1
|
Kock KH, Tan LM, Han KY, Ando Y, Jevapatarakul D, Chatterjee A, Lin QXX, Buyamin EV, Sonthalia R, Rajagopalan D, Tomofuji Y, Sankaran S, Park MS, Abe M, Chantaraamporn J, Furukawa S, Ghosh S, Inoue G, Kojima M, Kouno T, Lim J, Myouzen K, Nguantad S, Oh JM, Rayan NA, Sarkar S, Suzuki A, Thungsatianpun N, Venkatesh PN, Moody J, Nakano M, Chen Z, Tian C, Zhang Y, Tong Y, Tan CTY, Tizazu AM, Loh M, Hwang YY, Ho RC, Larbi A, Ng TP, Won HH, Wright FA, Villani AC, Park JE, Choi M, Liu B, Maitra A, Pithukpakorn M, Suktitipat B, Ishigaki K, Okada Y, Yamamoto K, Carninci P, Chambers JC, Hon CC, Matangkasombut P, Charoensawan V, Majumder PP, Shin JW, Park WY, Prabhakar S. Asian diversity in human immune cells. Cell 2025; 188:2288-2306.e24. [PMID: 40112801 DOI: 10.1016/j.cell.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/03/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
The relationships of human diversity with biomedical phenotypes are pervasive yet remain understudied, particularly in a single-cell genomics context. Here, we present the Asian Immune Diversity Atlas (AIDA), a multi-national single-cell RNA sequencing (scRNA-seq) healthy reference atlas of human immune cells. AIDA comprises 1,265,624 circulating immune cells from 619 donors, spanning 7 population groups across 5 Asian countries, and 6 controls. Though population groups are frequently compared at the continental level, we found that sub-continental diversity, age, and sex pervasively impacted cellular and molecular properties of immune cells. These included differential abundance of cell neighborhoods as well as cell populations and genes relevant to disease risk, pathogenesis, and diagnostics. We discovered functional genetic variants influencing cell-type-specific gene expression, which were under-represented in non-Asian populations, and helped contextualize disease-associated variants. AIDA enables analyses of multi-ancestry disease datasets and facilitates the development of precision medicine efforts in Asia and beyond.
Collapse
Affiliation(s)
- Kian Hong Kock
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Le Min Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Yoshinari Ando
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Damita Jevapatarakul
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ankita Chatterjee
- John C. Martin Centre for Liver Research and Innovations, Sonarpur, Kolkata 700150, India
| | - Quy Xiao Xuan Lin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Eliora Violain Buyamin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Radhika Sonthalia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Deepa Rajagopalan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Yoshihiko Tomofuji
- Laboratory for Systems Genetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shvetha Sankaran
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Mi-So Park
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Mai Abe
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Juthamard Chantaraamporn
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Seiko Furukawa
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Supratim Ghosh
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Gyo Inoue
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Miki Kojima
- Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jinyeong Lim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sarintip Nguantad
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jin-Mi Oh
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nirmala Arul Rayan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sumanta Sarkar
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Narita Thungsatianpun
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasanna Nori Venkatesh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Jonathan Moody
- Laboratory for Genome Information Analysis, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masahiro Nakano
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ziyue Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Chi Tian
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Yuntian Zhang
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine (YLLSoM), NUS, Singapore 119228, Singapore
| | - Yihan Tong
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Crystal T Y Tan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Anteneh Mehari Tizazu
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Marie Loh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Roger C Ho
- Department of Psychological Medicine, YLLSoM, NUS, 1E Kent Ridge Road, Singapore 119228, Singapore; Institute for Health Innovation & Technology, NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Tze Pin Ng
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore 768828, Singapore; St Luke's Hospital, Singapore 659674, Singapore; Geriatric Education and Research Institute, Singapore 768024, Singapore
| | - Hong-Hee Won
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Fred A Wright
- Department of Biological Sciences, Bioinformatics Research Center, and Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, and Mass General Cancer Center, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34051, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Boxiang Liu
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore; Department of Biomedical Informatics, Yong Loo Lin School of Medicine (YLLSoM), NUS, Singapore 119228, Singapore; Precision Medicine Translational Research Programme, NUS Centre for Cancer Research, and Cardiovascular-Metabolic Disease Translational Research Programme, YLLSoM, NUS, Singapore 119228, Singapore
| | - Arindam Maitra
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Manop Pithukpakorn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bhoom Suktitipat
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita 565-0871, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Genomics Research Center, Fondazione Human Technopole, Viale Rita Levi-Montalcini, 1 - Area MIND, Milano, Lombardy 20157, Italy
| | - John C Chambers
- Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-3-2 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Ponpan Matangkasombut
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Varodom Charoensawan
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand; Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Partha P Majumder
- John C. Martin Centre for Liver Research and Innovations, Sonarpur, Kolkata 700150, India; Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea.
| | - Shyam Prabhakar
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore; Cancer Science Institute of Singapore, NUS, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
2
|
Fryer HA, Pitt C, Frost HR, Kandhari N, Byars S, Lim PS, Nguyen TT, Chheng K, Caltabiano N, Whitcombe AL, Hamelink J, Andrew D, Lloyd G, Wilson-Boyd B, Slee N, Ballantine J, Vasani S, Girling K, Gubbels L, Levi E, Davies K, Tangye S, Noonan J, Moreland NJ, Quast I, Robinson MJ, Scally SW, Neeland M, Shanthikumar S, Osowicki J, Tarlinton DM, Steer AC, Boyle MJ, Hill DL. Antibody responses against bacterial glycans affinity mature and diversify in germinal centers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645614. [PMID: 40236127 PMCID: PMC11996302 DOI: 10.1101/2025.03.26.645614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Anti-carbohydrate antibodies (Abs) play crucial roles in pathogen control, but their generation remains poorly understood. By studying responses to Streptococcus pyogenes in humans, we reveal that the glycan-targeted response shifts from IgM towards IgG and IgA memory with age and antigen exposure across blood, spleen, and tonsils. Both natural colonization and controlled human infection with S. pyogenes increased class-switched B cells, with evidence of within-clone switching. Glycan-specific B cells readily participated in germinal center (GC) responses and showed robust somatic hypermutation despite a molecular signature consistent with receiving reduced T cell help. We conclude that mucosal pathogen encounters elicit glycan responses that class-switch, evolve and diversify through the GC. These findings reveal how age and infection history can influence the quality, quantity, and isotype use of glycan-specific B cells, with implications for the design and schedule of glycan-containing vaccines.
Collapse
|
3
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Thouvenel CD, Tipton CM, Yamazaki Y, Zhang TT, Rylaarsdam S, Hom JR, Snead C, Zhu C, Li QZ, Lee YN, Kawai T, Haque N, Zimmermann MT, Ponnan SM, Jackson SW, James RG, Sanz I, Notarangelo LD, Torgerson TR, Ochs HD, Rawlings DJ, Allenspach EJ. Hypomorphic RAG2 Deficiency Promotes Selection of Self-Reactive B Cells. J Clin Immunol 2025; 45:66. [PMID: 39812873 PMCID: PMC11735530 DOI: 10.1007/s10875-024-01849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study. Whole-genome and repertoire sequencing, bacteriophage immunizations, and deep immunophenotyping were used to compare affected and unaffected family members. The clinical phenotype of three affected siblings with hypomorphic RAG deficiency ranged from combined immunodeficiency and early mortality to a late-onset CID with hyper-IgM phenotype. T cells were remarkably similar across affected siblings, yet CDR3 skewing and regulatory T cell defects were not observed. B cell analysis showed elevated unswitched CD27+ and CD21low cells as well as features of an autoreactive antibody repertoire and presence of secreted autoantibodies, yet no clinical autoimmunity was present. Most striking was an expanded polyclonal marginal zone-like B cell population (IgM+IgD+CD27+) utilizing the self-reactive unmutated VH4-34 receptor demonstrating that hypomorphic RAG deficiency can promote expansion of self-reactive B cells. This process, however, was not sufficient to trigger clinical autoimmunity. Utilizing multiple approaches, we functionally measured the specific RAG2 variant effects and assessed how selection and secondary triggers altered the BCR repertoire and immunophenotype overtime. Overall, we demonstrate a broad disease spectrum in siblings with identical hypomorphic RAG deficiency, highlighting that phenotypic divergence can result from expansion of IgM + memory B cells.
