1
|
Fischer J, Paternoster FK. Post-Activation-Performance Enhancement: Possible Contributing Factors. J Sports Sci Med 2024; 23:34-45. [PMID: 38455437 PMCID: PMC10915613 DOI: 10.52082/jssm.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024]
Abstract
This study aimed to narrow down the possible mechanisms of Post-Activation Performance Enhancement (PAPE), especially if they are exclusively found in the muscle. It was therefore investigated whether (1) the PAPE effect is influenced by neural factors and (2) if Post-Activation-Potentiation (PAP) influences PAPE. Thirteen strength-trained participants (26.5 ± 3.2 years) took part in at least one of three interventions (PAP, PAPE-Electrical (PAPEE), and PAPE-Voluntary (PAPEV)). Conditioning contractions (CC) and testing involved isometric knee extensions performed on an isokinetic device at an 80° knee flexion angle. The CC was either performed voluntarily (PAP, PAPEV) or was evoked through electrical stimulation (PAPEE). Testing was performed at baseline and after two seconds, four minutes, eight minutes, and twelve minutes of the CC. Maximum voluntary isometric contractions (MVIC) for the PAPE trials and supramaximal twitches for the PAP trial were used for testing. Parameters of interest were peak torque and rate of torque development (RTD), and electromyography (EMG) amplitude of the quadriceps (only PAPE). Repeated measures ANOVA and simple contrast comparisons were used for statistical analysis. Peak torque (p < 0.001, η2p = 0.715) and RTD (p = 0. 005, η2p = 0.570) increased significantly during the PAP protocol immediately two seconds after the CC and decreased to near baseline values for the following time points (p > 0.05). Peak torque, RTD, and peak EMG showed no significant differences during PAPEE and PAPEV trials (p > 0.05). Due to the lack of a visible PAPE effect, the question of whether neural mechanisms influence PAPE cannot be answered. Due to the time course of the PAP analysis, it is questionable if these mechanisms play a role in PAPE. The assumption that the PAP mechanism influences PAPE cannot be confirmed for the same reason.
Collapse
Affiliation(s)
- Josef Fischer
- Department of Biomechanics in Sports, Faculty of Sport and Health Science, Technical University of Munich, Germany
- Institute of Human Movement Science, Sport and Health, Graz University, Austria
| | - Florian K Paternoster
- Department of Biomechanics in Sports, Faculty of Sport and Health Science, Technical University of Munich, Germany
| |
Collapse
|
2
|
Bedada FB, Thompson BR, Mikkila JL, Chan SSK, Choi SH, Toso EA, Kyba M, Metzger JM. Inducing positive inotropy in human iPSC-derived cardiac muscle by gene editing-based activation of the cardiac α-myosin heavy chain. Sci Rep 2024; 14:3915. [PMID: 38365813 PMCID: PMC10873390 DOI: 10.1038/s41598-024-53395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Human induced pluripotent stem cells and their differentiation into cardiac myocytes (hiPSC-CMs) provides a unique and valuable platform for studies of cardiac muscle structure-function. This includes studies centered on disease etiology, drug development, and for potential clinical applications in heart regeneration/repair. Ultimately, for these applications to achieve success, a thorough assessment and physiological advancement of the structure and function of hiPSC-CMs is required. HiPSC-CMs are well noted for their immature and sub-physiological cardiac muscle state, and this represents a major hurdle for the field. To address this roadblock, we have developed a hiPSC-CMs (β-MHC dominant) experimental platform focused on directed physiological enhancement of the sarcomere, the functional unit of cardiac muscle. We focus here on the myosin heavy chain (MyHC) protein isoform profile, the molecular motor of the heart, which is essential to cardiac physiological performance. We hypothesized that inducing increased expression of α-MyHC in β-MyHC dominant hiPSC-CMs would enhance contractile performance of hiPSC-CMs. To test this hypothesis, we used gene editing with an inducible α-MyHC expression cassette into isogeneic hiPSC-CMs, and separately by gene transfer, and then investigated the direct effects of increased α-MyHC expression on hiPSC-CMs contractility and relaxation function. Data show improved cardiac functional parameters in hiPSC-CMs induced with α-MyHC. Positive inotropy and relaxation was evident in comparison to β-MyHC dominant isogenic controls both at baseline and during pacing induced stress. This approach should facilitate studies of hiPSC-CMs disease modeling and drug screening, as well as advancing fundamental aspects of cardiac function parameters for the optimization of future cardiac regeneration, repair and re-muscularization applications.
Collapse
Affiliation(s)
- Fikru B Bedada
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
- Present Address: Department of Clinical Laboratory Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jennifer L Mikkila
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Sunny S-K Chan
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Si Ho Choi
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Hoh JFY. Mechanism of post-tetanic depression of slow muscle fibres. J Comp Physiol B 2024; 194:41-45. [PMID: 38347296 DOI: 10.1007/s00360-024-01536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 03/16/2024]
Abstract
A brief tetanic stimulation has a very different effect on the subsequent isometric twitch force of fast and slow skeletal muscles. Fast muscle responds with an enhanced twitch force which doubles that of the pre-tetanic value, whereas slow muscle depresses the post-tetanic twitch by about 20%. Twitch potentiation of fast muscle has long been known to be due to myosin light chain 2 phosphorylation. It is proposed that post-tetanic twitch depression in slow muscle is due to the dephosphorylation of the slow isoform of the thick filament protein, myosin-binding protein-C, by Ca2+/calmodulin-activated phosphatase calcineurin, whilst its phosphorylation underlies the force enhancement due to β-adrenergic stimulation in slow and fast muscle.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , A2 Garnet St, Killara, NSW, 2071, Australia.
| |
Collapse
|
4
|
Prill K, Jones MR, Steffensen K, Teng GZ, Dawson JF. Increasing the calcium sensitivity of muscle using trifluoperazine-induced manipulations in silico, in vitro and in vivo systems. Arch Biochem Biophys 2023; 735:109521. [PMID: 36657606 DOI: 10.1016/j.abb.2023.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Many therapeutics for cardiomyopathy treat the symptoms of the disease rather than the underlying mechanism. The mechanism of cardiomyopathy onset is believed to include two means: calcium sensitivity changes and myosin activity alteration. Trifluoperazine is a compound that binds troponin, and other components of the calcium pathway, which impacts calcium regulation of contraction. Here, the ability of TFP to shift calcium sensitivity was examined in vitro with purified proteins and the impact of TFP on heart function was assessed in vivo using embryonic zebrafish. The binding of TFP to troponin was modeled in silico and a model of zebrafish troponin was generated. TFP increased regulated cardiac actomyosin activity in vitro and elevated embryonic zebrafish heart rates at effective drug concentrations. Troponin structural changes predicted in silico suggest altered protein interactions within thin filaments that would affect the regulation of heart function.
Collapse
Affiliation(s)
- Kendal Prill
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Michael R Jones
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Karl Steffensen
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Grace Zi Teng
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - John F Dawson
- From the Department of Molecular & Cellular Biology, University of Guelph; Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Robinett JC, Hanft LM, Biesiadecki B, McDonald KS. Molecular regulation of stretch activation. Am J Physiol Cell Physiol 2022; 323:C1728-C1739. [PMID: 36280392 PMCID: PMC9744651 DOI: 10.1152/ajpcell.00101.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Stretch activation is defined as a delayed increase in force after rapid stretches. Although there is considerable evidence for stretch activation in isolated cardiac myofibrillar preparations, few studies have measured mechanisms of stretch activation in mammalian skeletal muscle fibers. We measured stretch activation following rapid step stretches [∼1%-4% sarcomere length (SL)] during submaximal Ca2+ activations of rat permeabilized slow-twitch skeletal muscle fibers before and after protein kinase A (PKA), which phosphorylates slow myosin binding protein-C. PKA significantly increased stretch activation during low (∼25%) Ca2+ activation and accelerated rates of delayed force development (kef) during both low and half-maximal Ca2+ activation. Following the step stretches and subsequent force development, fibers were rapidly shortened to original sarcomere length, which often elicited a shortening-induced transient force overshoot. After PKA, step shortening-induced transient force overshoot increased ∼10-fold following an ∼4% SL shortening during low Ca2+ activation levels. kdf following step shortening also increased after PKA during low and half-maximal Ca2+ activations. We next investigated thin filament regulation of stretch activation. We tested the interplay between cardiac troponin I (cTnI) phosphorylation at the canonical PKA and novel tyrosine kinase sites on stretch activation. Native slow-skeletal Tn complexes were exchanged with recombinant human cTn complex with different human cTnI N-terminal pseudo-phosphorylation molecules: 1) nonphosphorylated wild type (WT), 2) the canonical S22/23D PKA sites, 3) the tyrosine kinase Y26E site, and 4) the combinatorial S22/23D + Y26E cTnI. All three pseudo-phosphorylated cTnIs elicited greater stretch activation than WT. Following stretch activation, a new, elevated stretch-induced steady-state force was reached with pseudo-phosphorylated cTnI. Combinatorial S22/23D + Y26E pseudo-phosphorylated cTnI increased kdf. These results suggest that slow-skeletal myosin binding protein-C (sMyBP-C) phosphorylation modulates stretch activation by a combination of cross-bridge recruitment and faster cycling kinetics, whereas cTnI phosphorylation regulates stretch activation by both redundant and synergistic mechanisms; and, taken together, these sarcomere phosphoproteins offer precision targets for enhanced contractility.
