1
|
Li M, Li N, Piao H, Jin S, Wei H, Liu Q, Yu J, Wang W, Ma S, Jiang Y, Yao H, Shen Y, Fu J. Nanomaterials for targeted drug delivery for immunotherapy of digestive tract tumors. Front Immunol 2025; 16:1562766. [PMID: 40109337 PMCID: PMC11919842 DOI: 10.3389/fimmu.2025.1562766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
The incidence and mortality rates of digestive tract tumors, especially gastric and colorectal cancers, are high worldwide. Owing to their unique advantages, such as efficient drug loading, safety, and targeting properties, nanoparticles (NPs) have demonstrated great potential in the treatment of gastrointestinal tumors. However, their practical application is limited by several factors, such as high costs, few clinical trials, and long approval periods. In this review, we summarize three types of immunotherapeutic nanomaterial drugs for gastrointestinal tumors: organic, inorganic, and hybrid nanomaterials. This article also discusses the current status of research and development in this field and the advantages of each type of material to provide theoretical references for developing new drugs and advancing clinical research.
Collapse
Affiliation(s)
- Mingzhu Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Ningxin Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- China Medical University, Shenyang, China
| | - Haozhe Piao
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Shengbo Jin
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | | | - Qian Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jun Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wenping Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Siyao Ma
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yuxin Jiang
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Huini Yao
- China Medical University, Shenyang, China
| | - Yue Shen
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiaqing Fu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Chen H, Islam W, El Halabi J, Li L, Selaru FM. Innovative Gastrointestinal Drug Delivery Systems: Nanoparticles, Hydrogels, and Microgrippers. FRONT BIOSCI-LANDMRK 2025; 30:25281. [PMID: 40018918 DOI: 10.31083/fbl25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 03/01/2025]
Abstract
Over the past decade, new technologies have emerged to increase intrinsic potency, enhance bioavailability, and improve targeted delivery of drugs. Most pharmaceutical formulations require multiple dosing due to their fast release and short elimination kinetics, increasing the risk of adverse events and patient non-compliance. Due to these limitations, enormous efforts have focused on developing drug delivery systems (DDSs) for sustained release and targeted delivery. Sustained release strategies began with pioneering research using silicone rubber embedding for small molecules and non-inflammatory polymer encapsulation for proteins or DNA. Subsequently, numerous DDSs have been developed as controlled-release formulations to deliver systemic or local therapeutics, such as small molecules, biologics, or live cells. In this review, we discuss the latest developments of DDSs, specifically nanoparticles, hydrogels, and microgrippers for the delivery of systemic or localized drugs to the gastrointestinal (GI) tract. We examine innovative DDS design and delivery strategies tailored to the GI tract's unique characteristics, such as its extensive length and anatomical complexity, varying pH levels and enzymatic activity across different sections, and intrinsic peristalsis. We particularly emphasize those designed for the treatment of inflammatory bowel disease (IBD) with in vivo preclinical studies.
Collapse
Affiliation(s)
- Haiming Chen
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Waliul Islam
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jessica El Halabi
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- The Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
3
|
Touzout Z, Abdellaoui N, Hadj-Hamou AS. Conception of pH-sensitive calcium alginate/poly vinyl alcohol hydrogel beads for controlled oral curcumin delivery systems. Antibacterial and antioxidant properties. Int J Biol Macromol 2024; 263:130389. [PMID: 38403207 DOI: 10.1016/j.ijbiomac.2024.130389] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC μg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.
Collapse
Affiliation(s)
- Zineb Touzout
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| | - Naima Abdellaoui
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria.
| | - Assia Siham Hadj-Hamou
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| |
Collapse
|
4
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhang Q, Fu H, Zhang Y, Li L, Yan G. Rapidly degradable konjac glucomannan hydrogels cross-linked with olsalazine for colonic drug release. Biomed Mater Eng 2024; 35:125-137. [PMID: 37718772 DOI: 10.3233/bme-230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Polysaccharide hydrogel is one of the most important materials for the colon target drug release system. However, the degradation time of polysaccharide hydrogel is much longer than the retention time in the colon. The drugs are expelled from the body before being released. OBJECTIVE In order to match the degradation of drug carriers and their retention time in the colon, a rapidly degradable konjac glucomannan (KGM) hydrogel was designed for colon target drug release. METHODS A crosslinker containing azo bond, olsalazine, was used to prepare the rapidly degradable KGM hydrogel. The degradation and drug release of the hydrogels with different crosslinking densities in the normal buffer and the human fecal medium were studied to evaluate the efficiency of colon drug release. RESULTS More than 50% of the KGM hydrogel by weight was degraded and more than 60% of the 5-fluorouracil (5-Fu) was released within 48 h in 5% w/v human fecal medium. CONCLUSION The drug was released more rapidly in a simulated colon environment than in a normal buffer. Furthermore, the drug release was controlled by the degradation of the hydrogel. The KGM hydrogel containing azo crosslinker has great potential for colon drug release.
