1
|
Tekeoğlu İ, Şahin MZ, Kamanlı A, Nas K. The influence of zinc levels on osteoarthritis: A comprehensive review. Nutr Res Rev 2025; 38:282-293. [PMID: 39311401 DOI: 10.1017/s0954422424000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Osteoarthritis (OA), a disease with a multifactorial aetiology and an enigmatic root cause, affects the quality of life of many elderly patients. Even though there are certain medications utilised to reduce the symptomatic effects, a reliable treatment method to reverse the disease is yet to be discovered. Zinc is a cofactor of over 3000 proteins and is the only metal found in all six classes of enzymes. We explored zinc’s effect on the immune system and the bones as OA affects both. We also discussed zinc-dependent enzymes, highlighting their significant role in the disease’s pathogenesis. It is important to note that both excessive and deficient zinc levels can negatively affect bone health and immune function, thereby exacerbating OA. The purpose of this review is to offer a better understanding of zinc’s impact on OA pathogenesis and to provide clarity regarding its beneficial and detrimental outcomes. We searched thoroughly systematic reviews, meta-analysis, review articles, research articles and randomised controlled trials to ensure a comprehensive review. In brief, using zinc supplementation in the treatment of OA may act as a doubled-edged sword, offering potential benefits but also posing risks.
Collapse
Affiliation(s)
- İbrahim Tekeoğlu
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Muhammed Zahid Şahin
- Sakarya University Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Ayhan Kamanlı
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Kemal Nas
- Sakarya University Faculty of Medicine, Department of Rheumatology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| |
Collapse
|
2
|
Loglo AD, Antwi PB, Abass KM, Osei-Mireku S, Amofa G, Ofori E, Adjei JK, Oppong MN, Phillips RO, Annan R, Engel B, Simmonds RE. Micronutrient-deficient diets and possible environmental enteric dysfunction in Buruli ulcer endemic communities in Ghana: Lower dietary diversity and reduced serum zinc and vitamin C implicate micronutrient status a possible susceptibility factor. PLoS Negl Trop Dis 2025; 19:e0012871. [PMID: 40072975 PMCID: PMC11902277 DOI: 10.1371/journal.pntd.0012871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The nutritional status of communities susceptible to Buruli ulcer (BU, a skin NTD caused by infection with Mycobacterium ulcerans) remains almost completely obscure. We have assessed the diets of BU patients vs. controls from the same BU-endemic communities, and compared their circulating biomarkers of nutrients and inflammation. METHODS/PRINCIPAL FINDINGS We investigated two cohorts of BU patients and controls. The first were administered food frequency and multi-pass 24-hour recall questionnaires to determine patterns of foods consumed, nutrient intake and nutrient adequacy. The second used archived serum samples collected as baseline to measure the circulating concentration of zinc, vitamin C, CRP, IL-1β, IFN-γ, TNF-α and IL-6. Stunted growth was more prevalent than expected (31%), while 18% of participants were underweight and most had inadequate intake of all micronutrients except for carbohydrate. BU patients had a lower intake of, selenium, vitamin B12 and zinc, and for selenium and vitamin B12 a higher proportion had dietary insufficiency (40% vs. 15% and 80% vs. 55%, respectively). In line with this, BU patients had significantly lower levels of zinc in their serum, and more had levels below the normal range (72% vs. 43%). Despite many participants having a good intake of vitamin C, serum levels were low, and lower amongst the BU patients. As expected, there was little evidence of systemic inflammation (CRP <0.6 mg/L). Elevated IL-6 levels were present in several participants suggesting that environmental enteric dysfunction may be prevalent in these communities, however this was similar in cases vs. controls. CONCLUSIONS/SIGNIFICANCE Diet and nutritional status may be a contributing factor to BU pathogenesis. Protein and the micronutrients zinc, selenium, vitamin B12 and vitamin C may be of particular importance. Nutritional interventions may have potential for both prophylaxis and treatment of BU, which may be a cost-effective approach to achieving the NTD Roadmap goals.
Collapse
Affiliation(s)
- Aloysius Dzigbordi Loglo
- Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Philemon Boasiako Antwi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | | | - Jonathan Kofi Adjei
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Ntiamoah Oppong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Reginald Annan
- Department of Biochemistry and Biotechnology, College of Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Barbara Engel
- Department of Nutritional Sciences, School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Rachel E. Simmonds
- Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
3
|
Palmer LD, Traina KA, Juttukonda LJ, Lonergan ZR, Bansah DA, Ren X, Geary JH, Pinelli C, Boyd KL, Yang TS, Skaar EP. Dietary zinc deficiency promotes Acinetobacter baumannii lung infection via IL-13 in mice. Nat Microbiol 2024; 9:3196-3209. [PMID: 39548344 PMCID: PMC11800279 DOI: 10.1038/s41564-024-01849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Dietary zinc deficiency is a major risk factor for pneumonia. Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical public health threat due to increasing rates of multidrug resistance. Patient populations at increased risk for A. baumannii pneumonia are also at increased risk of zinc deficiency. Here we established a mouse model of dietary zinc deficiency and acute A. baumannii pneumonia to test the hypothesis that host zinc deficiency contributes to A. baumannii pathogenesis. We showed that zinc-deficient mice have significantly increased A. baumannii burdens in the lungs, dissemination to the spleen and higher mortality. During infection, zinc-deficient mice produce more pro-inflammatory cytokines, including IL-13. Administration of IL-13 promotes A. baumannii dissemination in zinc-sufficient mice, while antibody neutralization of IL-13 protects zinc-deficient mice from A. baumannii dissemination and mortality during infection. These data highlight the therapeutic potential of anti-IL-13 antibody treatments, which are well tolerated in humans, for the treatment of pneumonia.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA.
| | - Kacie A Traina
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Rutgers University, New Brunswick, NJ, USA
| | - Dziedzom A Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
- American University of the Caribbean, Cupecoy, Sint Maarten
| | - Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- NAMSA, Minneapolis, MN, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Tzushan S Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Male KJ, Atwiine B, Kiwanuka GN. High Silent Prevalence of Zinc Deficiency and Impaired Immunity in Children Under Five Years of Age Admitted to a Regional Referral Hospital in Uganda. Cureus 2024; 16:e74816. [PMID: 39737297 PMCID: PMC11684549 DOI: 10.7759/cureus.74816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Zinc deficiency (ZnD) impairs the development of acquired immunity and contributes to growth failure in children under five years of age. However, the prevalence of ZnD and its association with immunity in this age group in Uganda have not been well explored. This study aimed to determine the prevalence of ZnD and explore the associations between low serum zinc levels and total white blood cell count, differential cell counts, and levels of IL-1 and IL-2 in children aged 12 to 59 months. Methods In this cross-sectional study, we enrolled children aged 12 to 59 months upon admission to the pediatrics ward of Masaka Regional Referral Hospital (MRRH), located in Masaka City, Southern Uganda. Anthropometric measurements were taken and interpreted using the WHO growth standards charts for age and sex. Whole blood cell counts, serum zinc levels, CRP, and IL-2 and IL-4 were measured. Student's t-test, Mann-Whitney test, and correlation coefficients were used to assess relationships between variables. Results A total of 40 children (mean age 27.8 (SD 10.6) months; 50% boys) were enrolled. Nearly a third (13/40) of the children were malnourished (22.5% stunted and 12.5% wasted), and 82.5% had anemia (Hb <11.0 g/dL). The prevalence of ZnD was 40.6%. Serum zinc levels showed a positive correlation with total white blood cell count (rs = 0.41, p = 0.02) and lymphocyte count (rs = 0.43, p = 0.01). However, no association was found between ZnD and levels of IL-2 or IL-4. Conclusions The study revealed a high prevalence of ZnD, with serum zinc levels correlating with both total white blood cell and T cell counts, but not with IL-2 levels, in children under five years of age at the time of admission. We recommend the routine inclusion of ZnD assessment and treatment in the care of sick children in the region. Additionally, a larger multicenter longitudinal study is needed to further evaluate the association between malnutrition and health outcomes in this age group.
Collapse
Affiliation(s)
- Keneth Junior Male
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, UGA
| | - Barnabas Atwiine
- Department of Pediatrics and Hematology and Oncology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Gertrude N Kiwanuka
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, UGA
| |
Collapse
|
5
|
Joshi A, Mandal R. Review Article on Molecular Basis of Zinc and Copper Interactions in Cancer Physiology. Biol Trace Elem Res 2024:10.1007/s12011-024-04356-5. [PMID: 39215955 DOI: 10.1007/s12011-024-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Various clinical manifestations associated with measurable abnormalities of Zn and Cu in serum and tissue were determined in Cancer-Patients (CP), and therefore, these two metals are drawing more and more attention presently than ever before. Cancer is a disease of uncontrolled-abnormal-cell-division with invasion-potential which was exhibited to occur due to dys-regulation/dys-homeostasis of fundamental-biological-pathways (FBP) including antioxidant-enzyme-defense-system, anti-inflammatory and immune-systems, and DNA-damage-repair-system in the human-body resulting in generation of chronic-oxidative-stress induced DNA-damage and gene-mutations, inflammation and compromised immune-system, tumor-induced increased angiogenesis, and inhibition of apoptosis processes. Zn and Cu were recognized to be the most crucial components of FBP and imbalance in Zn/Cu ratios in CP asserted to generate chronic toxicity in human body through various mechanisms including increased chronic oxidative stress linked compromised DNA integrity and gene mutations due to malfunctioning of DNA damage repair enzymes; increased angiogenesis process due to Zn- and Cu-binding proteins metallothionein and ceruloplasmin-induced enhanced expression of tumor growth factors; and elevation in inflammatory response which was further shown to down/upregulate gene expression of multiple Zn transporter proteins leading to dys-homeostasis of intracellular Zn concentrations, and it was determined to disturb the equilibrium between cell growth and division, proliferation, differentiation, and apoptosis processes which lead to cancer progression. Moreover, Zn was reported to affect matrix metalloproteinase activity and influence immune system cells to respond differently to different cytokines and enhance immune-suppressive effects accelerating the angiogenesis, invasion, and metastasis potential in cancer. Further, the most significant use of serum Cu/Zn ratio was recommended in clinical diagnosis, prognosis, tumor stage, patient survival, and cancer follow-up studies which need further investigations to elucidate and explore their roles in cancer physiology for clinical perspective.