Collapse
Affiliation(s)
- Joel C Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Hubbard EF, Hinks A, Mashouri P, Power GA. Influence of 4 weeks of downhill running on calcium sensitivity of rat single muscle fibers. Physiol Rep 2022; 10:e15450. [PMID: 36222183 PMCID: PMC9554763 DOI: 10.14814/phy2.15450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023] Open
Abstract
Improved Ca2+ sensitivity has been suggested as a mechanism behind enhancements in muscle mechanical function following eccentric training. However, little is known regarding the effects of eccentric training on single muscle fiber Ca2+ sensitivity. Adult male Sprague-Dawley rats (sacrificial age ~18 weeks; mass = 400.1 ± 34.8 g) were assigned to an eccentric training (n = 5) or sedentary control group (n = 6). Eccentric training consisted of 4 weeks of weighted downhill running 3×/week at a 15° decline and 16 m/min for 35 min per day in 5-min bouts. After sacrifice, vastus intermedius single muscle fibers were dissected, chemically permeabilized, and stored until testing. Fibers (n = 63) were isolated, and standard Ca2+ sensitivity, force, rate of force redevelopment (ktr ), and active instantaneous stiffness tests were performed using [Ca2+ ] ranging from 7.0 to 4.5. Following all mechanical testing, fiber type was determined using SDS-PAGE. There was no difference in pCa50 (i.e., [Ca2+ ] needed to elicit half of maximal force) between groups or between fiber types. However, when comparing normalized force across pCa values, fibers from the control group produced greater forces than fibers from the trained group at lower Ca2+ concentrations (p < 0.05), and this was most evident for Type I fibers (p = 0.002). Type II fibers produced faster (p < 0.001) ktr than Type I fibers, but there were no differences in absolute force, normalized force, or other measures of mechanical function between fibers from the trained and control groups. These findings indicate that eccentric training does not appear to improve single muscle fiber Ca2+ sensitivity.
Collapse
Affiliation(s)
- Emma F. Hubbard
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Parastoo Mashouri
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
8
|
Wang T, Spahiu E, Osten J, Behrens F, Grünhagen F, Scholz T, Kraft T, Nayak A, Amrute-Nayak M. Cardiac ventricular myosin and slow skeletal myosin exhibit dissimilar chemomechanical properties despite bearing the same myosin heavy chain isoform. J Biol Chem 2022; 298:102070. [PMID: 35623390 PMCID: PMC9243179 DOI: 10.1016/j.jbc.2022.102070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
The myosin II motors are ATP-powered force-generating machines driving cardiac and muscle contraction. Myosin II heavy chain isoform-beta (β-MyHC) is primarily expressed in the ventricular myocardium and in slow-twitch muscle fibers, such as M. soleus. M. soleus-derived myosin II (SolM-II) is often used as an alternative to the ventricular β-cardiac myosin (βM-II); however, the direct assessment of biochemical and mechanical features of the native myosins is limited. By employing optical trapping, we examined the mechanochemical properties of native myosins isolated from the rabbit heart ventricle and soleus muscles at the single-molecule level. We found purified motors from the two tissue sources, despite expressing the same MyHC isoform, displayed distinct motile and ATPase kinetic properties. We demonstrate βM-II was approximately threefold faster in the actin filament-gliding assay than SolM-II. The maximum actomyosin (AM) detachment rate derived in single-molecule assays was also approximately threefold higher in βM-II, while the power stroke size and stiffness of the "AM rigor" crossbridge for both myosins were comparable. Our analysis revealed a higher AM detachment rate for βM-II, corresponding to the enhanced ADP release rates from the crossbridge, likely responsible for the observed differences in the motility driven by these myosins. Finally, we observed a distinct myosin light chain 1 isoform (MLC1sa) that associates with SolM-II, which might contribute to the observed kinetics differences between βM-II and SolM-II. These results have important implications for the choice of tissue sources and justify prerequisites for the correct myosin heavy and light chains to study cardiomyopathies.
Collapse
Affiliation(s)
- Tianbang Wang
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Jennifer Osten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Florentine Behrens
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Fabius Grünhagen
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Scholz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Angelidis A, Vandenboom R. The effect of muscle length on post-tetanic potentiation of C57BL/6 and skMLCK -/- mouse EDL muscles. J Muscle Res Cell Motil 2022; 43:99-111. [PMID: 35771335 DOI: 10.1007/s10974-022-09620-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Post-tetanic potentiation of fast-twitch skeletal muscle is dependent on muscle length, with greater potentiation observed at shorter compared to longer lengths. The structural effects of the primary potentiation mechanism, phosphorylation of the regulatory light chain (RLC) of myosin, are thought to explain this relationship. The purpose of these experiments was to determine whether the length-dependence of potentiation would be attenuated in the absence of RLC phosphorylation. To this end, we compared isometric twitch potentiation of mouse extensor digitorum longus (EDL) muscles with (wildtype, WT) and without (skeletal myosin light chain kinase knockout, skMLCK-/-) phosphorylation. Force was measured at five muscle lengths (0.90 Lo, 0.95 Lo, Lo, 1.05 Lo, 1.10 Lo, where Lo refers to optimal length) prior to and following a tetanic train. In accordance with prior findings, potentiation was dependent on muscle length, with greater values observed at short (e.g., 44.3 ± 4.6% for WT, 33.5 ± 6.2% for skMLCK-/-, at 0.90 Lo) compared to long lengths (e.g., 16.9 ± 1.3% for WT, 9.1 ± 1.8% for skMLCK-/-, at 1.10 Lo) in both genotypes. WT muscles displayed greater potentiation compared to their skMLCK-/- counterparts across lengths (e.g., 16.9 ± 1.6% vs 7.3 ± 1.5% at Lo). However, the relationship between potentiation and muscle length was not different between genotypes. Thus, the alternative mechanisms of potentiation, present in the skMLCK-/- EDL, display a length-dependence of post-tetanic potentiation similar to RLC phosphorylation-dominant potentiation. Additional mechanisms may be required to explain the length-dependence of potentiation.
Collapse
Affiliation(s)
- Angelos Angelidis
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| | - Rene Vandenboom
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
10
|
Influence of caffeine on the maximal isometric and concentric force produced by skinned fibers. Sci Rep 2022; 12:7980. [PMID: 35562590 PMCID: PMC9106758 DOI: 10.1038/s41598-022-12222-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Caffeine is one of the most famous and widely used ergogenic drugs, especially by athletes to improve sports performance. Caffeine is known to enhance muscle contraction by facilitating Ca2+ release from the sarcoplasmic reticulum. While the effect of caffeine on the cross-bridge dynamics has also investigated, the results is controversial. Therefore, the purpose of this study was to examine the influence of caffeine on cross-bridge dynamics using skinned fiber preparations from rabbit soleus (N = 19 in total). We performed isometric contractions at an average sarcomere length of 2.4 μm; thereafter, skinned fibers were shortened by 20% of the fiber length at a velocity of 0.1 mm/s (slow shortening) or 0.5 mm/s (fast shortening). The contractions were performed under both normal and caffeine-containing activating solution conditions to compare the isometric, slow concentric, and fast concentric forces between conditions. The isometric force did not differ between normal and caffeine-containing activating solution conditions. Similarly, the concentric forces obtained during the slow and fast shortening trials did not differ between conditions. We also measured the stiffness and the rate of force redevelopment (kTR) during the isometric contraction phase and found that these values were not different between normal and caffeine conditions. Based on these results, we conclude that the influence of caffeine on cross-bridge dynamics is negligible, and the ergogenic effect of caffeine, from the view of muscle contractility, is by facilitating Ca2+ release, as suggested in previous studies, and not by modulating the cross-bridge dynamics.
Collapse
|
11
|
Feldpausch JE, Blok AL, Frederick EL, Coburn JW, Malek MH. The Evolution of the Physical Work Capacity at the Fatigue Threshold Test: Past, Present, and Future. J Strength Cond Res 2021; 35:3529-3536. [PMID: 34570058 DOI: 10.1519/jsc.0000000000004124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Feldpausch, JE, Blok, AL, Frederick, EL, Coburn, JW, and Malek, MH. The evolution of the physical work capacity at the fatigue threshold test: past, present, and future. J Strength Cond Res 35(12): 3529-3536, 2021-The assessment of neuromuscular fatigue using surface electromyography has evolved over the past 40 years while maintaining some of the original key features. In this mini-review article, the goal will be to briefly present a history and systems of the physical working capacity at the fatigue threshold (PWCFT). In addition, we will discuss studies that have investigated the effect of different interventions such as supplementation, exercise, and cognitive fatigue to examine what stimuli influence the PWCFT. The latter section of this mini-review will discuss future studies that may provide additional information related to the underlying physiological mechanism(s) that influences the PWCFT. We will conclude with the practical application of PWCFT in health and sports settings.