Collapse
Affiliation(s)
- Qiao Zhang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huili Fu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yunfei Zhang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Liang Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Yan
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
6
|
Liu H, Jiapaer Z, Meng F, Wu W, Hou C, Duan M, Qin Y, Shao S, Zhang M. Construction Of High Loading Natural Active Substances Nanoplatform and Application in Synergistic Tumor Therapy. Int J Nanomedicine 2022; 17:2647-2659. [PMID: 35730051 PMCID: PMC9206851 DOI: 10.2147/ijn.s364108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Natural bioactive substances have been widely studied for their superior anti-tumor activity and low toxicity. However, natural bioactive substances suffer from poor water-solubility and poor stability in the physiological environment. Therefore, to overcome the drawbacks of natural bioactive substances in tumor therapy, there is an urgent need for an ideal nanocarrier to achieve high bioactive substance loading with low toxicity. Materials and Methods Face-centered cubic hollow mesoporous Prussian Blue (HMPB) NPs were prepared by stepwise hydrothermal method. Among them, PVP served as a protective agent and HCl served as an etching agent. Firstly, MPB NPs were obtained by 0.01 M HCl etching. Then, the highly uniform dispersed HMPB NPs were obtained by further etching with 1 M HCl. Results In this work, we report a pH-responsive therapeutic nanoplatform based on HMPB NPs. Surprisingly, as-prepared HMPB NPs with ultra-high bioactive substances loading capacity of 329 μg mg−1 owing to the large surface area (131.67 m2 g−1) and wide internal pore size distribution (1.8–96.2 nm). Moreover, with the outstanding photothermal conversion efficiency of HMPB NPs (30.13%), natural bioactive substances were released in the tumor microenvironment (TME). HMPB@PC B2 achieved excellent synergistic therapeutic effects of photothermal therapy (PTT) and chemotherapy (CT) in vivo and in vitro without causing any extraneous side effects. Conclusion A biocompatible HMPB@PC B2 nanoplatform was constructed by simple physical adsorption. The in vitro and in vivo experiment results demonstrated that the synergy of PTT/CT provided excellent therapeutic efficiency for cervical cancer without toxicity. Altogether, as-designed nanomedicines based on natural bioactive substances may be provide a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Wanfeng Wu
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Mengjiao Duan
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Shuxuan Shao
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| |
Collapse
|
7
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
8
|
Lai WF, Obireddy SR, Zhang H, Zhang D, Wong WT. Advances in analysis of pharmaceuticals by using graphene-based sensors. ChemMedChem 2022; 17:e202200111. [PMID: 35618680 DOI: 10.1002/cmdc.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective use of drugs relies on proper pharmaceutical analysis. Graphene has been extensively used to construct sensors for this purpose. Over the years, a large variety of pharmaceutical sensors have been developed from graphene or its derivatives. This articles reviews the current status of sensor development from graphene and its derivatives, and discusses the use of graphene-based sensors in pharmaceutical analysis. It is hoped that this article cannot only offer a snapshot of recent advances in the fabrication and use of graphene-based sensors, but can also provide insights into future engineering and optimization of the sensors for effective pharmaceutical analysis.
Collapse
Affiliation(s)
- Wing-Fu Lai
- The Chinese University of Hong Kong, School of Life and Health Sciences, 518172, Shenzhen, CHINA
| | - Sreekanth Reddy Obireddy
- Sri Krishnadevaraya University, Chemistry, TIRUPATI NATIONAL HIGHWAY, ITUKALAPALLI, 515004, India, 515003, ANANTHAPURAMU, INDIA
| | - Haotian Zhang
- The Chinese University of Hong Kong, School of Life and Health Sciences, CHINA
| | | | - Wing-Tak Wong
- The Hong Kong Polytechnic University, Applied Biology and Chemical Technology, CHINA
| |
Collapse
|
9
|
Kumar R, Kehr NS. 3D-Printable Oxygen- and Drug-Carrying Nanocomposite Hydrogels for Enhanced Cell Viability. NANOMATERIALS 2022; 12:nano12081304. [PMID: 35458012 PMCID: PMC9028881 DOI: 10.3390/nano12081304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023]
Abstract
Nanocomposite (NC) hydrogels have been widely studied due to their tunable biochemical/ physical properties for tissue engineering and biomedical applications. Nanoparticles (NPs) that can carry bioactive hydrophilic/hydrophobic molecules and provide sustained release within hydrogels are an ideal all-in-one-platform for local drug delivery applications. Dual delivery of different bioactive molecules is desired to achieve synergetic therapeutic effect in biomedical applications. For example, the co-administration of drug molecules and oxygen (O2) is an ideal choice to improve cell viability, while reducing the harmful effects of hypoxia. Therefore, we prepared drug-loaded O2-carrying periodic mesoporous organosilica (PMO-PFC) NPs and their 3D-printable hydrogel precursors based on gelatin methacryloyl (GelMa) to fabricate 3D-scaffolds to improve cell-viability under both normoxia (21% O2) and hypoxia (1% O2) conditions. We used rutin as the hydrophobic drug molecule to demonstrate that our O2-carrying PMO-PFC NPs can improve hydrophobic drug loading and their sustained delivery over 7 days, while supporting sustained O2-delivery for 14 days under hypoxia conditions. Furthermore, the fibroblast cells were interacted with NC hydrogel scaffolds to test their impact on cell-viability under both normoxia and hypoxia conditions. The improved rheological properties suggest the prepared NC hydrogels can be further tested or used as an injectable hydrogel. The improved mechanical properties and 3D printability of NC hydrogels indicate their potential use as artificial tissue constructs.
