1
|
Acharya A, Byrareddy SN. Immunological insights into the re-emergence of human metapneumovirus. Curr Opin Immunol 2025; 94:102562. [PMID: 40359650 PMCID: PMC12166946 DOI: 10.1016/j.coi.2025.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Human metapneumovirus (hMPV) is a seasonal respiratory virus that typically causes mild, flu-like symptoms. In some cases, it can lead to severe respiratory complications, such as pneumonia, bronchitis, and bronchiolitis, often requiring hospitalization. Recently, a surge in hMPV cases has been reported in China and other countries, raising concerns about a potential pandemic scenario reminiscent of COVID-19. This review explores the genomic structure, replication cycle, genetic diversity, and evolutionary trajectory of hMPV. It also discusses host immune responses and the available animal models to study pathogenesis and to screen for potential vaccines and antivirals. Additionally, we examine the shifting seasonal trends in hMPV circulation, evaluate the low pandemic risk posed by existing hMPV clades, and underscore the need for continued vaccine and antiviral development. Finally, we advocate for strengthened global surveillance, especially in low- and middle-income countries, as a critical strategy to mitigate the risks posed by emerging hMPV clades.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
2
|
Ribó-Molina P, van Nieuwkoop S, Funk M, Verstrepen BE, van Kampen JJA, Fouchier RAM, van den Hoogen BG. Isolation of Human Metapneumovirus from clinical specimen in human organoid-derived bronchial cell cultures is superior to isolation in monolayer cell line cultures. J Clin Virol 2025; 178:105805. [PMID: 40383019 DOI: 10.1016/j.jcv.2025.105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Human Metapneumovirus (HMPV) is a causative agent of respiratory tract infections (RTI) in children and adults. HMPV is a member of the Pneumoviridae family for which circulation of two serotypes, A and B, has been reported. HMPV isolation in standard monolayer cell lines is not always successful. Recently, it was shown that upon inoculation of human organoid-derived bronchial (ODB) cultures, HMPV primarily targeted the ciliated cells, similar as observed in experimentally infected animals. These observations lead to the hypothesis that isolation of virus from clinical specimen in this ODB model could be more successful than in standard monolayer cultures. METHODS This study compared the efficiency of isolation of HMPV from 36 clinical samples in human ODB cultures with that in monolayers of Vero-118 cells. RESULTS A total of 27 isolates (8 HMPV A and 19 HMPV B) were obtained in the ODB cultures, after one passage, whereas 21 isolates (9 HMPV A and 12 HMPV B) were obtained after one or two passages in Vero-118 cells. CONCLUSIONS Overall, the isolation efficiency of serotype A HMPV was comparable in both models, while isolation of serotype B viruses was profoundly more efficient in the ODB cultures than in Vero-118 cells, suggesting that primary cultures expressing ciliated cells should be considered as a superior isolation method for HMPV from clinical specimens.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Babs E Verstrepen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
3
|
Kishko M, Stuebler A, Sasmal S, Chan Y, Huang D, Reyes C, Lin J, Price O, Kume A, Zong K, Bricault C, Alamares-Sapuay J, Zhang L. A Computationally Designed Prefusion Stabilized Human Metapneumovirus Fusion Protein Vaccine Antigen Elicited a Potent Neutralization Response. Vaccines (Basel) 2025; 13:523. [PMID: 40432132 PMCID: PMC12115362 DOI: 10.3390/vaccines13050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Human metapneumovirus (hMPV) is a leading cause of respiratory infections in the elderly, with high morbidity and mortality and with no vaccines or specific therapies available. The primary protective antigen of hMPV is the fusion protein, and its prefusion conformation (pre-F) is considered the most promising target for vaccine development. Methods: Utilizing computational design strategies focused on intraprotomer interface stabilization, we designed hMPV pre-F recombinant subunit vaccine candidates based on the most prevalent A2 subtype and characterized them in vitro and in vivo, benchmarking to the prototypical hMPV pre-F stabilized by an introduction of a proline at site 185. Results: The top candidate (N46V_T160F) yielded 14.4 mg/L with a melting temperature of 79.3 °C as compared to 5.7 mg/L and 70.4 °C for the benchmark. By employing monoclonal antibody binding to all six antigenic sites of hMPV pre-F, we confirmed this construct retained all pre-F specific antigenic sites and that the key sites Ø and V were stable at 4 °C for up to 6 months. When immunogenicity of N46V_T160F was evaluated in mice, it induced higher binding and neutralizing antibody titers than the benchmark, which stemmed in part from increased levels of site Ø and site II targeting Abs. Further, this A2 based construct induced cross-neutralizing Abs against all four hMPV subtypes. Lastly, our construct exhibited similar immunogenicity as the recently published next-generation hMPV pre-F constructs, DS-CavEs2 and v3B_Δ12_D454C-V458C. Conclusions: N46V_T160F is a promising hMPV vaccine candidate paving the way for further development and optimization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Linong Zhang
- Sanofi, 200 West Street, Waltham, MA 02451, USA; (M.K.); (A.S.); (S.S.); (Y.C.); (D.H.); (C.R.); (J.L.); (O.P.); (A.K.); (K.Z.); (C.B.); (J.A.-S.)
| |
Collapse
|
4
|
Zhang F, Liu X, Duan H, Yang X, Gao P, Zhou J, Zhang X, Pan S, Dong X, Liao Y, Liu J, Xie Z, Chi X, Yang W. Development of Standard and Rapid Antigen Detection Assays for Human Metapneumovirus. J Med Virol 2025; 97:e70374. [PMID: 40297986 DOI: 10.1002/jmv.70374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Human metapneumovirus (hMPV), identified as a novel respiratory pathogen in 2001, is responsible for causing acute respiratory illness across various patient demographics. Early detection of hMPV is crucial for administering timely treatment, thereby controlling the virus's propagation. There is a pressing need for the development of a more convenient and expeditious detection strategy for hMPV. The present study focused on the expression and purification of the highly conserved nucleoprotein (N) of hMPV, which served as an antigen in the generation of specific nanobodies and mouse monoclonal antibodies. Subsequently, we evaluated the efficacy of these immunological reagents in detecting the hMPV antigen through the application of double-antibody sandwich enzyme-linked immunosorbent assay and colloidal gold lateral flow chromatography test strips. These detection methods were successfully utilized on the recombinant antigen, cell culture-derived hMPV, and nasopharyngeal swab specimens. The findings offer promising avenues for the development of convenient and rapid detection techniques, which are particularly pertinent during the virus's epidemic seasons.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huarui Duan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuehua Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peixiang Gao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingya Zhou
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhui Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengnan Pan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemeng Dong
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Liao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengde Xie
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaojing Chi
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Basta MN. Severe Acute Respiratory Distress Syndrome in an Adult Patient With Human Metapneumovirus Infection Successfully Managed With Veno-Venous Extracorporeal Membrane Oxygenation. Semin Cardiothorac Vasc Anesth 2025; 29:74-81. [PMID: 39561244 DOI: 10.1177/10892532241301195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Human metapneumovirus (hMPV), a ubiquitous RNA virus of the Pneumoviridae family, has been associated with respiratory tract infections for decades in various age groups and populations. Though most of the infections, especially in children, are mild and self-limited, severe infections ranging from bronchiolitis or asthma exacerbation to severe pneumonia and acute respiratory distress syndrome (ARDS) have occasionally been reported. Among patients who require hospitalization for severe infections, treatment is supportive as no current antivirals or vaccines are effective or recommended. The following is a 45-year-old Caucasian man who developed severe ARDS complicating hMPV infection, and despite maximal medical support, he developed refractory life-threatening hypoxemia that required rescue therapy with veno-venous extracorporeal membrane oxygenation (V-V ECMO). After several days of ECMO support, the patient eventually recovered and was discharged home. This case highlights the importance of recognizing hMPV as an occasional culprit for severe respiratory infections, discusses the new global definition of ARDS, and delineates the updated recommended management, including the early application of V-V ECMO as a rescue therapy in severe cases with refractory, life-threatening respiratory failure.
Collapse
Affiliation(s)
- Mafdy N Basta
- Department of Anesthesiology & Perioperative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Miyakawa R, Zhang H, Brooks WA, Prosperi C, Baggett HC, Feikin DR, Hammitt LL, Howie SRC, Kotloff KL, Levine OS, Madhi SA, Murdoch DR, O'Brien KL, Scott JAG, Thea DM, Antonio M, Awori JO, Bunthi C, Driscoll AJ, Ebruke B, Fancourt NS, Higdon MM, Karron RA, Moore DP, Morpeth SC, Mulindwa JM, Park DE, Rahman MZ, Rahman M, Salaudeen RA, Sawatwong P, Seidenberg P, Sow SO, Tapia MD, Deloria Knoll M. Epidemiology of human metapneumovirus among children with severe or very severe pneumonia in high pneumonia burden settings: the Pneumonia Etiology Research for Child Health (PERCH) study experience. Clin Microbiol Infect 2025; 31:441-450. [PMID: 39489292 DOI: 10.1016/j.cmi.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVES After respiratory syncytial virus (RSV), human metapneumovirus (hMPV) was the second-ranked pathogen attributed to severe pneumonia in the PERCH study. We sought to characterize hMPV-positive cases in high-burden settings, which have limited data, by comparing with RSV-positive and other cases. METHODS Children aged 1-59 months hospitalized with suspected severe pneumonia and age/season-matched community controls in seven African and Asian countries had nasopharyngeal/oropharyngeal swabs tested by multiplex PCR for 32 respiratory pathogens, among other clinical and lab assessments at admission. Odds ratios adjusted for age and site (adjusted OR [aOR]) were calculated using logistic regression. Aetiologic probability was estimated using Bayesian nested partial latent class analysis. Latent class analysis identified syndromic constellations of clinical characteristics. RESULTS hMPV was detected more frequently among cases (267/3887, 6.9%) than controls (115/4976, 2.3%), among cases with pneumonia chest X-ray findings (8.5%) than without (5.5%), and among controls with respiratory tract illness (3.8%) than without (1.8%; all p ≤ 0.001). HMPV-positive cases were negatively associated with the detection of other viruses (aOR, 0.18), especially RSV (aOR, 0.11; all p < 0.0001), and positively associated with the detection of bacteria (aORs, 1.77; p 0.03). No single clinical syndrome distinguished hMPV-positive from other cases. Among hMPV-positive cases, 65.2% were aged <1 year and 27.5% had pneumonia danger signs; positive predictive value for hMPV aetiology was 74.5%; mortality was 3.9%, similar to RSV-positive (2.4%) and lower than that among other cases (9.6%). DISCUSSION HMPV-associated severe paediatric pneumonia in high-burden settings was predominantly in young infants and clinically indistinguishable from RSV. HMPV-positives had low case fatality, similar to that in RSV-positives.