Collapse
Affiliation(s)
- Amit Joshi
- PG Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, UT, India
| | - Reshu Mandal
- PG Department of Zoology, Sri Guru Gobind Singh College, Chandigarh, UT, India.
| |
Collapse
|
6
|
Jakobs J, Bertram J, Rink L. Ca 2+ signals are essential for T-cell proliferation, while Zn 2+ signals are necessary for T helper cell 1 differentiation. Cell Death Discov 2024; 10:336. [PMID: 39043646 PMCID: PMC11266428 DOI: 10.1038/s41420-024-02104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The regulation of T-cell fate is crucial for the balance between infection control and tolerance. Calcium (Ca2+) and zinc (Zn2+) signals are both induced after T-cell stimulation, but their specific roles in the fate of activation and differentiation remain to be elucidated. Are Zn2+- and Ca2+ signals responsible for different aspects in T-cell activation and differentiation and do they act in concert or in opposition? It is crucial to understand the interplay of the intracellular signals to influence the fate of T cells in diseases with undesirable T-cell activities or in Zn2+-deficient patients. Human peripheral blood mononuclear cells were stimulated with the Zn2+ ionophore pyrithione and thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). Intracellular Zn2+ and Ca2+ signals were monitored by flow cytometry and ELISA, quantitative PCR and western blot were used to evaluate T-cell differentiation and the underlying molecular mechanism. We found that Zn2+ signals upregulated the early T-cell activation marker CD69, interferon regulatory factor 1 (IRF-1), and Krüppel-like factor 10 (KLF-10) expression, which are important for T helper cell (Th) 1 differentiation. Ca2+ signals, on the other hand, increased T-bet and Forkhead box P3 (FoxP3) expression and interleukin (IL)-2 release. Most interestingly, the combination of Zn2+ and Ca2+ signals was indispensable to induce interferon (IFN)-γ expression and increased the surface expression of CD69 by several-fold. These results highlight the importance of the parallel occurrence of Ca2+ and Zn2+ signals. Both signals act in concert and are required for the differentiation into Th1 cells, for the stabilization of regulatory T cells, and induces T-cell activation by several-fold. This provides further insight into the impaired immune functions of patients with zinc deficiency.
Collapse
Affiliation(s)
- Jana Jakobs
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Jens Bertram
- Institute for Occupational, Social and Environmental Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
7
|
Bufan B, Arsenović-Ranin N, Živković I, Ćuruvija I, Blagojević V, Dragačević L, Kovačević A, Kotur-Stevuljević J, Leposavić G. Modulation of T-Cell-Dependent Humoral Immune Response to Influenza Vaccine by Multiple Antioxidant/Immunomodulatory Micronutrient Supplementation. Vaccines (Basel) 2024; 12:743. [PMID: 39066381 PMCID: PMC11281378 DOI: 10.3390/vaccines12070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Notwithstanding prevalence gaps in micronutrients supporting immune functions, the significance of their deficits/supplementation for the efficacy of vaccines is underinvestigated. Thus, the influence of supplementation combining vitamins C and D, zinc, selenium, manganese, and N-acetyl cysteine on immune correlates/surrogates of protection conferred by a quadrivalent influenza vaccine (QIV) in mice was investigated. The supplementation starting 5 days before the first of two QIV injections given 28 days apart increased the serum titres of total and neutralizing IgG against each of four influenza strains from QIV. Accordingly, the frequencies of germinal center B cells, follicular CD4+ T helper (Th) cells, and IL-21-producing Th cells increased in secondary lymphoid organs (SLOs). Additionally, the supplementation improved already increased IgG response to the second QIV injection by augmenting not only neutralizing antibody production, but also IgG2a response, which is important for virus clearance, through favoring Th1 differentiation as indicated by Th1 (IFN-γ)/Th2 (IL-4) signature cytokine level ratio upon QIV restimulation in SLO cell cultures. This most likely partly reflected antioxidant action of the supplement as indicated by splenic redox status analyses. Thus, the study provides a solid scientific background for further research aimed at repurposing the use of this safe and inexpensive micronutrient combination to improve response to the influenza vaccine.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Irena Živković
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Luka Dragačević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ana Kovačević
- Department for Virology Control, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
8
|
Padoan F, Piccoli E, Pietrobelli A, Moreno LA, Piacentini G, Pecoraro L. The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View. Biomolecules 2024; 14:718. [PMID: 38927121 PMCID: PMC11201578 DOI: 10.3390/biom14060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc is an important trace element for growth and health at pediatric ages. Zinc is fundamental in inflammatory pathways, oxidative balance, and immune function. Zinc exhibits anti-inflammatory properties by modulating Nuclear Factor-kappa (NF-κB) activity and reducing histamine release from basophils, leukocytes, and mast cells. Furthermore, its antioxidant activity protects against oxidative damage and chronic diseases. Finally, zinc improves the ability to trigger effective immune responses against pathogens by contributing to the maturation of lymphocytes, the production of cytokines, and the regulation of apoptosis. Given these properties, zinc can be considered an adjunctive therapy in treating and preventing respiratory, nephrological, and gastrointestinal diseases, both acute and chronic. This review aims to deepen the role and metabolism of zinc, focusing on the role of supplementation in developed countries in pediatric diseases.
Collapse
Affiliation(s)
- Flavia Padoan
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Elena Piccoli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Angelo Pietrobelli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luis A. Moreno
- Growth, Exercise, Nutrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, 50001 Zaragoza, Spain
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| |
Collapse
|
9
|
Gao Y, Liu S, Huang Y, Li F, Zhang Y. Regulation of anti-tumor immunity by metal ion in the tumor microenvironment. Front Immunol 2024; 15:1379365. [PMID: 38915413 PMCID: PMC11194341 DOI: 10.3389/fimmu.2024.1379365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Yaoxin Gao
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Huang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Mouchati C, Durieux JC, Zisis SN, Tribout H, Scott S, Smith B, Labbato D, McComsey GA. Zinc Deficiency And sTNF-RII Are Associated With Worse COVID-19 Outcomes. J Nutr 2024; 154:1588-1595. [PMID: 38043624 PMCID: PMC11347801 DOI: 10.1016/j.tjnut.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Zinc (Zn) is known for its substantial involvement in the immune response as an antioxidant and anti-inflammatory agent. Zn plasma levels' clinical significance in coronavirus disease (COVID) diagnosis is not yet fully established. OBJECTIVE We assessed the association between Zn deficiency, gut integrity, inflammation, and COVID-19 outcomes. METHODS A prospective observational cohort in which plasma Zn, soluble tumor necrosis factor alpha receptor II (sTNF-RII) intestinal fatty-acid binding protein (IFABP; marker of intestinal integrity), and zonulin levels (intestinal permeability) were collected from participants during the acute phase of a confirmed COVID-19 diagnosis. Zn was modeled as continuous and binary, categorized as Zn deficiency (Zn < 75 μg/dL) and Zn sufficiency (Zn ≥ 75 μg/dL). COVID-19 outcomes were classified according to the World Health Organization clinical progression scale. We used cumulative probit regression to assess if suboptimal Zn levels, gut, and inflammatory markers increase the likelihood of worse COVID-19 outcomes. RESULTS Zn deficiency was independently associated with 63% higher predicted odds of worse COVID outcomes. Increases in sTNF-RII {unadjusted odds ratio (uOR): 3.43 [95% confidence interval (CI): 2.02, 5.82]} and zonulin [uOR: 1.83 (95% CI: 1.21, 2.76)] levels were associated with greater odds of worse COVID outcomes. IFABP was not associated with worse COVID outcomes [uOR: 1.12 (95% CI: 0.82, 1.53)] or acute Zn deficiency [uOR: 1.35 (95% CI: 0.79, 2.35)]. The adjusted predicted odds of worse COVID outcomes are 3-fold higher (P = 0.04) for every one-unit decrease in Zn and is more than 2 times greater odds of COVID severity (P = 0.01) for every 1-unit increase in sTNF-RII. CONCLUSION Zn deficiency and inflammation were independently associated with greater odds of worse COVID outcomes.
Collapse
Affiliation(s)
- Christian Mouchati
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jared C Durieux
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sokratis N Zisis
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Heather Tribout
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sarah Scott
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Beth Smith
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Danielle Labbato
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Grace A McComsey
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States; Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.
| |
Collapse
|
11
|
Lan L, Feng Z, Liu X, Zhang B. The roles of essential trace elements in T cell biology. J Cell Mol Med 2024; 28:e18390. [PMID: 38801402 PMCID: PMC11129730 DOI: 10.1111/jcmm.18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
T cells are crucial for adaptive immunity to regulate proper immune response and immune homeostasis. T cell development occurs in the thymus and mainly differentiates into CD4+ and CD8+ T cell subsets. Upon stimulation, naive T cells differentiate into distinct CD4+ helper and CD8+ cytotoxic T cells, which mediate immunity homeostasis and defend against pathogens or tumours. Trace elements are minimal yet essential components of human body that cannot be overlooked, and they participate in enzyme activation, DNA synthesis, antioxidant defence, hormone production, etc. Moreover, trace elements are particularly involved in immune regulations. Here, we have summarized the roles of eight essential trace elements (iron, zinc, selenium, copper, iodine, chromium, molybdenum, cobalt) in T cell development, activation and differentiation, and immune response, which provides significant insights into developing novel approaches to modulate immunoregulation and immunotherapy.
Collapse
Affiliation(s)
- Linbo Lan
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
- Clinical Teaching and Research Center, School of NursingWeinan vocational and technical collegeWeinanChina
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
| | - Xiaobin Liu
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
12
|
Jin D, Wei X, He Y, Zhong L, Lu H, Lan J, Wei Y, Liu Z, Liu H. The nutritional roles of zinc for immune system and COVID-19 patients. Front Nutr 2024; 11:1385591. [PMID: 38706559 PMCID: PMC11066294 DOI: 10.3389/fnut.2024.1385591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.