Collapse
Affiliation(s)
- Ravi Kumar
- Physikalisches Institute, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;
- Center for Soft Nanoscience (SON), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;
- Center for Soft Nanoscience (SON), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
10
|
Self-assembled Janus graphene nanostructures with high camptothecin loading for increased cytotoxicity to cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Lai WF, Wong WT. Use of graphene-based materials as carriers of bioactive agents. Asian J Pharm Sci 2021; 16:577-588. [PMID: 34849163 PMCID: PMC8609387 DOI: 10.1016/j.ajps.2020.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 11/10/2020] [Indexed: 11/12/2022] Open
Abstract
Graphene possesses a large specific surface area, a high Young's modulus, high fracture strength, high electrical conductivity, and excellent optical performance. It has been widely studied for biomedical use since its first appearance in the literature. This article offers an overview of the latest advances in the design of graphene-based materials for delivery of bioactive agents. To enhance the translation of these carriers into practical use, the toxicity involved is needed to be examined in future research in more detail. In addition, guidelines for standardizing experimental conditions during the evaluation of the performance of graphene-based materials are required to be established so that candidates showing higher practical potential can be more effectively identified for further development. This can streamline the optimization and use of graphene-based materials in delivery applications.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| |
Collapse
|
12
|
Bakshi HA, Quinn GA, Aljabali AAA, Hakkim FL, Farzand R, Nasef MM, Abuglela N, Ansari P, Mishra V, Serrano-Aroca Á, Tambuwala MM. Exploiting the Metabolism of the Gut Microbiome as a Vehicle for Targeted Drug Delivery to the Colon. Pharmaceuticals (Basel) 2021; 14:ph14121211. [PMID: 34959610 PMCID: PMC8709317 DOI: 10.3390/ph14121211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of colon-associated diseases has increased significantly over the past several decades, as evidenced by accumulated literature on conditions such as Crohn’s disease, irritable bowel syndrome, colorectal cancer, and ulcerative colitis. Developing therapeutics for these diseases is challenging due to physiological barriers of the colon, systemic side effects, and the intestinal environment. Therefore, in a search for novel methods to overcome some of these problems, researchers discovered that microbial metabolism by gut microbiotia offers a potential method for targeted drug delivery This overview highlights several drug delivery systems used to modulate the microbiota and improve colon-targeted drug delivery. This technology will be important in developing a new generation of therapies which harness the metabolism of the human gut microflora.
Collapse
Affiliation(s)
- Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
- Correspondence: (H.A.B.); (M.M.T.)
| | - Gerry A. Quinn
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 566, Jordan;
| | - Faruck L. Hakkim
- The Hormel Institute, University of Minnesota, Austin, MN 559122, USA;
| | - Rabia Farzand
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (R.F.); (M.M.N.); (N.A.)
| | - Mohamed M. Nasef
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (R.F.); (M.M.N.); (N.A.)
| | - Naji Abuglela
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK; (R.F.); (M.M.N.); (N.A.)
| | - Prawej Ansari
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Institute of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (G.A.Q.); (P.A.)
- Correspondence: (H.A.B.); (M.M.T.)
| |
Collapse
|
13
|
|
14
|
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromol Biosci 2021; 21:e2100186. [PMID: 34355522 DOI: 10.1002/mabi.202100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/22/2021] [Indexed: 01/02/2023]
Abstract
Hydrogel is a kind of 3D polymer network with strong swelling ability in water and appropriate mechanical and biological properties, which make it feasible to maintain bioactive substances and has promising applications in the fields of biomaterials, soft machines, and artificial tissues. Unfortunately, traditional hydrogels prepared by chemical crosslinking have poor mechanical properties and limited functions, which limit their further application. In recent years, with the continuous development of nanoparticle research, more and more studies have combined nanoparticles with hydrogels to make up for the shortcomings of traditional hydrogels. In this article, the types and functions of hydrogels and nanomaterials are introduced first, as well as the functions and applications of injectable nanocomposite hydrogels (INHs), then the latest progress of INHs for cancer treatment is reviewed, some existing problems are summarized, and the application prospect of NHs is prospected.
Collapse
Affiliation(s)
- Wenzhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qida Zong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
15
|
Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 2021; 11:1789-1812. [PMID: 34386321 PMCID: PMC8343123 DOI: 10.1016/j.apsb.2020.09.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its safety, convenience, low cost and good compliance, oral administration attracts lots of attention. However, the efficacy of many oral drugs is limited to their unsatisfactory bioavailability in the gastrointestinal tract. One of the critical and most overlooked factors is the symbiotic gut microbiota that can modulate the bioavailability of oral drugs by participating in the biotransformation of oral drugs, influencing the drug transport process and altering some gastrointestinal properties. In this review, we summarized the existing research investigating the possible relationship between the gut microbiota and the bioavailability of oral drugs, which may provide great ideas and useful instructions for the design of novel drug delivery systems or the achievement of personalized medicine.
