response is associated with the presence of conventional dendritic cells (cDCs). cDC type 1 (cDC1) is critically important for CD8+ T cell activation, cDC type 2 (cDC2) regulates CD4+ T cell responses, and mature regulatory cDCs may dampen T cell responses in the tumor microenvironment (TME). However, we lack a clear understanding of cDC distribution in the human TME, cDC prevalence in metastatic sites, and cDC differences in early- versus late-stage disease. Rapid autopsy specimens of 10 patients with lung adenocarcinoma were evaluated to detect cDCs and immune cells via multiplex immunofluorescence using 18 markers and 42 tumors. First, we found that T cells, cDC1, and cDC2 were confined to stroma, whereas mature regulatory DCs were enriched in tumor, suggesting unique localization-specific functions. Second, lung and lymph node tumors were more enriched in T cells and cDCs than liver tumors, underscoring differences in the TME of metastatic sites. Third, although the proportion of T cells and cDC1 did not differ in different stages, an increase in the proportion of cDC2 and macrophages in late stage suggests potential differences in regulation of T cell responses in different stages. Collectively, these findings provide new, to our knowledge, insights into cDC biology in human cancer that may have important therapeutic implications.
Collapse
Affiliation(s)
- Hilal Ozakinci
- Thoracic Oncology Department, Moffitt Cancer Center, Tampa, FL
| | - Xiaofei Song
- Biostatistics and Bioinformatics Department, Moffitt Cancer Center, Tampa, FL
| | - Gina S Nazario
- Thoracic Oncology Department, Moffitt Cancer Center, Tampa, FL
| | - Thomas Lila
- Solid Tumor Translational Medicine, Bristol Myers Squibb, Cambridge, MA
| | - Benjamin Chen
- Solid Tumor Translational Medicine, Bristol Myers Squibb, Cambridge, MA
| | - Tyler Simpson
- Solid Tumor Translational Medicine, Bristol Myers Squibb, Cambridge, MA
| | - Jonathan V Nguyen
- Advanced Analytical and Digital Laboratory, Moffitt Cancer Center, Tampa, FL
| | | | - Zachary J Thompson
- Biostatistics and Bioinformatics Department, Moffitt Cancer Center, Tampa, FL
| | - Ram Thapa
- Biostatistics and Bioinformatics Department, Moffitt Cancer Center, Tampa, FL
| | - Trevor A Rose
- Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center, Tampa, FL
| | - Eric B Haura
- Thoracic Oncology Department, Moffitt Cancer Center, Tampa, FL
| | - Bruna Pellini
- Thoracic Oncology Department, Moffitt Cancer Center, Tampa, FL
| | - Xiaoqing Yu
- Biostatistics and Bioinformatics Department, Moffitt Cancer Center, Tampa, FL
| | | | - Dung-Tsa Chen
- Biostatistics and Bioinformatics Department, Moffitt Cancer Center, Tampa, FL
| | - Theresa A Boyle
- Thoracic Oncology Department, Moffitt Cancer Center, Tampa, FL
- Pathology Department, Moffitt Cancer Center, Tampa, FL
| | - Amer A Beg
- Thoracic Oncology Department, Moffitt Cancer Center, Tampa, FL
- Immunology Department, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
34
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
35
|
Protti G, Spreafico R. A primer on single-cell RNA-seq analysis using dendritic cells as a case study. FEBS Lett 2024. [PMID: 39245787 DOI: 10.1002/1873-3468.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Recent advances in single-cell (sc) transcriptomics have revolutionized our understanding of dendritic cells (DCs), pivotal players of the immune system. ScRNA-sequencing (scRNA-seq) has unraveled a previously unrecognized complexity and heterogeneity of DC subsets, shedding light on their ontogeny and specialized roles. However, navigating the rapid technological progress and computational methods can be daunting for researchers unfamiliar with the field. This review aims to provide immunologists with a comprehensive introduction to sc transcriptomic analysis, offering insights into recent developments in DC biology. Addressing common analytical queries, we guide readers through popular tools and methodologies, supplemented with references to benchmarks and tutorials for in-depth understanding. By examining findings from pioneering studies, we illustrate how computational techniques have expanded our knowledge of DC biology. Through this synthesis, we aim to equip researchers with the necessary tools and knowledge to navigate and leverage scRNA-seq for unraveling the intricacies of DC biology and advancing immunological research.