Collapse
Affiliation(s)
- Di Jin
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Xinran Wei
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yunyi He
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jiaxin Lan
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yuting Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| |
Collapse
|
13
|
Mairinger E, Wessolly M, Buderath P, Borchert S, Henrich L, Mach P, Steinborn J, Kimming R, Jasani B, Schmid KW, Bankfalvi A, Mairinger FD. Tumor cell cytoplasmic metallothionein expression associates with differential tumor immunogenicity and prognostic outcome in high-grade serous ovarian carcinoma. Front Oncol 2023; 13:1252700. [PMID: 38023247 PMCID: PMC10663300 DOI: 10.3389/fonc.2023.1252700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The underlying mechanism of high T-cell presence as a favorable prognostic factor in high-grade serous ovarian carcinoma (HGSOC) is not yet understood. In addition to immune cells, various cofactors are essential for immune processes. One of those are metallothioneins (MTs), metal-binding proteins comprising various isoforms. MTs play a role in tumor development and drug resistance. Moreover, MTs influence inflammatory processes by regulating zinc homeostasis. In particular, T-cell function and polarization are particularly susceptible to changes in zinc status. The aim of the present study was to investigate a possible role of MT-mediated immune response and its association with prognostic outcome in ovarian cancer. Methods A retrospective study was conducted on a clinically well-characterized cohort of 24 patients with HGSOC treated at the University Hospital of Essen. Gene expression patterns for anti-cancer immunogenicity-related targets were performed using the NanoString nCounter platform for digital gene expression analysis with the appurtenant PanCancer Immune Profiling panel, consisting of 770 targets and 30 reference genes. Tumor-associated immunohistochemical MT protein expression was evaluated using a semi-quantitative four-tier Immunohistochemistry (IHC) scoring. Results MT immunoexpression was detected in 43% (10/23) of all HGSOC samples. MT immunoexpression levels showed a significant association to survival, leading to prolonged progression-free and overall survival in positively stained tumors. Furthermore, T-cell receptor signaling gene signature showed a strong activation in MT-positive tumors. Activated downstream signaling cascades resulting in elevated interferon-gamma expression with a shift in the balance between T helper cells (TH1 and TH2) could be observed in the MT-positive subgroup. In addition, a higher expression pattern of perforin and several granzymes could be detected, overall suggestive of acute, targeted anti-cancer immune response in MT-positive samples. Conclusion This is the first study combining broad, digital mRNA screening of anti-tumor immune response-associated genes and their relation to MT-I/II in ovarian cancer. MT overexpression is associated with molecular characteristics of an anti-cancer immune response and is a strong prognostic marker in ovarian HGSOC. The observed immune cell activation associated with tumor MT expression comprises but is not limited to T cells and natural killer cells.
Collapse
Affiliation(s)
- Elena Mairinger
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Michael Wessolly
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Larissa Henrich
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Rainer Kimming
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Bharat Jasani
- Department of Pathology, Targos - A Discovery Life Sciences Company, Kassel, Germany
| | | | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
14
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Lyu F, Wang L, Jia Y, Wang Y, Qi H, Dai Z, Zhou X, Zhu H, Li B, Xu Y, Liu J. Analysis of Zinc and Stromal Immunity in Disuse Osteoporosis: Mendelian Randomization and Transcriptomic Analysis. Orthop Surg 2023; 15:2947-2959. [PMID: 37752822 PMCID: PMC10622276 DOI: 10.1111/os.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVE Disuse osteoporosis is known to be primarily caused by a lack of exercise. However, the causal relationships between zinc and immunity and disuse osteoporosis remain unknown. This study investigated these relationships and their potential mechanisms. METHODS This study was an integrative study combining genome-wide association studies and transcriptomics. Two-sample Mendelian randomization analysis (MR) was used to analyze the causal relationships between exposures (zinc, immunity, physical activity) and the outcome (osteoporosis) with the aid of single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs). Four models, MR-Egger, inverse variance weighted, weighted median and MR-Pleiotrophy RESidual Sum and Outlier (MRPRESSO), were used to calculate odds ratio values. Sensitivity and heterogeneity analyses were also performed using MRPRESSO and MR-Egger methods. The mRNA transcriptomic analysis was subsequently conducted. Zinc metabolism scores were acquired through single-sample Gene Set Enrichment Analysis algorithms. Stromal scores were obtained using the R Package "estimate" algorithms. Important Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathways were also derived through gene set variation analysis. Cytoscape software helped construct the transcription factor (TF)-mRNA-microRNA (miRNA) network. Virtual screening and molecular docking were performed. Polymerase chain reaction validation was also carried out in vivo. RESULTS Causal relationships were demonstrated between zinc and exercise (95% confidence interval [CI] = 1.30-2.95, p = 0.001), exercise and immunity (95% CI = 0.36-0.80, p = 0.002), exercise and osteoporosis (95% CI = 0.97-0.99, p = 0.0007), and immunity disorder and osteoporosis (95% CI = 1.30-2.03, p = 0.00002). One hundred and seventy-nine mRNAs in important modules were screened. Combining the differential expressional genes (DEGs) and the Boruta selection, six DEGs were screened (AHNAK, CSF2, ADAMTS12, SRA1, RUNX2, and SLC39A14). TF HOXC10 and miRNA hsa-miR-204 were predicted. Then, the TF-mRNA-miRNA network was successfully constructed. RUNX2 and SLC39A14 were identified as hub mRNAs in the TF-mRNA-miRNA network. Eventually, the novel small drug C6O4NH5 was designed according to the pharmacophore structure of SLC39A14. The docking energy for the novel drug was -5.83 kcal/mol. SLC39A14 and RUNX2 were downregulated (of statistical significance p-value < 0.05) in our animal experiment. CONCLUSION This study revealed that zinc had a protective causal relationship with disuse osteoporosis by promoting exercise and immunity. SLC39A14 and RUNX2 mRNA participated in this zinc-related mechanism.
Collapse
Affiliation(s)
- Fei Lyu
- College of OrthopedicsTianjin Medical UniversityTianjinChina
- Department of Joint SurgeryTianjin HospitalTianjinChina
- Orthopedic Center (Sports Medicine Center)Inner Mongolia People's HospitalHohhotChina
| | - Li Wang
- College of OrthopedicsTianjin Medical UniversityTianjinChina
- Department of Joint SurgeryTianjin HospitalTianjinChina
| | - Yiming Jia
- College of OrthopedicsTianjin Medical UniversityTianjinChina
- Department of Joint SurgeryTianjin HospitalTianjinChina
- Department of OrthopedicsChifeng Municipal HospitalChifengChina
| | - Yuanlin Wang
- Department of Joint SurgeryTianjin HospitalTianjinChina
- Tianjin Institute of AnesthesiologyTianjin Medical UniversityTianjinChina
| | - Haolan Qi
- School of MedicineNankai UniversityTianjinChina
| | - Zhengxu Dai
- College of OrthopedicsTianjin Medical UniversityTianjinChina
- Department of Joint SurgeryTianjin HospitalTianjinChina
| | - Xuyang Zhou
- College of OrthopedicsTianjin Medical UniversityTianjinChina
- Department of Joint SurgeryTianjin HospitalTianjinChina
| | - Haoran Zhu
- School of MedicineXi'an Jiaotong UniversityXianChina
| | - Bing Li
- College of OrthopedicsTianjin Medical UniversityTianjinChina
- Department of Joint SurgeryTianjin HospitalTianjinChina
| | - Yujing Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of PharmacyTianjin Medical UniversityTianjinChina
| | - Jun Liu
- College of OrthopedicsTianjin Medical UniversityTianjinChina
- Department of Joint SurgeryTianjin HospitalTianjinChina
| |
Collapse
|
16
|
Stefanache A, Lungu II, Butnariu IA, Calin G, Gutu C, Marcu C, Grierosu C, Bogdan Goroftei ER, Duceac LD, Dabija MG, Popa F, Damir D. Understanding How Minerals Contribute to Optimal Immune Function. J Immunol Res 2023; 2023:3355733. [PMID: 37946846 PMCID: PMC10632063 DOI: 10.1155/2023/3355733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Sufficient mineral supply is vital not only for the innate immune system but also for the components of the adaptive immune defense, which encompass defense mechanisms against pathogens and the delicate balance of pro- and anti-inflammatory regulation in the long term. Generally, a well-balanced diet is capable of providing the necessary minerals to support the immune system. Nevertheless, specific vulnerable populations should be cautious about obtaining adequate amounts of minerals such as magnesium, zinc, copper, iron, and selenium. Inadequate levels of these minerals can temporarily impair immune competence and disrupt the long-term regulation of systemic inflammation. Therefore, comprehending the mechanisms and sources of these minerals is crucial. In exceptional circumstances, mineral deficiencies may necessitate supplementation; however, excessive intake of supplements can have adverse effects on the immune system and should be avoided. Consequently, any supplementation should be approved by medical professionals and administered in recommended doses. This review emphasizes the crucial significance of minerals in promoting optimal functioning of the immune system. It investigates the indispensable minerals required for immune system function and the regulation of inflammation. Moreover, it delves into the significance of maintaining an optimized intake of minerals from a nutritional standpoint.
Collapse
Affiliation(s)
- Alina Stefanache
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ionut-Iulian Lungu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Gabriela Calin
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | | | - Letitia-Doina Duceac
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | | | - Florina Popa
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Daniela Damir
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
17
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
18
|
Ko MK, Kim HW, Park SH, Park JH, Kim SM, Lee MJ. The role of zinc sulfate in enhancing cellular and humoral immune responses to foot-and-mouth disease vaccine. Virus Res 2023; 335:199189. [PMID: 37536380 PMCID: PMC10432855 DOI: 10.1016/j.virusres.2023.199189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Foot-and-mouth disease (FMD) is a rapidly propagating infectious disease of cloven-hoofed animals, especially cattle and pigs, affecting the productivity and profitability of the livestock industry. Presently, FMD is controlled and prevented using vaccines; however, conventional FMD vaccines have several disadvantages, including short vaccine efficacy, low antibody titers, and safety issues in pigs, indicating the need for further studies. Here, we evaluated the efficacy of a novel bivalent vaccine containing zinc sulfate as an immunostimulant and FMD type O and A antigens (O PA2 and A YC, respectively) against FMD virus in mice and pigs. Zinc sulfate induced cellular immunity in murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs) by increasing IFNγ secretion. Additionally, FMD vaccine containing O PA2 and A YC antigens and zinc sulfate induced early, mid-, and long-term immune responses in mice and pigs, and enhanced cellular and humoral immunity by regulating the expression of pathogen recognition receptors (PRRs), transcription factors, co-stimulatory molecules, and cytokines in porcine PBMCs from vaccinated pigs. Overall, these results indicated that the novel immunostimulant zinc sulfate induced potent cellular and humoral immune responses by stimulating antigen-presenting cells (APCs) and T and B cells, and enhanced long-term immunity by promoting the expression of co-stimulatory molecules. These outcomes suggest that zinc sulfate could be used as a novel vaccine immunostimulant for difficult-to-control viral diseases, such as African swine fever (ASF) or COVID-19.