Collapse
Affiliation(s)
- Ryo Miyakawa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Haijun Zhang
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
| | - W Abdullah Brooks
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka and Matlab, Bangladesh
| | - Christine Prosperi
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Henry C Baggett
- Division of Global Health Protection, Thailand Ministry of Public Health-U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand; Division of Global Health Protection, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniel R Feikin
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura L Hammitt
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Stephen R C Howie
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia; Department of Paediatrics: Child & Youth Health, University of Auckland, Auckland, New Zealand; College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Orin S Levine
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - David R Murdoch
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand; Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Katherine L O'Brien
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Anthony G Scott
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Donald M Thea
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Martin Antonio
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia; Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Juliet O Awori
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Charatdao Bunthi
- Division of Global Health Protection, Thailand Ministry of Public Health-U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Amanda J Driscoll
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bernard Ebruke
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia
| | - Nicholas S Fancourt
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Microbiology Laboratory, Middlemore Hospital, Counties Manukau District Health Board, Auckland, New Zealand
| | - Melissa M Higdon
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth A Karron
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David P Moore
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, University of the Witwatersrand, Johannesburg, South Africa; Department of Paediatrics & Child Health, Chris Hani Baragwanath Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa
| | - Susan C Morpeth
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Justin M Mulindwa
- Department of Paediatrics and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Daniel E Park
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka and Matlab, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka and Matlab, Bangladesh
| | - Rasheed A Salaudeen
- Medical Research Council Unit at the London School of Hygiene and Tropical Medicine, Basse, The Gambia; Medical Microbiology Department, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Pongpun Sawatwong
- Division of Global Health Protection, Thailand Ministry of Public Health-U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Phil Seidenberg
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA; Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins (CVD-Mali), Bamako, Mali
| | - Milagritos D Tapia
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Deloria Knoll
- International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Mishra B, Mohapatra D, Tripathy M, Mamidi P, Mohapatra PR. A Re-emerging Respiratory Virus: Human Metapneumovirus (hMPV). Cureus 2025; 17:e78354. [PMID: 40034641 PMCID: PMC11875555 DOI: 10.7759/cureus.78354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Human metapneumovirus (hMPV) is identified as a pathogenic agent responsible for respiratory tract infections in paediatric, adult and elderly populations. It is a spherical, enveloped virus with a diameter of 209nm, consisting of a single-stranded, non-segmented, and negative-sense RNA genome of around 13.3 kb in length. hMPV infection is prevalent all around the globe, with peak positivity rates detected mostly during later winter and spring seasons. Mostly transmitted through droplet or aerosol contamination, this viral infection may manifest clinical characteristics indicative of both upper and lower respiratory tract infections like fever, cough, rhinorrhea, pneumonia, bronchiolitis, and croup. The recommended laboratory diagnostic approach is reverse transcription polymerase chain reaction, given the challenges associated with culturing the virus. This review article focuses on the structure, replication, genotype, epidemiology, seasonality, transmission methods, clinical manifestations in humans, treatment methodology, and outbreaks of hMPV that have been reported worldwide.
Collapse
Affiliation(s)
- Baijayantimala Mishra
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Diksha Mohapatra
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Manisha Tripathy
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Prabhudutta Mamidi
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Prasanta R Mohapatra
- Pulmonary Medicine and Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
8
|
Parks OB, Williams JV. Method to Assess Immunosenescent CD8 + T Cells in Respiratory Viral Infections. Methods Mol Biol 2025; 2857:33-43. [PMID: 39348053 PMCID: PMC12051039 DOI: 10.1007/978-1-0716-4128-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Immunosenescence is a well-characterized phenomenon that occurs with increasing age in all immune and somatic cells. In order to best study immunosenescence, it is imperative to develop methods to accurately identify immunosenescent cells. Elderly patients are known to have impaired immune responses to respiratory viruses, and it is hypothesized that this is due, in part, to immunosenescent, terminally exhausted CD8+ T cells. To test this hypothesis, we developed an aged mouse model and a flow cytometry protocol using the Cytek® Aurora to assess the CD8+ T-cell response during respiratory viral infection and identify immunosenescent CD8+ T cells. This protocol and our aged mouse model have great potential to be incredibly valuable for future studies elucidating how to rejuvenate and possibly reverse immunosenescent CD8+ T cells, which could improve the immune response to respiratory viruses in this at-risk population.
Collapse
Affiliation(s)
- Olivia B Parks
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John V Williams
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Verma M, Panchal NS, Yadav PK. Exploring Chemical Space to Identify Partial Binders Against hMPV Nucleocapsid Protein. J Cell Biochem 2025; 126:e30618. [PMID: 39286955 DOI: 10.1002/jcb.30618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 09/19/2024]
Abstract
Human metapneumovirus (hMPV) has gained prominence in recent times as the predominant etiological agent of acute respiratory tract infections. This virus targets children, the elderly, and individuals with compromised immune systems. Given the protracted duration of hMPV transmission, it is probable that the majority of children will have acquired the virus by the age of 5. In individuals with compromised immune systems, recurrence of hMPV infection is possible. As hMPV matures, it remains latent from the time of acquisition. The genome of hMPV encompasses a pivotal protein referred to as the nucleocapsid protein (N). This protein assumes the form of a left-handed helical nucleocapsid, enveloping the viral RNA genome. The primary function of this structure is to protect nucleases, rendering it a potentially promising target for therapeutic advancements. The present study employs a methodology that involves structure-based virtual screening, followed by molecular dynamics simulation at a 250-ns time scale, to identify potential natural molecules or their derivatives from the ZINC Database. These molecules are investigated for their binding properties against the hMPV nucleoprotein. Based on an evaluation of the docking score, binding site interaction, and molecular dynamics studies, it has been found that two naturally occurring molecules, namely M1 (ZINC85629735) and M3 (ZINC85569125), have shown notable docking scores of -9.6 and -10.7 kcal/mol, acceptable RMSD, RMSF, Rg, and so on calculated from molecular dynamics trajectory associated with MMGBSA binding energy of -81.94 and -99.63 kcal/mol, respectively. These molecules have shown the highest binding affinity toward nucleocapsid protein and demonstrated promising attributes as potential binders against hMPV.
Collapse
Affiliation(s)
- Monika Verma
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Nikita S Panchal
- Department of Pharmaceutical Chemistry, Maliba Pharmacy College, Uka Tarsadia University, Surat, Gujarat, India
| | - Pramod Kumar Yadav
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
10
|
P. P, Shetty U, Parida P, Varamballi P, Mukhopadhyay C, N S. Molecular detection and genotyping of HMPV in patients with severe acute respiratory infection in India. Ann Med 2024; 56:2398719. [PMID: 39221771 PMCID: PMC11370674 DOI: 10.1080/07853890.2024.2398719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Human metapneumovirus (HMPV) is a common respiratory pathogen that causes respiratory tract infections. In India, HMPV has been identified as one of the leading causes of morbidity and mortality in infants and young children with respiratory tract infections. The most reported sublineages of HMPV in India are B1, B2, A2b and A2c. OBJECTIVE A retrospective study was conducted to determine the circulating genotypes of HMPV among SARI cases from January 2016 to December 2018. MATERIALS AND METHODS Positive throat swab samples were confirmed with real-time RT-PCR. Subsequently, these samples were analysed using semi-nested conventional RT-PCR targeting the G gene, followed by sequencing and phylogenetic analysis. Clinical data analysis was also performed using SPSS 15.0 software. RESULTS All 20 samples from the SARI cases were classified under the A2c sublineage of HMPV. Phylogenetic analysis indicated that these strains were genetically related to those circulating in Japan, China, and Croatia. Among the samples, ten showed 111-nucleotide duplications, while the other ten had 180-nucleotide duplications. CONCLUSION Clinical analysis showed that four cases had coinfections with other pathogens. Our extensive analysis of patient samples determined that HMPV, especially the A2c genotype, significantly contributed to SARI cases within our study population, which signifies the importance of considering HMPV as a probable aetiological agent when investigating SARI outbreaks.
Collapse
Affiliation(s)
- Pragathi P.
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Ujwal Shetty
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Preetiparna Parida
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Prasad Varamballi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | | | - Sudheesh N
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Lee YZ, Han J, Zhang YN, Ward G, Braz Gomes K, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus. Nat Commun 2024; 15:9939. [PMID: 39550381 PMCID: PMC11569192 DOI: 10.1038/s41467-024-54287-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we design uncleaved prefusion-closed (UFC) trimers for the fusion protein (F) of both viruses by examining mutations critical to F metastability. For RSV, we assess four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identify key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we develop a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Dozens of UFC constructs are characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F structures and one hMPV-F structure), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identify three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induce robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Uvax Bio, LLC, Newark, DE, 19702, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Khan A, Khanna V, Majumdar K. Demographics, Clinical Presentation and Outcome of Metapneumovirus Infection in Adults: A Case Series Analysis at Scarborough General Hospital, United Kingdom. Cureus 2024; 16:e73292. [PMID: 39524165 PMCID: PMC11548111 DOI: 10.7759/cureus.73292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Human metapneumovirus (hMPV) was first discovered in 2001 in Netherlands as a leading cause of respiratory infections. hMPV infection is more common in kids, elderly (age ≥ 65) and immuno-compromised adults. Treatment is mainly symptomatic. METHODOLOGY We collected retrospective data from 31-8-2022 to 01-09-2023 from Microbiology for patients who tested positive for hMPV by polymerase chain reaction (PCR). Only patients aged 18 years and above and admitted to Scarborough General Hospital (SGH) were included in the study. RESULTS Total patients who tested positive were 38, out of which 73% (n=24) of patients were ≥ 65 years of age. 76.3% (n=29) of these adults were living in their own residence and 53% (n=20) patients never smoked. The most common presentation of these patients was shortness of breath and cough. Fifty-eight percent (n=22) patients had no radiological findings and 74% (n=28) had raised C-reactive protein (CRP). hMPV management was analyzed based on six modalities, we found out that 76% (n=29) patients received antibiotics, 47% (n=18) received nebulizers, 45% (n=17) required oxygen, 37% (n=14) were treated with steroids, 21% (n=8) patients were given inhalers and only one received antivirals. Majority of the patients were discharged and 13% (n=5) of patients died during their inpatient stay. All the deceased patients were aged 65 and above and 80% (n=4) of deceased (n=5) had pre-existing co-morbidities or other acute diagnoses at admission. CONCLUSION The patients who tested positive for hMPV were mostly aged ≥ 65 years, 76.3% (n=28) were from personal residence and there was no association of smoking history with hMPV infection. Patients who tested positive for hMPV would mostly present with flu-like symptoms with raised CRP and no radiological manifestation. All these patients were managed conservatively with antibiotics, nebulizers, oxygen, inhalers and antivirals (only one patient). Most of the patients were discharged home and five died during the inpatient stay, all of them were >65 of age and 80% had pre-existing co-morbidities and other acute diagnoses at the time of admission. We could not conclude or hypothesize anything due to small sample size. LIMITATIONS This data was collected over a one-year period only, and the sample size was very small. Another limitation was that we did not follow up patients after discharge.