Collapse
Affiliation(s)
- Jennie E Feldpausch
- Physical Therapy Program, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
| | - Amanda L Blok
- Physical Therapy Program, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
| | - Emily L Frederick
- Physical Therapy Program, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
| | - Jared W Coburn
- Department of Kinesiology, California State University, Fullerton, California
| | - Moh H Malek
- Physical Therapy Program, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
| |
Collapse
|
12
|
Bremer N, Peoples G, Hasler B, Litzenburg R, Johnson A, Malek MH. Repeated Incremental Workbouts Separated by 1 Hour Increase the Electromyographic Fatigue Threshold. J Strength Cond Res 2021; 35:1397-1402. [PMID: 30664112 DOI: 10.1519/jsc.0000000000002919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Bremer, N, Peoples, G, Hasler, B, Litzenburg, R, Johnson, A, and Malek, MH. Repeated incremental workbouts separated by 1 hour increase the electromyographic fatigue threshold. J Strength Cond Res 35(5): 1397-1402, 2021-Studies examining the influence of priming, for continuous exercise, have mainly focused on improved exercise capacity related to oxygen uptake kinetics rather than on neuromuscular fatigue of the muscle. The purpose of this study, therefore, was to determine whether or not the electromyographic fatigue threshold (EMGFT) could be modulated by having subjects perform 2 incremental tests separated by 1 hour. We hypothesized that the EMGFT determined from the second incremental test would be higher than the EMGFT determined from the first incremental test. Nine healthy college-aged men (mean ± SEM: age: 23.8 ± 0.6 years; body mass: 79.5 ± 3.3 kg; height: 1.78 ± 0.02 m) were recruited from the university population. Each subject visited the laboratory on 1 occasion and performed 2 incremental single-leg knee-extensor ergometry to voluntary fatigue separated by 1 hour. The EMGFT was determined for each trial and statistically compared using paired-samples t-test. The results indicated significant mean differences between the EMGFT for the 2 trials (trial 1: 27 ± 1 W vs. trial 2: 34 ± 2 W; p = 0.001), whereas there were no significant mean differences for maximal power output (trial 1: 53 ± 2 W vs. trial 2: 57 ± 2; p = 0.09). These findings suggest that postactivation potentiation may, in part, explain the differences in EMGFT because the exercise mode used in the current study minimizes the cardiorespiratory responses to exercise.
Collapse
Affiliation(s)
- Nate Bremer
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Gavin Peoples
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Brent Hasler
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Robert Litzenburg
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Andrew Johnson
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Moh H Malek
- Department of Health Care Sciences, Physical Therapy Program, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; and
- Department of Health Care Sciences, Integrative Physiology of Exercise Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
13
|
Regulatory Light Chains in Cardiac Development and Disease. Int J Mol Sci 2021; 22:ijms22094351. [PMID: 33919432 PMCID: PMC8122660 DOI: 10.3390/ijms22094351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022] Open
Abstract
The role of regulatory light chains (RLCs) in cardiac muscle function has been elucidated progressively over the past decade. The RLCs are among the earliest expressed markers during cardiogenesis and persist through adulthood. Failing hearts have shown reduced RLC phosphorylation levels and that restoring baseline levels of RLC phosphorylation is necessary for generating optimal force of muscle contraction. The signalling mechanisms triggering changes in RLC phosphorylation levels during disease progression remain elusive. Uncovering this information may provide insights for better management of heart failure patients. Given the cardiac chamber-specific expression of RLC isoforms, ventricular RLCs have facilitated the identification of mature ventricular cardiomyocytes, opening up possibilities of regenerative medicine. This review consolidates the standing of RLCs in cardiac development and disease and highlights knowledge gaps and potential therapeutic advancements in targeting RLCs.
Collapse
|
14
|
Abstract
Since the discovery of muscle in the 19th century, myosins as molecular motors have been extensively studied. However, in the last decade, a new functional super-relaxed (SRX) state of myosin has been discovered, which has a 10-fold slower ATP turnover rate than the already-known non-actin-bound, disordered relaxed (DRX) state. These two states are in dynamic equilibrium under resting muscle conditions and are thought to be significant contributors to adaptive thermogenesis in skeletal muscle and can act as a reserve pool that may be recruited when there is a sustained demand for increased cardiac muscle power. This report provides an evolutionary perspective of how striated muscle contraction is regulated by modulating this myosin DRX↔SRX state equilibrium. We further discuss this equilibrium with respect to different physiological and pathophysiological perturbations, including insults causing hypertrophic cardiomyopathy, and small-molecule effectors that modulate muscle contractility in diseased pathology.
Collapse
Affiliation(s)
- Suman Nag
- Department of Biology, MyoKardia IncBrisbaneUnited States
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
15
|
de Arruda TB, Barbieri RA, de Andrade VL, Cursiol JA, Kalva-Filho CA, Bertucci DR, Papoti M. Proposal of a Conditioning Activity Model on Sprint Swimming Performance. Front Physiol 2020; 11:580711. [PMID: 33192588 PMCID: PMC7642208 DOI: 10.3389/fphys.2020.580711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
This study aimed to propose a conditioning activity (CA) model to stimulate improvement on neuromuscular responses, mechanical parameters and for the 50-m freestyle swimming. Thirteen male swimmers (19 ± 3 years and performances of 77% in relation to World Championship records) performed four CA protocols followed by a maximum performance in the 50-m freestyle. In the first protocol (P1) swimmers performed a standard warm-up (∼15 min); in the second protocol (P2) lunges (3 × 85% of the one-repetition maximum); in the third (P3) pull-ups (3 maximum repetitions) and box jumps 40 cm high and 60 cm deep (1 × 5 with 10% of the corporal weight); and in the fourth protocol (P4) a combination of exercises from the second and third protocols. CA protocols had no effect on the standard warm-up. However, P2 performance (27.01 ± 1.25 s) was similar to P1 (27.01 ± 1.18 s) and presented higher positive effects in mechanical parameters for the swim start performance in comparison to other protocols, contributing to improvements in the 50-m freestyle. In addition, turnaround time also had a negative effect, mainly in P3 (3.12 ± 0.28 s), signaling the improvement of this variable in all protocols (P1: 3.30 ± 0.38 s; P2: 3.17 ± 0.30 s; P4: 3.17 ± 0.34 s). P2 (after: 80 ± 11%; before: 82.7 ± 9.9%) and P3 (after: 82.7 ± 9.9%; before: 85.1 ± 9.7%) presented a possible positive effect on the percentage of voluntary activation in relation to P1 (after: 79.3 ± 10.7%; before: 76.3 ± 12%). In conclusion, the proposed conditioning activity protocols were not efficient for performance improvement in the 50-m freestyle compared to the standard model and seem to specifically influence each phase of the event.
Collapse
Affiliation(s)
- Tarine Botta de Arruda
- Laboratory of Aquatic Activities, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, EEFERP-USP, São Paulo, Brazil
| | - Ricardo Augusto Barbieri
- Laboratory of Aquatic Activities, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, EEFERP-USP, São Paulo, Brazil.,Estácio University Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Vitor Luiz de Andrade
- Bioscience Institute, Physical Education Department, São Paulo State University "Júlio de Mesquita Filho", São Paulo, Brazil
| | - Jônatas Augusto Cursiol
- Laboratory of Aquatic Activities, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, EEFERP-USP, São Paulo, Brazil
| | - Carlos Augusto Kalva-Filho
- Human Movement Research Laboratory, Post-graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil
| | - Danilo Rodrigues Bertucci
- Bioscience Institute, Physical Education Department, São Paulo State University "Júlio de Mesquita Filho", São Paulo, Brazil
| | - Marcelo Papoti
- Laboratory of Aquatic Activities, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, EEFERP-USP, São Paulo, Brazil.,Bioscience Institute, Physical Education Department, São Paulo State University "Júlio de Mesquita Filho", São Paulo, Brazil
| |
Collapse
|
16
|
MacDougall KB, Devrome AN, Kristensen AM, MacIntosh BR. Force-frequency relationship during fatiguing contractions of rat medial gastrocnemius muscle. Sci Rep 2020; 10:11575. [PMID: 32665563 PMCID: PMC7360560 DOI: 10.1038/s41598-020-68392-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
The force–frequency relationship presents the amount of force a muscle can produce as a function of the frequency of activation. During repetitive muscular contractions, fatigue and potentiation may both impact the resultant contractile response. However, both the apparent fatigue observed, and the potential for activity-dependent potentiation can be affected by the frequency of activation. Thus, we wanted to explore the effects that repetitive stimulation had on the force–frequency relationship. The force–frequency relationship of the rat medial gastrocnemius muscle was investigated during consecutive bouts of increasing fatigue with 20 to 100 Hz stimulation. Force was measured prior to the fatiguing protocol, during each of three levels of fatigue, and after 30 min of recovery. Force at each frequency was quantified relative to the pre-fatigued 100 Hz contractions, as well as the percentage reduction of force from the pre-fatigued level at a given frequency. We observed less reduction in force at low frequencies compared to high frequencies, suggesting an interplay of fatigue and potentiation, in which potentiation can “protect” against fatigue in a frequency-dependent manner. The exact mechanism of fatigue is unknown, however the substantial reduction of force at high frequency suggests a role for reduced force per cross-bridge.
Collapse
Affiliation(s)
| | - Andrea N Devrome
- Faculty of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
17
|
Teigen LE, Sundberg CW, Kelly LJ, Hunter SK, Fitts RH. Ca 2+ dependency of limb muscle fiber contractile mechanics in young and older adults. Am J Physiol Cell Physiol 2020; 318:C1238-C1251. [PMID: 32348175 DOI: 10.1152/ajpcell.00575.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-induced declines in skeletal muscle contractile function have been attributed to multiple cellular factors, including lower peak force (Po), decreased Ca2+ sensitivity, and reduced shortening velocity (Vo). However, changes in these cellular properties with aging remain unresolved, especially in older women, and the effect of submaximal Ca2+ on contractile function is unknown. Thus, we compared contractile properties of muscle fibers from 19 young (24 ± 3 yr; 8 women) and 21 older adults (77 ± 7 yr; 7 women) under maximal and submaximal Ca2+ and assessed the abundance of three proteins thought to influence Ca2+ sensitivity. Fast fiber cross-sectional area was ~44% larger in young (6,479 ± 2,487 µm2) compared with older adults (4,503 ± 2,071 µm2, P < 0.001), which corresponded with a greater absolute Po (young = 1.12 ± 0.43 mN; old = 0.79 ± 0.33 mN, P < 0.001). There were no differences in fast fiber size-specific Po, indicating the age-related decline in force was explained by differences in fiber size. Except for fast fiber size and absolute Po, no age or sex differences were observed in Ca2+ sensitivity, rate of force development (ktr), or Vo in either slow or fast fibers. Submaximal Ca2+ depressed ktr and Vo, but the effects were not altered by age in either sex. Contrary to rodent studies, regulatory light chain (RLC) and myosin binding protein-C abundance and RLC phosphorylation were unaltered by age or sex. These data suggest the age-associated reductions in contractile function are primarily due to the atrophy of fast fibers and that caution is warranted when extending results from rodent studies to humans.