Collapse
Affiliation(s)
- Mi-Kyeong Ko
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Hyeong Won Kim
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - So Hui Park
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Su-Mi Kim
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Min Ja Lee
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| |
Collapse
|
19
|
Chen H, Zhao T, Fan J, Yu Z, Ge Y, Zhu H, Dong P, Zhang F, Zhang L, Xue X, Lin X. Construction of a prognostic model for colorectal adenocarcinoma based on Zn transport-related genes identified by single-cell sequencing and weighted co-expression network analysis. Front Oncol 2023; 13:1207499. [PMID: 37829346 PMCID: PMC10565862 DOI: 10.3389/fonc.2023.1207499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent malignancies and the third most lethal cancer globally. The most reported histological subtype of CRC is colon adenocarcinoma (COAD). The zinc transport pathway is critically involved in various tumors, and its anti-tumor effect may be through improving immune function. However, the Zn transport pathway in COAD has not been reported. Methods The determination of Zn transport-related genes in COAD was carried out through single-cell analysis of the GSE 161277 obtained from the GEO dataset. Subsequently, a weighted co-expression network analysis of the TCGA cohort was performed. Then, the prognostic model was conducted utilizing univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Functional enrichment, immune microenvironment, and survival analyses were also carried out. Consensus clustering analysis was utilized to verify the validity of the prognostic model and explore the immune microenvironment. Ultimately, cell experiments, including CCK-8,transwell and scratch assays, were performed to identify the function of LRRC59 in COAD. Results According to the Zn transport-related prognostic model, the individuals with COAD in TCGA and GEO databases were classified into high- and low-risk groups. The group with low risk had a comparatively more favorable prognosis. Two groups had significant variations in the immune infiltration, MHC, and the expression of genes related to the immune checkpoint. The cell experiments indicated that the proliferation, migration, and invasion of the HCT-116, DLD-1, and RKO cell lines were considerably increased after LRRC59 knockdown. It proved that LRRC59 was indeed a protective factor for COAD. Conclusion A prognostic model for COAD was developed using zinc transport-related genes. This model can efficiently assess the immune microenvironment and prognosis of individuals with COAD. Subsequently, the function of LRRC59 in COAD was validated via cell experiments, highlighting its potential as a biomarker.
Collapse
Affiliation(s)
- Hua Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Zhao
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianing Fan
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwen Ge
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - He Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Science, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
21
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
22
|
Wiśniewski OW, Czyżniewski B, Żukiewicz-Sobczak W, Gibas-Dorna M. Nutritional Behavior in European Countries during COVID-19 Pandemic-A Review. Nutrients 2023; 15:3451. [PMID: 37571387 PMCID: PMC10420667 DOI: 10.3390/nu15153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
COVID-19 is highly linked with hyperinflammation and dysfunction of the immune cells. Studies have shown that adequate nutrition, a modifiable factor affecting immunity and limiting systemic inflammation, may play an adjunct role in combating the negative consequences of SARS-CoV-2 infection. Due to the global lockdown conditions, the COVID-19 pandemic has contributed, among others, to restrictions on fresh food availability and changes in lifestyle and eating behaviors. The aim of this paper was to review the data regarding eating habits in European countries within the general population of adults and some specific subpopulations, including obese, diabetic, and psychiatric patients, during the COVID-19 pandemic. The PubMed database and the official websites of medical organizations and associations were searched for the phrases "COVID" and "eating habits". Papers regarding the pediatric population, non-European countries, presenting aggregated data from different countries worldwide, and reviews were excluded. During the COVID-19 pandemic, unhealthy lifestyles and eating behaviors were commonly reported. These included increased snacking, intake of caloric foods, such as sweets, pastries, and beverages, and a decline in physical activity. Data suggest that poor eating habits that create a positive energy balance have persisted over time as an additional post-COVID negative consequence.
Collapse
Affiliation(s)
- Oskar Wojciech Wiśniewski
- Department of Cardiology-Intensive Therapy and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
- Department of Nutrition and Food, Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Bartłomiej Czyżniewski
- Faculty of Medicine, Collegium Medicum, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Gora, Poland;
| | - Wioletta Żukiewicz-Sobczak
- Department of Nutrition and Food, Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Magdalena Gibas-Dorna
- Collegium Medicum, Institute of Health Sciences, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Gora, Poland
| |
Collapse
|
23
|
Irie M, Kabata H, Sasahara K, Kurihara M, Shirasaki Y, Kamatani T, Baba R, Matsusaka M, Koga S, Masaki K, Miyata J, Araki Y, Kikawada T, Kabe Y, Suematsu M, Yamagishi M, Uemura S, Moro K, Fukunaga K. Annexin A1 is a cell-intrinsic metalloregulator of zinc in human ILC2s. Cell Rep 2023; 42:112610. [PMID: 37294636 DOI: 10.1016/j.celrep.2023.112610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/14/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) produce large amounts of type 2 cytokines including interleukin-5 (IL-5) and IL-13 in response to various stimuli, causing allergic and eosinophilic diseases. However, the cell-intrinsic regulatory mechanisms of human ILC2s remain unclear. Here, we analyze human ILC2s derived from different tissues and pathological conditions and identify ANXA1, encoding annexin A1, as a commonly highly expressed gene in non-activated ILC2s. The expression of ANXA1 decreases when ILC2s activate, but it increases autonomously as the activation subsides. Lentiviral vector-based gene transfer experiments show that ANXA1 suppresses the activation of human ILC2s. Mechanistically, ANXA1 regulates the expression of the metallothionein family genes, including MT2A, which modulate intracellular zinc homeostasis. Furthermore, increased intracellular zinc levels play an essential role in the activation of human ILC2s by promoting the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and GATA3 expression. Thus, the ANXA1/MT2A/zinc pathway is identified as a cell-intrinsic metalloregulatory mechanism for human ILC2s.
Collapse
Affiliation(s)
- Misato Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kotaro Sasahara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Momoko Kurihara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Kamatani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; Division of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo 113-8519, Japan
| | - Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Koga
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutomo Araki
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Toru Kikawada
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- WPI Bio2Q Research Center, Keio University and Central Institute for Experimental Medicine, Kawasaki, Kanagawa 210-0821, Japan
| | - Mai Yamagishi
- Live Cell Diagnosis, Ltd., Asaka, Saitama 351-0022, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, Suita, Osaka 565-0871, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
24
|
Mbanefo NR, Uwaezuoke SN, Eneh CI, Odimegwu CL, Chikani UN, Muoneke UV, Nwolisa CE, Odo KE, Ogbuka FN, Akwue AT. Can Oral Zinc Supplementation Reduce Relapses in Childhood Steroid-Sensitive Nephrotic Syndrome? A Systematic Review. Int J Nephrol Renovasc Dis 2023; 16:143-153. [PMID: 37101939 PMCID: PMC10124555 DOI: 10.2147/ijnrd.s403699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
INTRODUCTION Frequent relapses and steroid dependence are common treatment challenges of steroid-sensitive nephrotic syndrome (SSNS) in children. Acute respiratory infection (ARI) is the most frequently reported trigger of relapse. Given the role of zinc supplementation in preventing ARI, some studies show that this targeted intervention may reduce relapses in childhood SSNS. AIM This systematic review aimed to determine if oral zinc supplementation can significantly reduce relapses in this disease. METHODS We searched the PubMed and Google Scholar electronic databases for interventional and observational analytical studies without limiting their year or language of publication. We selected studies with primary data that met our inclusion criteria, screened their titles and abstracts, and removed duplicates. We used a preconceived structured form to extract data items from selected studies and conducted a quality assessment of randomized controlled trials (RCTs) and non-randomized studies with the Cochrane collaboration tool and the Newcastle Ottawa Scale, respectively. We qualitatively synthesized the extracted data to validate the review's objective. RESULTS Eight full-text articles were selected, comprising four RCTs and four observational analytical studies. Two of the RCTs had a high risk of bias in three parameters of the Cochrane collaboration tool, while three non-randomized studies had low methodological quality. A total of 621 pediatric patients with SSNS were investigated in the eight studies: six participants dropped out in one study. Three RCTs indicate that zinc supplementation may lead to sustained remission or reduction in relapse rate. Similarly, three observational analytical studies suggest a significant relationship between reduced serum zinc levels and disease severity. CONCLUSION Despite the association of zinc deficiency with increased morbidity in SSNS and the reduction of relapse rates with zinc supplementation, there is no robust evidence to recommend its use as a therapeutic adjunct. We recommend more adequately-powered RCTs to strengthen the current evidence.