Collapse
Key Words
- 5-ASA, 5-aminosalicylic acid
- AA, ascorbic acid
- ABC, ATP-binding cassette
- ACS, amphipathic chitosan derivative
- AMI, amiodarone
- AQP4, aquaporin 4
- AR, azoreductase
- ASP, amisulpride
- BBR, berberine
- BCRP, breast cancer resistance protein
- BCS, biopharmaceutics classification system
- BDDCS, the biopharmaceutics drug disposition classification system
- BDEPT, the bacteria-directed enzyme prodrug therapy
- BSH, bile salt hydrolase
- Bioavailability
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CPP, cell-penetrating peptide
- CS, chitosan
- Colon-specific drug delivery system
- DCA, deoxycholic acid
- DRPs, digoxin reduction products
- EcN, Escherichia coli Nissle 1917
- FA, folate
- FAO, Food and Agriculture Organization of the United Nations
- GCDC, glycochenodeoxycholate
- GL, glycyrrhizic acid
- Gut microbiota
- HFD, high fat diet
- HTC, hematocrit
- IBD, inflammatory bowel disease
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- MATEs, multidrug and toxin extrusion proteins
- MDR1, multidrug resistance gene 1
- MDR1a, multidrug resistance protein-1a
- MKC, monoketocholic acid
- MPA, mycophenolic acid
- MRP2, multidrug resistance-associated protein 2
- NEC, necrotizing enterocolitis
- NMEs, new molecular entities
- NRs, nitroreductases
- NSAIDs, non-steroidal anti-inflammatory drugs
- NaDC, sodium deoxycholate
- NaGC, sodium glycholate
- OATs, organic anion transporters
- OCTNs, organic zwitterion/cation
- OCTs, organic cation transporters
- Oral drugs
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PPIs, proton pump inhibitors
- PT, pectin
- PWSDs, poorly water-soluble drugs
- Probiotics
- RA, rheumatoid arthritis
- RBC, red blood cell
- SCFAs, short-chain fatty acids
- SGLT-1, sodium-coupled glucose transporter 1
- SLC, solute carrier
- SLN, solid lipid nanoparticle
- SP, sulfapyridine
- SSZ, sulfasalazine
- SVCT-1/2, the sodium-dependent vitamin C transporter-1/2
- T1D, type 1 diabetes
- T1DM, type 1 diabetes mellitus
- T2D, type 2 diabetes
- TCA, taurocholate
- TCDC, taurochenodeoxycholate
- TDCA, taurodeoxycholate
- TLCA, taurolithocholate
- TME, the tumor microenvironment
- UDC, ursodeoxycholic acid
- WHO, World Health Organization
- an OTC drug, an over-the-counter drug
- cgr operon, cardiac glycoside reductase operon
- dhBBR, dihydroberberine
- pKa, dissociation constant
- the GI tract, the gastrointestinal tract
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Trusek A, Kijak E. Drug Carriers Based on Graphene Oxide and Hydrogel: Opportunities and Challenges in Infection Control Tested by Amoxicillin Release. MATERIALS 2021; 14:ma14123182. [PMID: 34207735 PMCID: PMC8228297 DOI: 10.3390/ma14123182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Graphene oxide (GO) was proposed as an efficient carrier of antibiotics. The model drug, amoxicillin (AMOX), was attached to GO using a peptide linker (Leu-Leu-Gly). GO-AMOX was dispersed in a hydrogel to which the enzyme responsible for releasing AMOX from GO was also added. The drug molecules were released by enzymatic hydrolysis of the peptide bond in the linker. As the selected enzyme, bromelain, a plant enzyme, was used. The antibacterial nature of the carrier was determined by its ability to inhibit the growth of the Enterococcus faecalis strain, which is one of the bacterial species responsible for periodontal and root canal diseases. The prepared carrier contained only biocompatible substances, and the confirmation of its lack of cytotoxicity was verified based on the mouse fibrosarcoma cell line WEHI 164. The proposed type of preparation, as a universal carrier of many different antibiotic molecules, can be considered as a suitable solution in the treatment of inflammation in dentistry.
Collapse
Affiliation(s)
- Anna Trusek
- Group of Micro, Nano and Bioprocess Engineering, Department of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
- Correspondence: (A.T.); (E.K.)
| | - Edward Kijak
- Department of Dental Prosthetics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Correspondence: (A.T.); (E.K.)
| |
Collapse
|
17
|
Nanocomposite sponges for enhancing intestinal residence time following oral administration. J Control Release 2021; 333:579-592. [PMID: 33838210 DOI: 10.1016/j.jconrel.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023]
Abstract
In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single system are proposed as innovative strategy to increase drug residence time in the intestine following oral administration. To this aim, novel mucoadhesive chitosan (CH) sponges loaded with mucopenetrating nanoemulsions (NE) were developed via freeze-casting technique. The NE mucopenetration ability was determined studying the surface affinity and thermodynamic binding of the nanosystem with mucins. The ability of nanoparticles to penetrate across a preformed mucins layer was validated by 3D-time laps Confocal Laser Scanning Microscopy imaging. Microscopy observations (Scanning Electron Microscopy and Optical Microscopy) showed that NE participated in the structure of the sponge affecting its stability and in vitro release kinetics. When incubated with HCT 116 and Caco-2 cell lines, the NE proved to be cytocompatible over a wide concentration range. Finally, the in vivo biodistribution of the nanocomposite was evaluated after oral gavage in healthy mice. The intestinal retention of NE was highly enhanced when loaded in the sponge compared to the NE suspension. Overall, our results demonstrated that the developed nanocomposite sponge is a promising system for sustained drug intestinal delivery.