Collapse
Affiliation(s)
- Laura E Teigen
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Christopher W Sundberg
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin.,Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Lauren J Kelly
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Doma K, Leicht AS, Boullosa D, Woods CT. Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical jump performance. Eur J Appl Physiol 2020; 120:687-695. [PMID: 32006099 DOI: 10.1007/s00421-020-04308-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE This study examined the post-activation potentiation effects of body-weight lunge exercises with blood-flow restriction on jump performance. Eighteen anaerobically trained men took part in this study across 3 weeks. METHODS During the first week, participants were familiarised with the lunge exercises with blood-flow restriction and the drop-jump protocol. In the second and third week, participants were randomly allocated to complete body-weight lunges (three sets of eight repetitions) either with or without blood-flow restriction (occlusion set at 130% of systolic blood pressure) to induce post-activation potentiation. Drop-jump performance was assessed between blood-flow conditions, and prior to, and at the third, sixth, ninth, twelfth and fifteenth minute following each lunge exercise. Relationships between mechanical contributors of jump performance and final jump performance were examined via Pearson correlation coefficients. RESULTS Lunges with blood-flow restriction significantly improved jump height (~ 4.5% ± 0.8%), flight time (~ 3.4% ± 0.3%) and power (~ 4.1% ± 0.3%) within 6-15 min post-exercise (p < 0.05) with the magnitude of effect between blood-flow conditions, moderate-large (0.54-1.16). No significant changes (p > 0.05) were found in jump performance measures following lunge exercises without blood-flow restriction. Significant correlations (p < 0.05) between mechanical contributors of jump performance and jump performance highlighted the potential of blood-flow restriction to enhance stretch-shortening cycle mechanics in the current study. CONCLUSION Lunge exercises with blood-flow restriction improved subsequent jump performance in anaerobically trained men. The use of blood-flow restriction may be a practical alternative to heavy resistance training equipment during warm-up protocols.
Collapse
Affiliation(s)
- Kenji Doma
- James Cook University, Townsville, QLD, Australia.
| | | | - Daniel Boullosa
- INISA, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Carl T Woods
- Institute for health and sport, Victoria University, Melbourne, Australia
| |
Collapse
|
19
|
Gago PR, Arndt A, Marques MC, Marinho DA, Ekblom MM. Effects of post activation potentiation on electromechanical delay. Clin Biomech (Bristol, Avon) 2019; 70:115-122. [PMID: 31476603 DOI: 10.1016/j.clinbiomech.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Electromechanical delay (EMD) presumably depends upon both contractile and tensile factors. It has recently been used as an indirect measure of muscle tendon stiffness to study adaptations to stretching and training. The aim of the present study was to investigate whether contractile properties induced by a 6 s maximum voluntary isometric contraction (MVIC) could affect EMD without altering passive muscle tendon stiffness or stiffness index. Plantar flexor twitches were evoked via electrical stimulation of the tibial nerve in eight highly trained male sprinters before and after a 6 s MVIC in passive isometric or passively shortening or lengthening muscles. For each twitch, EMD, twitch contractile properties and SOLM-Wave were measured. Passive muscle tendon stiffness was measured from the slope of the relation between torque and ankle angle during controlled passive dorsal flexion and stiffness index by curve-fitting the torque angle data using a second-order polynomial function. EMD did not differ between isometric, lengthening or shortening movements. EMD was reduced by up to 11.56 ± 5.64% immediately after the MVIC and stayed depressed for up to 60 s after conditioning. Peak twitch torque and rate of torque development were potentiated by up to 119.41 ± 37.15% and 116.06 ± 37.39%, respectively. Rising time was reduced by up to 14.46 ± 7.22%. No significant changes occurred in passive muscle tendon stiffness or stiffness index. Using a conditioning MVIC, it was shown that there was an acute enhancement of contractile muscle properties as well as a significant reduction in EMD with no corresponding changes in stiffness. Therefore, caution should be taken when using and interpreting EMD as a proxy for muscle tendon stiffness.
Collapse
Affiliation(s)
- Paulo R Gago
- Biomechanics and Motor Control Laboratory, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Anton Arndt
- Biomechanics and Motor Control Laboratory, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden; Institution CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Mário C Marques
- University of Beira Interior (UBI), Covilhã, Portugal; Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Covilhã, Portugal
| | - Daniel A Marinho
- University of Beira Interior (UBI), Covilhã, Portugal; Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Covilhã, Portugal.
| | - Maria M Ekblom
- Biomechanics and Motor Control Laboratory, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| |
Collapse
|
20
|
Blazevich AJ, Babault N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front Physiol 2019; 10:1359. [PMID: 31736781 PMCID: PMC6838751 DOI: 10.3389/fphys.2019.01359] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Post-activation potentiation (PAP) is a well-described phenomenon with a short half-life (~28 s) that enhances muscle force production at submaximal levels of calcium saturation (i.e., submaximal levels of muscle activation). It has been largely explained by an increased myosin light chain phosphorylation occurring in type II muscle fibers, and its effects have been quantified in humans by measuring muscle twitch force responses to a bout of muscular activity. However, enhancements in (sometimes maximal) voluntary force production detected several minutes after high-intensity muscle contractions are also observed, which are also most prominent in muscles with a high proportion of type II fibers. This effect has been considered to reflect PAP. Nonetheless, the time course of myosin light chain phosphorylation (underpinning “classic” PAP) rarely matches that of voluntary force enhancement and, unlike PAP, changes in muscle temperature, muscle/cellular water content, and muscle activation may at least partly underpin voluntary force enhancement; this enhancement has thus recently been called post-activation performance enhancement (PAPE) to distinguish it from “classical” PAP. In fact, since PAPE is often undetectable at time points where PAP is maximal (or substantial), some researchers have questioned whether PAP contributes to PAPE under most conditions in vivo in humans. Equally, minimal evidence has been presented that PAP is of significant practical importance in cases where multiple physiological processes have already been upregulated by a preceding, comprehensive, active muscle warm-up. Given that confusion exists with respect to the mechanisms leading to acute enhancement of both electrically evoked (twitch force; PAP) and voluntary (PAPE) muscle function in humans after acute muscle activity, the first purpose of the present narrative review is to recount the history of PAP/PAPE research to locate definitions and determine whether they are the same phenomena. To further investigate the possibility of these phenomena being distinct as well as to better understand their potential functional benefits, possible mechanisms underpinning their effects will be examined in detail. Finally, research design issues will be addressed which might contribute to confusion relating to PAP/PAPE effects, before the contexts in which these phenomena may (or may not) benefit voluntary muscle function are considered.
Collapse
Affiliation(s)
- Anthony J Blazevich
- School of Medical and Health Science, Centre for Exercise and Sports Science Research (CESSR), Edith Cowan University, Joondalup, WA, Australia
| | - Nicolas Babault
- Faculty of Sport Sciences, French National Institute of Health and Medical Research (INSERM), Unit 1093 Cognition, Action and Sensorimotor Plasticity, Centre for Performance Expertise, University of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
21
|
Johnson CN, Pattanayek R, Potet F, Rebbeck RT, Blackwell DJ, Nikolaienko R, Sequeira V, Le Meur R, Radwański PB, Davis JP, Zima AV, Cornea RL, Damo SM, Györke S, George AL, Knollmann BC. The CaMKII inhibitor KN93-calmodulin interaction and implications for calmodulin tuning of Na V1.5 and RyR2 function. Cell Calcium 2019; 82:102063. [PMID: 31401388 DOI: 10.1016/j.ceca.2019.102063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM-protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.