Collapse
Affiliation(s)
- Ngozi R Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Samuel N Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Chizoma I Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital Enugu, Enugu, Nigeria
| | - Chioma L Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Uzoamaka V Muoneke
- Department of Pediatrics, the University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Charles E Nwolisa
- Department of Pediatrics, Federal Medical Centre, Owerri, Imo State, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital Ituku-Ozalla Enugu, Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital Enugu, Enugu, Nigeria
| | - Anthony T Akwue
- Emergency Department, ASEER Field Hospital, Al Rabwah, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
26
|
Zhu L, An P, Zhao W, Xia Y, Qi J, Luo J, Luo Y. Low Zinc Alleviates the Progression of Thoracic Aortic Dissection by Inhibiting Inflammation. Nutrients 2023; 15:1640. [PMID: 37049478 PMCID: PMC10096567 DOI: 10.3390/nu15071640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular inflammation triggers the development of thoracic aortic dissection (TAD). Zinc deficiency could dampen tissue inflammation. However, the role of zinc as a nutritional intervention in the progression of TAD remains elusive. In this study, we employed a classical β-aminopropionitrile monofumarate (BAPN)-induced TAD model in mice treated with low zinc and observed that the TAD progression was greatly ameliorated under low zinc conditions. Our results showed that low zinc could significantly improve aortic dissection and rupture (BAPN + low zinc vs. BAPN, 36% vs. 100%) and reduce mortality (BAPN + low zinc vs. BAPN, 22% vs. 57%). Mechanically, low zinc attenuated the infiltration of macrophages and inhibited the expression of inflammatory cytokines, suppressed the phenotype switch of vascular smooth muscle cells from contractile to synthetic types, and eventually alleviated the development of TAD. In conclusion, this study suggested that low zinc may serve as a potential nutritional intervention approach for TAD prevention.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenting Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yi Xia
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Synthesis and Characterization of Zinc Oxide Nanoparticles Stabilized with Biopolymers for Application in Wound-Healing Mixed Gels. Gels 2023; 9:gels9010057. [PMID: 36661823 PMCID: PMC9857812 DOI: 10.3390/gels9010057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
A method for the synthesis of ZnO nanoparticles (ZnO NPs) gels was developed. ZnO NPs were obtained through a sol-gel method with zinc acetate usage as a precursor. Optimization of the method of synthesis of ZnO NPs gel has been carried out. It was observed that the most stable ZnO NPs gels are formed at room temperature, pH = 8 and molar concentration of zinc C(Zn2+) = 0.05-0.2 M. It was shown that the addition of polysaccharide significantly affects the rheological properties and microstructure of ZnO NPs gels. We found that the optimal polysaccharide for the synthesis of ZnO NPs gels is hydroxyethyl cellulose. It is shown that the microstructure of a gel of ZnO NPs stabilized with hydroxyethyl cellulose is represented by irregularly shaped particles that are assembled into aggregates, with sizes ranging from 150 to 1400 nm. A significant hysteresis region is observed in a gel of ZnO NPs stabilized with hydroxyethyl cellulose. The process of interaction of ZnO NPs with polysaccharides was investigated. It was shown that the interaction of ZnO NPs with polysaccharides occurs through a charged hydroxyl group. In the experiment, a sample of a gel of ZnO NPs modified with hydroxyethyl cellulose was tested. It was shown that the gel of ZnO NPs modified with hydroxyethyl cellulose has a pronounced regenerative effect on burn wounds, which is significantly higher than that of the control group and the group treated with a gel of ZnO microparticles (MPs) and hydroxyethyl cellulose. It is also shown that the rate of healing of burn wounds in animals treated with gel of ZnO nanoparticles with hydroxyethyl cellulose (group 3) is 16.23% higher than in animals treated with gel of ZnO microparticles with hydroxyethyl cellulose (group 2), and 24.33% higher than in the control group treated with hydroxyethyl cellulose. The average rate of healing of burn wounds for the entire experimental period in experimental animals of group 3 is 1.26 and 1.54 times higher than in animals of group 2 and control group, respectively. An experimental study of a gel of ZnO NPs modified with hydroxyethyl cellulose has shown the effectiveness of its use in modeling the healing of skin wounds through primary tension.
Collapse
|
28
|
Peroni DG, Hufnagl K, Comberiati P, Roth-Walter F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front Nutr 2023; 9:1032481. [PMID: 36698466 PMCID: PMC9869175 DOI: 10.3389/fnut.2022.1032481] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Micronutritional deficiencies are common in atopic children suffering from atopic dermatitis, food allergy, rhinitis, and asthma. A lack of iron, in particular, may impact immune activation with prolonged deficiencies of iron, zinc, vitamin A, and vitamin D associated with a Th2 signature, maturation of macrophages and dendritic cells (DCs), and the generation of IgE antibodies. In contrast, the sufficiency of these micronutrients establishes immune resilience, promotion of regulatory cells, and tolerance induction. As micronutritional deficiencies mimic an infection, the body's innate response is to limit access to these nutrients and also impede their dietary uptake. Here, we summarize our current understanding of the physiological function of iron, zinc, and vitamins A and D in relation to immune cells and the clinical consequences of deficiencies in these important nutrients, especially in the perinatal period. Improved dietary uptake of iron is achieved by vitamin C, vitamin A, and whey compounds, whereas zinc bioavailability improves through citrates and proteins. The addition of oil is essential for the dietary uptake of beta-carotene and vitamin D. As for vitamin D, the major source comes via sun exposure and only a small amount is consumed via diet, which should be factored into clinical nutritional studies. We summarize the prevalence of micronutritional deficiencies of iron, zinc, and vitamins in the pediatric population as well as nutritional intervention studies on atopic diseases with whole food, food components, and micronutrients. Dietary uptake via the lymphatic route seems promising and is associated with a lower atopy risk and symptom amelioration. This review provides useful information for clinical studies and concludes/emphasizes that a healthy, varied diet containing dairy products, fish, nuts, fruits, and vegetables as well as supplementing foods or supplementation with micronutrients as needed is essential to combat the atopic march.
Collapse
Affiliation(s)
- Diego G. Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pasquale Comberiati
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Franziska Roth-Walter, ;
| |
Collapse
|
29
|
Smerchek DT, Branine ME, McGill JL, Hansen SL. Effects of supplemental Zn concentration and trace mineral source on immune function and associated biomarkers of immune status in weaned beef calves received into a feedlot. J Anim Sci 2023; 101:6966915. [PMID: 36588522 PMCID: PMC9910396 DOI: 10.1093/jas/skac428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Low-risk, weaned Angus-crossbred steers (n = 72; 284 ± 25 kg) were used in a 42-d receiving study. Steers were housed in pens (n = 6 steers per pen) equipped with GrowSafe bunks for determination of individual animal feed disappearance. Dietary treatments (n = 24 steers per treatment) included: 1) trace minerals (TM) from an organic source (Availa4; Zinpro Corp., Eden Prairie, MN) at 7 g·steer-1·d-1; for 42 d (ORG); 2) ORG for entire 42-d plus AvailaZn (Zn amino acid complex, Zinpro Corp., Eden Prairie, MN) to provide 1,000 mg Zn·steer-1·d-1 for first 14 d (ORG+Z); 3) inorganic TM sources to supplemented at equivalent concentration as in ORG for 42-d (ING). Cattle were weighed on day -1, 0, 14, 41, and 42. Whole blood was collected (n = 72 steers) on day 0, 14, and 42. Liver biopsies were conducted (n = 36 steers; 3 steers per pen) on day 0, 14, and 42. Flow cytometry measures were conducted using whole blood on day 1, 14, and 42 for determination of circulating frequencies of immune cell populations. There was a tendency for improved overall average daily gain (P = 0.07) where both ORG and ORG+Z were greater than ING. Final body weight did not differ (P = 0.21) and overall dry matter intake was unaffected by dietary treatment (P ≥ 0.18). However, overall gain-to-feed ratio was improved (P = 0.01) in steers supplemented organic TM (ORG and ORG+Z) compared to ING. Plasma Zn concentration did not differ at any time point during the study (P ≥ 0.20). Liver Zn concentration did not differ between treatments on day 0 or 42; however, on day 14 ING tended (P = 0.09) to be greater than ORG+Z with ORG being intermediate. Plasma Cu was unaffected by dietary treatment (P ≥ 0.34) on day 0, 14, and 42. Plasma Fe did not differ on day 0 or 42 but tended to be greater in ORG and ORG+Z compared to ING (P = 0.08) on day 14. Dietary treatment did not alter (P ≥ 0.22) liver Fe or Mn concentration at any time point. Frequency of total circulating natural killer (NK) and CD8 T cells measured on day 0, 14, and 42 did not differ (P ≥ 0.07). However, cell surface markers of activation (CD16, CD44, and CD8) on NK cells measured on day 14 did differ because of treatment (P ≤ 0.05). Results presented herein indicate TM from an organic source supplemented to steers during receiving can positively influence growth rate and feed efficiency. Regardless of source, TM supplementation affected markers of immune function but did not influence the prevalence of circulating NK and CD8 T-cell populations.
Collapse
Affiliation(s)
- Dathan T Smerchek
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Jodi L McGill
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
30
|
Ikushima H, Suzuki J, Hemmi T, Ikeda R, Kobayashi Y, Ohta N, Katori Y. Effects of zinc deficiency on the regeneration of olfactory epithelium in mice. Chem Senses 2023; 48:bjad023. [PMID: 37527505 DOI: 10.1093/chemse/bjad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 08/03/2023] Open
Abstract
The olfactory epithelium can regenerate after damage; however, the regeneration process is affected by various factors, such as viral infections, head trauma, and medications. Zinc is an essential trace element that has important roles in organ development, growth, and maturation. Zinc also helps regulate neurotransmission in the brain; nevertheless, its relationship with olfactory epithelium regeneration remains unclear. Therefore, we used a severe zinc deficiency mouse model to investigate the effects of zinc deficiency on olfactory epithelium regeneration. Male wild-type C57BL/6 mice were divided into zinc-deficient and control diet groups at the age of 4 weeks, and methimazole was administered at the age of 8 weeks to induce severe olfactory epithelium damage. We evaluated the olfactory epithelium before and 7, 14, and 28 days after methimazole administration by histologically analyzing paraffin sections. RNA sequencing was also performed at the age of 8 weeks before methimazole administration to examine changes in gene expression caused by zinc deficiency. In the zinc-deficient group, the regenerated olfactory epithelium thickness was decreased at all time points, and the numbers of Ki-67-positive, GAP43-positive, and olfactory marker protein-positive cells (i.e. proliferating cells, immature olfactory neurons, and mature olfactory neurons, respectively) failed to increase at some time points. Additionally, RNA sequencing revealed several changes in gene expression, such as a decrease in the expression of extracellular matrix-related genes and an increase in that of inflammatory response-related genes, in the zinc-deficient group. Therefore, zinc deficiency delays olfactory epithelium regeneration after damage in mice.
Collapse
Affiliation(s)
- Hiroyuki Ikushima
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Tomotaka Hemmi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology-Head and Neck Surgery, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Yuta Kobayashi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Nobuo Ohta
- Division of Otolaryngology, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi 983-8512, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
31
|
Association between Serum Zinc and Toll-like-Receptor- Related Innate Immunity and Infectious Diseases in Well-Nourished Children with a Low Prevalence of Zinc Deficiency: A Prospective Cohort Study. Nutrients 2022; 14:nu14245395. [PMID: 36558553 PMCID: PMC9782999 DOI: 10.3390/nu14245395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Existing reports focus on zinc-associated immunity and infection in malnourished children; however, whether zinc also plays an important role in the immune homeostasis of the non-zinc-deficient population remained unknown. This study aimed to investigate the association between zinc status and toll-like receptor (TLR)-related innate immunity and infectious outcome in well-nourished children. A total of 961 blood samples were collected from 1 through 5 years of age. Serum zinc was analyzed, and mononuclear cells isolated to assess TNF-α, IL-6, and IL-10 production by ELISA after stimulation with TLR ligands. Childhood infections were analyzed as binary outcomes with logistic regression. The prevalence of zinc deficiency was 1.4-9.6% throughout the first 5 years. There was significant association between zinc and TLR-stimulated cytokine responses. Higher serum zinc was associated with decreased risk of ever having pneumonia (aOR: 0.94; 95% CI: 0.90, 0.99) at 3 years, and enterocolitis (aOR: 0.96; 95% CI: 0.93, 0.99) at 5 years. Serum zinc was lower in children who have had pneumonia before 3 years of age (72.6 ± 9 vs. 81.9 ± 13 μg/dL), and enterocolitis before 5 years (89.3 ± 12 vs. 95.5 ± 13 μg/dL). We emphasize the importance of maintaining optimal serum zinc in the young population.