Collapse
Affiliation(s)
- Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christopher M Tipton
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Ting Zhang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stacey Rylaarsdam
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jennifer R Hom
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Ramat-Gan and Sackler Faculty of Medicine, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv, Israel
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Rich G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ignacio Sanz
- Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Boudigou M, Frutoso M, Hémon P, Le Dantec C, Chatzis L, Devauchelle V, Jamin C, Cornec D, Pers JO, Le Pottier L, Hillion S. Phenotypic, transcriptomic, and spatial characterization of CD45RB + naïve mature B cells: Implications in Sjögren's disease. Clin Immunol 2024; 268:110378. [PMID: 39393568 DOI: 10.1016/j.clim.2024.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
The conventional classification of mature B cells overlooks the diversity within IgD+ CD27- naïve B cells. Here, to identify distinct mature naïve B cells, we categorized CD45RBMEM55- B cells (NA RB-) and CD45RBMEM55+ B cells (NA RB+) and explore their function and localization in circulation and tissues under physiological and pathological conditions. NA RB+ B cells, found in secondary lymphoid organs, differentiate into plasmablasts and secrete IgM. In Sjögren's disease, their numbers decrease, and they show over-activation and abnormal migration, suggesting an adaptive disease response. NA RB+ B cells also appear in inflamed salivary glands, indicating involvement in local immune responses. These findings highlight the distinct roles of NA RB+ B cells in health and Sjögren's disease.
Collapse
Affiliation(s)
| | | | | | | | - Loukas Chatzis
- UMR1227, LBAI, Univ Brest, Inserm, Brest, France; Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Divi Cornec
- UMR1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| | | | | | - Sophie Hillion
- UMR1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France.
| |
Collapse
|
6
|
Schett G, Nagy G, Krönke G, Mielenz D. B-cell depletion in autoimmune diseases. Ann Rheum Dis 2024; 83:1409-1420. [PMID: 38777374 DOI: 10.1136/ard-2024-225727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
B cells have a pivotal function in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and systemic lupus erythematosus. In autoimmune disease, B cells orchestrate antigen presentation, cytokine production and autoantibody production, the latter via their differentiation into antibody-secreting plasmablasts and plasma cells. This article addresses the current therapeutic strategies to deplete B cells in order to ameliorate or potentially even cure autoimmune disease. It addresses the main target antigens in the B-cell lineage that are used for therapeutic approaches. Furthermore, it summarises the current evidence for successful treatment of autoimmune disease with monoclonal antibodies targeting B cells and the limitations and challenges of these approaches. Finally, the concept of deep B-cell depletion and immunological reset by chimeric antigen receptor T cells is discussed, as well as the lessons from this approach for better understanding the role of B cells in autoimmune disease.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - György Nagy
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Charite, Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
7
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Spencer J, Dionisi C. Immature B cell homing shapes human lymphoid tissue structure and function. J Exp Med 2024; 221:e20240085. [PMID: 39093311 PMCID: PMC11296955 DOI: 10.1084/jem.20240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Shortly after the emergence of newly formed human B cells from bone marrow as transitional cells, they diverge along two developmental pathways that can be distinguished by the level of IgM they express and migratory biases. Here, we propose that differential tissue homing of immature B cell subsets contributes to human lymphoid tissue structure and function.
Collapse
Affiliation(s)
- Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Ransegnola BP, Pattarabanjird T, McNamara CA. Tipping the Scale: Atheroprotective IgM-Producing B Cells in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1906-1915. [PMID: 39022832 PMCID: PMC11338718 DOI: 10.1161/atvbaha.124.319847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease whose progression is fueled by proinflammatory moieties and limited by anti-inflammatory mediators. Whereas oxidative damage and the generation of oxidation-specific epitopes that act as damage-associated molecular patterns are highly inflammatory, IgM antibodies produced by B-1 and marginal zone B cells counteract unrestricted inflammation by neutralizing and encouraging clearance of these proinflammatory signals. In this review, we focus on describing the identities of IgM-producing B cells in both mice and humans, elaborating the mechanisms underlying IgM production, and discussing the potential strategies to augment the production of atheroprotective IgM. In addition, we will discuss promising therapeutic interventions in humans to help tip the scale toward augmentation of IgM production and to provide atheroprotection.
Collapse
Affiliation(s)
- Brett Patrick Ransegnola
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tanyaporn Pattarabanjird
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Coleen A. McNamara
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Bemark M. The Fat Controller: an unexpected role of SELENOI in IgM responses. J Leukoc Biol 2024; 116:3-5. [PMID: 38713106 DOI: 10.1093/jleuko/qiae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
SELENOI-produced lipids play roles in peripheral B cell differentiation
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine-Human Immunology, Lund University, J Waldenströms gata 35, Malmö 214 28, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg 413 46, Sweden
| |
Collapse
|
11
|
Montorsi L, Pitcher MJ, Zhao Y, Dionisi C, Demonti A, Tull TJ, Dhami P, Ellis RJ, Bishop C, Sanderson JD, Jain S, D'Cruz D, Gibbons DL, Winkler TH, Bemark M, Ciccarelli FD, Spencer J. Double-negative B cells and DNASE1L3 colocalise with microbiota in gut-associated lymphoid tissue. Nat Commun 2024; 15:4051. [PMID: 38744839 PMCID: PMC11094119 DOI: 10.1038/s41467-024-48267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.
Collapse
Affiliation(s)
- Lucia Montorsi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael J Pitcher
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yuan Zhao
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alicia Demonti
- School of Immunology and Microbial Sciences, King's College London, London, UK
- École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Thomas J Tull
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Pawan Dhami
- Genomics Research Platform and Single Cell Laboratory at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard J Ellis
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Cynthia Bishop
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jeremy D Sanderson
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London, UK
| | - Sahil Jain
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David D'Cruz
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Deena L Gibbons
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
12
|
Kashimura M. Blood defense system - Proposal for a new concept of an immune system against blood borne pathogens comprising the liver, spleen and bone marrow. Scand J Immunol 2024; 99:e13363. [PMID: 38605529 DOI: 10.1111/sji.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/13/2024]
Abstract
Blood-borne pathogen (BBP) infections can rapidly progress to life-threatening sepsis and must therefore be promptly eliminated by the host's immune system. Intravascular macrophages of the liver sinusoid, splenic marginal zone and red pulp and perisinusoidal macrophage protrusions in the bone marrow (BM) directly phagocytose BBPs in the blood as an innate immune response. The liver, spleen and BM thereby work together as the blood defence system (BDS) in response to BBPs by exerting their different immunological roles. The liver removes the vast majority of these invading organisms via innate immunity, but their complete elimination is not possible without the actions of antibodies. Splenic marginal zone B cells promptly produce IgM and IgG antibodies against BBPs. The splenic marginal zone transports antigenic information from the innate to the adaptive immune systems. The white pulp of the spleen functions as adaptive immune tissue and produces specific and high-affinity antibodies with an immune memory against BBPs. The BM works to maintain immune memory by supporting the survival of memory B cells, memory T cells and long-lived plasma cells (LLPCs), all of which have dedicated niches. Furthermore, BM perisinusoidal naïve follicular B cells promptly produce IgM antibodies against BBPs in the BM sinusoid and the IgG memory B cells residing in the BM rapidly transform to plasma cells which produce high-affinity IgG antibodies upon reinfection. This review describes the complete immune defence characteristics of the BDS against BBPs through the collaboration of the liver, spleen and BM with combined different immunological roles.