Collapse
Affiliation(s)
- Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Lee CY, Clatworthy MR, Withers DR. Decoding changes in tumor-infiltrating leukocytes through dynamic experimental models and single-cell technologies. Immunol Cell Biol 2024; 102:665-679. [PMID: 38853634 DOI: 10.1111/imcb.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
The ability to characterize immune cells and explore the molecular interactions that govern their functions has never been greater, fueled in recent years by the revolutionary advance of single-cell analysis platforms. However, precisely how immune cells respond to different stimuli and where differentiation processes and effector functions operate remain incompletely understood. Inferring cellular fate within single-cell transcriptomic analyses is now omnipresent, despite the assumptions typically required in such analyses. Recently developed experimental models support dynamic analyses of the immune response, providing insights into the temporal changes that occur within cells and the tissues in which such transitions occur. Here we will review these approaches and discuss how these can be combined with single-cell technologies to develop a deeper understanding of the immune responses that should support the development of better therapeutic options for patients.
Collapse
Affiliation(s)
- Colin Yc Lee
- Cambridge Institute of Therapeutic Immunology and Infection Disease, University of Cambridge, Cambridge, UK
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infection Disease, University of Cambridge, Cambridge, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
38
|
Wang ZB, Zhang X, Fang C, Liu XT, Liao QJ, Wu N, Wang J. Immunotherapy and the ovarian cancer microenvironment: Exploring potential strategies for enhanced treatment efficacy. Immunology 2024; 173:14-32. [PMID: 38618976 DOI: 10.1111/imm.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Chao Fang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiao-Ting Liu
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| |
Collapse
|
39
|
Fan Z, Ye M, Liu D, Zhou W, Zeng T, He S, Li Y. Lactate drives the ESM1-SCD1 axis to inhibit the antitumor CD8 + T-cell response by activating the Wnt/β-catenin pathway in ovarian cancer cells and inducing cisplatin resistance. Int Immunopharmacol 2024; 137:112461. [PMID: 38897128 DOI: 10.1016/j.intimp.2024.112461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Ovarian cancer (OC) is a gynecological malignancy that results in a global threat to women's lives. Lactic acid, a key metabolite produced from the glycolytic metabolism of glucose molecules, is correlated with tumor immune infiltration and platinum resistance. In our previous study, we found that endothelial cell-specific molecule 1 (ESM1) plays a key role in OC progression. This study revealed that lactate could upregulate ESM1, which enhances SCD1 to attenuate the antitumor CD8+ T-cell response. ESM1 and SCD1 expression levels were significantly greater in OC patients with high lactic acid levels than in those with low lactic acid levels. Further mechanistic studies suggested that the Wnt/β-catenin pathway was inactivated after ESM1 knockdown and rescued by SCD1 overexpression. IC50 analysis indicated that the ESM1-SCD1 axis induces the resistance of OC cells to platinum agents, including cisplatin, carboplatin, and oxaliplatin, by upregulating P-gp. In conclusion, our study indicated that the induction of SCD1 by lactic acid-induced ESM1 can impede the CD8+ T-cell response against tumors and promote resistance to cisplatin by activating the Wnt/β-catenin pathway in ovarian cancer. Consequently, targeting ESM1 may have considerable therapeutic potential for modulating the tumor immune microenvironment and enhancing drug sensitivity in OC patients.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Mingzhu Ye
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Sili He
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
40
|
Zhao Q, Yu H, Shi M, Wang X, Fan Z, Wang Z. Tumor microenvironment characteristics of lipid metabolism reprogramming related to ferroptosis and EndMT influencing prognosis in gastric cancer. Int Immunopharmacol 2024; 137:112433. [PMID: 38870879 DOI: 10.1016/j.intimp.2024.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a refractory malignant tumor with high tumor heterogeneity, a low rate of early diagnosis, and poor patient prognosis. Lipid metabolism reprogramming plays a critical role in tumorigenesis and progression, but its prognostic role and regulatory mechanism in GC are rarely studied. Thus, the identification of signatures related to lipid metabolism is necessary and may present a new avenue for improving the overall prognosis of GC. METHODS Lipid metabolism-associated genes (LMAGs) with differential expression in tumor and tumor-adjacent tissue were acquired to identify lipid metabolism-associated subtypes. The differentially expressed genes (DEGs) between the two clusters were then utilized for prognostic analysis and signature construction. Additionally, pathway enrichment analysis and immune cell infiltration analysis were employed to identify the characteristics of the prognostic model. Further analyses were conducted at the single-cell level to better understand the model's prognostic mechanism. Finally, the prediction of immunotherapy response was used to suggest potential treatments. RESULTS Two lipid metabolism-associated subtypes were identified and 9 prognosis-related genes from the DEGs between the two clusters were collected for the construction of the prognostic model named lipid metabolism-associated signature (LMAS). Then we found the low LMAS patients with favorable prognoses were more sensitive to ferroptosis in the Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD). Meanwhile, the tumor cells exhibiting high levels of lipid peroxidation and accumulation of reactive oxygen species (ROS) in single-cell levels were primarily enriched in the low LMAS group, which was more likely to induce ferroptosis. In addition, endothelial cells and cancer-associated fibroblasts (CAFs) facilitated tumor angiogenesis, proliferation, invasion, and metastasis through endothelial-mesenchymal transition (EndMT), affecting the prognosis of the patients with high LMAS scores. Moreover, CD1C- CD141- dendritic cells (DCs) also secreted pro-tumorigenic cytokines to regulate the function of endothelial cells and CAFs. Finally, the patients with low LMAS scores might have better efficacy in immunotherapy. CONCLUSIONS A LMAS was constructed to guide GC prognosis and therapy. Meanwhile, a novel anti-tumor effect was found in lipid metabolism reprogramming of GC which improved patients' prognosis by regulating the sensitivity of tumor cells to ferroptosis. Moreover, EndMT may have a negative impact on GC prognosis.