Collapse
Affiliation(s)
- Christopher N Johnson
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Rekha Pattanayek
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Franck Potet
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Blackwell
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Vasco Sequeira
- Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Remy Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville TN 37204, USA
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jonathan P Davis
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Maywood IL, 60153, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alfred L George
- Department of Pharmacology Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Björn C Knollmann
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
22
|
Ishii S, Oyama K, Arai T, Itoh H, Shintani SA, Suzuki M, Kobirumaki-Shimozawa F, Terui T, Fukuda N, Ishiwata S. Microscopic heat pulses activate cardiac thin filaments. J Gen Physiol 2019; 151:860-869. [PMID: 31010810 PMCID: PMC6572001 DOI: 10.1085/jgp.201812243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/20/2019] [Accepted: 03/31/2019] [Indexed: 11/30/2022] Open
Abstract
During the excitation-contraction coupling of the heart, sarcomeres are activated via thin filament structural changes (i.e., from the "off" state to the "on" state) in response to a release of Ca2+ from the sarcoplasmic reticulum. This process involves chemical reactions that are highly dependent on ambient temperature; for example, catalytic activity of the actomyosin ATPase rises with increasing temperature. Here, we investigate the effects of rapid heating by focused infrared (IR) laser irradiation on the sliding of thin filaments reconstituted with human α-tropomyosin and bovine ventricular troponin in an in vitro motility assay. We perform high-precision analyses measuring temperature by the fluorescence intensity of rhodamine-phalloidin-labeled F-actin coupled with a fluorescent thermosensor sheet containing the temperature-sensitive dye Europium (III) thenoyltrifluoroacetonate trihydrate. This approach enables a shift in temperature from 25°C to ∼46°C within 0.2 s. We find that in the absence of Ca2+ and presence of ATP, IR laser irradiation elicits sliding movements of reconstituted thin filaments with a sliding velocity that increases as a function of temperature. The heating-induced acceleration of thin filament sliding likewise occurs in the presence of Ca2+ and ATP; however, the temperature dependence is more than twofold less pronounced. These findings could indicate that in the mammalian heart, the on-off equilibrium of the cardiac thin filament state is partially shifted toward the on state in diastole at physiological body temperature, enabling rapid and efficient myocardial dynamics in systole.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Epithelial Biology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Madoka Suzuki
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Takako Terui
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
23
|
Assessing the role of Ca2+ in skeletal muscle fatigue using a multi-scale continuum model. J Theor Biol 2019; 461:76-83. [DOI: 10.1016/j.jtbi.2018.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 11/16/2022]
|
24
|
BUKHOVETS BO, ROMANCHUK AP. Blood flow in the brain venous blood vessels of children with cerebral palsy while using Bobath therapy. TURKISH JOURNAL OF KINESIOLOGY 2018; 4:65-72. [DOI: 10.31459/turkjkin.432634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the diagnosis of the causes of neurological disorders in children’s with cerebral palsy has attached the results of Transcranial Doppler. Bobath therapy is the most innovative and effective methods of physical rehabilitation. For the determination of brain blood flow of children of preschool age with various CNS lesions for the influence of the physical therapy using the Bobath’s method, 35 children aged 4.1 ± 1.1 years were examined. That was the main group (MG). All of 72 procedures were conducted. There was also a control group (CG), the results of the brain blood flow had been studied and analyzed in 34 children aged 3.8 ± 0.9 years who were undergoing rehabilitation using standard methods. Traditional methods of physical therapy and the methods of the Bobath therapy have a significant effect on the brain venous blood flow. At the same time, the significance of individual methods of physical therapy is not convincing. The comparison of changes in blood flow using the Bobath therapy and traditional methods allowed identifying certain differences. The influence of the Bobath methods, on the first place, concerns the more optimal effect on the blood flow in the veins of the spine and the direct venous sinus. At the same time, changes in blood flow with traditional approaches are more convincing to the effect on blood flow in the internal jugular veins and veins of Rosenthal.
Collapse
|
25
|
BUKHOVETS BO, ROMANCHUK AP. Blood flow in the brain venous blood vessels of children with cerebral palsy while using Bobath therapy. TURKISH JOURNAL OF KINESIOLOGY 2018; 4:65-72. [DOI: pp.65–72.doi: 10.31459/turkjkin.432634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2024] Open
Abstract
In the diagnosis of the causes of neurological disorders in children’s with cerebral palsy has attached the results of Transcranial Doppler. Bobath therapy is the most innovative and effective methods of physical rehabilitation. For the determination of brain blood flow of children of preschool age with various CNS lesions for the influence of the physical therapy using the Bobath’s method, 35 children aged 4.1 ± 1.1 years were examined. That was the main group (MG). All of 72 procedures were conducted. There was also a control group (CG), the results of the brain blood flow had been studied and analyzed in 34 children aged 3.8 ± 0.9 years who were undergoing rehabilitation using standard methods. Traditional methods of physical therapy and the methods of the Bobath therapy have a significant effect on the brain venous blood flow. At the same time, the significance of individual methods of physical therapy is not convincing. The comparison of changes in blood flow using the Bobath therapy and traditional methods allowed identifying certain differences. The influence of the Bobath methods, on the first place, concerns the more optimal effect on the blood flow in the veins of the spine and the direct venous sinus. At the same time, changes in blood flow with traditional approaches are more convincing to the effect on blood flow in the internal jugular veins and veins of Rosenthal.
Collapse
|
26
|
|
27
|
Abstract
In the diagnosis of the causes of neurological disorders in children’s with cerebral palsy has attached the results of Transcranial Doppler. Bobath therapy is the most innovative and effective methods of physical rehabilitation. For the determination of brain blood flow of children of preschool age with various CNS lesions for the influence of the physical therapy using the Bobath’s method, 35 children aged 4.1 ± 1.1 years were examined. That was the main group (MG). All of 72 procedures were conducted. There was also a control group (CG), the results of the brain blood flow had been studied and analyzed in 34 children aged 3.8 ± 0.9 years who were undergoing rehabilitation using standard methods. Traditional methods of physical therapy and the methods of the Bobath therapy have a significant effect on the brain venous blood flow. At the same time, the significance of individual methods of physical therapy is not convincing. The comparison of changes in blood flow using the Bobath therapy and traditional methods allowed identifying certain differences. The influence of the Bobath methods, on the first place, concerns the more optimal effect on the blood flow in the veins of the spine and the direct venous sinus. At the same time, changes in blood flow with traditional approaches are more convincing to the effect on blood flow in the internal jugular veins and veins of Rosenthal.
Collapse
|
28
|
Sundberg CW, Hunter SK, Trappe SW, Smith CS, Fitts RH. Effects of elevated H + and P i on the contractile mechanics of skeletal muscle fibres from young and old men: implications for muscle fatigue in humans. J Physiol 2018; 596:3993-4015. [PMID: 29806714 PMCID: PMC6117549 DOI: 10.1113/jp276018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS The mechanisms responsible for the loss in muscle power and increased fatigability with ageing are unresolved. We show that the contractile mechanics of fibres from the vastus lateralis of old men were well-preserved compared to those of young men, but the selective loss of fast myosin heavy chain II muscle was strongly associated with age-related decrements in whole-muscle strength and power. We reveal that the combination of acidosis (H+ ) and inorganic phosphate (Pi ) is an important mediator of muscle fatigue in humans by inhibiting the low- to high-force state of the cross-bridge cycle and peak power, but the depressive effects of these ions on cross-bridge function were similar in fibres from young and old men. These findings suggest that the age-related loss in muscle power is primarily determined by the atrophy of fast fibres, but the age-related increased fatigability cannot be explained by an increased sensitivity of the cross-bridge to H+ and Pi . ABSTRACT The present study aimed to identify the mechanisms responsible for the loss in muscle power and increased fatigability with ageing by integrating measures of whole-muscle function with single fibre contractile mechanics. After adjusting for the 22% smaller muscle mass in old (73-89 years, n = 6) compared to young men (20-29 years, n = 6), isometric torque and power output of the knee extensors were, respectively, 38% and 53% lower with age. Fatigability was ∼2.7-fold greater with age and strongly associated with reductions in the electrically-evoked contractile properties. To test whether cross-bridge mechanisms could explain age-related decrements in knee extensor function, we exposed myofibres (n = 254) from the vastus lateralis to conditions mimicking quiescent muscle and fatiguing levels of acidosis (H+ ) (pH 6.2) and inorganic phosphate (Pi ) (30 mm). The fatigue-mimicking condition caused marked reductions in force, shortening velocity and power and inhibited the low- to high-force state of the cross-bridge cycle, confirming findings from non-human studies that these ions act synergistically to impair cross-bridge function. Other than severe age-related atrophy of fast fibres (-55%), contractile function and the depressive effects of the fatigue-mimicking condition did not differ in fibres from young and old men. The selective loss of fast myosin heavy chain II muscle was strongly associated with the age-related decrease in isometric torque (r = 0.785) and power (r = 0.861). These data suggest that the age-related loss in muscle strength and power are primarily determined by the atrophy of fast fibres, but the age-related increased fatigability cannot be explained by an increased sensitivity of the cross-bridge to H+ and Pi .
Collapse
Affiliation(s)
- Christopher W. Sundberg
- Exercise Science ProgramMilwaukeeWIUSA
- Clinical & Translational Rehabilitation Health Sciences ProgramDepartment of Physical TherapyMarquette UniversityMilwaukeeWIUSA
| | - Sandra K. Hunter
- Exercise Science ProgramMilwaukeeWIUSA
- Clinical & Translational Rehabilitation Health Sciences ProgramDepartment of Physical TherapyMarquette UniversityMilwaukeeWIUSA
| | - Scott W. Trappe
- Human Performance LaboratoryBall State UniversityMuncieINUSA
| | | | - Robert H. Fitts
- Department of Biological SciencesMarquette UniversityMilwaukeeWIUSA
| |
Collapse
|
29
|
Ribeiro N, Ugrinowitsch C, Panissa VLG, Tricoli V. Acute effects of aerobic exercise performed with different volumes on strength performance and neuromuscular parameters. Eur J Sport Sci 2018; 19:287-294. [DOI: 10.1080/17461391.2018.1500643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Natalia Ribeiro
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Valmor Tricoli
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
30
|
Bunda J, Gittings W, Vandenboom R. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation. ACTA ACUST UNITED AC 2018; 221:jeb.167718. [PMID: 29361581 DOI: 10.1242/jeb.167718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/31/2017] [Indexed: 01/12/2023]
Abstract
Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK-/-) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK-/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK-/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK-/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK-/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK-/- muscles without RLC phosphorylation.