Collapse
|
32
|
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9:1082500. [PMID: 36570149 PMCID: PMC9772031 DOI: 10.3389/fnut.2022.1082500] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plays an essential role in the regulation of optimal immunological response, by providing adequate nutrients in sufficient concentrations to immune cells. There are a large number of micronutrients, such as minerals, and vitamins, as well as some macronutrients such as some amino acids, cholesterol and fatty acids demonstrated to exert a very important and specific impact on appropriate immune activity. This review aims to summarize at some extent the large amount of data accrued to date related to the modulation of immune function by certain micro and macronutrients and to emphasize their importance in maintaining human health. Thus, among many, some relevant case in point examples are brought and discussed: (1) The role of vitamin A/all-trans-retinoic-acids (ATRA) in acute promyelocytic leukemia, being this vitamin utilized as a very efficient therapeutic agent via effective modulation of the immune function (2) The involvement of vitamin C in the fight against tumor cells via the increase of the number of active NK cells. (3) The stimulation of apoptosis, the suppression of cancer cell proliferation, and delayed tumor development mediated by calcitriol/vitamin D by means of immunity regulation (4) The use of selenium as a cofactor to reach more effective immune response to COVID vaccination (5). The crucial role of cholesterol to regulate the immune function, which is demonstrated to be very sensitive to the variations of this macronutrient concentration. Other important examples are reviewed as well.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Camelia Munteanu,
| | - Betty Schwartz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The School of Nutritional Sciences, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Betty Schwartz,
| |
Collapse
|
33
|
Zinc in Human Health and Infectious Diseases. Biomolecules 2022; 12:biom12121748. [PMID: 36551176 PMCID: PMC9775844 DOI: 10.3390/biom12121748] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
During the last few decades, the micronutrient zinc has proven to be an important metal ion for a well-functioning immune system, and thus also for a suitable immune defense. Nowadays, it is known that the main cause of zinc deficiency is malnutrition. In particular, vulnerable populations, such as the elderly in Western countries and children in developing countries, are often affected. However, sufficient zinc intake and homeostasis is essential for a healthy life, as it is known that zinc deficiency is associated with a multitude of immune disorders such as metabolic and chronic diseases, as well as infectious diseases such as respiratory infections, malaria, HIV, or tuberculosis. Moreover, the modulation of the proinflammatory immune response and oxidative stress is well described. The anti-inflammatory and antioxidant properties of zinc have been known for a long time, but are not comprehensively researched and understood yet. Therefore, this review highlights the current molecular mechanisms underlying the development of a pro-/ and anti-inflammatory immune response as a result of zinc deficiency and zinc supplementation. Additionally, we emphasize the potential of zinc as a preventive and therapeutic agent, alone or in combination with other strategies, that could ameliorate infectious diseases.
Collapse
|
34
|
Zupo R, Sila A, Castellana F, Bringiotti R, Curlo M, De Pergola G, De Nucci S, Giannelli G, Mastronardi M, Sardone R. Prevalence of Zinc Deficiency in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14194052. [PMID: 36235709 PMCID: PMC9572015 DOI: 10.3390/nu14194052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Malabsorptive disorders are closely associated with micronutrient deficiencies. In inflammatory bowel disease (IBD), trace element deficiencies pose a clinical burden from disease onset throughout its course, contributing to morbidity and poor quality of life. We aimed to conduct a systematic review and meta-analysis of the prevalence of zinc deficiency in IBD. Literature screening was performed on six electronic databases until 1 May 2022. Two independent investigators assessed the 152 retrieved articles for inclusion criteria, met by only nine, that included 17 prevalence entries for Crohn’s disease (CD) (n = 9) and ulcerative colitis (UC) (n = 8). No exclusion criteria were applied to language, deficiency cut-offs, population age, general health status, country, or study setting (cohort or cross-sectional). The prevalence of zinc deficiency in blood was scored positive if due to a single disease, not cumulative factors. Zinc deficiency prevalence across selected studies showed higher values in CD than in UC. Pooled analyses by the IBD subgroup showed a total population of 1677 with CD, for an overall mean zinc deficiency prevalence of 54% and 95% confidence intervals (CI) ranging from 0.51 to 0.56, versus 41% (95%CI 0.38–0.45) in the UC population (n = 806). The overall prevalence at meta-analysis was estimated at 50% (95%CI 0.48–0.52), but with high heterogeneity, I2 = 96%. The funnel plot analysis failed to show any evidence of publication bias. The risk of bias across selected studies was moderate to low. In IBD contexts, one of two patients suffers from zinc deficiency. Mismanagement of micronutrient deficiencies plays a role in inflammation trajectories and related cross-pathways. Clinicians in the field are advised to list zinc among trace elements to be monitored in serum.
Collapse
Affiliation(s)
- Roberta Zupo
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
- Correspondence:
| | - Annamaria Sila
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
| | - Fabio Castellana
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
| | | | - Margherita Curlo
- Section of Gastroenterology II, National Institute of Research “Saverio De Bellis”, 70013 Castellana Grotte, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
| | - Sara De Nucci
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Research “Saverio De Bellis”, 70013 Castellana Grotte, Italy
| | - Mauro Mastronardi
- Section of Gastroenterology II, National Institute of Research “Saverio De Bellis”, 70013 Castellana Grotte, Italy
| | - Rodolfo Sardone
- Unit of Data Sciences and Technology Innovation for Population Health, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
35
|
The Mechanisms of Zinc Action as a Potent Anti-Viral Agent: The Clinical Therapeutic Implication in COVID-19. Antioxidants (Basel) 2022; 11:antiox11101862. [PMID: 36290585 PMCID: PMC9598180 DOI: 10.3390/antiox11101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The pandemic of COVID-19 was caused by a novel coronavirus termed as SARS-CoV2 and is still ongoing with high morbidity and mortality rates in the whole world. The pathogenesis of COVID-19 is highly linked with over-active immune and inflammatory responses, leading to activated cytokine storm, which contribute to ARDS with worsen outcome. Currently, there is no effective therapeutic drug for the treatment of COVID-19. Zinc is known to act as an immune modulator, which plays an important role in immune defense system. Recently, zinc has been widely considered as an anti-inflammatory and anti-oxidant agent. Accumulating numbers of studies have revealed that zinc plays an important role in antiviral immunity in several viral infections. Several early clinical trials clearly indicate that zinc treatment remarkably decreased the severity of the upper respiratory infection of rhinovirus in humans. Currently, zinc has been used for the therapeutic intervention of COVID-19 in many different clinical trials. Several clinical studies reveal that zinc treatment using a combination of HCQ and zinc pronouncedly reduced symptom score and the rates of hospital admission and mortality in COVID-19 patients. These data support that zinc might act as an anti-viral agent in the addition to its anti-inflammatory and anti-oxidant properties for the adjuvant therapeutic intervention of COVID-19.
Collapse
|
36
|
Hassan ME, Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Bakeer RM, Abdel-Wahhab MA. Zinc-loaded whey protein nanoparticles alleviate the oxidative damage and enhance the gene expression of inflammatory mediators in rats. J Trace Elem Med Biol 2022; 73:127030. [PMID: 35779434 DOI: 10.1016/j.jtemb.2022.127030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Zinc (Zn) is an essential trace element required for the function of the immune system. However, Zn fortification of food has faced some challenges, although excess Zn may be induced obesity and other related. This study aimed to use Zn-loaded whey protein nanoparticles (Zn-WPNPs) to enhance the immunomodulatory activity of Zn in rats treated with CCl4. METHODS Zn was loaded to WPNPs at a level of 14 mg/g. Four experimental groups of male albino Wistar rats were treated for 30 days including the control group, CCl4-treated group (0.5 ml/100 g b.w), Zn plus CCl4-treated group (50 mg/kg b.w), and CCl4 plus Zn-WPNPs-treated group (50 mg/kg b.w). Blood and tissue samples were collected for different assays and histological examinations. RESULTS The results revealed that CCl4 disturbs the serum biochemical, hematological, and immune indicators in different organs besides the liver as a target organ. Animals that received CCl4 showed a significant increase in oxidative stress markers, cytokines, and the mRNA expression of inflammatory mediators in the lung and spleen accompanied by a significant decrease in the hepatic and renal antioxidant enzymes along with histological changes in the liver, kidney, spleen, and lung. Zn or Zn-WPNPs could improve these parameters and the histological picture of the tested organs and Zn-WPNPs were more effective than Zn alone. CONCLUSION WPNPs induced synergistic immune-modulating effects which may control Zn release and may be a suitable candidate to enhance the immune system during any pandemic or the exposure to any chemicals that affect the immune system.