Collapse
Affiliation(s)
- Makoto Kashimura
- Department of Hematology, Shinmatsudo Central General Hospital, Matsudo, Japan
| |
Collapse
|
13
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 PMCID: PMC11653080 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
14
|
Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol 2024; 45:211-223. [PMID: 38402045 PMCID: PMC11227984 DOI: 10.1016/j.it.2024.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
The diverse gut microbiota, which is associated with mucosal health and general wellbeing, maintains gut-associated lymphoid tissues (GALT) in a chronically activated state, including sustainment of germinal centers in a context of high antigenic load. This influences the rules for B cell engagement with antigen and the potential consequences. Recent data have highlighted differences between GALT and other lymphoid tissues. For example, GALT propagates IgA responses against glycans that show signs of having been generated in germinal centers. Other findings suggest that humans are among those species where GALT supports the diversification, propagation, and possibly selection of systemic B cells. Here, we review novel findings that identify GALT as distinctive, and able to support these processes.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, J Waldenströms gata 35, Malmö, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK.
| |
Collapse
|
15
|
Luo Y, Guo J, Wen J, Zhao W, Huang K, Liu Y, Wang G, Luo R, Niu T, Feng Y, Xu H, Kim P, Zhou X. StemDriver: a knowledgebase of gene functions for hematopoietic stem cell fate determination. Nucleic Acids Res 2024; 52:D1042-D1052. [PMID: 37953308 PMCID: PMC10767831 DOI: 10.1093/nar/gkad1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
StemDriver is a comprehensive knowledgebase dedicated to the functional annotation of genes participating in the determination of hematopoietic stem cell fate, available at http://biomedbdc.wchscu.cn/StemDriver/. By utilizing single-cell RNA sequencing data, StemDriver has successfully assembled a comprehensive lineage map of hematopoiesis, capturing the entire continuum from the initial formation of hematopoietic stem cells to the fully developed mature cells. Extensive exploration and characterization were conducted on gene expression features corresponding to each lineage commitment. At the current version, StemDriver integrates data from 42 studies, encompassing a diverse range of 14 tissue types spanning from the embryonic phase to adulthood. In order to ensure uniformity and reliability, all data undergo a standardized pipeline, which includes quality data pre-processing, cell type annotation, differential gene expression analysis, identification of gene categories correlated with differentiation, analysis of highly variable genes along pseudo-time, and exploration of gene expression regulatory networks. In total, StemDriver assessed the function of 23 839 genes for human samples and 29 533 genes for mouse samples. Simultaneously, StemDriver also provided users with reference datasets and models for cell annotation. We believe that StemDriver will offer valuable assistance to research focused on cellular development and hematopoiesis.
Collapse
Affiliation(s)
- Yangyang Luo
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingjing Guo
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kexin Huang
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Liu
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Grant Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruihan Luo
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ting Niu
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuzhou Feng
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haixia Xu
- Department of Hematology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pora Kim
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
16
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
17
|
Prabhala R, Pierceall WE, Samur M, Potluri LB, Hong K, Peluso T, Talluri S, Wang A, Katiki A, Vangala SD, Buonopane M, Bade V, Seah H, Krogman A, Derebail S, Fulciniti M, Lazo SB, Richardson P, Anderson K, Corre J, Avet-Loiseau H, Thakurta A, Munshi N. Immunomodulation of NK, NKT and B/T cell subtypes in relapsed/refractory multiple myeloma patients treated with pomalidomide along with velcade and dexamethasone and its association with improved progression-free survival. Front Oncol 2023; 13:1271807. [PMID: 38111533 PMCID: PMC10726115 DOI: 10.3389/fonc.2023.1271807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Background Multiple Myeloma (MM) patients exhibit dysregulated immune system, which is further weakened by chemotherapeutic agents. While cereblon-modulating agents, such as pomalidomide and lenalidomide, have been found to improve the immune profile, the efficacy of their impact in combination with other treatments is yet unknown. Methods We conducted an immune-profiling of a longitudinal cohort of 366 peripheral blood samples from the CC4047-MM-007 (OPTIMISMM, NCT01734928) study. This study followed relapsed/refractory Multiple Myeloma (RRMM) patients who were treated with Velcade + dexamethasone (Vd), or Vd with pomalidomide (PVd). 366 blood samples from 186 patients were evaluated using multi-color flow cytometry at 3 timepoints: screening, day 8 of cycle 1, and cycle 3. Results Among NK and NKT cell populations, adding pomalidomide showed no inhibition in the frequency of NK cells. When expression of double positivity for activation markers like, p46/NKG2D, on NK cells was higher than the median, PVd treated patients showed significantly better (p=0.05) progression-free survival (PFS) (additional 15 months) than patients with lower than the median expression of p46/NKG2D on NK cells. PVd treated patients who expressed CD158a/b below the median at cycle 1 demonstrated a significantly better PFS (more than 18months). Among B cell subtypes, PVd treatment significantly increased the abundance of B1b cells (p<0.05) and decreased Bregs (p<0.05) at day 8 of both cycle 1 and cycle 3 when compared to screening samples. Of all the B cell-markers evaluated among paired samples, a higher expression of MZB cells at day 8 of cycle 1 has resulted in enhanced PFS in PVd treated patients. Within T cells, pomalidomide treatment did not decrease the frequency of CD8 T cells when compared with screening samples. The higher the surface expression of OX-40 on CD8 T cells and the lower the expression of PD-1 and CD25 on CD4 T cells by PVd treatment resulted in improved PFS. Conclusion The prognostic significance for the number of immune markers is only seen in the PVd arm and none of these immune markers exhibit prognostic values in the Vd arm. This study demonstrates the importance of the immunomodulatory effects and the therapeutic benefit of adding pomalidomide to Vd treatment.
Collapse
Affiliation(s)
- Rao Prabhala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Mehmet Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Lakshmi B. Potluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Kevin Hong
- Bristol Myers Squibb, Summit, NJ, United States
| | | | - Srikanth Talluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Angela Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Aishwarya Katiki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sahan D. Vangala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Michael Buonopane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vaishnavi Bade
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Hannah Seah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Arthur Krogman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sanika Derebail
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Suzan B. Lazo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Paul Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kenneth Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jill Corre
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Anjan Thakurta
- Bristol Myers Squibb, Summit, NJ, United States
- Oxford Centre for Translational Myeloma Research, Oxford, United Kingdom
| | - Nikhil Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Al-Aubodah TA, Aoudjit L, Pascale G, Perinpanayagam MA, Langlais D, Bitzan M, Samuel SM, Piccirillo CA, Takano T. The extrafollicular B cell response is a hallmark of childhood idiopathic nephrotic syndrome. Nat Commun 2023; 14:7682. [PMID: 37996443 PMCID: PMC10667257 DOI: 10.1038/s41467-023-43504-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The efficacy of the B cell-targeting drug rituximab (RTX) in childhood idiopathic nephrotic syndrome (INS) suggests that B cells may be implicated in disease pathogenesis. However, B cell characterization in children with INS remains limited. Here, using single-cell RNA sequencing, we demonstrate that a B cell transcriptional program poised for effector functions represents the major immune perturbation in blood samples from children with active INS. This transcriptional profile was associated with an extrafollicular B cell response marked by the expansion of atypical B cells (atBCs), marginal zone-like B cells, and antibody-secreting cells (ASCs). Flow cytometry of blood from 13 children with active INS and 24 healthy donors confirmed the presence of an extrafollicular B cell response denoted by the expansion of proliferating RTX-sensitive extrafollicular (CXCR5-) CD21low T-bet+ CD11c+ atBCs and short-lived T-bet+ ASCs in INS. Together, our study provides evidence for an extrafollicular origin for humoral immunity in active INS.
Collapse
Affiliation(s)
- Tho-Alfakar Al-Aubodah
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Lamine Aoudjit
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Giuseppe Pascale
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Maneka A Perinpanayagam
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Langlais
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University Genome Centre, Montréal, Québec, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- Kidney Centre of Excellence, Al Jalila Children's Hospital, and Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Susan M Samuel
- Section of Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Tomoko Takano
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Centre of Excellence in Translational Immunology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Division of Nephrology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Weill JC, Weller S, Reynaud CA. B cell diversification in gut-associated lymphoid tissues: From birds to humans. J Exp Med 2023; 220:e20231501. [PMID: 37824081 PMCID: PMC10568490 DOI: 10.1084/jem.20231501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Several species generate their preimmune repertoire in gut-associated lymphoid tissues (GALT), compensating a reduced germline V gene repertoire by post-rearrangement diversification mechanisms (gene conversion and/or somatic hypermutation) in these environments that act as primary lymphoid organs. We summarize here these processes for three different species (chickens, sheep, and rabbits) and further discuss the analogous process that T-independent B cell responses in humans represent: we indeed recently showed that response against bacterial polysaccharides mobilize marginal zone B cells that prediversified against gut antigens. While the initial diversification strategy differs in these two cases, i.e., repertoire formation driven by gut-derived mitotic signals vs. response against gut antigens, the common feature of these two processes is the mobilization of a B cell compartment prediversified in GALT for immune responses against distinct systemic antigens.