Collapse
Affiliation(s)
- Amala Khan
- Emergency Medicine, York Hospital, York, GBR
| | - Vishesh Khanna
- Internal Medicine, Scarborough Hospital, Scarborough, GBR
| | | |
Collapse
|
13
|
Aminisani N, Wood T, Jelley L, Wong C, Sue Huang Q. The Burden of Human Metapneumovirus- and Influenza-Associated Hospitalizations in Adults in New Zealand, 2012-2015. J Infect Dis 2024; 230:933-943. [PMID: 38349230 DOI: 10.1093/infdis/jiae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/11/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Unlike influenza, information on the burden of human metapneumovirus (HMPV) as a cause of hospitalizations in adults with acute respiratory illness (ARI) is limited. METHODS We compared the population-based incidence, seasonality, and clinical characteristics of these 2 viral infections among adults aged ≥20 years with ARI hospitalizations in Auckland, New Zealand, during 2012-2015 through the Southern Hemisphere Influenza Vaccine Effectiveness Research and Surveillance (SHIVERS) project. RESULTS Of the 14 139 ARI hospitalizations, 276 of 6484 (4.3%) tested positive for HMPV and 1342 of 7027 (19.1%) tested positive for influenza. Crude rates of 9.8 (95% confidence interval [CI], 8.7-11.0) HMPV-associated and 47.6 (95% CI, 45.1-50.1) influenza-associated ARI hospitalizations were estimated for every 100 000 adult residents annually. The highest rates for both viruses were in those aged ≥80 years, of Māori or Pacific ethnicity, or living in low socioeconomic status (SES) areas. HMPV infections were more common than influenza in those with chronic medical conditions. CONCLUSIONS Although HMPV infections accounted for fewer hospitalizations than influenza in adults aged ≥20 years, HMPV-associated ARI hospitalization rates were higher than influenza in older adults, Māori and Pacific people, and those of low SES. This highlights a need for vaccine/antiviral development.
Collapse
Affiliation(s)
- Nayyereh Aminisani
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Timothy Wood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Lauren Jelley
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Conroy Wong
- Te Whatu Ora, Health New Zealand Counties Manukau, Auckland, New Zealand
| | - Q Sue Huang
- Institute of Environmental Science and Research, Wellington, New Zealand
| |
Collapse
|
14
|
Kuang L, Xu T, Wang C, Xie J, Zhang Y, Guo M, Liang Z, Zhu B. Changes in the epidemiological patterns of respiratory syncytial virus and human metapneumovirus infection among pediatric patients and their correlation with severe cases: a long-term retrospective study. Front Cell Infect Microbiol 2024; 14:1435294. [PMID: 39286815 PMCID: PMC11404324 DOI: 10.3389/fcimb.2024.1435294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives We aim to investigate the prevalence of respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) among pediatric patients with acute respiratory tract illness (ARTI) in southern China both pre- and post-COVID-19 pandemic, as well as identify associated risk factors for severe infections. Methods The study conducted a real-time PCR analysis on hospitalized children with ARTI from 2012 to 2023, specifically targeting RSV, hMPV, and other respiratory pathogens. Additionally, demographic data was collected during this analysis. Results The prevalence of RSV occurs triennially, and likewise, the temporal pattern of hMPV outbreaks mirrors that of RSV. The peak infection rates of RSV and hMPV occurred during and following the implementation of COVID-19 epidemic prevention and control measures. The incidence of RSV infection exhibited bimodal peaks in 2022, while hMPV demonstrated seasonal peaks during the spring, fall, and winter periods post-COVID-19 pandemic. After the COVID-19 outbreak, there has been an upward trend in the proportion of female patients and patients aged one year and older presenting with ARTI, RSV infections, and hMPV infections. Infant (OR = 4.767, 95%CI: [3.888-5.846], p < 0.0001), presence of co-infection (OR = 0.540, 95%CI: [0.404-0.722], p < 0.0001), and existence of comorbidities (OR = 1.582, 95%CI: [1.285-1.949], p < 0.0001) was the risk ratio for the severity of RSV infection. Children infected with hMPV under the age of 1 year (OR = 0.322, 95%CI: [0.180 - 0.575], p < 0.0001), as well as those with comorbidities (OR = 8.809, 95%CI: [4.493 - 17.272], p < 0.0001), have a higher risk of developing severe illness. Conclusion The changing epidemiological patterns have the potential to lead to widespread severe outbreaks among children, particularly those with underlying medical conditions who may experience more severe symptoms. Conducting surveillance for pneumoviridae viruses in children is an imperative measure to establish a robust foundation for future epidemic prevention and treatment strategies.
Collapse
Affiliation(s)
- Lu Kuang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiahui Xie
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingying Zhang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Min Guo
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhuofu Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Falsey A, Walsh E, House S, Vandendijck Y, Stevens M, Chan E, Ispas G. Assessment of Illness Severity in Adults Hospitalized With Acute Respiratory Tract Infection due to Influenza, Respiratory Syncytial Virus, or Human Metapneumovirus. Influenza Other Respir Viruses 2024; 18:e13275. [PMID: 38692663 PMCID: PMC11062776 DOI: 10.1111/irv.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Influenza, respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) are common respiratory viruses causing similar symptoms. Optimal tools to assess illness severity for these viruses have not been defined. Using the Hospitalized Acute Respiratory Tract Infection (HARTI) study data, we report symptom severity by clinician-rated clinical severity scores (CSS) in adults with influenza, RSV, or hMPV and correlations between CSS and patient-reported outcomes (PROs). METHODS HARTI was a global epidemiologic study in adults hospitalized with acute respiratory tract infections. Patients were assessed at enrollment within 24 h of admission with CSS and twice during hospitalization with CSS, Respiratory Infection Intensity and Impact Questionnaire™ (RiiQ™), and EQ-5D-5L. Data were summarized descriptively, stratified by pathogen and baseline and hospitalization characteristics. Domain (general, upper respiratory, and lower respiratory) and sign/symptom subscores are presented for CSS; sign/symptom subscores are presented for RiiQ™ results. RESULTS Data from 635 patients with influenza, 248 with RSV, and 107 with hMPV were included. At enrollment, total CSS and general and lower respiratory signs/symptoms (LRS) scores were higher for RSV and hMPV than influenza. Between-pathogen differences were greatest for LRS scores. Dyspnea, rales/rhonchi, wheezing, and shortness of breath scores trended higher for RSV and hMPV than influenza. RiiQ™ scores for cough, fatigue, and short of breath were strongly correlated with corresponding clinician-rated symptoms. CONCLUSIONS These findings support the use of PROs (e.g., the RiiQ™) correlating with clinician assessments to gauge patient well-being and aid patient management by accurately assessing respiratory illness severity due to RSV, hMPV, or influenza.
Collapse
Affiliation(s)
- Ann R. Falsey
- Department of MedicineUniversity of RochesterRochesterNew YorkUSA
| | - Edward E. Walsh
- Department of MedicineUniversity of RochesterRochesterNew YorkUSA
| | - Stacey L. House
- Department of Emergency Medicine, School of MedicineWashington UniversitySt. LouisMissouriUSA
| | | | | | | | - Gabriela Ispas
- Janssen Global Medical Affairs Infectious Diseases & VaccinesBeerseBelgium
| |
Collapse
|
16
|
Iyer M, Ravichandran N, Karuppusamy PA, Gnanarajan R, Yadav MK, Narayanasamy A, Vellingiri B. Molecular insights and promise of oncolytic virus based immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:419-492. [PMID: 38762277 DOI: 10.1016/bs.apcsb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Roselin Gnanarajan
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
17
|
Lee YZ, Han J, Zhang YN, Ward G, Gomes KB, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. A tale of two fusion proteins: understanding the metastability of human respiratory syncytial virus and metapneumovirus and implications for rational design of uncleaved prefusion-closed trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583986. [PMID: 38496645 PMCID: PMC10942449 DOI: 10.1101/2024.03.07.583986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we designed uncleaved prefusion-closed (UFC) trimers for the fusion (F) proteins of both viruses by examining mutations critical to F metastability. For RSV, we assessed four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identified key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we developed a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Tens of UFC constructs were characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F and one hMPV-F structures), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identified three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induced robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Keegan Braz Gomes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
18
|
Shehu MT, Pascual A, Kapinos P, El Khoury MY. Mortality and Morbidity of Human Metapneumovirus Infection in the Pre-COVID-19 Era: The Value of the Charlson Comorbidity Index on Outcome Prediction. Cureus 2024; 16:e52321. [PMID: 38357041 PMCID: PMC10866625 DOI: 10.7759/cureus.52321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Human metapneumovirus (HMPV) is an important cause of seasonal respiratory tract infections, mainly in children and immunocompromised adults. The use of the Charlson Comorbidity Index (CCI) to predict outcomes in hospitalized patients has been validated in several settings. OBJECTIVE This study aims to describe the clinical characteristics of adult patients with HMPV infection and evaluate the value of the CCI in predicting outcomes in patients with acute HMPV infections requiring hospitalization. METHOD This is a single-center case-series study of hospitalized patients with HMPV infection in 2017. RESULTS Twenty-two adult patients with a mean age of 65 years were reviewed. The mean CCI was 4.6±2.6. The overall mortality was 22%. An abnormal chest X-ray (CXR) was reported in 15 patients. CCI was not different between survivors and non-survivors. Non-survivors were more likely to have abnormal CXR and a higher fever at the time of diagnosis, required mechanical ventilation, or had other concomitant infections. CONCLUSION The average CCI was 4.5, which was not significantly different between survivors and non-survivors. The mortality rate was elevated by 22% and was likely associated with admission to the ICU as well as the presence of another concomitant infection.