Collapse
Affiliation(s)
- Qian Zhao
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China; School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Hui Yu
- Translational Medicine Center, Baotou Medical College, Baotou 014040, China
| | - Mengqi Shi
- School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Xujie Wang
- School of Basic Medicine, Baotou Medical College, Baotou 014040, China
| | - Zixu Fan
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou 014030, China.
| |
Collapse
|
41
|
Tran MA, Youssef D, Shroff S, Chowhan D, Beaumont KG, Sebra R, Mehrazin R, Wiklund P, Lin JJ, Horowitz A, Farkas AM, Galsky MD, Sfakianos JP, Bhardwaj N. Urine scRNAseq reveals new insights into the bladder tumor immune microenvironment. J Exp Med 2024; 221:e20240045. [PMID: 38847806 PMCID: PMC11157455 DOI: 10.1084/jem.20240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
Due to bladder tumors' contact with urine, urine-derived cells (UDCs) may serve as a surrogate for monitoring the tumor microenvironment (TME) in bladder cancer (BC). However, the composition of UDCs and the extent to which they mirror the tumor remain poorly characterized. We generated the first single-cell RNA-sequencing of BC patient UDCs with matched tumor and peripheral blood mononuclear cells (PBMC). BC urine was more cellular than healthy donor (HD) urine, containing multiple immune populations including myeloid cells, CD4+ and CD8+ T cells, natural killer (NK) cells, B cells, and dendritic cells (DCs) in addition to tumor and stromal cells. Immune UDCs were transcriptionally more similar to tumor than blood. UDCs encompassed cytotoxic and activated CD4+ T cells, exhausted and tissue-resident memory CD8+ T cells, macrophages, germinal-center-like B cells, tissue-resident and adaptive NK cells, and regulatory DCs found in tumor but lacking or absent in blood. Our findings suggest BC UDCs may be surrogates for the TME and serve as therapeutic biomarkers.