Collapse
Affiliation(s)
- Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Mona A Hassan
- Food Evaluation and Food Science Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Rofanda M Bakeer
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
37
|
Wang Y, Wang C, Chen H, Zhang Y, Gao N, Yu Y, Xing Y, Xie L, Wang Z, Cai Y. Protective effects of ZIP8 on Toxoplasma gondii-induced acute hepatocyte injury in mice. Acta Trop 2022; 234:106629. [DOI: 10.1016/j.actatropica.2022.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
|
38
|
Samuelson DR, Haq S, Knoell DL. Divalent Metal Uptake and the Role of ZIP8 in Host Defense Against Pathogens. Front Cell Dev Biol 2022; 10:924820. [PMID: 35832795 PMCID: PMC9273032 DOI: 10.3389/fcell.2022.924820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Manganese (Mn) and Zinc (Zn) are essential micronutrients whose concentration and location within cells are tightly regulated at the onset of infection. Two families of Zn transporters (ZIPs and ZnTs) are largely responsible for regulation of cytosolic Zn levels and to a certain extent, Mn levels, although much less is known regarding Mn. The capacity of pathogens to persevere also depends on access to micronutrients, yet a fundamental gap in knowledge remains regarding the importance of metal exchange at the host interface, often referred to as nutritional immunity. ZIP8, one of 14 ZIPs, is a pivotal importer of both Zn and Mn, yet much remains to be known. Dietary Zn deficiency is common and commonly occurring polymorphic variants of ZIP8 that decrease cellular metal uptake (Zn and Mn), are associated with increased susceptibility to infection. Strikingly, ZIP8 is the only Zn transporter that is highly induced following bacterial exposure in key immune cells involved with host defense against leading pathogens. We postulate that mobilization of Zn and Mn into key cells orchestrates the innate immune response through regulation of fundamental defense mechanisms that include phagocytosis, signal transduction, and production of soluble host defense factors including cytokines and chemokines. New evidence also suggests that host metal uptake may have long-term consequences by influencing the adaptive immune response. Given that activation of ZIP8 expression by pathogens has been shown to influence parenchymal, myeloid, and lymphoid cells, the impact applies to all mucosal surfaces and tissue compartments that are vulnerable to infection. We also predict that perturbations in metal homeostasis, either genetic- or dietary-induced, has the potential to impact bacterial communities in the host thereby adversely impacting microbiome composition. This review will focus on Zn and Mn transport via ZIP8, and how this vital metal transporter serves as a "go to" conductor of metal uptake that bolsters host defense against pathogens. We will also leverage past studies to underscore areas for future research to better understand the Zn-, Mn- and ZIP8-dependent host response to infection to foster new micronutrient-based intervention strategies to improve our ability to prevent or treat commonly occurring infectious disease.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Daren L. Knoell,
| |
Collapse
|
39
|
Mbugi EV, den Hartog G, Veenemans J, Chilongola JO, Verhoef H, Savelkoul HFJ. Nutrient Deficiencies and Potential Alteration in Plasma Levels of Naturally Acquired Malaria-Specific Antibody Responses in Tanzanian Children. Front Nutr 2022; 9:872710. [PMID: 35782946 PMCID: PMC9247637 DOI: 10.3389/fnut.2022.872710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Immunoglobulin G (IgG) subclasses have been suggested to confer naturally acquired immunity to Plasmodium falciparum malaria. Cytophilic IgG1 and IgG3 with their potential for opsonization, phagocytosis, and antibody-dependent cellular inhibition in association with monocytes have been suggested to have a critical role in malaria. The potential for production of antibodies is influenced by micronutrient status. This study aimed at exploring the effect of micronutrients, particularly zinc status, on the profiles of IgG subclasses in 304 Tanzanian children aged ≤ 5 years. An enzyme-linked immunosorbent assay was performed using whole asexual blood stage malaria antigens to determine plasma malaria-specific antibody titers. This baseline cross-sectional study was done from 2005 – 2010 prior to the larger randomized control trial of the Micronutrient and Child Health (MACH) Study. Plasma concentrations of zinc and magnesium were measured by inductively coupled plasma atomic emission spectrometry and results correlated with plasma IgG subclass levels. The findings reveal zinc deficiency to possibly influence the production of IgM, total IgG, and several IgG subclasses in a malaria status-dependent manner. Among IgG subclasses, IgG3 and partly IgG2 displayed a remarkable association with zinc deficiency, particularly IgG3 which was predominant in children with malaria. Nevertheless, zinc, magnesium, and malaria status did not influence the association between IgG3 and IgG4. The study leads to the conclusion that, under conditions of micronutrient deficiency and malaria status, an imbalance in IgG subclass production may occur leading to predominantly higher levels of IgG3 and IgG2 that may not confer sufficient protection from infection. The profile of both cytophilic and non-cytophilic IgG subclasses has been shown to be variably influenced by zinc status; the effects vary with age at least in under-fives. These results provide insight for inclusion of micronutrients, particularly precise amounts of zinc, in future malaria interventional programs in endemic areas.
Collapse
Affiliation(s)
- Erasto V. Mbugi
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- *Correspondence: Erasto V. Mbugi ;
| | - Gerco den Hartog
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Jacobien Veenemans
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Jaffu O. Chilongola
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Hans Verhoef
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
- Nutrition and Public Health Intervention Research Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
40
|
Sadeghsoltani F, Mohammadzadeh I, Safari MM, Hassanpour P, Izadpanah M, Qujeq D, Moein S, Vaghari-Tabari M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biol Trace Elem Res 2022; 200:2556-2571. [PMID: 34368933 PMCID: PMC8349606 DOI: 10.1007/s12011-021-02859-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Influenza viruses, respiratory syncytial virus (RSV), and SARS-COV2 are among the most dangerous respiratory viruses. Zinc is one of the essential micronutrients and is very important in the immune system. The aim of this narrative review is to review the most interesting findings about the importance of zinc in the anti-viral immune response in the respiratory tract and defense against influenza, RSV, and SARS-COV2 infections. The most interesting findings on the role of zinc in regulating immunity in the respiratory tract and the relationship between zinc and acute respiratory distress syndrome (ARDS) are reviewed, as well. Besides, current findings regarding the relationship between zinc and the effectiveness of respiratory viruses' vaccines are reviewed. The results of reviewed studies have shown that zinc and some zinc-dependent proteins are involved in anti-viral defense and immune regulation in the respiratory tract. It seems that zinc can reduce the viral titer following influenza infection. Zinc may reduce RSV burden in the lungs. Zinc can be effective in reducing the duration of viral pneumonia symptoms. Zinc may enhance the effectiveness of hydroxychloroquine in reducing mortality rate in COVID-19 patients. Besides, zinc has a positive effect in preventing ARDS and ventilator-induced lung damage. The relationship between zinc levels and the effectiveness of respiratory viruses' vaccines, especially influenza vaccines, is still unclear, and the findings are somewhat contradictory. In conclusion, zinc has anti-viral properties and is important in defending against respiratory viral infections and regulating the immune response in the respiratory tract.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mir-Meghdad Safari
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Melika Izadpanah
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Ishihara J, Arai K, Kudo T, Nambu R, Tajiri H, Aomatsu T, Abe N, Kakiuchi T, Hashimoto K, Sogo T, Takahashi M, Etani Y, Yasuda R, Sakaguchi H, Konishi KI, Obara H, Kakuma T, Yamashita Y, Mizuochi T. Serum Zinc and Selenium in Children with Inflammatory Bowel Disease: A Multicenter Study in Japan. Dig Dis Sci 2022; 67:2485-2491. [PMID: 34101059 DOI: 10.1007/s10620-021-07078-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Reports of zinc and selenium deficiencies accompanying inflammatory bowel disease (IBD) mostly have originated from Western countries and concerned adult patients. Whether Japanese children with IBD have similar deficiencies remained unclear. AIM We aimed to elucidate differences in serum zinc and selenium concentrations in Japanese children between types of IBD. METHODS Children under 17 years old undergoing care at 12 Japanese pediatric centers were retrospectively enrolled between November 2016 and February 2018 to 3 groups representing Crohn's disease (CD), ulcerative colitis (UC), and normal controls (NC) with irritable bowel syndrome or no illnesses. Serum zinc and selenium were measured by atomic absorption spectrophotometry. Zinc and selenium deficiencies were defined by serum concentrations < 70 μg/dL and < 9.5 μg/dL, respectively. RESULTS Subjects included 98 patients with CD (median age, 13 years), 118 with UC (11 years), and 43 NC (11 years). Serum zinc and selenium were significantly lower in CD (median, 64 and 12.6 μg/dL respectively) than in UC (69 and 14.6; P < 0.05 and P < 0.001) or NC (77 and 15.7; P < 0.01 and P < 0.001). Zinc deficiency was significantly more prevalent in CD (60.2%) than in NC (37.2%; P < 0.05), but not than in UC (51.7%; P = 0.22). Selenium deficiency was significantly more prevalent in CD (15.3%) than in UC (5.9%; P < 0.05) or NC (0%; P < 0.01). CONCLUSIONS In Japanese children under 17 years old, serum zinc and selenium were significantly lower in CD than in UC or NC. Zinc and selenium should be monitored, and supplemented when deficient, in children with IBD, especially CD.
Collapse
Affiliation(s)
- Jun Ishihara
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Katsuhiro Arai
- Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Takahiro Kudo
- Department of Pediatrics, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama, Japan
| | - Hitoshi Tajiri
- Department of Pediatrics, Osaka General Medical Center, Osaka, Japan
| | - Tomoki Aomatsu
- Department of Pediatrics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Naoki Abe
- Department of Infection and Immunology, Aichi Children's Health and Medical Center, Aichi, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Kunio Hashimoto
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Sogo
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Michiko Takahashi
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Yuri Etani
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Ryosuke Yasuda
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Hirotaka Sakaguchi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Ken-Ichiro Konishi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Hitoshi Obara
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuyuki Kakuma
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Yushiro Yamashita
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 8300011, Japan.
| |
Collapse
|
42
|
Zoubiri H, Tahar A, AitAbderrhmane S, Saidani M, Koceir EA. Oral Cholecalciferol Supplementation in Sahara Black People with Chronic Kidney Disease Modulates Cytokine Storm, Oxidative Stress Damage and Athero-Thromboembolic Risk. Nutrients 2022; 14:nu14112285. [PMID: 35684085 PMCID: PMC9182799 DOI: 10.3390/nu14112285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The 25-hydroxyvitamin D3 (25OHD3) deficiency in chronic kidney disease (CKD) is associated with immune system dysfunction (pro-inflammatory cytokines storm) through macrophages renal infiltration, oxidative stress (OxS) damage and athero-thromboembolic risk. Conversely, cholecalciferol supplementation (25OHD-S) prevents kidney fibrosis by inhibition of vascular calcification and nephrotic apoptosis (nephrons reduction). The objective of this study was to investigate the pleiotropic effects of 25OHD-S on immunomodulation, antioxidant status and in protecting against thromboembolic events in deficiency CKD Black and White individuals living in the Southern Sahara (SS). The oral 25OHD-S was evaluated in 60,000 IU/month/36 weeks versus in 2000 IU/day/24 weeks in Black (n = 156) and White (n = 150). Total serum vitamin D was determined by liquid chromatography-tandem mass spectrometry. All biomarkers of pro-inflammatory cytokines (PIC) were assessed by ELISA tests. OxS markers were assessed by Randox kits. Homocysteine and lipoproteine (a) were evaluated by biochemical methods as biomarkers of atherothromboembolic risk. All statistical analyses were performed with Student’s t-test and one-way ANOVA. The Pearson test was used to calculate the correlation coefficient. The means will be significantly different at a level of p value < 0.05. Multiple logistic regressions were performed using Epi-info and Statview software. Vitamin D deficiency alters the PIC profile, OxS damage and atherothrombogenic biomarkers in both SS groups in the same manner; however, these disorders are more acute in Black compared to White SS individuals. The results showed that the serum 25OHD3 concentrations became normal (>75 nmol/L or >30 ng/mL) in the two groups. We have shown that the dose and duration of 25OHD-S treatment are not similar in Black SS residents compared to White SS subjects, whilst the same inhabit the south Sahara environment. It appears that a high dose intermittent over a long period (D60: 36 weeks) was more efficient in Black people; while a lower dose for a short time is sufficient (D2: 24 weeks) in their White counterparts. The oral 25OHD-S attenuates PIC overproduction and OxS damage, but does not reduce athero-thromboembolic risk, particularly in Black SS residents.