Collapse
Affiliation(s)
- Jordan Bunda
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| | - William Gittings
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| | - Rene Vandenboom
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| |
Collapse
|
31
|
Doma K, Leicht AS, Schumann M, Nagata A, Senzaki K, Woods CE. Postactivation potentiation effect of overloaded cycling on subsequent cycling Wingate performance. J Sports Med Phys Fitness 2018; 59:217-222. [PMID: 29308849 DOI: 10.23736/s0022-4707.18.08134-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study examined the postactivation potentiation effects of overloaded cycling on subsequent Wingate performance. METHODS Twenty anaerobic-trained men took part in this study. The participants were randomly allocated to complete three testing sessions separated by 7 days. Each week, participants either undertook a control session (CON) consisting of a sub-maximal cycling warm-up protocol followed by a Wingate Test, or separate sessions involving an overloaded 10-second cycling PAP protocol followed by a Wingate Test at 5 (T5) or 10 (T10) minutes, post-PAP protocol. Power outputs, cadence, total work, fatigue rate, heart rate and capillary lactate measures were recorded from each Wingate Test. Measures were compared between these sessions and between sessions that generated the greatest peak power output (Bestpeak-P) and mean power output (Bestmean-P) via repeated measures ANOVA with effect sizes (ES) also calculated. RESULTS A significantly greater mean power output, total work and lactate levels were exhibited during the T10 condition compared to the CON condition (P<0.05, ES=1.57). Whilst not significant (P=0.06), a greater peak power output was exhibited during the Bestpeak-P condition compared to the CON condition with a large effect (ES=0.95). CONCLUSIONS Results indicated that an overloaded cycling protocol increased power output and lactate measures in anaerobic-trained men during a 30-second, Wingate Test. Overloaded cycling enhances subsequent anaerobic performance and is therefore likely to provide greater training stimuli for anaerobically trained individuals.
Collapse
Affiliation(s)
- Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, Australia -
| | - Anthony S Leicht
- Sport and Exercise Science, James Cook University, Townsville, Australia
| | - Moritz Schumann
- Institute of Cardiology and Sports Medicine, German Sport University, Cologne, Germany
| | - Akinori Nagata
- Faculty of Sports Science, Kyushu Kyoritsu University, Kyushu, Japan
| | | | - Carl E Woods
- Sport and Exercise Science, James Cook University, Townsville, Australia
| |
Collapse
|
32
|
Racinais S, Cocking S, Périard JD. Sports and environmental temperature: From warming-up to heating-up. Temperature (Austin) 2017; 4:227-257. [PMID: 28944269 DOI: 10.1080/23328940.2017.1356427] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 01/22/2023] Open
Abstract
Most professional and recreational athletes perform pre-conditioning exercises, often collectively termed a 'warm-up' to prepare for a competitive task. The main objective of warming-up is to induce both temperature and non-temperature related responses to optimize performance. These responses include increasing muscle temperature, initiating metabolic and circulatory adjustments, and preparing psychologically for the upcoming task. However, warming-up in hot and/or humid ambient conditions increases thermal and circulatory strain. As a result, this may precipitate neuromuscular and cardiovascular impairments limiting endurance capacity. Preparations for competing in the heat should include an acclimatization regimen. Athletes should also consider cooling interventions to curtail heat gain during the warm-up and minimize dehydration. Indeed, although it forms an important part of the pre-competition preparation in all environmental conditions, the rise in whole-body temperature should be limited in hot environments. This review provides recommendations on how to build an effective warm-up following a 3 stage RAMP model (Raise, Activate and Mobilize, Potentiate), including general and context specific exercises, along with dynamic flexibility work. In addition, this review provides suggestion to manipulate the warm-up to suit the demands of competition in hot environments, along with other strategies to avoid heating-up.
Collapse
Affiliation(s)
- Sébastien Racinais
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Scott Cocking
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, United Kingdom
| | - Julien D Périard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,University of Canberra, Research Institute for Sport and Exercise, Canberra, Australia
| |
Collapse
|
33
|
Green HJ, Ranney D, Kyle N, Lounsbury D, Smith IC, Stewart R, Thomas MM, Tick H, Tupling AR. Neuromuscular manifestations of work-related myalgia in women specific to extensor carpi radialis brevis. Can J Physiol Pharmacol 2017; 95:404-419. [PMID: 28177692 DOI: 10.1139/cjpp-2016-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study assessed neuromuscular function in the extensor carpi radialis brevis (ECRB) of female workers diagnosed with work-related myalgia (WRM, n = 14, age 45.2 ± 1.9 years) and the ECRB of healthy controls (CON, n = 10, age 34.6 ± 2.5 years). Groups were compared on voluntary and electrically evoked functional responses at rest (Pre), immediately following a 5 min repetitive task (Post-0) performed at 60% maximal voluntary contraction (MVC), and after 5 min of recovery (Post-5). Despite near complete motor unit activation (MUA) (CON 98% ± 1% vs. WRM 99% ± 1%), at Pre, WRM produced 26% less (P < 0.05) MVC force than CON. Following an MVC, twitch force was increased (P < 0.05) by 94% ± 13% and 54% ± 11% in CON and WRM, respectively (CON vs. WRM; P < 0.05). The peak force and the maximal rates of force development and decline of electrically evoked contractions (10-100 Hz) were generally depressed (P < 0.05) at Post-0 and Post-5 relative to Pre. The response pattern to increasing frequencies of stimulation was not different (P > 0.05) between groups and MUA was not impaired (CON 97% ± 1% vs. WRM 97% ± 1%; P > 0.05). In conclusion, the peripheral weakness observed in the ECRB in WRM at rest does not result in abnormal fatigue or recovery responses after performing a task controlled for relative demand (60% MVC).
Collapse
Affiliation(s)
- Howard J Green
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,b Centre of Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Waterloo, ON N2L 3G1, Canada
| | - Don Ranney
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,d Disability Assessment Services Inc., Waterloo, ON N2B 1Y4, Canada
| | - Natasha Kyle
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - David Lounsbury
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ian C Smith
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Riley Stewart
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Melissa M Thomas
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Heather Tick
- c Mind Body Medicine, The RSI Clinic, Toronto, ON M4T 1M6, Canada.,e Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - A Russell Tupling
- a Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
34
|
Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev 2017; 9:57-64. [PMID: 28510043 DOI: 10.1007/s12551-017-0248-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.
Collapse
|
35
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
36
|
Gregorich ZR, Peng Y, Cai W, Jin Y, Wei L, Chen AJ, McKiernan SH, Aiken JM, Moss RL, Diffee GM, Ge Y. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction. J Proteome Res 2016; 15:2706-16. [PMID: 27362462 PMCID: PMC4975644 DOI: 10.1021/acs.jproteome.6b00244] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Yutong Jin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706
| | - Liming Wei
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Albert J. Chen
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Susan H. McKiernan
- Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, WI, 53705
| | - Judd M. Aiken
- Departments of Agriculture, Food, and Nutritional Sciences, University of Alberta-Edmonton, Edmonton, AB, Canada
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- UW Cardiovascular Research Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, WI, 53705
- UW Cardiovascular Research Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
- UW Cardiovascular Research Center, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI, 53705
| |
Collapse
|
37
|
Toepfer CN, West TG, Ferenczi MA. Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion. J Physiol 2016; 594:5237-54. [PMID: 27291932 PMCID: PMC5023691 DOI: 10.1113/jp272441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022] Open
Abstract
Key points Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Abstract Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin‐associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr) in maximally activating [Ca2+]. Activation was achieved by rapidly increasing the temperature (temperature‐jump of 0.5–20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85–1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC‐exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two‐state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross‐bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca2+] and are not explained by changes in the Ca2+‐sensitivity of acto‐myosin interactions. The length‐dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank–Starling law of the heart. Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Collapse
Affiliation(s)
- Christopher N Toepfer
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK. .,Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy G West
- Structure & Motion Laboratory, Royal Veterinary College London, North Mymms, UK
| | - Michael A Ferenczi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
38
|
Wyland TP, Van Dorin JD, Reyes GFC. Postactivation Potentation Effects From Accommodating Resistance Combined With Heavy Back Squats on Short Sprint Performance. J Strength Cond Res 2016; 29:3115-23. [PMID: 25968229 DOI: 10.1519/jsc.0000000000000991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Applying accommodating resistance combined with isoinertial resistance has been demonstrated to be effective in improving neuromuscular attributes important for sport performance. The main purpose of this study was to determine whether short sprints can be acutely enhanced after several sets of back squats with or without accommodating resistance. Twenty recreationally resistance-trained males (age: 23.3 ± 4.4 years; height: 178.9 ± 6.5 cm; weight: 88.3 ± 10.8 kg) performed pre-post testing on 9.1-m sprint time. Three different interventions were implemented in randomized order between pre-post 9.1-m sprints. On 3 separate days, subjects either sat for 5 minutes (CTRL), performed 5 sets of 3 repetitions at 85% of their 1 repetition maximum (1RM) with isoinertial load (STND), or performed 5 sets of 3 repetitions at 85% of their 1RM, with 30% of the total resistance coming from elastic band tension (BAND) between pre-post 9.1-m sprint testing. Posttesting for 9.1-m sprint time occurred immediately after the last set of squats (Post-Immediate) and on every minute for 4 minutes after the last set of squats (Post-1min, Post-2min, Post-3min, and Post-4min). Repeated-measures analysis of variance statistical analyses revealed no significant changes in sprint time across posttesting times during the CTRL and STND condition. During the BAND condition, sprint time significantly decreased from Post-Immediate to Post-4min (p = 0.002). The uniqueness of accommodating resistance could create an optimal postactivation potentiation effect to increase neuromuscular performance. Coaches and athletes can implement heavy accommodating resistance exercises to their warm-up when improving acute sprint time is desired.