Collapse
Affiliation(s)
- Jean-Claude Weill
- Université Paris Cité, Institut national de la santé et de la recherche médicale U1151, Centre national de la recherche scientifique UMR-8253, Institut Necker Enfants Malades , Paris, France
| | - Sandra Weller
- Université Paris Cité, Institut national de la santé et de la recherche médicale U1151, Centre national de la recherche scientifique UMR-8253, Institut Necker Enfants Malades , Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, Institut national de la santé et de la recherche médicale U1151, Centre national de la recherche scientifique UMR-8253, Institut Necker Enfants Malades , Paris, France
| |
Collapse
|
20
|
Pattarabanjird T, Nguyen AT, McSkimming C, Dinh HQ, Marshall MA, Ghosheh Y, Gulati R, Durant C, Vallejo J, Saigusa R, Drago F, Guy TV, Premo K, Taylor AM, Paul S, Kundu B, Berr S, Gonen A, Tsimikas S, Miller Y, Pillai S, Ley K, Hedrick CC, McNamara CA. Human circulating CD24 hi marginal zone B cells produce IgM targeting atherogenic antigens and confer protection from vascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1003-1014. [PMID: 39196097 DOI: 10.1038/s44161-023-00356-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/26/2023] [Indexed: 08/29/2024]
Abstract
IgMs that inactivate oxidation-specific epitopes (IgMOSE), which are secondary products of lipid peroxidization, protect against inflammatory diseases, including diet-induced atherosclerosis. However, the human B cell subtype that produces IgMOSE remains unknown. In this study, we used single-cell mass cytometry and adoptive transfer of B cell subtypes to NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice to identify B27+IgM+CD24hi cells as the major producers of IgMOSE in humans. Notably, these cells have characteristics of human circulatory marginal zone B (MZB) cells, which are known to be atheoroprotective IgM producers in mice. CD24 antibody treatment to reduce MZB cells and IgM in a hyperlipidemic humanized mouse model provides the evidence that MZB cells protect against vascular inflammation. Consistent with these findings, the frequency of B27+IgM+CD24hi cells (MZB) in patients inversely correlates with coronary artery disease severity.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Anh Tram Nguyen
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Chantel McSkimming
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine, Madison, WI, USA
| | - Melissa A Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | - Fabrizio Drago
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Thomas V Guy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Angela M Taylor
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Bijoy Kundu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Stuart Berr
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yury Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Klaus Ley
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Coleen A McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA.
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
21
|
Parodis I, Long X, Karlsson MCI, Huang X. B Cell Tolerance and Targeted Therapies in SLE. J Clin Med 2023; 12:6268. [PMID: 37834911 PMCID: PMC10573616 DOI: 10.3390/jcm12196268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic systemic autoimmune disease of high clinical and molecular heterogeneity, and a relapsing-remitting pattern. The disease is currently without cure and more prevalent in women. B cell tolerance and production of autoantibodies are critical mechanisms that drive SLE pathophysiology. However, how the balance of the immune system is broken and how the innate and adaptive immune systems are interacting during lupus-specific autoimmune responses are still largely unknown. Here, we review the latest knowledge on B cell development, maturation, and central versus peripheral tolerance in connection to SLE and treatment options. We also discuss the regulation of B cells by conventional T cells, granulocytes, and unconventional T cells, and how effector B cells exert their functions in SLE. We also discuss mechanisms of action of B cell-targeted therapies, as well as possible future directions based on current knowledge of B cell biology.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, 70281 Örebro, Sweden
| | - Xuan Long
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Xin Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| |
Collapse
|
22
|
Grimsholm O. CD27 on human memory B cells-more than just a surface marker. Clin Exp Immunol 2023; 213:164-172. [PMID: 36508329 PMCID: PMC10361737 DOI: 10.1093/cei/uxac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 07/23/2023] Open
Abstract
Immunological memory protects the human body from re-infection with an earlier recognized pathogen. This memory comprises the durable serum antibody titres provided by long-lived plasma cells and the memory T and B cells with help from other cells. Memory B cells are the main precursor cells for new plasma cells during a secondary infection. Their formation starts very early in life, and they continue to form and undergo refinements throughout our lifetime. While the heterogeneity of the human memory B-cell pool is still poorly understood, specific cellular surface markers define most of the cell subpopulations. CD27 is one of the most commonly used markers to define human memory B cells. In addition, there are molecular markers, such as somatic mutations in the immunoglobulin heavy and light chains and isotype switching to, for example, IgG. Although not every memory B cell undergoes somatic hypermutation or isotype switching, most of them express these molecular traits in adulthood. In this review, I will focus on the most recent knowledge regarding CD27+ human memory B cells in health and disease, and describe how Ig sequencing can be used as a tool to decipher the evolutionary pathways of these cells.
Collapse
Affiliation(s)
- Ola Grimsholm
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
23
|
Pitcher MJ, Spencer J. Heritable diversity in the human antigen inexperienced B cell repertoire. Mol Immunol 2023; 160:20-22. [PMID: 37321065 DOI: 10.1016/j.molimm.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Human transitional B cells and naïve B cells are each variable beyond the widely discussed diversity in their B cell receptor repertoire, because whilst remaining within their subset definition, the phenotypes and transcriptomes of individual cells occur within a range of values. Cells can therefore have different functional biases. Here we have taken advantage of small clones of transitional and naïve B cells that exist within different tissue sites in pre-existing dataset to ask whether the transcriptomes of individual clone members are more similar to each other than to the transcriptomes of unrelated cells. We observe that cells that are clonally related are more similar to each other in terms of gene expression than they are to the remainder of cells in clones. This demonstrates that differences are shared between clone members and are therefore heritable. We suggest further that diversity in the transitional and naïve B cell populations has the potential to be propagated and thus sustained.
Collapse
Affiliation(s)
- Michael J Pitcher
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
24
|
Nandiwada SL. Overview of human B-cell development and antibody deficiencies. J Immunol Methods 2023:113485. [PMID: 37150477 DOI: 10.1016/j.jim.2023.113485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
B cells are a key component of the humoral (antibody-mediated) immune response which is responsible for defense against a variety of pathogens. Here we provide an overview of the current understanding of B cell development and function and briefly describe inborn errors of immunity associated with B cell development defects which can manifest as immune deficiency, malignancy, autoimmunity, or allergy. The knowledge and application of B cell biology are essential for laboratory evaluation and clinical assessment of these B cell disorders.
Collapse
Affiliation(s)
- Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
25
|
Cox EM, El-Behi M, Ries S, Vogt JF, Kohlhaas V, Michna T, Manfroi B, Al-Maarri M, Wanke F, Tirosh B, Pondarre C, Lezeau H, Yogev N, Mittenzwei R, Descatoire M, Weller S, Weill JC, Reynaud CA, Boudinot P, Jouneau L, Tenzer S, Distler U, Rensing-Ehl A, König C, Staniek J, Rizzi M, Magérus A, Rieux-Laucat F, Wunderlich FT, Hövelmeyer N, Fillatreau S. AKT activity orchestrates marginal zone B cell development in mice and humans. Cell Rep 2023; 42:112378. [PMID: 37060566 DOI: 10.1016/j.celrep.2023.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.