Collapse
Affiliation(s)
- Merita T Shehu
- Internal Medicine, Westchester Medical Center, New York Medical College, Valhalla, USA
| | - Arturo Pascual
- Infectious Disease, Westchester Medical Center, New York Medical College, Valhalla, USA
| | - Piotr Kapinos
- Infectious Disease, Westchester Medical Center, New York Medical College, Valhalla, USA
| | - Marc Y El Khoury
- Infectious Disease, Westchester Medical Center, New York Medical College, Valhalla, USA
| |
Collapse
|
19
|
Ma F, Chen A, Yao L, Gao H, Zhang Q, Hou W, Zheng L. Immunogenicity and protective efficacy of human metapneumovirus virus-like particles produced by a recombinant baculovirus in mice. Virus Res 2023; 336:199215. [PMID: 37657510 PMCID: PMC10491852 DOI: 10.1016/j.virusres.2023.199215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Human metapneumovirus (HMPV) causes respiratory tract infections among infant, elderly, and immunocompromised patients, with significant mortality. Currently no licensed vaccines or therapeutic agents of HMPV exist. METHODS HMPV virus-like particle (VLP) was constructed by co-expressing fusion protein of HMPV and matrix 1 protein of influenza virus using the baculovirus expression. Mice were immunized with VLP with or without aluminum hydroxide (alum) adjuvant by intramuscular route respectively. Sera were determined for titers of IgG and neutralizing antibody. Splenic lymphocytes were determined by IFN-γ and IL-4 ELISPOT. Mice were challenged with HMPV, and protective efficacy was evaluated. RESULTS We generated HMPV VLP in baculovirus expression system. After three times immunization, IgG antibody titers induced by VLP formulated with or without alum adjuvant group were 273,066 ± 100,331 and 136,533 ± 47,269 respectively, there was no difference (p ˃ 0.05); the neutralizing antibody titers vaccinated with VLP plus with alum adjuvant (266 ± 92) were higher than those of the VLP alone group (106 ± 37). For IFN-γ, mice vaccinated with VLP with or without alum adjuvant are 151 ± 36.4 and 77.0 ± 17.1SFC/106 respectively, there was difference (p = 0.03); For IL-4, they are 261.3 ± 38.7 versus 125.67 ± 29.78SFC/106 respectively, the difference was significant (p = 0.009). After challenge, in pathological analysis, the overall lesion scores in the VLP plus with and without alum adjuvant were 3.25 and 5.6 respectively, those of control group is 8. For immunohistochemical analyses, the average optical density of the lungs in the VLP immunized group containing adjuvant (9.07 ± 1.74) was lower than that in the VLP group without adjuvant (12.83 ± 2.31, p = 0.14). CONCLUSIONS This is the first study to demonstrate that HMPV VLP was successfully prepared in the baculovirus expression system. HMPV VLP could induce specific humoral and cellular immune responses as well as protective efficacy, and aluminum hydroxide may be an effective adjuvant in mice.
Collapse
Affiliation(s)
- Fenlian Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing 100052, China
| | - Aijun Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing 100052, China
| | - Lihong Yao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing 100052, China
| | - Hanchun Gao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing 100052, China
| | - Qian Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing 100052, China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing 100052, China
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing 100052, China.
| |
Collapse
|
20
|
Parks OB, Eddens T, Zhang Y, Oury TD, McElroy A, Williams JV. Human Metapneumovirus Reinfection in Aged Mice Recapitulates Increased Disease Severity in Elderly Humans Infected with Human Metapneumovirus. Immunohorizons 2023; 7:398-411. [PMID: 37261717 PMCID: PMC10321313 DOI: 10.4049/immunohorizons.2300026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infection in adults >65 y. Nearly all children worldwide are seropositive for HMPV by age 5 y, but reinfections occur throughout life, and there is no licensed vaccine. Recurrent HMPV infection is mild and self-resolving in immunocompetent individuals. However, elderly individuals develop severe respiratory disease on HMPV reinfection that leads to a high risk for morbidity and mortality. In this study, we developed a mouse model to mirror HMPV reinfection in elderly humans. C57BL/6J mice were infected with HMPV at 6-7 wk old, aged in-house, and rechallenged with high-dose virus at 70 wk. Aged rechallenged mice had profound weight loss similar to primary infected mice, increased lung histopathology, and accumulated cytotoxic CD8+CD44+CD62L-CD69+CD103+ memory cells despite having undetectable lung virus titer. When aged mice 14 mo postinfection (p.i.) or young mice 5 wk p.i. were restimulated with HMPV cognate Ag to mimic epitope vaccination, aged mice had an impaired CD8+ memory response. Convalescent serum transfer from young naive or 5 wk p.i. mice into aged mice on day of infection did not protect. Aged mice vaccinated with UV-inactivated HMPV also exhibited diminished protection and poor CD8+ memory response compared with young mice. These results suggest aged individuals with HMPV reinfection have a dysregulated CD8+ memory T cell response that fails to protect and exacerbates disease. Moreover, aged mice exhibited a poor memory response to either epitope peptide or UV-inactivated vaccination, suggesting that aged CD8+ T cell dysfunction presents a barrier to effective vaccination strategies.
Collapse
Affiliation(s)
- Olivia B. Parks
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Taylor Eddens
- Department of Pediatrics, Division of Allergy/Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yu Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anita McElroy
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John V. Williams
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
21
|
Characterization of prefusion-F-specific antibodies elicited by natural infection with human metapneumovirus. Cell Rep 2022; 40:111399. [PMID: 36130517 DOI: 10.1016/j.celrep.2022.111399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
Human metapneumovirus (hMPV) is a major cause of acute respiratory infections in infants and older adults, for which no vaccines or therapeutics are available. The viral fusion (F) glycoprotein is required for entry and is the primary target of neutralizing antibodies; however, little is known about the humoral immune response generated from natural infection. Here, using prefusion-stabilized F proteins to interrogate memory B cells from two older adults, we obtain over 700 paired non-IgM antibody sequences representing 563 clonotypes, indicative of a highly polyclonal response. Characterization of 136 monoclonal antibodies reveals broad recognition of the protein surface, with potently neutralizing antibodies targeting each antigenic site. Cryo-EM studies further reveal two non-canonical sites and the molecular basis for recognition of the apex of hMPV F by two prefusion-specific neutralizing antibodies. Collectively, these results provide insight into the humoral response to hMPV infection in older adults and will help guide vaccine development.
Collapse
|
22
|
Zhou JJ, Ding WC, Liu YC, Gao YL, Xu L, Geng RL, Ye Y, Chai YF. Diagnostic Value of Metagenomic Next-Generation Sequencing for Pulmonary Infection in Intensive Care Unit and Non-Intensive Care Unit Patients. Front Cell Infect Microbiol 2022; 12:929856. [PMID: 36046746 PMCID: PMC9423675 DOI: 10.3389/fcimb.2022.929856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To evaluate the diagnostic performance of metagenomic next-generation sequencing (mNGS) and culture in pathogen detection among intensive care unit (ICU) and non-ICU patients with suspected pulmonary infection. Methods In this prospective study, sputum samples were collected from patients with suspected pulmonary infection for 2 consecutive days and then subjected to DNA or RNA sequencing by mNGS or culture; 62 ICU patients and 60 non-ICU patients were admitted. In the end, comparisons were made on the pathogen species identified by mNGS and culture, the overall performance of these two methods in pathogen detection, and the most common pathogens detected by mNGS between the ICU and non-ICU groups. Results In DNA and RNA sequencing, the positive rate of pathogen detection reached 96.69% (117/121) and 96.43% (108/112), respectively. In culture tests, the positive rate of the pathogen was 39.34% (48/122), much lower than that of DNA and RNA sequencing. In general, the positive rate of pathogen detection by sputum mNGS was significantly higher than that of sputum culture in the total and non-ICU groups (p < 0.001) but did not show a significant difference when compared to the result of sputum culture in the ICU group (p = 0.08). Haemophilus spp., Candida albicans, Enterococcus spp., and viruses from the mNGS results were excluded before comparing the overall performance of these two methods in pathogen detection. Specifically, among the 10 most common bacteria implied from the mNGS results, significant differences were observed in the number of cases of Haemophilus parainfluenzae, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus, and Enterococcus faecalis between the ICU and non-ICU groups (p < 0.05). Conclusions This study demonstrated the superiority of mNGS over culture in detecting all kinds of pathogen species in sputum samples. These results indicate that mNGS may serve as a valuable tool to identify pathogens, especially for ICU patients who are more susceptible to mixed infections.
Collapse
Affiliation(s)
- Jing-Jiang Zhou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei-Chao Ding
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Xu
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Run-Lu Geng
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying Ye
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Ying Ye, ; Yan-Fen Chai,
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Ying Ye, ; Yan-Fen Chai,
| |
Collapse
|
23
|
Menchén DA, Vázquez JB, Allende JMB, García GH. [Viral pneumonia. COVID-19 pneumonia]. Medicine (Baltimore) 2022; 13:3224-3234. [PMID: 35582693 PMCID: PMC9097969 DOI: 10.1016/j.med.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Viruses are becoming more and more important as etiological agents of pneumonia, mainly due to improvements in diagnostic techniques. At present, they account for approximately one-third of community-acquired pneumonia cases. They tend to occur in children and elderly patients, causing anything from mild cases to severe cases which require intubation and intensive care. The main causative agents include rhinovirus, influenza virus A or B, metapneumovirus, respiratory syncytial virus, parainfluenza virus, coronavirus, or adenovirus. Infection produced by SARS-CoV-2, the cause of the current COVID-19 pandemic, which has had devastating consequences, is proof of the vital importance of viral pneumonia. This is the main subject of this update. Drawing on the abundant information available, which has been continuously evolving since the beginning of the pandemic, this section will review the main characteristics of the virus, its pathophysiology, and its clinical manifestations as well as the main diagnostic and treatment methods.
Collapse
Affiliation(s)
- D Alonso Menchén
- Servicio de Medicina Interna. Hospital Universitario Príncipe de Asturias. Universidad de Alcalá. Alcalá de Henares. Madrid. España
| | - J Balsa Vázquez
- Servicio de Medicina Interna. Hospital Universitario Príncipe de Asturias. Universidad de Alcalá. Alcalá de Henares. Madrid. España
| | - J M Barbero Allende
- Servicio de Medicina Interna. Hospital Universitario Príncipe de Asturias. Universidad de Alcalá. Alcalá de Henares. Madrid. España
| | - G Hernández García
- Servicio de Medicina Interna. Hospital Universitario Príncipe de Asturias. Universidad de Alcalá. Alcalá de Henares. Madrid. España
| |
Collapse
|
24
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
25
|
Hindupur A, Menon T, Dhandapani P. Molecular investigation of human metapneumovirus in children with acute respiratory infections in Chennai, South India, from 2016-2018. Braz J Microbiol 2022; 53:655-661. [PMID: 35118597 PMCID: PMC9151977 DOI: 10.1007/s42770-022-00689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Human metapneumovirus (hMPV) has emerged as a frequent cause of acute respiratory infections (ARI) among young children. The prevalence and genetic diversity of hMPV circulating in Chennai, Southern India, has not been studied yet. Hence, this study was aimed to investigate the prevalence, co-infection with other respiratory viruses like HRSV A and B, influenza A and B, hRV and HPIV 1-4 viruses, socio-demographic associations, and genotypes of hMPV among children in Chennai. A total of 350 nasal swab specimens were collected from children with ARI during April 2016 to August 2018 and tested for hMPV by real time PCR method. In this study, hMPV was detected in 4% (14/350) of the samples. One hMPV positive sample was found to be co-infected with influenza B virus. The mean and median ages of the children with hMPV infection were 61.5 months (5.1 years) and 83 months (6.9 years), respectively. Phylogenetic analysis of the partial F gene revealed the presence of A2c subcluster among the study strains as well as with B1 and B2 lineages. The prevalence data obtained in this study is important in evaluating the role of hMPV in childhood ARI and emphasizes the importance of routine viral diagnosis in hospitals. To the best of our knowledge, this is the first study to report the prevalence, seasonality, and genetic diversity of hMPV in Chennai as well as the first study to report A2c subcluster of hMPV among children in India.