Collapse
Affiliation(s)
- Timothy P Wyland
- 1Human Performance Laboratory, Department of Exercise and Sport Science, Concordia University, Portland, Oregon; and 2School of Physical Therapy, College of Health and Human Sciences, Northern Illinois University, DeKalb, Illinois
| | | | | |
Collapse
|
39
|
Doma K, Sinclair WH, Hervert SR, Leicht AS. Postactivation potentiation of dynamic conditioning contractions on rowing sprint performance. J Sci Med Sport 2016; 19:951-956. [PMID: 27256788 DOI: 10.1016/j.jsams.2016.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/01/2016] [Accepted: 02/11/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study examined the post-activation potentiation effects of maximal dynamic contractions and gender on rowing sprint ability. DESIGN Repeated measures. METHODS Thirty-four male (n=17) and female (n=17) university students with experience in rowing took part in this study conducted across three weeks. Following familiarisation of the 10-second maximal rowing performance test on a rowing ergometer during Week 1, participants were randomly allocated to either complete a control or experimental session during Week 2 and 3. One rowing performance test was conducted during the control session whilst two rowing performance tests were conducted during the experimental session separated by 6-min. The first rowing performance test during the experimental session was used to: (1) compare measures with the control session to assess day-to-day repeatability; and (2) induce post-activation potentiation effects for the second rowing performance test. RESULTS Based on effect size calculations, results showed moderate-large increases for average power output (+2.5%), peak power output (+1.5%) and power output during first stroke (+0.79%). CONCLUSIONS Maximal dynamic contractions on a rowing ergometer improved subsequent rowing sprint ability in recreationally experienced male and female rowers. Accordingly, dynamic conditioning contractions on a rowing ergometer may enhance subsequent sprint-start for rowing competition success.
Collapse
|
40
|
Lai S, Collins BC, Colson BA, Kararigas G, Lowe DA. Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice. Am J Physiol Endocrinol Metab 2016; 310:E724-33. [PMID: 26956186 PMCID: PMC4867308 DOI: 10.1152/ajpendo.00439.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
Abstract
Impairment of skeletal muscle function has been associated with changes in ovarian hormones, especially estradiol. To elucidate mechanisms of estradiol on skeletal muscle strength, the hormone's effects on phosphorylation of the myosin regulatory light chain (pRLC) and muscle contractility were investigated, hypothesizing an estradiol-specific beneficial impact. In a skeletal muscle cell line, C2C12, pRLC was increased by 17β-estradiol (E2) in a concentration-dependent manner. In skeletal muscles of C57BL/6 mice that were E2 deficient via ovariectomy (OVX), pRLC was lower than that from ovary-intact, sham-operated mice (Sham). The reduced pRLC in OVX muscle was reversed by in vivo E2 treatment. Posttetanic potentiation (PTP) of muscle from OVX mice was low compared with that from Sham mice, and this decrement was reversed by acute E2 treatment, demonstrating physiological consequence. Western blot of those muscles revealed that low PTP corresponded with low pRLC and higher PTP with greater pRLC. We aimed to elucidate signaling pathways affecting E2-mediated pRLC using a kinase inhibitor library and C2C12 cells as well as a specific myosin light chain kinase inhibitor in muscles. PI3K/Akt, MAPK, and CamKII were identified as candidate kinases sensitive to E2 in terms of phosphorylating RLC. Applying siRNA strategy in C2C12 cells, pRLC triggered by E2 was found to be mediated by estrogen receptor-β and the G protein-coupled estrogen receptor. Together, these results provide evidence that E2 modulates myosin pRLC in skeletal muscle and is one mechanism by which this hormone can affect muscle contractility in females.
Collapse
Affiliation(s)
- Shaojuan Lai
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China; and
| | - Brittany C Collins
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Brett A Colson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Georgios Kararigas
- Institute of Gender in Medicine, Charite University Hospital, and German Centre for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
| | - Dawn A Lowe
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota;
| |
Collapse
|
41
|
Yamaguchi M, Kimura M, Li ZB, Ohno T, Takemori S, Hoh JFY, Yagi N. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers. Am J Physiol Cell Physiol 2016; 310:C692-700. [PMID: 26911280 DOI: 10.1152/ajpcell.00318.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
Abstract
The phosphorylation of the myosin regulatory light chain (RLC) is an important modulator of skeletal muscle performance and plays a key role in posttetanic potentiation and staircase potentiation of twitch contractions. The structural basis for these phenomena within the filament lattice has not been thoroughly investigated. Using a synchrotron radiation source at SPring8, we obtained X-ray diffraction patterns from skinned rabbit psoas muscle fibers before and after phosphorylation of myosin RLC in the presence of myosin light chain kinase, calmodulin, and calcium at a concentration below the threshold for tension development ([Ca(2+)] = 10(-6.8)M). After phosphorylation, the first myosin layer line slightly decreased in intensity at ∼0.05 nm(-1)along the equatorial axis, indicating a partial loss of the helical order of myosin heads along the thick filament. Concomitantly, the (1,1/1,0) intensity ratio of the equatorial reflections increased. These results provide a firm structural basis for the hypothesis that phosphorylation of myosin RLC caused the myosin heads to move away from the thick filaments towards the thin filaments, thereby enhancing the probability of interaction with actin. In contrast, 2,3-butanedione monoxime (BDM), known to inhibit contraction by impeding phosphate release from myosin, had exactly the opposite effects on meridional and equatorial reflections to those of phosphorylation. We hypothesize that these antagonistic effects are due to the acceleration of phosphate release from myosin by phosphorylation and its inhibition by BDM, the consequent shifts in crossbridge equilibria leading to opposite changes in abundance of the myosin-ADP-inorganic phosphate complex state associated with helical order of thick filaments.
Collapse
Affiliation(s)
- Maki Yamaguchi
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan;
| | - Masako Kimura
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Zhao-Bo Li
- Ludwig Center for Cancer Genetic and Therapeutics, The Johns Hopkins University, Baltimore, Maryland
| | - Tetsuo Ohno
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shigeru Takemori
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Joseph F Y Hoh
- Discipline of Physiology and the Bosch Institute, School of Medical Sciences, Sydney Medical School, The University of Sydney, New South Wales, Australia; and
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| |
Collapse
|
42
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|
43
|
Marshall PWM, Finn HT, Siegler JC. The Magnitude of Peripheral Muscle Fatigue Induced by High and Low Intensity Single-Joint Exercise Does Not Lead to Central Motor Output Reductions in Resistance Trained Men. PLoS One 2015; 10:e0140108. [PMID: 26439261 PMCID: PMC4595208 DOI: 10.1371/journal.pone.0140108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose To examine quadriceps muscle fatigue and central motor output during fatiguing single joint exercise at 40% and 80% maximal torque output in resistance trained men. Method Ten resistance trained men performed fatiguing isometric knee extensor exercise at 40% and 80% of maximal torque output. Maximal torque, rate of torque development, and measures of central motor output and peripheral muscle fatigue were recorded at two matched volumes of exercise, and after a final contraction performed to exhaustion. Central motor output was quantified from changes in voluntary activation, normalized surface electromyograms (EMG), and V-waves. Quadriceps muscle fatigue was assessed from changes in the size and shape of the resting potentiated twitch (Q.pot.tw). Central motor output during the exercise protocols was estimated from EMG and interpolated twitches applied during the task (VAsub). Results Greater reductions in maximal torque and rate of torque development were observed during the 40% protocol (p<0.05). Maximal central motor output did not change for either protocol. For the 40% protocol reductions from pre-exercise in rate and amplitude variables calculated from the Q.pot.tw between 66.2 to 70.8% (p<0.001) exceeded those observed during the 80% protocol (p<0.01). V-waves only declined during the 80% protocol between 56.8 ± 35.8% to 53.6 ± 37.4% (p<0.05). At the end of the final 80% contraction VAsub had increased from 91.2 ± 6.2% to 94.9 ± 4.7% (p = 0.005), but a greater increase was observed during the 40% contraction where VAsub had increased from 67.1 ± 6.1% to 88.9 ± 9.6% (p<0.001). Conclusion Maximal central motor output in resistance trained men is well preserved despite varying levels of peripheral muscle fatigue. Upregulated central motor output during the 40% contraction protocol appeared to elicit greater peripheral fatigue. V-waves declines during the 80% protocol suggest intensity dependent modulation of the Ia afferent pathway.
Collapse
Affiliation(s)
- Paul W. M. Marshall
- Human Performance Laboratory, School of Science and Health, University of Western Sydney, Sydney, Australia
- * E-mail:
| | - Harrison T. Finn
- Human Performance Laboratory, School of Science and Health, University of Western Sydney, Sydney, Australia
- Neuroscience Research Australia (NeuRA), Sydney, Australia
| | - Jason C. Siegler
- Human Performance Laboratory, School of Science and Health, University of Western Sydney, Sydney, Australia
| |
Collapse
|
44
|
Morales-Artacho AJ, Padial P, García-Ramos A, Feriche B. The Effect of the Number of Sets on Power Output for Different Loads. J Hum Kinet 2015; 46:149-56. [PMID: 26240658 PMCID: PMC4519205 DOI: 10.1515/hukin-2015-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is much debate concerning the optimal load (OL) for power training. The purpose of this study was to investigate the effect of the number of sets performed for a given load on mean power output (Pmean). Fourteen physically active men performed 3 sets of 3 bench-press repetitions with 30, 40 and 50 kg. The highest mean power value (Pmax) across all loads and Pmean were compared when data were taken from the first set at each absolute load vs. from the best of three sets performed. Pmean increased from the first to the third set (from 5.99 ± 0.81 to 6.16 ± 0.96 W·kg−1, p = 0.017), resulting in a main effect of the set number (p < 0.05). At the 30 kg load Pmean increased from the first to the third set (from 6.01 ± 0.75 to 6.35 ± 0.85 W·kg−1; p < 0.01). No significant effect was observed at 40 and 50 kg loads (p > 0.05). Pmax and velocity were significantly affected by the method employed to determine Pmean at each load (p < 0.05). These results show a positive effect of the number of sets per load on Pmean, affecting Pmax, OL and potentially power training prescription.