Collapse
|
18
|
Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 2021; 600:120478. [PMID: 33722756 DOI: 10.1016/j.ijpharm.2021.120478] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022]
Abstract
Polyvinyl alcohol (PVA) is a biodegradable semicrystalline synthetic polymer that has been used for biomedical applications for several years. In the pharmaceutical area, PVA has been widely used to prepare solid dispersions to improve the solubility of drugs. Furthermore, it has been demonstrated that PVA is highly biocompatible and non-toxic in in-vitro and in-vivo studies. Several reports provided in this review suggest a promising strategy for cancer treatment. Thus far, the current therapy includes a combination of surgery, chemotherapy, and radiotherapy, the effectivity can be limited due to the heterogeneous manifestations of the disease, dose-related toxicity, and side effects. A promising strategy is the implementation of a targeted therapy using hydrogels, microparticles, or nanoparticles (NPs), capable of encapsulating, protecting, transporting, and targeted administration of a therapeutic agent. Considering the relevance of the PVA in conjunction with their copolymers, it has become a promising biodegradable material to build novel functional composites used in the fabrication of hydrogels, microparticles, nanoparticles, and nanocomposites for drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnologia-FEMSA, Ave. Eugenio Garza Sada 2501, Monterrey, Mexico; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnologia-FEMSA, Ave. Eugenio Garza Sada 2501, Monterrey, Mexico
| | - Patricia Martínez-Morales
- CONACYT- Centro de Investigación Biomédica de Oriente-IMSS, Km 4.5 Carretera Federal Atlixco-Metepec, 74360 Metepec, Puebla, Mexico
| | - Mirna L Sánchez
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, IMBICE-CONICET, Bernal, Argentina.
| |
Collapse
|
19
|
New Insights of Oral Colonic Drug Delivery Systems for Inflammatory Bowel Disease Therapy. Int J Mol Sci 2020; 21:ijms21186502. [PMID: 32899548 PMCID: PMC7555849 DOI: 10.3390/ijms21186502] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Colonic Drug Delivery Systems (CDDS) are especially advantageous for local treatment of inflammatory bowel diseases (IBD). Site-targeted drug release allows to obtain a high drug concentration in injured tissues and less systemic adverse effects, as consequence of less/null drug absorption in small intestine. This review focused on the reported contributions in the last four years to improve the effectiveness of treatments of inflammatory bowel diseases. The work concludes that there has been an increase in the development of CDDS in which pH, specific enzymes, reactive oxygen species (ROS), or a combination of all of these triggers the release. These delivery systems demonstrated a therapeutic improvement with fewer adverse effects. Future perspectives to the treatment of this disease include the elucidation of molecular basis of IBD diseases in order to design more specific treatments, and the performance of more in vivo assays to validate the specificity and stability of the obtained systems.
Collapse
|
20
|
Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Crit Rev Anal Chem 2020; 52:481-503. [DOI: 10.1080/10408347.2020.1808442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sariye Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Nurgul K. Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
21
|
Broesder A, Kosta AMMAC, Woerdenbag HJ, Nguyen DN, Frijlink HW, Hinrichs WLJ. pH-dependent ileocolonic drug delivery, part II: preclinical evaluation of novel drugs and novel excipients. Drug Discov Today 2020; 25:1374-1388. [PMID: 32562842 DOI: 10.1016/j.drudis.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023]
Abstract
Novel drugs and novel excipients in pH-dependent ileocolonic drug delivery systems have to be tested in animals. Which animal species are suitable and what in vivo methods are used to verify ileocolonic drug delivery?
Collapse
Affiliation(s)
- Annemarie Broesder
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anne-Marijke M A C Kosta
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Herman J Woerdenbag
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Duong N Nguyen
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
22
|
López-Malo D, Villarón-Casares CA, Alarcón-Jiménez J, Miranda M, Díaz-Llopis M, Romero FJ, Villar VM. Curcumin as a Therapeutic Option in Retinal Diseases. Antioxidants (Basel) 2020; 9:antiox9010048. [PMID: 31935797 PMCID: PMC7023263 DOI: 10.3390/antiox9010048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is subjected to oxidative stress due to its high vascularization, long time light exposition and a high density of mitochondria. Oxidative stress can lead to pathological processes, like cell apoptosis, angiogenesis and inflammation ending in retinal pathologies. Curcumin, a major bioactive component obtained from the spice turmeric (Curcuma longa) rhizome has been used for centuries in Asian countries for cooking and for curing all kinds of diseases like dysentery, chest congestion and pain in general, due to its antioxidant effects. Curcumin prevents the formation of reactive oxygen species and so it is a good protective agent. Curcumin has shown also anti-inflammatory, and antitumor properties. Curcumin is a natural product, which can be a therapeutic option in a variety of retinal diseases due to its pleiotropic properties. Some drawbacks are its poor solubility, bioavailability and lack of stability at physiological conditions; which have been shown in curcumin skeptical publications. In this review, we provide some lights and shadows on curcumin administration on the major retinal pathologies.
Collapse
Affiliation(s)
- Daniel López-Malo
- Facultad de Ciencias de la Salud, Universidad Europea de Valencia, 46010 Valencia, Spain; (D.L.-M.); (C.A.V.-C.)
| | | | - Jorge Alarcón-Jiménez
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia, 46001 Valencia, Spain;
| | - Maria Miranda
- Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46315 Moncada, Spain; (M.M.); (V.M.V.)
| | - Manuel Díaz-Llopis
- Facultad de Medicina y Odontología, Universitat de Valencia, 46010 Valencia, Spain;
| | - Francisco J. Romero
- Facultad de Ciencias de la Salud, Universidad Europea de Valencia, 46010 Valencia, Spain; (D.L.-M.); (C.A.V.-C.)