Collapse
Affiliation(s)
- Anusha Hindupur
- grid.413015.20000 0004 0505 215XDepartment of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu India
| | - Thangam Menon
- Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu India
| | - Prabu Dhandapani
- grid.413015.20000 0004 0505 215XDepartment of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu India
| |
Collapse
|
26
|
Yang L, Gu X, Yu J, Ge S, Fan X. Oncolytic Virotherapy: From Bench to Bedside. Front Cell Dev Biol 2021; 9:790150. [PMID: 34901031 PMCID: PMC8662562 DOI: 10.3389/fcell.2021.790150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023] Open
Abstract
Oncolytic viruses are naturally occurring or genetically engineered viruses that can replicate preferentially in tumor cells and inhibit tumor growth. These viruses have been considered an effective anticancer strategy in recent years. They mainly function by direct oncolysis, inducing an anticancer immune response and expressing exogenous effector genes. Their multifunctional characteristics indicate good application prospects as cancer therapeutics, especially in combination with other therapies, such as radiotherapy, chemotherapy and immunotherapy. Therefore, it is necessary to comprehensively understand the utility of oncolytic viruses in cancer therapeutics. Here, we review the characteristics, antitumor mechanisms, clinical applications, deficiencies and associated solutions, and future prospects of oncolytic viruses.
Collapse
Affiliation(s)
- Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
27
|
Sumitomo K, Morizumi S, Takahashi K, Kimura M, Koda H, Toyoda Y, Shinohara T. Human metapneumovirus-associated community-acquired pneumonia in adults during the first wave of COVID-19. J Rural Med 2021; 16:263-269. [PMID: 34707737 PMCID: PMC8527616 DOI: 10.2185/jrm.2021-035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: The clinical course of human metapneumovirus (hMPV) infection is
similar to that of coronavirus 2019 disease (COVID-19). However, community-acquired hMPV
infections in adults have not yet been sufficiently investigated. We examined the
detection status of hMPV antigens and the clinical features of positive patients during
the first wave of COVID-19, which coincided with the epidemic season of hMPV infection in
Japan. Methods: In this cross-sectional, observational, and single-center study, we
recruited consecutive individuals who visited the Japan Agricultural Cooperatives Kochi
Hospital due to fever, respiratory symptoms, or close contact with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infected persons during the period from
January to May 2020. Results: The positive rate of immunochromatography for hMPV antigens from
nasopharyngeal swabs was 9.5% (4/42), and four positive cases were community-acquired
pneumonia (CAP) (5.3% of all CAP). The positive rate of hMPV antigens in the CAP group
(30.8%, 4/13) was higher than that in the non-pneumonia group (0.0%, 0/19) (p < 0.05).
The average age of the four adult patients with CAP was 69.8 years (range 35–93). Mean
white blood cell counts and C-reactive protein blood levels were 6,250 cells/μL
(3,500–12,180) and 4.30 mg/dL (4.05–7.04), respectively. Chest computed tomography images
were diverse and two patients showed dense consolidation. No multi-organ disorder was
noted during the clinical course in any of the four cases, and their prognoses were
good. Conclusion: hMPV infection may be considered in the differential diagnosis
of COVID-19 and CAP in Japan under the preventive measures for SARS-CoV-2 infection, at
least during the epidemic season of hMPV infection.
Collapse
Affiliation(s)
- Kenya Sumitomo
- Division of Internal Medicine, Japan Agricultural Cooperatives Kochi Hospital, Japan
| | - Shun Morizumi
- Division of Internal Medicine, Japan Agricultural Cooperatives Kochi Hospital, Japan.,Department of Community Medicine for Respirology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| | - Kiyohide Takahashi
- Division of Internal Medicine, Japan Agricultural Cooperatives Kochi Hospital, Japan
| | - Masaaki Kimura
- Department of Pharmacy, Japan Agricultural Cooperatives Kochi Hospital, Japan
| | - Hirofumi Koda
- Division of Clinical Laboratory, Japan Agricultural Cooperatives Kochi Hospital, Japan
| | - Yuko Toyoda
- Department of Respiratory Medicine, Japanese Red Cross Kochi Hospital, Japan
| | - Tsutomu Shinohara
- Division of Internal Medicine, Japan Agricultural Cooperatives Kochi Hospital, Japan.,Department of Community Medicine for Respirology, Graduate School of Biomedical Sciences, Tokushima University, Japan
| |
Collapse
|
28
|
Molecular typing and epidemiologic profiles of human metapneumovirus infection among children with severe acute respiratory infection in Huzhou, China. Mol Biol Rep 2021; 48:7697-7702. [PMID: 34665397 PMCID: PMC8523348 DOI: 10.1007/s11033-021-06776-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/22/2021] [Indexed: 11/06/2022]
Abstract
Background Human metapneumovirus (hMPV) is one of the important pathogens in infant respiratory tract infection. However, the molecular epidemiology of hMPV among children < 14 years of age hospitalized with severe acute respiratory infection (SARI) is unclear. We investigated the hMPV infection status and genotypes of children hospitalized with SARI from January 2016 to December 2020 in Huzhou, China. Methods A nasopharyngeal flocked swab, nasal wash, or nasopharyngeal swab/or opharyngeal swab combination sample was collected from children with SARI in Huzhou from January 2016 to December 2020. Quantitative reverse transcription-polymerase chain reaction was performed to detect hMPV RNA. The hMPV F gene was amplified and sequenced, followed by analysis using MEGA software (ver. 7.0). Epidemiological data were analyzed using Microsoft Excel 2010 and SPSS (ver. 22.0) software. Results A total of 1133 children with SARI were recruited from 2016 to 2020. Among them, 56 (4.94%) were positive for hMPV-RNA. Children < 5 years of age accounted for 85.71% of the positive cases. The hMPV incidence was high in spring and winter, especially in December and January to March. Phylogenetic analysis of the F-gene sequences of 28 hMPV strains showed that the A1, B1, and B2 genotypes were prevalent in Huzhou, and the dominant hMPV genotype varied according to surveillance year. Conclusions HMPV is an important respiratory pathogen in children in Huzhou, with a high incidence in winter and spring in children < 5 years of age. In this study, genotypes A1, B1, and B2 were the most prevalent.
Collapse
|
29
|
Stewart-Jones GBE, Gorman J, Ou L, Zhang B, Joyce MG, Yang L, Cheng C, Chuang GY, Foulds KE, Kong WP, Olia AS, Sastry M, Shen CH, Todd JP, Tsybovsky Y, Verardi R, Yang Y, Collins PL, Corti D, Lanzavecchia A, Scorpio DG, Mascola JR, Buchholz UJ, Kwong PD. Interprotomer disulfide-stabilized variants of the human metapneumovirus fusion glycoprotein induce high titer-neutralizing responses. Proc Natl Acad Sci U S A 2021; 118:e2106196118. [PMID: 34551978 PMCID: PMC8488613 DOI: 10.1073/pnas.2106196118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory disease worldwide, particularly among children and the elderly. Although there is no licensed HMPV vaccine, promising candidates have been identified for related pneumoviruses based on the structure-based stabilization of the fusion (F) glycoprotein trimer, with prefusion-stabilized F glycoprotein trimers eliciting significantly higher neutralizing responses than their postfusion F counterparts. However, immunization with HMPV F trimers in either prefusion or postfusion conformations has been reported to elicit equivalent neutralization responses. Here we investigate the impact of stabilizing disulfides, especially interprotomer disulfides (IP-DSs) linking protomers of the F trimer, on the elicitation of HMPV-neutralizing responses. We designed F trimer disulfides, screened for their expression, and used electron microscopy (EM) to confirm their formation, including that of an unexpected postfusion variant. In mice, IP-DS-stabilized prefusion and postfusion HMPV F elicited significantly higher neutralizing responses than non-IP-DS-stabilized HMPV Fs. In macaques, the impact of IP-DS stabilization was more measured, although IP-DS-stabilized variants of either prefusion or postfusion HMPV F induced neutralizing responses many times the average titers observed in a healthy human cohort. Serological and absorption-based analyses of macaque responses revealed elicited HMPV-neutralizing responses to be absorbed differently by IP-DS-containing and by non-IP-DS-containing postfusion Fs, suggesting IP-DS stabilization to alter not only the immunogenicity of select epitopes but their antigenicity as well. We speculate the observed increase in immunogenicity by IP-DS trimers to be related to reduced interprotomer flexibility within the HMPV F trimer.
Collapse
Affiliation(s)
| | - Jason Gorman
- Vaccine Research Center, NIH, Bethesda, MD 20892
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Li Ou
- Vaccine Research Center, NIH, Bethesda, MD 20892
| | | | - M Gordon Joyce
- Vaccine Research Center, NIH, Bethesda, MD 20892
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910
| | - Lijuan Yang
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Cheng Cheng
- Vaccine Research Center, NIH, Bethesda, MD 20892
| | | | | | | | - Adam S Olia
- Vaccine Research Center, NIH, Bethesda, MD 20892
| | | | | | | | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | | | | | - Peter L Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Humabs BioMed SA, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892;
| | | |
Collapse
|
30
|
Rumpold H. Lethal human metavirus pneumonia in a patient with chronic lymphocytic leukemia. MEMO 2021; 14:284-286. [PMID: 34422121 PMCID: PMC8371298 DOI: 10.1007/s12254-021-00734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Human metapneumovirus (HMPV) causes a flu-like disease in humans. Most infections occur in early childhood, but reinfections during life are common. The clinical course of these infections are usually mild and do not require hospitalization. However, this is not the case for older and/or comorbid patients, especially if lymphoma is a concurrent disease. Here, we report on a case of an 81-year-old man, who suffered from chronic lymphocytic leukemia. During the first coronavirus disease (COVID) wave, he was admitted to the emergency department with respiratory symptoms. Initially, he was suspected as having SARS-CoV‑2 infection, but a broad diagnostic approach revealed a HMPV infection. The patient showed remarkable, bilateral pulmonary infiltrates and worsened within a few days. Consequently, he had to be admitted to the intensive care unit, where he was mechanically ventilated. Clinically, the patient worsened further and died on day 5 after admission. Severe HMPV infections are rare. However, patients suffering from hematological diseases are at high risk, which is exemplified in this case report.