Collapse
Affiliation(s)
- Eva-Maria Cox
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Mohamed El-Behi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Johannes F Vogt
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Vivien Kohlhaas
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Thomas Michna
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Benoît Manfroi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Florian Wanke
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Boaz Tirosh
- The Hebrew University of Jerusalem, Institute for Drug Research, Jerusalem, Israel
| | - Corinne Pondarre
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Harry Lezeau
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Nir Yogev
- Faculty of Medicine, Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Romy Mittenzwei
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Marc Descatoire
- Laboratory of Immune Inherited Disorders, Department of Immunology and Allergology Lausanne Hospital CHUV, Lausanne, Switzerland
| | - Sandra Weller
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Stefan Tenzer
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany; Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aude Magérus
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Frederic Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France; Université de Paris Cité, Paris Descartes, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
26
|
Kibler A, Seifert M, Budeus B. Age-related changes of the human splenic marginal zone B cell compartment. Immunol Lett 2023; 256-257:59-65. [PMID: 37044264 DOI: 10.1016/j.imlet.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
In this review, we will summarize the growing body of knowledge on the age-related changes of human splenic B cell composition and molecular evidence of immune maturation and discuss the contribution of these changes on splenic protective function. From birth on, the splenic marginal zone (sMZ) contains a specialized B cell subpopulation, which recruits and archives memory B cells from immune responses throughout the organism. The quality of sMZ B cell responses is augmented by germinal center (GC)-dependent maturation of memory B cells during childhood, however, in old age, these mechanisms likely contribute to waning of splenic protective function.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Spencer J, Tull TJ, Bemark M. Weller et al., T-independent responses to polysaccharides in humans mobilize marginal zone B cells pre-diversified against gut bacterial antigens. Immunol Lett 2023; 256-257:66-67. [PMID: 37040847 DOI: 10.1016/j.imlet.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, SE1 9RT, UK.
| | - Thomas J Tull
- St John's Institute of Dermatology, King's College London, Guy's Hospital Campus, London, SE1 9RT, UK
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
28
|
Vergani S, Bagnara D, Agathangelidis A, Ng AKY, Ferrer G, Mazzarello AN, Palacios F, Yancopoulos S, Yan XJ, Barrientos JC, Rai KR, Stamatopoulos K, Chiorazzi N. CLL stereotyped B-cell receptor immunoglobulin sequences are recurrent in the B-cell repertoire of healthy individuals: Apparent lack of central and early peripheral tolerance censoring. Front Oncol 2023; 13:1112879. [PMID: 37007084 PMCID: PMC10063922 DOI: 10.3389/fonc.2023.1112879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionThe leukemic cells of patients with chronic lymphocytic leukemia (CLL) are often unique, expressing remarkably similar IGHV-IGHD-IGHJ gene rearrangements, “stereotyped BCRs”. The B-cell receptors (BCRs) on CLL cells are also distinctive in often deriving from autoreactive B lymphocytes, leading to the assumption of a defect in immune tolerance.ResultsUsing bulk and single-cell immunoglobulin heavy and light chain variable domain sequencing, we enumerated CLL stereotype-like IGHV-IGHD-IGHJ sequences (CLL-SLS) in B cells from cord blood (CB) and adult peripheral blood (PBMC) and bone marrow (BM of healthy donors. CLL-SLS were found at similar frequencies among CB, BM, and PBMC, suggesting that age does not influence CLL-SLS levels. Moreover, the frequencies of CLL-SLS did not differ among B lymphocytes in the BM at early stages of development, and only re-circulating marginal zone B cells contained significantly higher CLL-SLS frequencies than other mature B-cell subpopulations. Although we identified CLL-SLS corresponding to most of the CLL major stereotyped subsets, CLL-SLS frequencies did not correlate with those found in patients. Interestingly, in CB samples, half of the CLL-SLS identified were attributed to two IGHV-mutated subsets. We also found satellite CLL-SLS among the same normal samples, and they were also enriched in naïve B cells but unexpectedly, these were ~10-fold higher than standard CLL-SLS. In general, IGHV-mutated CLL-SLS subsets were enriched among antigen-experienced B-cell subpopulations, and IGHV-unmutated CLL-SLS were found mostly in antigen-inexperienced B cells. Nevertheless, CLL-SLS with an IGHV-mutation status matching that of CLL clones varied among the normal B-cell subpopulations, suggesting that specific CLL-SLS could originate from distinct subpopulations of normal B cells. Lastly, using single-cell DNA sequencing, we identified paired IGH and IGL rearrangements in normal B lymphocytes resembling those of stereotyped BCRs in CLL, although some differed from those in patients based on IG isotype or somatic mutation.DiscussionCLL-SLS are present in normal B-lymphocyte populations at all stages of development. Thus, despite their autoreactive profile they are not deleted by central tolerance mechanisms, possibly because the level of autoreactivity is not registered as dangerous by deletion mechanisms or because editing of L-chain variable genes occurred which our experimental approach could not identify.
Collapse
Affiliation(s)
- Stefano Vergani
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Davide Bagnara
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andreas Agathangelidis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anita Kar Yun Ng
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andrea N. Mazzarello
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Xiao-Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Jaqueline C. Barrientos
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kanti R. Rai
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kostas Stamatopoulos
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- *Correspondence: Nicholas Chiorazzi,
| |
Collapse
|
29
|
Guo N, Li N, Jia L, Jiang Q, Schreurs M, van Unen V, de Sousa Lopes SMC, Vloemans AA, Eggermont J, Lelieveldt B, Staal FJT, de Miranda NFCC, Pascutti MF, Koning F. Immune subset-committed proliferating cells populate the human foetal intestine throughout the second trimester of gestation. Nat Commun 2023; 14:1318. [PMID: 36899020 PMCID: PMC10006174 DOI: 10.1038/s41467-023-37052-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The intestine represents the largest immune compartment in the human body, yet its development and organisation during human foetal development is largely unknown. Here we show the immune subset composition of this organ during development, by longitudinal spectral flow cytometry analysis of human foetal intestinal samples between 14 and 22 weeks of gestation. At 14 weeks, the foetal intestine is mainly populated by myeloid cells and three distinct CD3-CD7+ ILC, followed by rapid appearance of adaptive CD4+, CD8+ T and B cell subsets. Imaging mass cytometry identifies lymphoid follicles from week 16 onwards in a villus-like structure covered by epithelium and confirms the presence of Ki-67+ cells in situ within all CD3-CD7+ ILC, T, B and myeloid cell subsets. Foetal intestinal lymphoid subsets are capable of spontaneous proliferation in vitro. IL-7 mRNA is detected within both the lamina propria and the epithelium and IL-7 enhances proliferation of several subsets in vitro. Overall, these observations demonstrate the presence of immune subset-committed cells capable of local proliferation in the developing human foetal intestine, likely contributing to the development and growth of organized immune structures throughout most of the 2nd trimester, which might influence microbial colonization upon birth.
Collapse
Affiliation(s)
- Nannan Guo
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Na Li
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- State Key Laboratory of Zoonotic Diseases, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Jia
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Qinyue Jiang
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Mette Schreurs
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | | | | | - Jeroen Eggermont
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - M Fernanda Pascutti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
30
|
Spencer J, Bemark M. Human intestinal B cells in inflammatory diseases. Nat Rev Gastroenterol Hepatol 2023; 20:254-265. [PMID: 36849542 DOI: 10.1038/s41575-023-00755-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
The intestinal lumen contains an abundance of bacteria, viruses and fungi alongside ingested material that shape the chronically active intestinal immune system from early life to maintain the integrity of the gut epithelial barrier. In health, the response is intricately balanced to provide active protection against pathogen invasion whilst tolerating food and avoiding inflammation. B cells are central to achieving this protection. Their activation and maturation generates the body's largest plasma cell population that secretes IgA, and the niches they provide support systemic immune cell specialization. For example, the gut supports the development and maturation of a splenic B cell subset - the marginal zone B cells. In addition, cells such as the T follicular helper cells, which are enriched in many autoinflammatory diseases, are intrinsically associated with the germinal centre microenvironment that is more abundant in the gut than in any other tissue in health. In this Review, we discuss intestinal B cells and their role when a loss of homeostasis results in intestinal and systemic inflammatory diseases.
Collapse
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, UK.