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Valencia, Spain
- Correspondence: ; Tel.: +34-961-0438-83
| | - Vincent M. Villar
- Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46315 Moncada, Spain; (M.M.); (V.M.V.)
| |
Collapse
|
23
|
Hakkou K, Molina-Pinilla I, Rangel-Núñez C, Suárez-Cruz A, Pajuelo E, Bueno-Martínez M. Synthesis of novel (bio) degradable linear azo polymers conjugated with olsalazine. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Song Q, Jia J, Niu X, Zheng C, Zhao H, Sun L, Zhang H, Wang L, Zhang Z, Zhang Y. An oral drug delivery system with programmed drug release and imaging properties for orthotopic colon cancer therapy. NANOSCALE 2019; 11:15958-15970. [PMID: 31418432 DOI: 10.1039/c9nr03802g] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oral drug delivery systems (ODDSs) have attracted considerable attention in relation to orthotopic colon cancer therapy due to certain popular advantages. Unfortunately, their clinical applications are generally limited by the side-effects caused by systemic drug exposure and poor real-time monitoring capabilities. Inspired by the characteristics of pH changes of the gastrointestinal tract (GIT) and specific enzymes secreted by the colonic microflora, we anchored polyacrylic acid (PAA) and chitosan (CS) on Gd3+-doped mesoporous hydroxyapatite nanoparticles (Gd-MHAp NPs) to realize programmed drug release and magnetic resonance imaging (MRI) at the tumor sites. In particular, the grafted PAA, as a pH-responsive switch, could effect controlled drug release in the colon. Further, CS is functionalized as the enzyme-sensitive moiety, which could be degraded by β-glycosidase in the colon. Gadolinium is a paramagnetic lanthanide element used in chelates, working as a contrast medium agent for an MRI system. Interestingly, after oral administration, CS and PAA could protect the drug-loaded nanoparticles (NPs) against variable physiological conditions in the GIT, allowing the drug to reach the colon tumor sites, preventing premature drug release. Enhanced drug concentrations at the colon tumor sites were achieved via this programmed drug release, which subsequently ameliorated the therapeutic effect. In addition, encapsulating both chemotherapeutic (5-fluorouracil, 5-FU) and targeted therapy drug (gefitinib, Gef) within Gd-MHAp NPs produced a synergistic therapeutic effect. In summary, this study demonstrated that such a novel drug system (Gd-MHAp/5-FU/Gef/CS/PAA NPs) could protect, transport, and program drug release locally within the colonic environment; further, this system exhibited a worthwhile therapeutic effect, providing a promising novel treatment strategy for orthotopic colon cancer.
Collapse
Affiliation(s)
- Qingling Song
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Puvirajesinghe TM, Zhi ZL, Craster RV, Guenneau S. Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide. J R Soc Interface 2019; 15:rsif.2017.0949. [PMID: 29445040 PMCID: PMC5832740 DOI: 10.1098/rsif.2017.0949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Graphene oxide (GO) is increasingly used for controlling mass diffusion in hydrogel-based drug delivery applications. On the macro-scale, the density of GO in the hydrogel is a critical parameter for modulating drug release. Here, we investigate the diffusion of a peptide drug through a network of GO membranes and GO-embedded hydrogels, modelled as porous matrices resembling both laminated and ‘house of cards’ structures. Our experiments use a therapeutic peptide and show a tunable nonlinear dependence of the peptide concentration upon time. We establish models using numerical simulations with a diffusion equation accounting for the photo-thermal degradation of fluorophores and an effective percolation model to simulate the experimental data. The modelling yields an interpretation of the control of drug diffusion through GO membranes, which is extended to the diffusion of the peptide in GO-embedded agarose hydrogels. Varying the density of micron-sized GO flakes allows for fine control of the drug diffusion. We further show that both GO density and size influence the drug release rate. The ability to tune the density of hydrogel-like GO membranes to control drug release rates has exciting implications to offer guidelines for tailoring drug release rates in hydrogel-based therapeutic delivery applications.
Collapse
Affiliation(s)
- T M Puvirajesinghe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Z L Zhi
- Diabetes Research Group, King's College London Faculty of Life Sciences and Medicine, Guy's Hospital Campus, London, UK
| | - R V Craster
- Department of Mathematics, Imperial College London, London, UK.,CNRS-Imperial "Abraham de Moivre" Unité Mixte Internationale, London, UK
| | - S Guenneau
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
27
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
28
|
Wahlgren M, Axenstrand M, Håkansson Å, Marefati A, Lomstein Pedersen B. In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics 2019; 11:E95. [PMID: 30813323 PMCID: PMC6410320 DOI: 10.3390/pharmaceutics11020095] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
The primary focus of this review is a discussion regarding in vitro media for colon release, but we also give a brief overview of colon delivery and the colon microbiota as a baseline for this discussion. The large intestine is colonized by a vast number of bacteria, approximately 1012 per gram of intestinal content. The microbial community in the colon is complex and there is still much that is unknown about its composition and the activity of the microbiome. However, it is evident that this complex microbiota will affect the release from oral formulations targeting the colon. This includes the release of active drug substances, food supplements, and live microorganisms, such as probiotic bacteria and bacteria used for microbiota transplantations. Currently, there are no standardized colon release media, but researchers employ in vitro models representing the colon ranging from reasonable simple systems with adjusted pH with or without key enzymes to the use of fecal samples. In this review, we present the pros and cons for different existing in vitro models. Furthermore, we summarize the current knowledge of the colonic microbiota composition which is of importance to the fermentation capacity of carbohydrates and suggest a strategy to choose bacteria for a new more standardized in vitro dissolution medium for the colon.