Collapse
Affiliation(s)
- Holger Rumpold
- Gastrointestinal Cancer Center, Ordensklinikum Linz, Seilerstätte 4, 4010 Linz, Austria
| |
Collapse
|
31
|
Korsun NS, Angelova SG, Trifonova IT, Voleva SE, Grigorova IG, Tzotcheva IS, Mileva SD, Perenovska PI. The Prevalence and Genetic Characterization of Human Metapneumovirus in Bulgaria, 2016-2019. Intervirology 2021; 64:194-202. [PMID: 34304230 DOI: 10.1159/000516821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION We investigated the prevalence of human metapneumovirus (hMPV) among patients with acute respiratory infections in Bulgaria, and performed genetic characterization of the F gene of these strains. METHODS Nasopharyngeal swabs collected from patients of a range of ages were tested by using real-time PCR for 12 respiratory viruses. The F gene was sequenced, and phylogenetic and amino acid analyses of the F gene/protein were performed. RESULTS A total of 1,842 patients were examined during a 3-year period; 1,229 patients (66.7%) were positive for at least one respiratory virus. hMPV was identified in 83 (4.5%) patient samples. Eleven (13%) of hMPV-positive patients were coinfected with another respiratory virus. The hMPV incidence rate in the 2016/2017, 2017/2018, and 2018/2019 winter seasons was 5.4, 5.4, and 3.1%, respectively. hMPV was mainly detected in specimens collected between January and May (89.2% of cases). The incidence of hMPV infection was highest (5.1%) among the youngest age-group (0-4 years), where hMPV was a causative agent in 8.1 and 4.8% of bronchiolitis and pneumonia cases, respectively. Among the patients aged ≥5 years, hMPV was detected in 2.2 and 3.2% of cases of pneumonia and central nervous system infections, respectively. Phylogenetic analysis of the F gene showed that the sequenced hMPV strains belonged to the A2b, B1, and B2 genotypes. Numerous amino acid substitutions were identified compared with the NL00/1 prototype strain. CONCLUSION This study revealed the significant role of hMPV as a causative agent of serious respiratory illnesses in early childhood, and also demonstrated year-to-year changes in hMPV prevalence and genetic diversity in circulating strains.
Collapse
Affiliation(s)
- Neli S Korsun
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Svetla G Angelova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivelina T Trifonova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Silvia E Voleva
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iliana G Grigorova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iren S Tzotcheva
- Pediatric Clinic, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Sirma D Mileva
- Pediatric Clinic, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Penka I Perenovska
- Pediatric Clinic, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| |
Collapse
|
32
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
33
|
RSV and HMPV Infections in 3D Tissue Cultures: Mechanisms Involved in Virus-Host and Virus-Virus Interactions. Viruses 2021; 13:v13010139. [PMID: 33478119 PMCID: PMC7835908 DOI: 10.3390/v13010139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Respiratory viral infections constitute a global public health concern. Among prevalent respiratory viruses, two pneumoviruses can be life-threatening in high-risk populations. In young children, they constitute the first cause of hospitalization due to severe lower respiratory tract diseases. A better understanding of their pathogenesis is still needed as there are no approved efficient anti-viral nor vaccine against pneumoviruses. We studied Respiratory Syncytial virus (RSV) and human Metapneumovirus (HMPV) in single and dual infections in three-dimensional cultures, a highly relevant model to study viral respiratory infections of the airway epithelium. Our investigation showed that HMPV is less pathogenic than RSV in this model. Compared to RSV, HMPV replicated less efficiently, induced a lower immune response, did not block cilia beating, and was more sensitive to IFNs. In dual infections, RSV-infected epithelia were less permissive to HMPV. By neutralizing IFNs in co-infection assays, we partially prevented HMPV inhibition by RSV and significantly increased the number of co-infected cells in the tissue. This suggests that interference in dual infection would be at least partly mediated by the host immune response. In summary, this work provides new insight regarding virus-host and virus-virus interactions of pneumoviruses in the airway epithelium. This could be helpful for the proper handling of at-risk patients.
Collapse
|
34
|
Watson A, Wilkinson TMA. Respiratory viral infections in the elderly. Ther Adv Respir Dis 2021; 15:1753466621995050. [PMID: 33749408 PMCID: PMC7989115 DOI: 10.1177/1753466621995050] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
With the global over 60-year-old population predicted to more than double over the next 35 years, caring for this aging population has become a major global healthcare challenge. In 2016 there were over 1 million deaths in >70 year olds due to lower respiratory tract infections; 13-31% of these have been reported to be caused by viruses. Since then, there has been a global COVID-19 pandemic, which has caused over 2.3 million deaths so far; increased age has been shown to be the biggest risk factor for morbidity and mortality. Thus, the burden of respiratory viral infections in the elderly is becoming an increasing unmet clinical need. Particular challenges are faced due to the interplay of a variety of factors including complex multimorbidities, decreased physiological reserve and an aging immune system. Moreover, their atypical presentation of symptoms may lead to delayed necessary care, prescription of additional drugs and prolonged hospital stay. This leads to morbidity and mortality and further nosocomial spread. Clinicians currently have limited access to sensitive detection methods. Furthermore, a lack of effective antiviral treatments means there is little incentive to diagnose and record specific non-COVID-19 viral infections. To meet this unmet clinical need, it is first essential to fully understand the burden of respiratory viruses in the elderly. Doing this through prospective screening research studies for all respiratory viruses will help guide preventative policies and clinical trials for emerging therapeutics. The implementation of multiplex point-of-care diagnostics as a mainstay in all healthcare settings will be essential to understand the burden of respiratory viruses, diagnose patients and monitor outbreaks. The further development of novel targeted vaccinations as well as anti-viral therapeutics and new ways to augment the aging immune system is now also essential.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Alastair Watson
- Faculty of Medicine, Clinical & Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Tom M. A. Wilkinson
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton University, Mailpoint 810, Level F, South Block, Southampton General Hospital, Southampton, Hampshire, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
35
|
Rodriguez PE, Frutos MC, Adamo MP, Cuffini C, Cámara JA, Paglini MG, Moreno L, Cámara A. Human Metapneumovirus: Epidemiology and genotype diversity in children and adult patients with respiratory infection in Córdoba, Argentina. PLoS One 2020; 15:e0244093. [PMID: 33370354 PMCID: PMC7769284 DOI: 10.1371/journal.pone.0244093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Human Metapneumovirus (hMPV) is responsible for acute respiratory infections in humans, with clinical and epidemiological relevance in pediatric, elderly, and immunocompromised populations. These features are largely unknown in Córdoba, Argentina and in adults in general. Hence, our goal was to broadly characterize hMPV infection in patients of all ages hospitalized with acute respiratory infections in Córdoba, Argentina, including epidemiology, clinical features and genetic diversity. Nasopharyngeal secretions were obtained from 795 patients during 2011-2013, 621 patients were 0-25 years old and 174 were 26-85 years old. HMPV was assayed by RT-PCR and other respiratory viruses by indirect immunofluorescence. Local strains were identified by sequence analysis. Human Metapneumovirus was detected in 20.3% (161/795) patients, 13.1% as single infections and 7.2% in co-infections, more frequently with Respiratory Syncytial Virus. HMPV circulated during late winter and spring in all age patients, but mainly in children under 4 years old in 71.4% (115/161) and adults between 26 and 59 years old in 12.4% (20/161). The most prevalent diagnosis was mild acute respiratory infection in 59.6% (96/161) and bronchiolitis in 9.3% (15/161). Local strains were clustered within A2 subtype; they presented 73-100% identities among them, showing a high degree of homology compared to isolations from neighboring countries. We demonstrate that hMPV circulated among all age patients with respiratory infection during 2011-2013 in Córdoba, contributing to the understanding of this virus, its diagnosis and patient handling in local health-care centers.
Collapse
Affiliation(s)
- Pamela Elizabeth Rodriguez
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
- * E-mail:
| | - María Celia Frutos
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - Cecilia Cuffini
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - Jorge Augusto Cámara
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - María Gabriela Paglini
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, INIMEC- CONICET, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Hospital de Niños “Santísima Trinidad de Córdoba”, Córdoba Capital, Córdoba, Argentina
| | - Alicia Cámara
- Instituto de Virología “Dr. J. M. Vanella”, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba Capital, Córdoba, Argentina
| |
Collapse
|
36
|
Nao N, Saikusa M, Sato K, Sekizuka T, Usuku S, Tanaka N, Nishimura H, Takeda M. Recent Molecular Evolution of Human Metapneumovirus (HMPV): Subdivision of HMPV A2b Strains. Microorganisms 2020; 8:microorganisms8091280. [PMID: 32839394 PMCID: PMC7564156 DOI: 10.3390/microorganisms8091280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 01/15/2023] Open
Abstract
Human metapneumovirus (HMPV) is a major etiological agent of acute respiratory infections in humans. HMPV has been circulating worldwide for more than six decades and is currently divided into five agreed-upon subtypes: A1, A2a, A2b, B1, and B2. Recently, the novel HMPV subtypes A2c, A2b1, and A2b2 have been proposed. However, the phylogenetic and evolutionary relationships between these recently proposed HMPV subtypes are unclear. Here, we report a genome-wide phylogenetic and evolutionary analysis of 161 HMPV strains, including unique HMPV subtype A2b strains with a 180- or 111-nucleotide duplication in the G gene (nt-dup). Our data demonstrate that the HMPV A2b subtype contains two distinct subtypes, A2b1 and A2b2, and that the HMPV subtypes A2c and A2b2 may be different names for the same subtype. HMPV A2b strains with a nt-dup also belong to subtype A2b2. Molecular evolutionary analyses indicate that subtypes A2b1 and A2b2 diverged from subtype A2b around a decade after the subtype A2 was divided into the subtypes A2a and A2b. These data support the A2b1 and A2b2 subtypes proposed in 2012 and are essential for the unified classification of HMPV subtype A2 strains, which is important for future HMPV surveillance and epidemiological studies.
Collapse
Affiliation(s)
- Naganori Nao
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
- Correspondence: ; Tel.: +81-11-706-9492
| | - Miwako Saikusa
- Yokohama City Institute of Public Health, Yokohama 236-0051, Japan; (M.S.); (S.U.); (N.T.)
| | - Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan; (K.S.); (H.N.)