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Weller S, Sterlin D, Fadeev T, Coignard E, de los Aires AV, Goetz C, Fritzen R, Bahuaud M, Batteux F, Gorochov G, Weill JC, Reynaud CA. T-independent responses to polysaccharides in humans mobilize marginal zone B cells prediversified against gut bacterial antigens. Sci Immunol 2023; 8:eade1413. [PMID: 36706172 PMCID: PMC7614366 DOI: 10.1126/sciimmunol.ade1413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
Marginal zone (MZ) B cells are one of the main actors of T-independent (TI) responses in mice. To identify the B cell subset(s) involved in such responses in humans, we vaccinated healthy individuals with Pneumovax, a model TI vaccine. By high-throughput repertoire sequencing of plasma cells (PCs) isolated 7 days after vaccination and of different B cell subpopulations before and after vaccination, we show that the PC response mobilizes large clones systematically, including an immunoglobulin M component, whose diversification and amplification predated the pneumococcal vaccination. These clones could be mainly traced back to MZ B cells, together with clonally related IgA+ and, to a lesser extent, IgG+CD27+ B cells. Recombinant monoclonal antibodies isolated from large PC clones recognized a wide array of bacterial species from the gut flora, indicating that TI responses in humans largely mobilize MZ and switched B cells that most likely prediversified during mucosal immune responses against bacterial antigens and acquired pneumococcal cross-reactivity through somatic hypermutation.
Collapse
Affiliation(s)
- Sandra Weller
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Delphine Sterlin
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France
- Département d’Immunologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Tatiana Fadeev
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Eva Coignard
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Alba Verge de los Aires
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Clara Goetz
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Rémi Fritzen
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Mathilde Bahuaud
- Université Paris Cité, INSERM U1016, Institut Cochin, F-75014 Paris, France
- Service d’Immunologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, F-75014 Paris, France
| | - Frederic Batteux
- Université Paris Cité, INSERM U1016, Institut Cochin, F-75014 Paris, France
- Service d’Immunologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, F-75014 Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France
- Département d’Immunologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Jean-Claude Weill
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| |
Collapse
|
32
|
Dirks J, Andres O, Paul L, Manukjan G, Schulze H, Morbach H. IgD shapes the pre-immune naïve B cell compartment in humans. Front Immunol 2023; 14:1096019. [PMID: 36776874 PMCID: PMC9908586 DOI: 10.3389/fimmu.2023.1096019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
B cell maturation and immunoglobulin (Ig) repertoire selection are governed by expression of a functional B cell receptor (BCR). Naïve B cells co-express their BCR as IgM and IgD isotype. However, the role of the additionally expressed IgD on naïve B cells is not known. Here we assessed the impact of IgD on naïve B cell maturation and Ig repertoire selection in 8 individuals from 3 different families with heterozygous loss-of-function or loss-of expression mutations in IGHD. Although naïve B cells from these individuals expressed IgM on their surface, the IGHD variant in heterozygous state entailed a chimeric situation by allelic exclusion with almost half of the naïve B cell population lacking surface IgD expression. Flow cytometric analyses revealed a distinct phenotype of IgD-negative naïve B cells with decreased expression of CD19, CD20 and CD21 as well as lower BAFF-R and integrin-β7 expression. IgD-negative B cells were less responsive in vitro after engaging the IgM-BCR, TLR7/9 or CD40 pathway. Additionally, a selective disadvantage of IgD-negative B cells within the T2 transitional and mature naïve B cell compartment as well as reduced frequencies of IgMlo/- B cells within the mature naïve B cell compartment lacking IgD were evident. RNA-Ig-seq of bulk sorted B cell populations showed an altered selection of distinct VH segments in the IgD-negative mature naïve B cell population. We conclude that IgD expression on human naïve B cells is redundant for generation of naïve B cells in general, but further shapes the naive B cell compartment starting from T2 transitional B cells. Our observations suggest an unexpected role of IgD expression to be critical for selection of distinct Ig VH segments into the pre-immune Ig repertoire and for the survival of IgMlo/- naïve B cells known to be enriched in poly-/autoreactive B cell clones.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Andres
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Paul
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Department of Pediatrics I, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Henner Morbach
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Sayin I, Chong AS. Beyond Adaptive Alloreactivity: Contribution of Innate B Cells to Allograft Inflammation and Rejection. Transplantation 2023; 107:98-104. [PMID: 36404414 PMCID: PMC9772142 DOI: 10.1097/tp.0000000000004377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Innate B cells are a heterogeneous group of cells that function in maintaining homeostatic levels of circulating natural antibodies and being the first line of defense against infections. Innate B-1 cells and marginal zone B cells may relocate to lymphoid follicles and differentiate into cytokine and antibody-secreting cells in T-independent and T-dependent manners. Although marginal zone B cells are widely described in humans, the presence of B-1 cells is more controversial. Here, we review the basic features of the innate B-cell subsets identified in mice and their equivalent in humans, as well as their potential roles in transplantation. We summarize the findings of Cascalho and colleagues on the unexpected protective role of tumor necrosis factor receptor superfamily member 13B in regulating circulating levels of protective natural immunoglobulin M, and the studies by Zorn and colleagues on the potential pathogenic role for polyreactive innate B cells infiltrating allograft explants. Finally, we discuss our studies that took a transcriptomic approach to identify innate B cells infiltrating kidney allografts with antibody-mediated rejection and to demonstrate that local antigens within the allograft together with inflammation may induce a loss of B-cell tolerance.
Collapse
Affiliation(s)
- Ismail Sayin
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States
| | - Anita S. Chong
- Department of Surgery, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
34
|
Velounias RL, Tull TJ. Human B-cell subset identification and changes in inflammatory diseases. Clin Exp Immunol 2022; 210:201-216. [PMID: 36617261 PMCID: PMC9985170 DOI: 10.1093/cei/uxac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023] Open
Abstract
Our understanding of the B-cell subsets found in human blood and their functional significance has advanced greatly in the past decade. This has been aided by the evolution of high dimensional phenotypic tools such as mass cytometry and single-cell RNA sequencing which have revealed heterogeneity in populations that were previously considered homogenous. Despite this, there is still uncertainty and variation between studies as to how B-cell subsets are identified and named. This review will focus on the most commonly encountered subsets of B cells in human blood and will describe gating strategies for their identification by flow and mass cytometry. Important changes to population frequencies and function in common inflammatory and autoimmune diseases will also be described.
Collapse
Affiliation(s)
- Rebekah L Velounias
- Department of Immunobiology, King’s College London, Guy’s Hospital Campus, London, UK
| | - Thomas J Tull
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital Campus, London, UK
| |
Collapse
|
35
|
de Gruijter NM, Jebson B, Rosser EC. Cytokine production by human B cells: role in health and autoimmune disease. Clin Exp Immunol 2022; 210:253-262. [PMID: 36179248 PMCID: PMC9985175 DOI: 10.1093/cei/uxac090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
B cells are classically considered solely as antibody-producing cells driving humoral immune responses to foreign antigens in infections and vaccinations as well as self-antigens in pathological settings such as autoimmunity. However, it has now become clear that B cells can also secrete a vast array of cytokines, which influence both pro- and anti-inflammatory immune responses. Indeed, similarly to T cells, there is significant heterogeneity in cytokine-driven responses by B cells, ranging from the production of pro-inflammatory effector cytokines such as IL-6, through to the release of immunosuppressive cytokines such as IL-10. In this review, focusing on human B cells, we summarize the key findings that have revealed that cytokine-producing B cell subsets have critical functions in healthy immune responses and contribute to the pathophysiology of autoimmune diseases.
Collapse
Affiliation(s)
- Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Bethany Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| |
Collapse
|
36
|
Abstract
Asplenia (the congenital or acquired absence of the spleen) and hyposplenism (defective spleen function) are common causes of morbidity and mortality. The spleen is a secondary lymphoid organ that is responsible for the regulation of immune responses and blood filtration. Hence, asplenia or hyposplenism increases susceptibility to severe and invasive infections, especially those sustained by encapsulated bacteria (namely, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae type b). Asplenia is predominantly due to splenectomy for either traumatic events or oncohaematological conditions. Hyposplenism can be caused by several conditions, including haematological, infectious, autoimmune and gastrointestinal disorders. Anatomical disruption of the spleen and depletion of immune cells, especially IgM memory B cells, seem to be predominantly responsible for the clinical manifestations. Early recognition of hyposplenism and proper management of asplenia are warranted to prevent overwhelming post-splenectomy infections through vaccination and antibiotic prophylaxis. Although recommendations are available, the implementation of vaccination strategies, including more effective and immunogenic vaccines, is needed. Additionally, screening programmes for early detection of hyposplenism in high-risk patients and improvement of patient education are warranted.