Collapse
Affiliation(s)
- Marie Wahlgren
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Magdalena Axenstrand
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Åsa Håkansson
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Ali Marefati
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Betty Lomstein Pedersen
- Ferring International PharmaScience Center (IPC), Kay Fiskers Plads 11, 2300 Copenhagen, Denmark.
| |
Collapse
|
29
|
Syama S, Mohanan PV. Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. NANO-MICRO LETTERS 2019; 11:6. [PMID: 34137957 PMCID: PMC7770934 DOI: 10.1007/s40820-019-0237-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/25/2018] [Indexed: 05/03/2023]
Abstract
Graphene, sp2 hybridized carbon framework of one atom thickness, is reputed as the strongest material to date. It has marked its impact in manifold applications including electronics, sensors, composites, and catalysis. Current state-of-the-art graphene research revolves around its biomedical applications. The two-dimensional (2D) planar structure of graphene provides a large surface area for loading drugs/biomolecules and the possibility of conjugating fluorescent dyes for bioimaging. The high near-infrared absorbance makes graphene ideal for photothermal therapy. Henceforth, graphene turns out to be a reliable multifunctional material for use in diagnosis and treatment. It exhibits antibacterial property by directly interacting with the cell membrane. Potential application of graphene as a scaffold for the attachment and proliferation of stem cells and neuronal cells is captivating in a tissue regeneration scenario. Fabrication of 2D graphene into a 3D structure is made possible with the help of 3D printing, a revolutionary technology having promising applications in tissue and organ engineering. However, apart from its advantageous application scope, use of graphene raises toxicity concerns. Several reports have confirmed the potential toxicity of graphene and its derivatives, and the inconsistency may be due to the lack of standardized consensus protocols. The present review focuses on the hidden facts of graphene and its biomedical application, with special emphasis on drug delivery, biosensing, bioimaging, antibacterial, tissue engineering, and 3D printing applications.
Collapse
Affiliation(s)
- S Syama
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695 012, India.
| |
Collapse
|
30
|
Argenta DF, dos Santos TC, Campos AM, Caon T. Hydrogel Nanocomposite Systems. NANOCARRIERS FOR DRUG DELIVERY 2019:81-131. [DOI: 10.1016/b978-0-12-814033-8.00003-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2018; 16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recently, the use of chitosan (CS) in the drug delivery has reached an acceptable maturity. Graphene-based drug delivery is also increasing rapidly due to its unique physical, mechanical, chemical, and electrical properties. Therefore, the combination of CS and graphene can provide a promising carrier for the loading and controlled release of therapeutic agents. AREAS COVERED In this review, we will outline the advantages of this new drug delivery system (DDS) in association with CS and graphene alone and will list the various forms of these carriers, which have been studied in recent years as DDSs. Finally, we will discuss the application of this hybrid composite in other fields. EXPERT OPINION The introducing the GO amends the mechanical characteristics of CS, which is a major problem in the use of CS-based carriers in drug delivery due to burst release in a CS-based controlled release system through the poor mechanical strength of CS. Many related research on this area are still not fully unstated and occasionally they seem inconsistent in spite of the intent to be complementary. Therefore, a sensitive review may be needed to understand the role of graphene in CS/graphene carriers for future drug delivery applications.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - M Reza Naimi-Jamal
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - Seyed Morteza Naghib
- b Nanotechnology Department, School of New Technologies , Iran University of Science and Technology (IUST) , Tehran , Iran
| |
Collapse
|
32
|
Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286:64-73. [DOI: 10.1016/j.jconrel.2018.07.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
|
33
|
Carvalho LFCS, Nogueira MS, Neto LPM, Bhattacharjee TT, Martin AA. Raman spectral post-processing for oral tissue discrimination - a step for an automatized diagnostic system. BIOMEDICAL OPTICS EXPRESS 2017; 8:5218-5227. [PMID: 29188115 PMCID: PMC5695965 DOI: 10.1364/boe.8.005218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/18/2017] [Accepted: 03/27/2017] [Indexed: 05/18/2023]
Abstract
Most oral injuries are diagnosed by histopathological analysis of a biopsy, which is an invasive procedure and does not give immediate results. On the other hand, Raman spectroscopy is a real time and minimally invasive analytical tool with potential for the diagnosis of diseases. The potential for diagnostics can be improved by data post-processing. Hence, this study aims to evaluate the performance of preprocessing steps and multivariate analysis methods for the classification of normal tissues and pathological oral lesion spectra. A total of 80 spectra acquired from normal and abnormal tissues using optical fiber Raman-based spectroscopy (OFRS) were subjected to PCA preprocessing in the z-scored data set, and the KNN (K-nearest neighbors), J48 (unpruned C4.5 decision tree), RBF (radial basis function), RF (random forest), and MLP (multilayer perceptron) classifiers at WEKA software (Waikato environment for knowledge analysis), after area normalization or maximum intensity normalization. Our results suggest the best classification was achieved by using maximum intensity normalization followed by MLP. Based on these results, software for automated analysis can be generated and validated using larger data sets. This would aid quick comprehension of spectroscopic data and easy diagnosis by medical practitioners in clinical settings.