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku 162-8640, Japan;
| | - Shuzo Usuku
- Yokohama City Institute of Public Health, Yokohama 236-0051, Japan; (M.S.); (S.U.); (N.T.)
| | - Nobuko Tanaka
- Yokohama City Institute of Public Health, Yokohama 236-0051, Japan; (M.S.); (S.U.); (N.T.)
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan; (K.S.); (H.N.)
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
| |
Collapse
|
37
|
Rogers MC, Miranda-Katz M, Zhang Y, Oury TD, Uccellini MB, García-Sastre A, Williams JV. STAT2 Limits Host Species Specificity of Human Metapneumovirus. Viruses 2020; 12:E724. [PMID: 32635475 PMCID: PMC7412095 DOI: 10.3390/v12070724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
The host tropism of viral infection is determined by a variety of factors, from cell surface receptors to innate immune signaling. Many viruses encode proteins that interfere with host innate immune recognition in order to promote infection. STAT2 is divergent between species and therefore has a role in species restriction of some viruses. To understand the role of STAT2 in human metapneumovirus (HMPV) infection of human and murine tissues, we first infected STAT2-/- mice and found that HMPV could be serially passaged in STAT2-/-, but not WT, mice. We then used in vitro methods to show that HMPV inhibits expression of both STAT1 and STAT2 in human and primate cells, but not in mouse cells. Transfection of the murine form of STAT2 into STAT2-deficient human cells conferred resistance to STAT2 inhibition. Finally, we sought to understand the in vivo role of STAT2 by infecting hSTAT2 knock-in mice with HMPV, and found that mice had increased weight loss, inhibition of type I interferon signaling, and a Th2-polarized cytokine profile compared to WT mice. These results indicate that STAT2 is a target of HMPV in human infection, while the murine version of STAT2 restricts tropism of HMPV for murine cells and tissue.
Collapse
Affiliation(s)
- Meredith C. Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Melissa B. Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.U.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.U.); (A.G.-S.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (M.C.R.); (M.M.-K.); (Y.Z.)
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
38
|
Human Metapneumovirus Establishes Persistent Infection in Lung Microvascular Endothelial Cells and Primes a Th2-Skewed Immune Response. Microorganisms 2020; 8:microorganisms8060824. [PMID: 32486193 PMCID: PMC7357125 DOI: 10.3390/microorganisms8060824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Human Metapneumovirus (HMPV) is a major cause of lower respiratory tract infections. HMPV infection has been hypothesized to alter dendritic cell (DC) immune response; however, many questions regarding HMPV pathogenesis within the infected lung remain unanswered. Here, we show that HMPV productively infects human lung microvascular endothelial cells (L-HMVECs). The release of infectious virus occurs for up to more than 30 days of culture without producing overt cytopathic effects and medium derived from persistently HMPV-infected L-HMVECs (secretome) induced monocyte-derived DCs to prime naïve CD4 T-cells toward a Th2 phenotype. Moreover, we demonstrated that infected secretomes trigger DCs to up-regulate OX40L expression and OX40L neutralization abolished the pro-Th2 effect that is induced by HMPV-secretome. We clarified secretome from HMPV by size exclusion and ultracentrifugation with the aim to characterize the role of viral particles in the observed pro-Th2 effect. In both cases, the percentage of IL-4-producing cells and expression of OX40L returned at basal levels. Finally, we showed that HMPV, per se, could reproduce the ability of secretome to prime pro-Th2 DCs. These results suggest that HMPV, persistently released by L-HMVECs, might take part in the development of a skewed, pro-Th2 lung microenvironment.
Collapse
|
39
|
Ballegeer M, Saelens X. Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:v12050542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
40
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542&set/a 882111696+808152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
41
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020. [DOI: 10.3390/v12050542
expr 836379838 + 819716165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
42
|
Jeong S, Park MJ, Song W, Kim HS. Advances in laboratory assays for detecting human metapneumovirus. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:608. [PMID: 32566634 PMCID: PMC7290561 DOI: 10.21037/atm.2019.12.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human metapneumovirus (HMPV) is one of the major causes of acute respiratory tract infection (ARI) and shows high morbidity and mortality, particularly in children and immunocompromised patients. Various methods for detecting HMPV have been developed and applied in clinical laboratories. When reviewing the literature, we found that polymerase chain reaction (PCR)-based assays have been most frequently and consistently used to detect HMPV. The most commonly used method was multiplex reverse transcriptase-PCR (RT-PCR; 57.4%), followed by real-time RT-PCR (38.3%). Multiplex RT-PCR became the more popular method in 2011-2019 (69.7%), in contrast to 2001-2009 (28.6%). The advent of multiplex PCR in detecting broader viral pathogens in one run and coinfected viruses influenced the change in user preference. Further, newly developed microarray technologies and ionization mass spectrometry were introduced in 2011-2019. Viral culture (including shell vial assays) and fluorescent immunoassays (with or without culture) were once the mainstays. However, the percentage of studies employing culture and fluorescent immunoassays decreased from 21.4% in 2001-2010 to 15.2% in 2011-2019. Meanwhile, the use of PCR-based methods of HMPV detection increased from 78.6% in 2001-2010 to 84.8% in 2011-2019. The increase in PCR-based methods might have occurred because PCR methods demonstrated better diagnostic performance, shorter hands-on and run times, less hazards to laboratory personnel, and more reliable results than traditional methods. When using these assays, it is important to acquire a comprehensive understanding of the principles, advantages, disadvantages, and precautions for data interpretation. In the future, the combination of nanotechnology and advanced genetic platforms such as next-generation sequencing will benefit patients with HMPV infection by facilitating efficient therapeutic intervention. Analytical and clinical validation are required before using new techniques in clinical laboratories.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Loubet P, Mathieu P, Lenzi N, Galtier F, Lainé F, Lesieur Z, Vanhems P, Duval X, Postil D, Amour S, Rogez S, Lagathu G, L'Honneur AS, Foulongne V, Houhou N, Lina B, Carrat F, Launay O. Characteristics of human metapneumovirus infection in adults hospitalized for community-acquired influenza-like illness in France, 2012-2018: a retrospective observational study. Clin Microbiol Infect 2020; 27:127.e1-127.e6. [PMID: 32283266 PMCID: PMC7195031 DOI: 10.1016/j.cmi.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 11/26/2022]
Abstract
Objectives To describe the prevalence, clinical features and complications of human metapneumovirus (hMPV) infections in a population of adults hospitalized with influenza-like illness (ILI). Methods This was a retrospective, observational, multicenter cohort study using prospectively collected data from adult patients hospitalized during influenza virus circulation, for at least 24 h, for community-acquired ILI (with symptom onset <7 days). Data were collected from five French teaching hospitals over six consecutive winters (2012–2018). Respiratory viruses were identified by multiplex reverse transcription polymerase chain reaction (RT-PCR) on nasopharyngeal specimens. hMPV + patients were compared with hMPV– patients, influenza+ and respiratory syncytial virus (RSV)+ patients using multivariate logistic regressions. Primary outcome was the prevalence of hMPV in patients hospitalized for ILI. Results Among the 3148 patients included (1449 (46%) women, 1988 (63%) aged 65 and over; 2508 (80%) with chronic disease), at least one respiratory virus was detected in 1604 (51%, 95% confidence interval (CI) 49–53), including 100 cases of hMPV (100/3148, 3% 95% CI 3–4), of which 10 (10%) were viral co-infection. In the hMPV + patients, mean length of stay was 7 days, 62% (56/90) developed a complication, 21% (14/68) were admitted to intensive care unit and 4% (4/90) died during hospitalization. In comparison with influenza + patients, hMPV + patients were more frequently >65 years old (adjusted odds ratio (aOR) = 3.3, 95% CI 1.9–6.3) and presented more acute heart failure during hospitalization (aOR = 1.8, 95% CI 1.0–2.9). Compared with RSV + patients, hMPV + patients had less cancer (aOR = 0.4, 95% CI 0.2–0.9) and were less likely to smoke (aOR = 0.5, 95% CI 0.2–0.9) but had similar outcomes, especially high rates of respiratory and cardiovascular complications. Conclusions Adult hMPV infections mainly affect the elderly and patients with chronic conditions and are responsible for frequent cardiac and pulmonary complications similar to those of RSV infections. At-risk populations would benefit from the development of antivirals and vaccines targeting hMPV.
Collapse
Affiliation(s)
- P Loubet
- VBMI, INSERM U1047, Department of Infectious and Tropical Disease, CHU Nîmes, Univ Montpellier, Nîmes, France; Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France.
| | - P Mathieu
- Université Paris Descartes, Sorbonne Paris Cité, Inserm, CIC Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | - N Lenzi
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France
| | - F Galtier
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France; CIC1411, CHU Montpellier, Hôpital Saint Eloi, Montpellier, F-34295, France
| | - F Lainé
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France; Centre d'Investigations Cliniques, INSERM UMR CIC 1414, Hôpital Pontchaillou, Rennes, France
| | - Z Lesieur
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France
| | - P Vanhems
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France; Service d'Hygiène, Epidémiologie et Prévention, Hospices Civils de Lyon, F-69437 Lyon, France
| | - X Duval
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France; CIC1125, Hôpital Bichat Claude Bernard, Paris, France
| | - D Postil
- CHU Dupuytren, CIC 1435, Limoge Cedex, France
| | - S Amour
- Service d'Hygiène, Epidémiologie et Prévention, Hospices Civils de Lyon, F-69437 Lyon, France
| | - S Rogez
- CHU Dupuytren, Service Bactériologie, Virologie, Hygiène, Limoges Cedex, France
| | - G Lagathu
- Université Rennes-I, Virologie, Hôpital Pontchaillou, Rennes, France
| | - A-S L'Honneur
- AHU, Service de Virologie, Hôpital Cochin, Paris, France
| | - V Foulongne
- Service de Virologie, CHU Montpellier, Hôpital Saint Eloi, Montpellier, F-34295, France
| | - N Houhou
- Laboratoire de Virologie, Hôpital Bichat Claude Bernard, Paris, France
| | - B Lina
- Hospices Civils de Lyon, Laboratoire de Virologie, Institut des Agents Infectieux (IAI), Centre National de Référence des virus Respiratoires France Sud, Hôpital de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | - F Carrat
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, AP-HP, Hôpital Saint Antoine, F75013 Paris, France
| | - O Launay
- Inserm, F-CRIN, Réseau Innovative Clinical Research in Vaccinology (I-REIVAC), Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Inserm, CIC Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Paris, France
| | | |
Collapse
|
44
|
Zhou Z, Zhang P, Cui Y, Zhang Y, Qin X, Li R, Liu P, Dou Y, Wang L, Zhao Y. Experiments Investigating the Competitive Growth Advantage of Two Different Genotypes of Human Metapneumovirus: Implications for the Alternation of Genotype Prevalence. Sci Rep 2020; 10:2852. [PMID: 32071381 PMCID: PMC7029021 DOI: 10.1038/s41598-020-59150-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is an important pathogen that causes upper and lower respiratory tract infections in children worldwide. hMPV has two major genotypes, hMPV-A and hMPV-B. Epidemiological studies have shown that the two hMPV genotypes alternate in predominance worldwide in recent years. Co-circulation of the two genotypes of hMPV was usually observed and there is no study about the interaction between them, such as competitive replication, which maybe the possible mechanisms for alternating prevalence of subtypes. Our present study have used two different genotypes of hMPV (genotype A: NL/1/00; B: NL/1/99) in different proportions in animal model (BALB/c mice) and cell model (Vero-E6) separately. The result showed that the competitive growth does exist in BALB/c mice, genotype B had a strong competitive advantage. However, genotype B did not cause more severe disease than non-predominant (genotype A) or mixed strains in the study, which were evaluated by the body weight, airway hyperresponsiveness and lung pathology of mouse. In cell model, competitive growth and the two genotypes alternately prevalence were observed. In summary, we confirmed that there was a competitive replication between hMPV genotype A and B, and no difference in disease severity caused by the two subtypes. This study shows a new insight to understand the alternation of hMPV genotype prevalence through genotype competition and provide experimental evidence for disease control and vaccine design.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Pan Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Yuxia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Yongbo Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Xian Qin
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Rongpei Li
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ping Liu
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ying Dou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Lijia Wang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Yao Zhao
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China.