Collapse
Affiliation(s)
- Michelle A. Tran
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dina Youssef
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjana Shroff
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Disha Chowhan
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G. Beaumont
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenny J. Lin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Department of Immunology and Immunotherapy, The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M. Farkas
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P. Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
42
|
Oh Y, Kim S, Kim Y, Kim H, Jang D, Shin S, Lee SJ, Kim J, Lee SE, Oh J, Yang Y, Kim D, Jung HR, Kim S, Kim J, Min K, Cho B, Seo H, Han D, Park H, Cho SY. Genome-wide CRISPR screening identifies tyrosylprotein sulfotransferase-2 as a target for augmenting anti-PD1 efficacy. Mol Cancer 2024; 23:155. [PMID: 39095793 PMCID: PMC11295332 DOI: 10.1186/s12943-024-02068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Immune checkpoint therapy (ICT) provides durable responses in select cancer patients, yet resistance remains a significant challenge, prompting the exploration of underlying molecular mechanisms. Tyrosylprotein sulfotransferase-2 (TPST2), known for its role in protein tyrosine O-sulfation, has been suggested to modulate the extracellular protein-protein interactions, but its specific role in cancer immunity remains largely unexplored. METHODS To explore tumor cell-intrinsic factors influencing anti-PD1 responsiveness, we conducted a pooled loss-of-function genetic screen in humanized mice engrafted with human immune cells. The responsiveness of cancer cells to interferon-γ (IFNγ) was estimated by evaluating IFNγ-mediated induction of target genes, STAT1 phosphorylation, HLA expression, and cell growth suppression. The sulfotyrosine-modified target gene of TPST2 was identified by co-immunoprecipitation and mass spectrometry. The in vivo effects of TPST2 inhibition were evaluated using mouse syngeneic tumor models and corroborated by bulk and single-cell RNA sequencing analyses. RESULTS Through in vivo genome-wide CRISPR screening, TPST2 loss-of-function emerged as a potential enhancer of anti-PD1 treatment efficacy. TPST2 suppressed IFNγ signaling by sulfating IFNγ receptor 1 at Y397 residue, while its downregulation boosted IFNγ-mediated signaling and antigen presentation. Depletion of TPST2 in cancer cells augmented anti-PD1 antibody efficacy in syngeneic mouse tumor models by enhancing tumor-infiltrating lymphocytes. RNA sequencing data revealed TPST2's inverse correlation with antigen presentation, and increased TPST2 expression is associated with poor prognosis and altered cancer immunity across cancer types. CONCLUSIONS We propose TPST2's novel role as a suppressor of cancer immunity and advocate for its consideration as a therapeutic target in ICT-based treatments.
Collapse
Affiliation(s)
- Yumi Oh
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Dongjun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seungjae Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soo-Jin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yoojin Yang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dohee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hae Rim Jung
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sangjin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Jihui Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Kyungchan Min
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Beomki Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Hoseok Seo
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea.
- Genome&Company, Suwon, 16229, Korea.
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
| |
Collapse
|
43
|
Wang C, Chen L, Fu D, Liu W, Puri A, Kellis M, Yang J. Antigen presenting cells in cancer immunity and mediation of immune checkpoint blockade. Clin Exp Metastasis 2024; 41:333-349. [PMID: 38261139 PMCID: PMC11374820 DOI: 10.1007/s10585-023-10257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Antigen-presenting cells (APCs) are pivotal mediators of immune responses. Their role has increasingly been spotlighted in the realm of cancer immunology, particularly as our understanding of immunotherapy continues to evolve and improve. There is growing evidence that these cells play a non-trivial role in cancer immunity and have roles dependent on surface markers, growth factors, transcription factors, and their surrounding environment. The main dendritic cell (DC) subsets found in cancer are conventional DCs (cDC1 and cDC2), monocyte-derived DCs (moDC), plasmacytoid DCs (pDC), and mature and regulatory DCs (mregDC). The notable subsets of monocytes and macrophages include classical and non-classical monocytes, macrophages, which demonstrate a continuum from a pro-inflammatory (M1) phenotype to an anti-inflammatory (M2) phenotype, and tumor-associated macrophages (TAMs). Despite their classification in the same cell type, each subset may take on an immune-activating or immunosuppressive phenotype, shaped by factors in the tumor microenvironment (TME). In this review, we introduce the role of DCs, monocytes, and macrophages and recent studies investigating them in the cancer immunity context. Additionally, we review how certain characteristics such as abundance, surface markers, and indirect or direct signaling pathways of DCs and macrophages may influence tumor response to immune checkpoint blockade (ICB) therapy. We also highlight existing knowledge gaps regarding the precise contributions of different myeloid cell subsets in influencing the response to ICB therapy. These findings provide a summary of our current understanding of myeloid cells in mediating cancer immunity and ICB and offer insight into alternative or combination therapies that may enhance the success of ICB in cancers.