Collapse
|
37
|
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, Lu Q, Ballestar E, Tian J, Zou H, Lu L. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute, Badalona, 08916, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center, East China Normal University, Shanghai, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
38
|
Rae W, Sowerby JM, Verhoeven D, Youssef M, Kotagiri P, Savinykh N, Coomber EL, Boneparth A, Chan A, Gong C, Jansen MH, du Long R, Santilli G, Simeoni I, Stephens J, Wu K, Zinicola M, Allen HL, Baxendale H, Kumararatne D, Gkrania-Klotsas E, Scheffler Mendoza SC, Yamazaki-Nakashimada MA, Ruiz LB, Rojas-Maruri CM, Lugo Reyes SO, Lyons PA, Williams AP, Hodson DJ, Bishop GA, Thrasher AJ, Thomas DC, Murphy MP, Vyse TJ, Milner JD, Kuijpers TW, Smith KGC. Immunodeficiency, autoimmunity, and increased risk of B cell malignancy in humans with TRAF3 mutations. Sci Immunol 2022; 7:eabn3800. [PMID: 35960817 DOI: 10.1126/sciimmunol.abn3800] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a central regulator of immunity. TRAF3 is often somatically mutated in B cell malignancies, but its role in human immunity is not defined. Here, in five unrelated families, we describe an immune dysregulation syndrome of recurrent bacterial infections, autoimmunity, systemic inflammation, B cell lymphoproliferation, and hypergammaglobulinemia. Affected individuals each had monoallelic mutations in TRAF3 that reduced TRAF3 expression. Immunophenotyping showed that patients' B cells were dysregulated, exhibiting increased nuclear factor-κB 2 activation, elevated mitochondrial respiration, and heightened inflammatory responses. Patients had mild CD4+ T cell lymphopenia, with a reduced proportion of naïve T cells but increased regulatory T cells and circulating T follicular helper cells. Guided by this clinical phenotype, targeted analyses demonstrated that common genetic variants, which also reduce TRAF3 expression, are associated with an increased risk of B cell malignancies, systemic lupus erythematosus, higher immunoglobulin levels, and bacterial infections in the wider population. Reduced TRAF3 conveys disease risks by driving B cell hyperactivity via intrinsic activation of multiple intracellular proinflammatory pathways and increased mitochondrial respiration, with a likely contribution from dysregulated T cell help. Thus, we define monogenic TRAF3 haploinsufficiency syndrome and demonstrate how common TRAF3 variants affect a range of human diseases.
Collapse
Affiliation(s)
- William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - John M Sowerby
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Dorit Verhoeven
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Mariam Youssef
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Natalia Savinykh
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alexis Boneparth
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Chan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Machiel H Jansen
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Romy du Long
- Amsterdam University Center (AUMC), University of Amsterdam, Department of Pathology, Amsterdam, Netherlands
| | | | - Ilenia Simeoni
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Jonathan Stephens
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Kejia Wu
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Marta Zinicola
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Hana Lango Allen
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Helen Baxendale
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Dinakantha Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Effrossyni Gkrania-Klotsas
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Selma C Scheffler Mendoza
- Clinical Immunology Service, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | | | - Laura Berrón Ruiz
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | | | - Saul O Lugo Reyes
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Williams
- Wessex Investigational Sciences Hub, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Gail A Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, IA, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Adrian J Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - David C Thomas
- Department of Immunology and Inflammation, Center for Inflammatory Diseases, Imperial College London, London, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Burton H, McLaughlin L, Shiu KY, Shaw O, Mamode N, Spencer J, Dorling A. The phenotype of HLA-binding B cells from sensitized kidney transplant recipients correlates with clinically prognostic patterns of interferon-γ production against purified HLA proteins. Kidney Int 2022; 102:355-369. [PMID: 35483526 DOI: 10.1016/j.kint.2022.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
B cells play crucial roles in cell-mediated alloimmune responses. In vitro, B cells can support or regulate indirect T-cell alloreactivity in response to donor antigens on ELISpot and these patterns associate with clinical outcome. Previous reports of associations between B-cell phenotype and function have examined global phenotypes and responses to polyclonal stimuli. We hypothesized that studying antigen-specific B cells, using samples from sensitized patients, would inform further study to identify novel targets for intervention. Using biotinylated HLA proteins, which bind HLA-specific B cells via the B-cell receptor in a dose-dependent fashion, we report the specific phenotype of HLA-binding B cells and define how they associated with patterns of anti-HLA response in interferon-γ ELISpot. HLA-binding class-switched and IgM+CD27+ memory cells associated strongly with B-dependent interferon-γ production and appeared not suppressible by endogenous Tregs. When the predominant HLA-binding phenotype was naïve B cells, the associated functional ELISpot phenotype was determined by other cells present. High numbers of non-HLA-binding transitional cells associated with B-suppressed interferon-γ production, especially if Tregs were present. However, high frequencies of HLA-binding marginal-zone precursors associated with B-dependent interferon-γ production that appeared suppressible by Tregs. Finally, non-HLA-binding marginal zone precursors may also suppress interferon-γ production, though this association only emerged when Tregs were absent from the ELISpot. Thus, our novel data provide a foundation on which to further define the complexities of interactions between HLA-specific T and B cells and identify new targets for intervention in new therapies for chronic rejection.
Collapse
Affiliation(s)
- Hannah Burton
- Department of Inflammation Biology, King's College London, London, UK
| | - Laura McLaughlin
- Department of Inflammation Biology, King's College London, London, UK
| | - Kin Yee Shiu
- Department of Inflammation Biology, King's College London, London, UK; Department of Renal Medicine (UCL), Royal Free Hospital, London, UK
| | - Olivia Shaw
- Clinical Transplantation Laboratory, Guy's Hospital, London, UK
| | - Nizam Mamode
- Department of Inflammation Biology, King's College London, London, UK
| | - Jo Spencer
- Department of Immunobiology, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London, London, UK.
| |
Collapse
|
40
|
Abstract
Epithelial barriers, which include the gastrointestinal, respiratory, and genitourinary mucosa, compose the body’s front line of defense. Since barrier tissues are persistently exposed to microbial challenges, a rapid response that can deal with diverse invading pathogens is crucial. Because B cells have been perceived as indirectly contributing to immune responses through antibody production, B cells functioning in the peripheral organs have been outside the scope of researchers. However, recent evidence supports the existence of tissue-resident memory B cells (BRMs) in the lungs. This population’s defensive response was stronger and faster than that of their circulating counterparts and could resist heterogeneous strains. With such traits, BRMs could be a promising target for vaccine design, but much about them remains to be revealed, including their locations, origin, specific markers, and the mechanisms of their establishment and maintenance. There is evidence for resident B cells in organs other than the lungs, suggesting that B cells are directly involved in the immune reactions of multiple non-lymphoid organs. This review summarizes the history of the discovery of BRMs and discusses important unresolved questions. Unique characteristics of humoral immunity that play an important role in the peripheral organs will be described briefly. Future research on B cells residing in non-lymphoid organs will provide new insights to help solve major problems regarding human health.