Collapse
Affiliation(s)
- Luis Felipe C S Carvalho
- Univap/Instituto de Pesquisa e Desenvolvimento, Laboratório de Espectroscopia Vibracional Biomédica, Avenida Shishima Hifumi, 2911, São José dos Campos/SP, CEP: 12244-000, Brazil
| | - Marcelo Saito Nogueira
- Universidade de São Paulo/ São Carlos Institute of Physics, Optics Group, Biophotonics Division, Avenida Trabalhador São Carlense, 400, São Carlos/SP, CEP: 13566-590, Brazil
| | - Lázaro P M Neto
- Univap/Instituto de Pesquisa e Desenvolvimento, Laboratório de Espectroscopia Vibracional Biomédica, Avenida Shishima Hifumi, 2911, São José dos Campos/SP, CEP: 12244-000, Brazil
| | - Tanmoy T Bhattacharjee
- Univap/Instituto de Pesquisa e Desenvolvimento, Laboratório de Espectroscopia Vibracional Biomédica, Avenida Shishima Hifumi, 2911, São José dos Campos/SP, CEP: 12244-000, Brazil
| | - Airton A Martin
- Biomedical Engineering Innovation Center - Biomedical Vibrational Spectroscopy Group, Universidade Brasil - UnBr - Rua Carolina Fonseca, 235 - 08230-030 - Itaquera, São Paulo/SP/ Visiting Professor Universidade Federal do Piauí - UFPI - Campus Ministro Petrônio Portella Departamento de Física - CCN Bairro Ininga Teresina, PI, CEP: 64049-550, Brazil
| |
Collapse
|
34
|
Namvari M, Biswas CS, Wang Q, Liang W, Stadler FJ. Crosslinking hydroxylated reduced graphene oxide with RAFT-CTA: A nano-initiator for preparation of well-defined amino acid-based polymer nanohybrids. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Curti V, Di Lorenzo A, Dacrema M, Xiao J, Nabavi SM, Daglia M. In vitro polyphenol effects on apoptosis: An update of literature data. Semin Cancer Biol 2017; 46:119-131. [PMID: 28830771 DOI: 10.1016/j.semcancer.2017.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols are secondary plant metabolites which have been studied extensively for their health-promoting properties, and which could also exert pharmacological activities ranging from anti-inflammatory effects, to cytotoxic activity against cancer cells. The main mechanism for programmed cell death is represented by apoptosis, and its dysregulation is involved in the etiopathology of cancer. As such, substances able to induce apoptosis in cancer cells could be used as new anticancer agents. The aim of this paper is to review literature data on the apoptotic effects of polyphenols and the molecular mechanisms through which they induce these effects in cancer cells. In addition, a brief summary of the new delivery forms used to increase the bioavailability, and clinical impact of polyphenols is provided. The studies reported show that many polyphenol rich plant extracts, originating from food and herbal medicine, as well as isolated polyphenols administered individually or in combination, can regulate cell apoptosis primarily through intrinsic and extrinsic mechanisms of action in in vitro conditions. Due to these promising results, the use of polyphenols in the treatment of cancer should therefore be deeply investigated. In particular, because of the low number of clinical trials, further studies are required to evaluate the anticancer activity of polyphenols in in vivo conditions.
Collapse
Affiliation(s)
- Valeria Curti
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sayed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, PO Box 19395 5487, Iran.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
36
|
Namvari M, Du L, Stadler FJ. Graphene oxide-based silsesquioxane-crosslinked networks – synthesis and rheological behavior. RSC Adv 2017. [DOI: 10.1039/c7ra02764h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Click reaction between octa(3-azidopropyl)polyhedral oligomeric silsesquioxane (POSS–(N3)8) and heavily alkyne-decorated graphene oxide (GO) has led to crosslinking POSS with GO.
Collapse
Affiliation(s)
- Mina Namvari
- College of Materials Science and Engineering
- Shenzhen Key Laboratory of Polymer Science and Technology
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Nanshan District Key Lab for Biopolymers and Safety Evaluation
- Shenzhen University
| | - Lei Du
- College of Materials Science and Engineering
- Shenzhen Key Laboratory of Polymer Science and Technology
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Nanshan District Key Lab for Biopolymers and Safety Evaluation
- Shenzhen University
| | - Florian J. Stadler
- College of Materials Science and Engineering
- Shenzhen Key Laboratory of Polymer Science and Technology
- Guangdong Research Center for Interfacial Engineering of Functional Materials
- Nanshan District Key Lab for Biopolymers and Safety Evaluation
- Shenzhen University
| |
Collapse
|
37
|
Lei K, Ma Q, Yu L, Ding J. Functional biomedical hydrogels for in vivo imaging. J Mater Chem B 2016; 4:7793-7812. [DOI: 10.1039/c6tb02019d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo imaging of biomedical hydrogels enables real-time and non-invasive visualization of the status of structure and function of hydrogels.
Collapse
Affiliation(s)
- Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|