Collapse
Affiliation(s)
- Cassia Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee Chen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Doris Fu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendi Liu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Anusha Puri
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
44
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
45
|
Choi JE, Qiao Y, Kryczek I, Yu J, Gurkan J, Bao Y, Gondal M, Tien JCY, Maj T, Yazdani S, Parolia A, Xia H, Zhou J, Wei S, Grove S, Vatan L, Lin H, Li G, Zheng Y, Zhang Y, Cao X, Su F, Wang R, He T, Cieslik M, Green MD, Zou W, Chinnaiyan AM. PIKfyve controls dendritic cell function and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582543. [PMID: 38464258 PMCID: PMC10925294 DOI: 10.1101/2024.02.28.582543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Gurkan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mahnoor Gondal
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - JiaJia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael D. Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Choi JE, Qiao Y, Kryczek I, Yu J, Gurkan J, Bao Y, Gondal M, Tien JCY, Maj T, Yazdani S, Parolia A, Xia H, Zhou J, Wei S, Grove S, Vatan L, Lin H, Li G, Zheng Y, Zhang Y, Cao X, Su F, Wang R, He T, Cieslik M, Green MD, Zou W, Chinnaiyan AM. PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nat Commun 2024; 15:5487. [PMID: 38942798 PMCID: PMC11213953 DOI: 10.1038/s41467-024-48931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/15/2024] [Indexed: 06/30/2024] Open
Abstract
Cancer treatment continues to shift from utilizing traditional therapies to targeted ones, such as protein kinase inhibitors and immunotherapy. Mobilizing dendritic cells (DC) and other myeloid cells with antigen presenting and cancer cell killing capacities is an attractive but not fully exploited approach. Here, we show that PIKFYVE is a shared gene target of clinically relevant protein kinase inhibitors and high expression of this gene in DCs is associated with poor patient response to immune checkpoint blockade (ICB) therapy. Genetic and pharmacological studies demonstrate that PIKfyve ablation enhances the function of CD11c+ cells (predominantly dendritic cells) via selectively altering the non-canonical NF-κB pathway. Both loss of Pikfyve in CD11c+ cells and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively regulates the function of CD11c+ cells, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Yuanyuan Qiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Gurkan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi Bao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mahnoor Gondal
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - JiaJia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Vadakekolathu J, Rutella S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood 2024; 143:2689-2700. [PMID: 37467496 PMCID: PMC11251208 DOI: 10.1182/blood.2023019961] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
ABSTRACT Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T-cell-targeting approaches, including checkpoint inhibitors (CPIs). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and postchemotherapy or posttransplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon gamma (IFN-γ) signaling were shown to derive clinical benefit from CD123×CD3-bispecific dual-affinity retargeting molecules and CPIs, while being less likely to respond to standard-of-care cytotoxic chemotherapy. In this review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T-cell-mediated killing, and the dichotomous roles of type I and II IFN in antitumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPIs and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
48
|
Cheng K, Seita Y, Whelan EC, Yokomizo R, Hwang YS, Rotolo A, Krantz ID, Ginsberg JP, Kolon TF, Lal P, Luo X, Pierorazio PM, Linn RL, Ryeom S, Sasaki K. Defining the cellular origin of seminoma by transcriptional and epigenetic mapping to the normal human germline. Cell Rep 2024; 43:114323. [PMID: 38861385 DOI: 10.1016/j.celrep.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.
Collapse
Affiliation(s)
- Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Eoin C Whelan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ryo Yokomizo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Antonia Rotolo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ian D Krantz
- Division of Human Genetics, The Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jill P Ginsberg
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Thomas F Kolon
- Division of Urology, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Xunda Luo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Presbyterian Medical Center, 51 North 39th Street, Philadelphia, PA 19104, USA
| | - Phillip M Pierorazio
- Division of Urology, University of Pennsylvania Presbyterian Medical Center, 3737 Market St. 4th Floor, Philadelphia, PA 19104, USA
| | - Rebecca L Linn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Sandra Ryeom
- Department of Surgery, Columbia University Irving Medical Center, 630 W. 168th Street, P&S 17-409, New York, NY 10032, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Chen MY, Zhang F, Goedegebuure SP, Gillanders WE. Dendritic cell subsets and implications for cancer immunotherapy. Front Immunol 2024; 15:1393451. [PMID: 38903502 PMCID: PMC11188312 DOI: 10.3389/fimmu.2024.1393451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.
Collapse
Affiliation(s)
- Michael Y. Chen
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Simon Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
50
|
Subtil B, van der Hoorn IAE, Cuenca-Escalona J, Becker AMD, Alvarez-Begue M, Iyer KK, Janssen J, van Oorschot T, Poel D, Gorris MAJ, van den Dries K, Cambi A, Tauriello DVF, de Vries IJM. cDC2 plasticity and acquisition of a DC3-like phenotype mediated by IL-6 and PGE2 in a patient-derived colorectal cancer organoids model. Eur J Immunol 2024; 54:e2350891. [PMID: 38509863 DOI: 10.1002/eji.202350891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Subtil
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Iris A E van der Hoorn
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorge Cuenca-Escalona
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anouk M D Becker
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mar Alvarez-Begue
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kirti K Iyer
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorien Janssen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom van Oorschot
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dennis Poel
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark A J Gorris
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alessandra Cambi
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daniele V F Tauriello
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|