Collapse
Affiliation(s)
- Houda Zoubiri
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Biology and Physiology Laboratory, Ecole Nationale Supérieure de Kouba, Algiers 16308, Algeria
| | - Amina Tahar
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
| | | | - Messaoud Saidani
- Clinical Nephrology Exploration Dialysis and Kidney Transplantation Unit, University Hospital Center of Beni Messous, Algiers 16014, Algeria;
| | - Elhadj-Ahmed Koceir
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Correspondence: ; Tel.: +213-6-66-74-27-70; Fax: +213-(0)21-24-72-17
| |
Collapse
|
43
|
Joulaei H, Keshani P, Foroozanfar Z, Zamanian D, Hassani A, Parvizi F, Khadem Y, Omidifar N, Davarpanah MA. Serum zinc associated with immunity and inflammatory markers in Covid-19. Open Med (Wars) 2022; 17:702-711. [PMID: 35480398 PMCID: PMC8990765 DOI: 10.1515/med-2022-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/01/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
This study aimed to assess the association between serum zinc level with some inflammatory and immunity factors and the duration of hospitalization and mortality rate in patients diagnosed with Covid-19. In this cross-sectional study, blood samples were taken from polymerase chain reaction (PCR) positive patients. New patients diagnosed with Covid-19, admitted to different public hospital wards, were considered eligible for entering the study. The study was done on 179 hospitalized patients diagnosed with Covid-19. Fourteen patients died during the hospitalization and the in-hospital mortality rate was 7.8%, with 9.1% (13 patients) of patients with serum zinc level less than 70 mcg/dL and 3.4% (1 patient) of patients with zinc levels more than 70 mcg/dL. Higher levels of zinc were significantly associated with a higher and lower level of interferon-gamma (IFN-γ) (p-value = 0.035) and interleukin (IL)-6 (p-value = 0.004), respectively. The level of serum zinc did not have a significant association with mortality even after adjusting for confounding factors. The relationship between zinc level and the duration of hospitalization was also not significant. In conclusion, serum zinc level had an association with IL-6 and IFN-γ level, but it did not have any significant association with hospital duration or mortality.
Collapse
Affiliation(s)
- Hassan Joulaei
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Parisa Keshani
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zohre Foroozanfar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Daniel Zamanian
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| | | | - Fateme Parvizi
- School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Yasaman Khadem
- School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Navid Omidifar
- Clinical Education Research Center, and Department of Pathology, School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
44
|
Leonard P, Louw A, Prentice D, Cirillo M. Clonal cytopenia of undetermined significance and atypical Behçet's: the importance of zinc. BMJ Case Rep 2022; 15:e247154. [PMID: 35351745 PMCID: PMC8966545 DOI: 10.1136/bcr-2021-247154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 01/03/2023] Open
Abstract
Atypical Behçet's is recognised in myelodysplastic syndrome (MDS) cases and is associated with trisomy 8. Clonal cytopenia of undetermined significance (CCUS) is recognised as a precursor to MDS. Our case describes the presentation of atypical Behçet's, in association with CCUS, post a Streptococcal infection. A mutation of a zinc finger RNA spliceosome, ZRSR2, is also described. Our patient initially presented with macrocytic anaemia, together with neutropenia and lymphocytopenia on routine monitoring. Later gastrointestinal symptoms together with oral and anal ulcerations developed. He was treated with oral zinc therapy and had resolution of recurrent oral ulcerations and significant reduction in severity of anal ulcerations. The functional impact of ZRSR2 mutation on spliceosome assembly is yet to be defined, but has been previously reported in CCUS with a clinical phenotype of macrocytic anaemia.
Collapse
Affiliation(s)
- Patricia Leonard
- School of Medicine, Curtin University, Bentley, Western Australia, Australia
| | - Alison Louw
- Molecular Haematology, PathWest Laboratory Medical WA, Murdoch, Western Australia, Australia
| | - David Prentice
- Neurology, Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Melita Cirillo
- Haematology, Royal Perth Hospital, Perth, Western Australia, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
45
|
Weyh C, Krüger K, Peeling P, Castell L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022; 14:644. [PMID: 35277003 PMCID: PMC8840645 DOI: 10.3390/nu14030644] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Minerals fulfil a wide variety of functions in the optimal functioning of the immune system. This review reports on the minerals that are essential for the immune system's function and inflammation regulation. We also discuss nutritional aspects of optimized mineral supply. The supply of minerals is important for the optimal function of the innate immune system as well as for components of adaptive immune defense; this involves defense mechanisms against pathogens in addition to the long-term balance of pro- and anti-inflammatory regulation. Generally, a balanced diet is sufficient to supply the required balance of minerals to help support the immune system. Although a mineral deficiency is rare, there are nevertheless at-risk groups who should pay attention to ensure they are receiving a sufficient supply of minerals such as magnesium, zinc, copper, iron, and selenium. A deficiency in any of these minerals could temporarily reduce immune competence, or even disrupt systemic inflammation regulation in the long term. Therefore, knowledge of the mechanisms and supply of these minerals is important. In exceptional cases, a deficiency should be compensated by supplementation; however, supplement over-consumption may be negative to the immune system, and should be avoided. Accordingly, any supplementation should be medically clarified and should only be administered in prescribed concentrations.
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Peter Peeling
- School of Human Sciences (Sport and Exercise Science), University of Western Australia, Crawley, WA 6009, Australia;
- Western Australian Institute of Sport, Mt Claremont, WA 6010, Australia
| | - Lindy Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK;
| |
Collapse
|
46
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
47
|
Ma X, Zhuang H, Wang Q, Yang L, Xie Z, Zhang Z, Tan W, Tang C, Chen Y, Shang C. SLC39A1 Overexpression is Associated with Immune Infiltration in Hepatocellular Carcinoma and Promotes Its Malignant Progression. J Hepatocell Carcinoma 2022; 9:83-98. [PMID: 35211427 PMCID: PMC8858589 DOI: 10.2147/jhc.s349966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background Solute carrier family 39 member 1 (SLC39A1) has been identified as a zinc ion transport protein that possesses oncogenic properties in various types of cancers. However, its potential function in hepatocellular carcinoma (HCC) remains unknown. This study aimed to investigate the expression profile and potential mechanisms of SLC39A1 in HCC. Methods SLC39A1 expression was analyzed using multiple databases. The clinical significance and associated biological pathways of SLC39A1 were investigated using bioinformatics analysis. Potential correlations between SLC39A1 expression and tumor immunity in HCC were also evaluated using single-sample gene set enrichment analysis (GSEA). Sixty paired HCC samples were used to verify the expression pattern of SLC39A1. In vitro studies were performed to investigate the oncogenic effects of SLC39A1 in HCC. Western blot analysis was conducted to further investigate the possible involved signaling pathways. Results The overexpression of SLC39A1 in HCC was determined by bioinformatics analysis and was confirmed in tissues from our center. SLC39A1 overexpression was also significantly correlated with worse prognosis, advanced TNM stage, and histological grade. GSEA analysis demonstrated that SLC39A1 overexpression was involved in various tumor-related pathways, such as the cell cycle and Wnt signaling pathway. SLC39A1 knockdown repressed the proliferation, invasion, and migration abilities of HCC cells. Furthermore, SLC39A1 knockdown decreased the expression of the tumor progression-related proteins (eg, cyclin D1 and MMP2) and Wnt signaling pathway-related proteins (eg, Wnt3A and β-catenin). In addition, SLC39A1 overexpression may be associated with impaired tumor immunity in HCC, as evidenced by the increased infiltration of Th2 cells and reduced infiltration of cytotoxic cells. Conclusion These findings preliminarily suggested the crucial effect of SLC39A1 overexpression on HCC tumor progression and immunosuppression, suggesting its potential as a novel prognostic and therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Lei Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Zhiqin Xie
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Ziyu Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Wenliang Tan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
- Correspondence: Yajin Chen; Changzhen Shang, Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China, Tel +86-2034070701, Email ;
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
48
|
Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr 2022; 127:214-232. [PMID: 33641685 PMCID: PMC8047403 DOI: 10.1017/s0007114521000738] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The importance of Zn for human health becomes obvious during Zn deficiency. Even mild insufficiencies of Zn cause alterations in haematopoiesis and immune functions, resulting in a proinflammatory phenotype and a disturbed redox metabolism. Although immune system malfunction has the most obvious effect, the functions of several tissue cell types are disturbed if Zn supply is limiting. Adhesion molecules and tight junction proteins decrease, while cell death increases, generating barrier dysfunction and possibly organ failure. Taken together, Zn deficiency both weakens the resistance of the human body towards pathogens and at the same time increases the danger of an overactive immune response that may cause tissue damage. The case numbers of Corona Virus Disease 19 (COVID-19) are still increasing, which is causing enormous problems for health systems and economies. There is an urgent need to reduce both the number of severe cases and the resulting deaths. While therapeutic options are still under investigation, and first vaccines have been approved, cost-effective ways to reduce the likelihood of or even prevent infection, and the transition from mild symptoms to more serious detrimental disease, are highly desirable. Nutritional supplementation might be an effective option to achieve these aims. In this review, we discuss known Zn deficiency effects in the context of an infection with Severe Acute Respiratory Syndrome-Coronavirus-2 and its currently known pathogenic mechanisms and elaborate on how severe pre-existing Zn deficiency may pre-dispose patients to a severe progression of COVID-19. First published clinical data on the association of Zn homoeostasis with COVID-19 and registered studies in progress are listed.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| |
Collapse
|
49
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
50
|
Schmitt AK, Puppa MA, Wessels I, Rink L. Vitamin D3 and zinc synergistically induce regulatory T cells and suppress interferon-γ production in mixed lymphocyte culture. J Nutr Biochem 2022; 102:108942. [DOI: 10.1016/j.jnutbio.2022.108942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
|