Collapse
Affiliation(s)
- Choong Man Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- BioMedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Ji Eun Oh,
| |
Collapse
|
41
|
Marginal Zone B-Cell Populations and Their Regulatory Potential in the Context of HIV and Other Chronic Inflammatory Conditions. Int J Mol Sci 2022; 23:ijms23063372. [PMID: 35328792 PMCID: PMC8949885 DOI: 10.3390/ijms23063372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the context of Human Immunodeficiency Virus (HIV) establishes early and persists beyond antiretroviral therapy (ART). As such, we have shown excess B-cell activating factor (BAFF) in the blood of HIV-infected progressors, as soon as in the acute phase, and despite successful ART. Excess BAFF was associated with deregulation of the B-cell compartment; notably, with increased frequencies of a population sharing features of both transitional immature (TI) and marginal zone (MZ) B-cells, we termed Marginal Zone precursor-like (MZp). We have reported similar observations with HIV-transgenic mice, Simian Immunodeficiency Virus (SIV)-infected macaques, and more recently, with HIV-infected Beninese commercial sex workers, which suggests that excess BAFF and increased frequencies of MZp B-cells are reliable markers of inflammation in the context of HIV. Importantly, we have recently shown that in healthy individuals, MZps present an important regulatory B-cell (Breg) profile and function. Herein, we wish to review our current knowledge on MZ B-cell populations, especially their Breg status, and that of other B-cell populations sharing similar features. BAFF and its analog A Proliferation-Inducing Ligand (APRIL) are important in shaping the MZ B-cell pool; moreover, the impact that excess BAFF—encountered in the context of HIV and several chronic inflammatory conditions—may exert on MZ B-cell populations, Breg and antibody producing capacities is a threat to the self-integrity of their antibody responses and immune surveillance functions. As such, deregulations of MZ B-cell populations contribute to autoimmune manifestations and the development of MZ lymphomas (MZLs) in the context of HIV and other inflammatory diseases. Therefore, further comprehending the mechanisms regulating MZ B-cell populations and their functions could be beneficial to innovative therapeutic avenues that could be deployed to restore MZ B-cell immune competence in the context of chronic inflammation involving excess BAFF.
Collapse
|
42
|
Siu JHY, Pitcher MJ, Tull TJ, Velounias RL, Guesdon W, Montorsi L, Mahbubani KT, Ellis R, Dhami P, Todd K, Kadolsky UD, Kleeman M, D'Cruz DP, Saeb-Parsy K, Bemark M, Pettigrew GJ, Spencer J. Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood. Sci Immunol 2022; 7:eabm9060. [PMID: 35302862 DOI: 10.1126/sciimmunol.abm9060] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B cells generate antibodies that are essential for immune protection, but their subgroups are poorly defined. Here, we perform undirected deep profiling of B cells in matched human lymphoid tissues from deceased transplant organ donors and blood. In addition to identifying unanticipated features of tissue-based B cell differentiation, we resolve two subsets of marginal zone B (MZB) cells differing in cell surface and transcriptomic profiles, clonal relationships to other subsets, enrichment of genes in the NOTCH pathway, distribution bias within splenic marginal zone microenvironment, and immunoglobulin repertoire diversity and hypermutation frequency. Each subset is present in spleen, gut-associated lymphoid tissue, mesenteric lymph nodes, and blood. MZB cells and the lineage from which they are derived are depleted in lupus nephritis. Here, we show that this depletion is of only one MZB subset. The other remains unchanged as a proportion of total B cells compared with health. Thus, it is important to factor MZB cell heterogeneity into studies of human B cell responses and pathology.
Collapse
Affiliation(s)
- Jacqueline H Y Siu
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Michael J Pitcher
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Thomas J Tull
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Rebekah L Velounias
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - William Guesdon
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Lucia Montorsi
- School of Cancer Sciences, King's College London, Guy's Campus, London, UK.,Cancer Systems Biology Laboratory, Francis Crick Institute, London, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Richard Ellis
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Pawan Dhami
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Katrina Todd
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Ulrich D Kadolsky
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Michelle Kleeman
- NIHR Guy's and St Thomas' Biomedical Research Centre, Guy's and St Thomas NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - David P D'Cruz
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 405 30 Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gavin J Pettigrew
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London SE1 9RT, UK
| |
Collapse
|
43
|
Kibler A, Budeus B, Küppers R, Seifert M. The Splenic Marginal Zone in Children Is Characterized by a Subpopulation of CD27-Negative, Lowly IGHV-Mutated B Cells. Front Immunol 2022; 13:825619. [PMID: 35154145 PMCID: PMC8828478 DOI: 10.3389/fimmu.2022.825619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Young children and older adults suffer from enhanced susceptibility to infections with blood-borne pathogens. An essential step towards immunity is the establishment of a splenic marginal zone (sMZ), which is immature at below 2 years of age. At approximately 5 years of age, an adult level of protection is reached but wanes again in older adults. Although the infant sMZ is thought to contain mostly naïve B cells, memory B cells are recruited to and recirculate from the sMZ throughout life, and class-switched sMZ B cells dominate in older adults. For a better resolution of naïve versus memory B-cell subset accumulation in the sMZ, we performed a single cell-based gene expression analysis of (CD21highIgMhigh) sMZ B cells among five healthy donors (age 3 to 48 years) and validated the sMZ B-cell subset composition by flow cytometry of 147 spleen biopsies (age 0 to 82 years). We identified a major sMZ B-cell subpopulation, which is abundant at birth but decreases with age. These cells lack CD27 expression but carry a weak-to-intermediate memory B-cell signature. These CD27neg sMZ B cells are either IGHV-unmutated or carry only a few IGHV mutations early in life but show average memory B-cell IGHV mutation frequencies (>3%) in adults. The activation and proliferation potential of CD27neg sMZ B cells is significantly above that of non-sMZ B cells already in children. Our study suggests that the human sMZ B-cell pool changes with age, encompassing a major population of lowly Ig-mutated CD27neg but antigen-experienced B cells early in life.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
Bell KJ, Saad S, Tillett BJ, McGuire HM, Bordbar S, Yap YA, Nguyen LT, Wilkins MR, Corley S, Brodie S, Duong S, Wright CJ, Twigg S, de St Groth BF, Harrison LC, Mackay CR, Gurzov EN, Hamilton-Williams EE, Mariño E. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. MICROBIOME 2022; 10:9. [PMID: 35045871 PMCID: PMC8772108 DOI: 10.1186/s40168-021-01193-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) produced by the gut microbiota have beneficial anti-inflammatory and gut homeostasis effects and prevent type 1 diabetes (T1D) in mice. Reduced SCFA production indicates a loss of beneficial bacteria, commonly associated with chronic autoimmune and inflammatory diseases, including T1D and type 2 diabetes. Here, we addressed whether a metabolite-based dietary supplement has an impact on humans with T1D. We conducted a single-arm pilot-and-feasibility trial with high-amylose maize-resistant starch modified with acetate and butyrate (HAMSAB) to assess safety, while monitoring changes in the gut microbiota in alignment with modulation of the immune system status. RESULTS HAMSAB supplement was administered for 6 weeks with follow-up at 12 weeks in adults with long-standing T1D. Increased concentrations of SCFA acetate, propionate, and butyrate in stools and plasma were in concert with a shift in the composition and function of the gut microbiota. While glucose control and insulin requirements did not change, subjects with the highest SCFA concentrations exhibited the best glycemic control. Bifidobacterium longum, Bifidobacterium adolescentis, and vitamin B7 production correlated with lower HbA1c and basal insulin requirements. Circulating B and T cells developed a more regulatory phenotype post-intervention. CONCLUSION Changes in gut microbiota composition, function, and immune profile following 6 weeks of HAMSAB supplementation were associated with increased SCFAs in stools and plasma. The persistence of these effects suggests that targeting dietary SCFAs may be a mechanism to alter immune profiles, promote immune tolerance, and improve glycemic control for the treatment of T1D. TRIAL REGISTRATION ACTRN12618001391268. Registered 20 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375792 Video Abstract.
Collapse
Affiliation(s)
- Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Bree J Tillett
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Helen M McGuire
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Sara Bordbar
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Yu Anne Yap
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Long T Nguyen
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Susan Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Shannon Brodie
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Sussan Duong
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Courtney J Wright
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Twigg
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Barbara Fazekas de St Groth
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070, Brussels, Belgium
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
45
|
Dysfunction of CD27+IgD+ B cells correlates with aggravated systemic lupus erythematosus. Clin Rheumatol 2022; 41:1551-1559. [DOI: 10.1007/s10067-022-06051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/06/2021] [Accepted: 01/01/2022] [Indexed: 11/03/2022]
|
46
|
Unraveling B cell trajectories at single cell resolution. Trends Immunol 2022; 43:210-229. [DOI: 10.1016/j.it.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
|
47
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Abstract
In this issue, Tull et al. (https://doi.org/10.1084/jem.20202001) and Kibler et al. (https://doi.org/10.1084/jem.20201952) track human marginal zone B cell development from early progenitors to the memory compartment, addressing changes in age and autoimmunity, the sequence of development in the gut-associated lymphoid tissue, and clonal sharing among memory cells.
Collapse
|