Collapse
Affiliation(s)
| | - Paulino Padial
- Deparment of Physical Education and Sport. Faculty of Sport Sciences, University of Granada
| | - Amador García-Ramos
- Deparment of Physical Education and Sport. Faculty of Sport Sciences, University of Granada
| | - Belén Feriche
- Deparment of Physical Education and Sport. Faculty of Sport Sciences, University of Granada
| |
Collapse
|
45
|
Seitz LB, Haff GG. Application of Methods of Inducing Postactivation Potentiation During the Preparation of Rugby Players. Strength Cond J 2015. [DOI: 10.1519/ssc.0000000000000116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Gittings W, Aggarwal H, Stull JT, Vandenboom R. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase. Can J Physiol Pharmacol 2015; 93:23-32. [DOI: 10.1139/cjpp-2014-0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isometric potentiation associated with myosin phosphorylation is force dependent. The purpose of this study was to assess the influence of a pre-existing period of isometric force on the concentric force potentiation displayed by mouse muscles with and without the ability to phosphorylate myosin. We tested isometric (ISO) and concentric (CON) potentiation, as well as concentric potentiation after isometric force (ISO-CON), in muscles from wild-type (WT) and skeletal myosin light chain kinase-deficient (skMLCK−/−) mice. A conditioning stimulus increased (i.e., potentiated) mean concentric force in the ISO-CON and CON conditions to 1.31 ± 0.02 and 1.35 ± 0.02 (WT) and to 1.19 ± 0.02 and 1.21 ± 0.01 (skMLCK−/−) of prestimulus levels, respectively (data n = 6–8, p < 0.05). No potentiation of mean isometric force was observed in either genotype. The potentiation of mean concentric force was inversely related to relative tetanic force level (P/Po) in both genotypes. Moreover, concentric potentiation varied greatly within each contraction type and was negatively correlated with unpotentiated force in both genotypes. Thus, although no effect of pre-existing force was observed, strong and inverse relationships between concentric force potentiation and unpotentiated concentric force may suggest an influence of attached and force-generating crossbridges on potentiation magnitude in both WT and skMLCK−/− muscles.
Collapse
Affiliation(s)
- William Gittings
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| | - Harish Aggarwal
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| | - James T. Stull
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
47
|
Kim JH, Johnson PW. Fatigue development in the finger flexor muscle differs between keyboard and mouse use. Eur J Appl Physiol 2014; 114:2469-82. [PMID: 25107647 PMCID: PMC9798874 DOI: 10.1007/s00421-014-2974-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/30/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE The aim of the present study was to determine whether there were any physiological changes in the muscle as a result of intensive computer use. METHODS Using a repeated measures experimental design, eighteen subjects participated in four different 8-h conditions: a control (no exposure) condition and three exposure conditions comprised of 6 h of computer use (keyboard, mouse, and combined keyboard and mouse use) followed by 2 h of recovery. In each condition, using 2 Hz neuromuscular electrical stimulation, eight temporal measurements were collected to evaluate the fatigue state (twitch force, contraction time, and ½ relaxation time) of the right middle finger Flexor Digitorum Superficialis (FDS) muscle before, during, and after computer use. RESULTS The results indicated that 6 h of keyboard, mouse, and combined mouse and keyboard use all caused temporal fatigue-related changes in physiological state of the FDS muscle. Keyboard use resulted in muscle potentiation, which was characterized by approximately 30% increase in twitch force (p < 0.0001) and 3% decrease (p = 0.04) in twitch durations. Mouse use resulted in a combined state of potentiation and fatigue, which was characterized by an increase in twitch forces (p = 0.002) but a prolonging (11 %) rather than a shortening of twitch durations (p < 0.0001). CONCLUSIONS When comparing mouse and keyboard use, the more substantial change in the physiological state of the muscle with mouse use (potentiation and fatigue compared to just potentiation with keyboard use) provides some physiological evidence which may explain why mouse use has a greater association with computer-related injuries.
Collapse
Affiliation(s)
- Jeong Ho Kim
- Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA
| | - Peter W Johnson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Biesiadecki BJ, Davis JP, Ziolo MT, Janssen PML. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. Biophys Rev 2014; 6:273-289. [PMID: 28510030 PMCID: PMC4255972 DOI: 10.1007/s12551-014-0143-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cardiac muscle relaxation is an essential step in the cardiac cycle. Even when the contraction of the heart is normal and forceful, a relaxation phase that is too slow will limit proper filling of the ventricles. Relaxation is too often thought of as a mere passive process that follows contraction. However, many decades of advancements in our understanding of cardiac muscle relaxation have shown it is a highly complex and well-regulated process. In this review, we will discuss three distinct events that can limit the rate of cardiac muscle relaxation: the rate of intracellular calcium decline, the rate of thin-filament de-activation, and the rate of cross-bridge cycling. Each of these processes are directly impacted by a plethora of molecular events. In addition, these three processes interact with each other, further complicating our understanding of relaxation. Each of these processes is continuously modulated by the need to couple bodily oxygen demand to cardiac output by the major cardiac physiological regulators. Length-dependent activation, frequency-dependent activation, and beta-adrenergic regulation all directly and indirectly modulate calcium decline, thin-filament deactivation, and cross-bridge kinetics. We hope to convey our conclusion that cardiac muscle relaxation is a process of intricate checks and balances, and should not be thought of as a single rate-limiting step that is regulated at a single protein level. Cardiac muscle relaxation is a system level property that requires fundamental integration of three governing systems: intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics.
Collapse
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and Dorothy M. Davis Heart Lung Institute, College of Medicine, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA.
| |
Collapse
|
49
|
Smith IC, Vandenboom R, Tupling AR. Juxtaposition of the changes in intracellular calcium and force during staircase potentiation at 30 and 37°C. J Gen Physiol 2014; 144:561-70. [PMID: 25422504 PMCID: PMC4242813 DOI: 10.1085/jgp.201411257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperature-dependent changes in basal calcium and in the calcium transient contribute to force potentiation during repetitive stimulation. Ca2+ entry during the action potential stimulates muscle contraction. During repetitive low frequency stimulation, skeletal muscle undergoes staircase potentiation (SP), a progressive increase in the peak twitch force induced by each successive stimulus. Multiple mechanisms, including myosin regulatory light chain phosphorylation, likely contribute to SP, a temperature-dependent process. Here, we used the Ca2+-sensitive fluorescence indicators acetoxymethyl (AM)-furaptra and AM-fura-2 to examine the intracellular Ca2+ transient (ICT) and the baseline Ca2+ level at the onset of each ICT during SP at 30 and 37°C in mouse lumbrical muscle. The stimulation protocol, 8 Hz for 8 s, resulted in a 27 ± 3% increase in twitch force at 37°C and a 7 ± 2% decrease in twitch force at 30°C (P < 0.05). Regardless of temperature, the peak rate of force production (+df/dt) was higher in all twitches relative to the first twitch (P < 0.05). Consistent with the differential effects of stimulation on twitch force at the two temperatures, raw ICT amplitude decreased during repetitive stimulation at 30°C (P < 0.05) but not at 37°C. Cytosolic Ca2+ accumulated during SP such that baseline Ca2+ at the onset of ICTs occurring late in the train was higher (P < 0.05) than that of those occurring early in the train. ICT duration increased progressively at both temperatures. This effect was not entirely proportional to the changes in twitch duration, as twitch duration characteristically decreased before increasing late in the protocol. This is the first study identifying a changing ICT as an important, and temperature-sensitive, modulator of muscle force during repetitive stimulation. Moreover, we extend previous observations by demonstrating that contraction-induced increases in baseline Ca2+ coincide with greater +df/dt but not necessarily with higher twitch force.
Collapse
Affiliation(s)
- Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rene Vandenboom
- Department of Kinesiology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
50
|
Nelson CR, Debold EP, Fitts RH. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers. Am J Physiol Cell Physiol 2014; 307:C939-50. [PMID: 25186012 DOI: 10.1152/ajpcell.00206.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle fatigue is characterized by the buildup of H(+) and inorganic phosphate (Pi), metabolites that are thought to cause fatigue by inhibiting muscle force, velocity, and power. While the individual effects of elevated H(+) or Pi have been well characterized, the effects of simultaneously elevating the ions, as occurs during fatigue in vivo, are still poorly understood. To address this, we exposed slow and fast rat skinned muscle fibers to fatiguing levels of H(+) (pH 6.2) and Pi (30 mM) and determined the effects on contractile properties. At 30°C, elevated Pi and low pH depressed maximal shortening velocity (Vmax) by 15% (4.23 to 3.58 fl/s) in slow and 31% (6.24 vs. 4.55 fl/s) in fast fibers, values similar to depressions from low pH alone. Maximal isometric force dropped by 36% in slow (148 to 94 kN/m(2)) and 46% in fast fibers (148 to 80 kN/m(2)), declines substantially larger than what either ion exerted individually. The strong effect on force combined with the significant effect on velocity caused peak power to decline by over 60% in both fiber types. Force-stiffness ratios significantly decreased with pH 6.2 + 30 mM Pi in both fiber types, suggesting these ions reduced force by decreasing the force per bridge and/or increasing the number of low-force bridges. The data indicate the collective effects of elevating H(+) and Pi on maximal isometric force and peak power are stronger than what either ion exerts individually and suggest the ions act synergistically to reduce muscle function during fatigue.
Collapse
Affiliation(s)
- Cassandra R Nelson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin; and
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin; and
| |
Collapse
|