| |
Collapse
|
45
|
Martinez-Rodriguez C, Banos-Lara MDR. HMPV in Immunocompromised Patients: Frequency and Severity in Pediatric Oncology Patients. Pathogens 2020; 9:pathogens9010051. [PMID: 31936721 PMCID: PMC7168653 DOI: 10.3390/pathogens9010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer is the first cause of death by disease in childhood globally. The most frequent types of cancers in children and adolescents are leukemias, followed by brain and central nervous system tumors and lymphomas. The recovery rate of cancer in children is around 80% in developed countries and up to 30% in developing countries. Some of the main causes of complications in children and adolescents with cancer are respiratory viral infections, mainly in bone marrow-transplanted patients. Respiratory viruses have been detected in the bronchoalveolar lavage or nasal wash specimens from cancer patients with or without respiratory illness symptoms. Human metapneumovirus (HMPV) is within the ten most common viruses that are encountered in samples from pediatric patients with underlying oncology conditions. In most of cases, HMPV is found as the only viral agent, but co-infection with other viruses or with bacterial agents has also been reported. The discrepancies between the most prevalent viral agents may be due to the different populations studied or the range of viral agents tested. Some of the cases of infection with HMPV in cancer patients have been fatal, especially in those who have received a hematopoietic stem cell transplant. This review seeks to show a general view of the participation of HMPV in respiratory illness as a complication of cancer in childhood and adolescence.
Collapse
Affiliation(s)
- Cesar Martinez-Rodriguez
- School of Medicine. Instituto Universitario de Ciencias Médicas y Humanísticas de Nayarit; Tepic 63190, Mexico;
| | - Ma. del Rocio Banos-Lara
- Centro de Investigación Oncológica Una Nueva Esperanza-Universidad Popular Autónoma del Estado de Puebla; Universidad Popular Autónoma del Estado de Puebla, 21 sur #1103, Barrio de Santiago, Puebla 72410, Mexico
- Correspondence:
| |
Collapse
|
46
|
Features of the Course of Metapneumoviral Infection in Adults. Fam Med 2019. [DOI: 10.30841/2307-5112.5-6.2019.193437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Liu WK, Chen DH, Tan WP, Qiu SY, Xu D, Zhang L, Gu SJ, Zhou R, Liu Q. Paramyxoviruses respiratory syncytial virus, parainfluenza virus, and human metapneumovirus infection in pediatric hospitalized patients and climate correlation in a subtropical region of southern China: a 7-year survey. Eur J Clin Microbiol Infect Dis 2019; 38:2355-2364. [PMID: 31489496 PMCID: PMC6858468 DOI: 10.1007/s10096-019-03693-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/11/2022]
Abstract
To investigate the features of paramyxovirus respiratory syncytial virus (RSV), parainfluenza virus (PIV), and human metapneumovirus (HMPV) infection and determine the effect of meteorological conditions in Guangzhou, a subtropical region of southern China. We collected 11,398 respiratory samples from hospitalized pediatric patients with acute respiratory illness between July 2009 and June 2016 in Guangzhou. The samples were tested simultaneously for 18 respiratory pathogens using real-time PCR. Local meteorological data were also collected for correlation analysis. Of 11,398 patients tested, 5606 (49.2%) patients tested positive for one or more pathogens; RSV, PIV, and HMPV were the first, sixth, and ninth most frequently detected pathogens, in 1690 (14.8%), 502 (4.4%), and 321 (2.8%) patients, respectively. A total 17.9% (4605/5606) of patients with positive results had coinfection with other pathogens. Significant differences were found in the prevalence of RSV, PIV, and HMPV among all age groups (p < 0.001). RSV and HMPV had similar seasonal patterns, with two prevalence peaks every year. PIV appeared alternatively with RSV and HMPV. Multiple linear regression models were established for RSV, PIV, and HMPV prevalence and meteorological factors (p < 0.05). RSV and PIV incidence was negatively correlated with monthly mean relative humidity; RSV and HMPV incidence was negatively correlated with sunshine duration; PIV incidence was positively correlated with mean temperature. We described the features of paramyxovirus infection in a subtropical region of China and highlighted the correlation with meteorological factors. These findings will assist public health authorities and clinicians in improving strategies for controlling paramyxovirus infection.
Collapse
Affiliation(s)
- Wen-Kuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - De-Hui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Tan
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shu-Yan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Shu-Jun Gu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Qian Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Pediatrics, Dongguan Eighth People’s Hospital, Dongguan, China
| |
Collapse
|
48
|
Divarathna MVM, Rafeek RAM, Noordeen F. A review on epidemiology and impact of human metapneumovirus infections in children using TIAB search strategy on PubMed and PubMed Central articles. Rev Med Virol 2019; 30:e2090. [PMID: 31788915 DOI: 10.1002/rmv.2090] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory tract infections (ARTI) contribute to morbidity and mortality in children globally. Viruses including human metapneumovirus (hMPV) account for most ARTIs. The virus causes upper and lower respiratory tract infections mostly in young children and contributes to hospitalization of individuals with asthma,chronic obstructive pulmonary diseases and cancer. Moreover, hMPV pauses a considerable socio-economic impact creating a substantial disease burden wherever it has been studied, although hMPV testing is relatively new in many countries. We aimed to comprehensively analyze the epidemiological aspects including prevalence, disease burden and seasonality of hMPV infections in children in the world. We acquired published data extracted from PubMed and PubMed Central articles using the title and abstract (TIAB)search strategy for the major key words on hMPV infections from 9/54 African, 11/35 American, 20/50 Asian, 2/14 Australian/Oceanian and 20/51 European countries. According to the findings of this review, the prevalence of hMPV infection ranges from 1.1 to 86% in children of less than 5 years of age globally. Presence of many hMPV genotypes (A1, A2, B1, B2) and sub-genotypes (A2a, A2b, A2c, B2a, B2b) suggests a rapid evolution of the virus with limited influence by time and geography. hMPV infection mostly affects children between 2 to 5 years of age. The virus is active throughout the year in the tropics and epidemics occur during the winter and spring in temperate climates, contributing to a substantial disease burden globally.
Collapse
Affiliation(s)
- Maduja V M Divarathna
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rukshan A M Rafeek
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Faseeha Noordeen
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
49
|
Are Community Acquired Respiratory Viral Infections an Underestimated Burden in Hematology Patients? Microorganisms 2019; 7:microorganisms7110521. [PMID: 31684063 PMCID: PMC6920795 DOI: 10.3390/microorganisms7110521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Despite a plethora of studies demonstrating significant morbidity and mortality due to community-acquired respiratory viral (CRV) infections in intensively treated hematology patients, and despite the availability of evidence-based guidelines for the diagnosis and management of respiratory viral infections in this setting, there is no uniform inclusion of respiratory viral infection management in the clinical hematology routine. Nevertheless, timely diagnosis and systematic management of CRV infections in intensively treated hematology patients has a demonstrated potential to significantly improve outcome. We have briefly summarized the recently published data on CRV infection epidemiology, as well as guidelines on the diagnosis and management of CRV infections in patients intensively treated for hematological malignancies. We have also assessed available treatment options, as well as mentioned novel agents currently in development.
Collapse
|
50
|
do Prado PR, Bettencourt ARDC, Lopes JDL. Related factors of the nursing diagnosis ineffective breathing pattern in an intensive care unit. Rev Lat Am Enfermagem 2019; 27:e3153. [PMID: 31596405 PMCID: PMC6781423 DOI: 10.1590/1518-8345.2902.3153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/17/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE to identify the predicting factors and sensitivity, specificity, positive and negative related value of nursing diagnosis Ineffective Breathing Pattern among patients of an intensive care unit. METHOD cross-sectional study. A logistic regression was fitted to assess the simultaneous effects of related factors. RESULTS among the 120 patients, 67.5% presented Ineffective Breathing Pattern. In the univariate analysis, the related factors were: group of diseases, fatigue, obesity and presence of bronchial secretion, and the defining characteristics were: changes in respiratory depth, auscultation with adventitious sounds, dyspnea, reduced vesicular murmurs, tachypnea, cough and use of the accessory musculature to breathe. The mean age of patients with was higher than those without this diagnosis. The defining characteristics reduced murmurs had high sensitivity (92.6%), specificity (97.4%), negative related value (86.4%) and positive related value (98.7%). The related factors of Ineffective Breathing Pattern were the related factors fatigue, age and group of diseases. CONCLUSION fatigue, age and patients with a group of diseases were related factors of Ineffective Breathing Pattern in this study. Reduced vesicular murmurs, auscultation with adventitious sounds and cough may be defining characteristics to be added in the international classification, as well as the related factors bronchial secretion and group of diseases.
Collapse
Affiliation(s)
- Patricia Rezende do Prado
- Universidade Federal do Acre, Rio Branco, AC, Brasil
- Bolsista da Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), Brasil
| | | | - Juliana de Lima Lopes
- Universidade Federal de São Paulo, Escola Paulista de Enfermagem,
São Paulo, SP, Brasil
| |
Collapse
|